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ABSTRACT

Context. The combination of wideband receivers and spectrometers currently available in (sub-)millimeter observatories deliver wide-
field hyperspectral imaging of the interstellar medium. Tens of spectral lines can be observed over degree wide fields in about 50 h.
This wealth of data calls for restating the physical questions about the interstellar medium in statistical terms.
Aims. We aim to gain information on the physical structure of the interstellar medium from a statistical analysis of many lines from
different species over a large field of view, without requiring detailed radiative transfer or astrochemical modeling.
Methods. We coupled a non-linear rescaling of the data with one of the simplest multivariate analysis methods, namely the principal
component analysis, to decompose the observed signal into components that we interpret first qualitatively and then quantitatively
based on our deep knowledge of the observed region and of the astrochemistry at play.
Results. We identify three principal components, linear compositions of line brightness temperatures, that are correlated at various
levels with the column density, the volume density and the UV radiation field.
Conclusions. When sampling a sufficiently diverse mixture of physical parameters, it is possible to decompose the molecular emission
in order to gain physical insight on the observed interstellar medium. This opens a new avenue for future studies of the interstellar
medium.

Key words. ISM: molecules – ISM: clouds – photon-dominated region (PDR) – ISM: individual objects: Orion B –
methods: statistical

1. Introduction

Molecular clouds have a complex structure, with filaments host-
ing dense cores and immersed in a low density diffuse envelope.
Large-scale dust continuum maps obtained with Herschel have
provided a breakthrough, by showing the tight relationship be-
tween the filaments and the dense cores. These maps however
do not provide information on the gas dynamics or its chemical
composition. Furthermore the relationship between the submil-
limeter dust emission and the gas column density is affected by
the dust temperature and possible variations of the dust emis-
sivity. Molecular line emission maps provide alternative means
to study molecular cloud structure and relate it to the flow

? Based on observations carried out at the IRAM-30 m single-
dish telescope. IRAM is supported by INSU/CNRS (France), MPG
(Germany) and IGN (Spain).

kinematics. Molecular line emission is linked to the underly-
ing physical properties of the interstellar medium (ISM), such as
density, gas and dust temperatures, UV radiation field, and cos-
mic ray ionization rate. However these relationships are complex
and their detailed study is a field in itself, namely astrochemical
modeling (Le Bourlot et al. 2012; Agúndez & Wakelam 2013).
Further complexity arises when considering radiative transfer to
derive line intensities from the local chemical composition and
physical structure.

The last few years have seen the installation of new wideband
receivers and spectrometers at millimeter and sub-millimeter
radiotelescopes. With these instruments, line surveys of sev-
eral GHz bandwidth and several tens of thousands of spectral
channels are the new default mode of observations. Combined
with wide field imaging capabilities both for single dish and
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Table 1. Properties of the observed spectral lines. The last six columns show the statistics of the data before and after asinh reparametrization.

Original data After asinh reparametrization
Molecule Transitions Frequency Noise Min. Median Max. Std. Min. Median Max. Std.

(MHz) (K) (K) (K) (K) (K) (K) (K) (K) (K)
12CO J = 1→ 0 115 271.202 0.09 −0.39 13.40 57.11 10.18 −0.37 2.39 3.32 0.91
13CO J = 1→ 0 110v201.354 0.04 −0.19 1.38 36.43 3.27 −0.19 0.97 3.03 0.74
CS J = 2→ 1 97 980 .953 0.06 −0.36 0.06 15.53 0.48 −0.35 0.06 2.48 0.23
HCN J = 1→ 0, F = 2→ 1 88 631 .848 0.10 −0.58 0.15 10.32 0.39 −0.52 0.15 2.22 0.25
HCO+ J = 1→ 0 89 188 .525 0.09 −0.45 0.26 8.07 0.47 −0.42 0.25 2.07 0.30
SO N = 3→ 2, J = 2→ 1 99 299 .870 0.06 −0.43 0.04 6.46 0.24 −0.40 0.04 1.92 0.17
CN N = 1→ 0, J = 3/2→ 1/2, F = 5/2→ 3/2 113 490.970 0.09 −0.58 0.10 6.33 0.27 −0.52 0.09 1.91 0.20
HNC J = 1→ 0 90 663 .568 0.08 −0.49 0.07 6.01 0.27 −0.45 0.07 1.88 0.19
CCH N = 1→ 0, J = 3/2→ 1/2, F = 2→ 1 87 316 .898 0.12 −0.62 0.08 5.72 0.22 −0.55 0.08 1.85 0.18
C18O J = 1→ 0 109 782 .173 0.06 −0.30 0.06 5.55 0.42 −0.29 0.06 1.83 0.26
N2H+ J = 1→ 0, F1 = 2→ 1, F = 3→ 2 93 173 .764 0.08 −0.44 0.00 4.53 0.13 −0.41 0.00 1.70 0.10
CH3OH J = 2→ 1, K = 0→ 0, (A+) 96 741 .375 0.06 −0.34 0.01 2.24 0.08 −0.32 0.01 1.26 0.08

interferometers, hyperspectral imaging is now routinely carried
out with these instruments.

The analysis and interpretation of these large datasets, con-
sisting of thousands of spatial positions and tens of thousands
of spectral channels, will benefit from the use of statistical
tools. Principal component analysis (PCA) is one of the most
widely used multivariate analysis method. It has been used to
study the ISM using molecular emission maps (Ungerechts et al.
1997; Neufeld et al. 2007; Lo et al. 2009; Melnick et al. 2011;
Jones et al. 2012).

In this paper, we address the following question: can PCA
provide a method to study the underlying physics of the ISM
when applied to a large dataset of molecular emission, without
performing either radiative transfer or astrochemical modeling?
The article is divided as follows. In Sect. 2 we present the data
used in this study. In Sect. 3 we describe the statistical method
used in this paper and its implementation. Results are presented
in Sect. 4 first by analyzing the output of the PCA, and further
by comparing theses outputs with independent maps of physical
conditions in Orion B in Sect. 5. The last section discusses these
results.

2. Data

The data used in this paper was selected from the ORION-B
project (PI: J. Pety), which aims at mapping with the IRAM-
30 m telescope a large fraction of the south-western edge of the
Orion B molecular cloud over a field of view of 1.5 square de-
grees in the full 3 mm atmospheric window at 200 kHz spectral
resolution. Pety et al. (2016) describe in detail the data acqui-
sition and reduction strategies. Table 1 lists the 12 transitions
selected in this paper from the already observed frequency range
(from 84 to 116 GHz), based on the inspection of the full data
cube.

For each line, we focused on emission coming from a lim-
ited 1.5 km s−1-velocity range centered on the peak velocity (i.e.,
10.5 km s−1) of the main velocity component along the line of
sight. Averaging the three 0.5 km s−1 velocity channels allowed
us to get a consistent dataset from the radiative transfer and kine-
matics viewpoints. In particular, we avoided the need to disen-
tangle 1) the effects of hyperfine structures of some lines, and
2) the complex velocity structure of the source (Orkisz et al.
2017).

The observed field of view covers 0.81 deg × 1.10 deg and
contains the Horsehead nebula, and the H ii regions NGC 2023,
NGC 2024, IC 434, and IC 435. The angular resolution ranges
from 22.5 to 30.5′′. The 12 resulting maps have a common
pixel size of 9′′ that corresponds to a Nyquist sampling for the
highest frequency line observed ( 12CO(1–0) at 115.27 GHz).
The maps thus contain 315×420 pixels. At a distance of ∼400 pc
(Menten et al. 2007), the maps give us access to physical scales
between ∼50 mpc and 10 pc.

Figure 1 shows the 12 maps of the resulting brightness tem-
perature multiplied by an ad hoc factor in order that they can
share the same color look-up table, even though the intrinsic
brightness temperatures of the different lines differ by more than
one order of magnitude. The relative calibration of the differ-
ent lines is excellent because they were observed with the same
telescope at almost the same time, since the observed bandwidth
was covered in only two frequency tunings. The noise for each
map, along with the minimum, median, maximum, and variance
values are listed in Table 1. The noise was computed by fitting a
gaussian function to the negative part of the histogram of pixel
brightnesses. This enabled us to compute the noise without need-
ing to mask out the emission.

3. Principal component analysis

3.1. Principle

We use the following standard statistical terms: the dataset is
composed of “samples” each described by individual “features”.
In our case, each spatial pixel is a sample and each line intensity
is a feature (the full dataset thus corresponds to a data matrix of
132 300 samples times 12 features).

PCA is a widely-used multi-dimensional analysis technique
(Jolliffe 2002), that can be defined in several mathematically
equivalent ways. It aims at finding a new orthogonal basis of
the feature space (whose axes are called principal components,
or PCs), so that for each k, the projection onto the hyperplane
defined by the first k axes is optimal in the sense that it preserves
most of the variance of the dataset (or equivalently that the error
caused by this projection is minimal). PCA thus defines succes-
sive approximations of the dataset by hyperplanes of increasing
dimension.

This is equivalent to the diagonalization of the covariance
matrix, so that the principal components are naturally uncorre-
lated. It can be thought of as finding the principal axes of inertia
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Fig. 1. Maps of molecular emission in Kelvin main beam temperatures.

of the cloud of samples about their mean in feature space, and is
thus a way to analyze the covariance structure of the data. The
principal components are ordered by decreasing projected vari-
ance. As a result PC1 is the axis of largest variance in the data.
PC2 is then the axis of largest variance at constant PC1 (orthog-
onal to PC1) and so forth. Neglecting the axes of lowest vari-
ance then allows the definition of a low-dimensional hyperplane
in which the dataset is approximately embedded. An important
property to keep in mind is the linearity of PCA, namely that

it defines low-dimensional hyperplanes, and not general low-
dimensional hypersurfaces.

A common variant1 in the application of PCA is to normal-
ize the variations of the dataset around the mean by the stan-
dard deviation of each features, before applying the PCA. This
amounts to diagonalizing the correlation matrix instead of the

1 This variant in the application of PCA goes back to one of the two
earliest descriptions of PCA: Hotelling (1933).
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Fig. 2. Effect of the asinh renormalization on the intensity distributions.
Left column: before renormalization, right column: after renormaliza-
tion, top row: N2H+, bottom row: 13CO.

covariance matrix. The correlation-based variant allows to avoid
having one feature dominate the variance, and is appropriate if
the relative scales of the features are not relevant for the purpose
of the analysis. As the relative intensity scales of the different
molecules used here are largely affected by properties (dipole
moment, elemental abundances, ...) that are not relevant for our
analysis of the chemical variations across the map, we use here
the correlation-based version of PCA.

In this work, we used the PCA implementation available
in the Python package scikit-learn (Pedregosa et al. 2011),
which uses a singular-value decomposition to compute the prin-
cipal component axes.

3.2. Reparametrization of input data

3.2.1. The need of a reparametrization

As seen in Table 1, some of the tracers have large dy-
namical ranges (two orders of magnitude for 13CO(1–0) and
12CO(1–0)).

Figure 2 shows the histogram of the brightnesses temper-
atures of two lines with contrasting behavior in our dataset,
namely 13CO(1−0), and N2H+(1−0). As the dynamic range
is large both in intensity and number of pixels per bin, these
histograms use the Bayesian blocks algorithm (Scargle et al.
2013, using here the Python implementation from AstroML;
see Vanderplas et al. 2012; Ivezić et al. 2014), which adapts the
bin width to the underlying distribution. Although the histogram
of the N2H+(1−0) is Gaussian to first order, the histogram of
13CO(1−0) exhibits heavy tails similar to power laws. As a re-
sult, extreme intensity values might dominate the covariance
structure of the data, and hide the variations at the more com-
mon lower intensity values.

From the physical viewpoint, taking the logarithm of the
brightness temperature is also desirable. PCA is a linear tech-
nique which decomposes the data as a sum of uncorrelated com-
ponents. Applying it to the logarithm of the data allows a de-
composition as a product of factors, and thus describes the data
structure in terms of ratios, products, and power laws, which
is more adapted to the underlying radiative transfer and chem-
ical effects. Taking the logarithms of the data is the equivalent
in astrochemistry to performing color−color magnitude diagram

analysis in optical or UV studies. Pety et al. (2016) show that
the line-integrated brightness temperatures of our dataset are, to
first order, correlated to the column density of matter along the
line of sight. We expect this aspect to appear in our PCA analy-
sis, whereas second order chemical variations around this trend,
which would be revealed by line ratios, are thus better described
as multiplicative (rather than additive) factors.

3.2.2. Impact of noise

The presence of noise causes the possibility of negative values
in those pixels where some lines are undetected. The logarithm
transform cannot be applied to these negative noise values. In
addition, because the logarithm stretches the lowest values com-
pared to the largest ones, it will also tend to stretch the positive
noise values of the undetected pixels, and this gives them more
weight in the covariance of the data.

There may be two different reasons for a non-detection: ei-
ther the measurement is not sensitive enough to detect the line
or the region just does not contain the species that emits the line.
The latter case happens particularly in H ii regions (e.g., IC 434),
in which 12CO(1–0) is photo-dissociated by the far UV pho-
tons. In this particular case, we could remove from our dataset
all the samples (pixels) where no 12CO(1–0) is detected. This
just assumes that no 12CO(1–0) detections at high sensitivity
imply the absence of molecular gas. However, this method is
not generic. For instance, N2H+(1–0) is only detected in dense
cores (Pety et al. 2016), and restricting ourselves to these regions
would drastically limit the scope of our study. If we wish to use
this important tracer of the molecular gas while still covering
the range of different chemical regimes present in our full map,
we thus need to find an alternative. Moreover, in the 3 mm band,
radio recombination lines, which emit in H ii regions, could in
principle be added to our dataset to study the formation of molec-
ular gas.

Adding a thresholding step before taking the logarithm will
only worsen the scope of undefined values. Although there are
PCA methods (e.g. Ilin & Raiko 2010) that can take missing
datapoints into account, they rely on the fact that these miss-
ing points have the same statistics than the measured points
(i.e., when a value is missing, it is independent of the actual
value). This is clearly not the case here because the missing
values (undetected lines) are missing due to them being below
the sensitivity threshold. These are called “censored values” in
statistics. We thus searched for a function that is linear around
zero (in the noise-dominated domain), and that is asymptoti-
cally equal to a logarithm for large values (compared to the
noise level). The inverse hyperbolic sinus function, asinh(x),
fulfills these conditions. We thus used the following function to
reparametrize the data before applying PCA

T (x) = a asinh(x/a), (1)

where the parameter a is the typical value for which the func-
tion’s behavior changes from a linear to a logarithmic regime
(Fig. 3).

The only free parameter in the method is the threshold a.
Appendix A discusses our choice, namely a = 8 × 0.08 =
0.64 K = eight times the median noise of the dataset. In short, we
select the value of a that maximizes the correlations of the first
three principal components with independent known measure-
ments of the column density, volume density, and UV illumina-
tion (Sect. 5). This appendix also demonstrates that our results
are quite insensitive to the exact value of a.
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Fig. 3. Plot of the asinh function (solid line) showing the asymptotes
when x→ 0 (dash dotted line) and x→ +∞ (dotted line). The parame-
ter a (here a = 1) is traced with a thin vertical line.

The right column of Fig. 2 shows the result of the asinh
transformation on the intensity distributions of two transitions
representative of bright ( 13CO(1–0)) and weak ( N2H+(1–0))
averaged lines. In the case of the bright lines, the dynamic range
is drastically reduced, with the heavy tail being transformed
into a second peak in the distribution but with no values above
three. In the case of N2H+ the distributions before and after
reparametrization are very similar. Figure 4 shows the 12 maps
of the molecular emission after reparameterization by the asinh
function, but before the normalization step of the PCA analy-
sis. The brightness temperatures of all the maps have been com-
pressed between about −0.5 and 3.5, with low signal-to-noise
brightness temperatures between −0.5 and 0.5 being mostly
untransformed.

4. Results

The PCA method exposes the correlations between the line
brightness temperatures. The derived PCs give the main axes of
correlated variations in the data set. As such, PCA does not di-
rectly yield physical information underlying the dataset. In this
section, we describe the results of the application of this statis-
tical method to our dataset and we start to discuss their possible
physic interpretation based on our a priori astrochemical knowl-
edge. The possible relations between the PCs and physical vari-
ables are investigated in a later section.

4.1. Correlation fraction explained by the different principal
components

Figure 5 shows the percentage of the correlation explained by
each PC (as a function of the principal component number) along
with the cumulative explained correlation as a function of the
number of principal components kept in the decomposition.

The first principal component explains the majority (60%)
of the total correlation present in the original dataset. Thus a
large part of the variations in the dataset occur along a single axis
(i.e. all lines are strongly correlated to each other). The second
principal component accounts for about 10% of the correlation.
It is significantly less than the first component, but more than any
other components. PCs 3, 4 and 5 correspond to similar amounts

of correlations (around 5% each) and PC6 slightly less (3.3%).
PC1 to 6 collectively explain more than 90% of the correlation
in our dataset. The remaining PCs have similar low amounts of
explained correlation (from 2% for PC7 to 0.9% for PC11).

4.2. Discussion of the principal components

The PCs defined by our analysis represent new axes in the feature
space (the full 12 PCs are simply a rotation of the initial basis of
the feature space), deduced from the data itself. They can thus be
expressed in terms of the original axes, as a linear combination
of the (transformed) line intensities. Figure 6 displays the quan-
titative contribution of each initial feature (line) to each PC. An
alternative view of the relationship between the PCs and the line
intensities, namely the correlation wheels, is presented in Fig. 7.

Each sample (pixel brightness) can then be projected on the
new axes, providing new coordinates commonly called “com-
ponent scores”. The PCA method considers the pixels as inde-
pendent samples, and thus ignores the spatial structure of the
molecular emission. It is nevertheless possible to reconstruct the
maps of the component scores. Figure 8 shows these projected
maps. The chosen color look-up table emphasizes that positive
and negative values of the projected maps, which correspond to
variations above and below the average along the considered axis
respectively, clearly extract a different spatial pattern per princi-
pal component.

The first principal component is a linear combination of all
tracers, with similar positive weights for all lines (Fig. 6). It thus
describes correlated variations of all molecules, and these ac-
count for most of the variations in the dataset, which is a natu-
ral consequence of all lines being well correlated (positively) to
each other. Pety et al. (2016) show that the emission of all lines is
correlated to first order with the column density of matter along
the line of sight. The first component is thus probably related to
the total column density, whose increase causes, to first order, an
increase in all lines. This is because in the linear approximation
of PCA, non linear effects such as saturation of the 12CO line are
not captured. The corresponding component map (Fig. 8) indeed
resembles a map of column density. This relation between PC1
and the total column density of matter will be investigated more
quantitatively in Sect. 5. We note that as PC1 has only positive
coefficients for all lines, orthogonality ensures that all other PCs
will represent contrasts between different lines.

The second principal component represents the axis of
largest variation at constant PC1 (orthogonal to PC1). This axis
of variations is dominated by positive contributions of N2H+

and CH3OH, and negative contribution of 12CO and 13CO. The
first two tracers are chemically associated with dense and cold
regions of the ISM. For instance, because N2H+ is easily de-
stroyed by CO, it can thus only be abundant in the gas phase
when CO has been depleted on the grain surfaces (Pety et al.
2016). The component map shows strong positive values high-
lighting known dense cores, including the clumps in the head
and in the neck of the Horsehead (Ward-Thompson et al. 2006).

The third principal component shows positive contributions
of CCH and CN that are known to be sensitive to UV illumina-
tion, and negative contributions of N2H+, CH3OH and of the
CO isotopologues, that trace gas shielded from the UV field.
This component thus probably traces the chemical specificities
of UV illuminated gas. The component map clearly shows posi-
tive values at the eastern edge of the cloud, illuminated by σ Ori,
and in the star-forming region NGC 2024.

The fourth principal component is particular in the fact that
its map almost only shows large (positive or negative) values in
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Fig. 4. Maps of molecular emission after reparametrization by the asinh function.

the regions of large positive values of PC2. It thus highlight fur-
ther chemical variations inside dense cores. This component is
completely dominated by opposite contributions of CH3OH and
N2H+ and thus traces variations in the ratio of these two lines.
The component map seems to highlight smaller-sized cores em-
bedded in some of the clumps revealed by PC2, and thus prob-
ably highlights the chemistry of the densest cores (larger N2H+

to CH3OH ratios).
The fifth principal component shows positive contributions

of sulfur species (CS and SO), and C18O, and negative contri-
butions of 12CO, CCH, and CH3OH. Its large positive values

highlight larger scale regions embedding the dense clouds shown
by PC2 (but with negative values where PC2 is very large), and
this PC could thus trace the chemistry of moderately dense gas.

The sixth principal component shows negative contributions
of HCN, HCO+, and CN, which can all originate in photo-
chemistry, and positive contributions from CCH, C18O, 13CO,
and SO. Although the latter are usually associated with a larger
amount of shielded gas, CCH can also be bright in UV illumi-
nated regions. The component map shows a wide blue region
around NGC 2024, similar to the large warm dust region seen in
the dust temperature map of the region (Schneider et al. 2013).
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This region could also be related to the radiation field, but trace
a different aspect from PC3, that is characterized by lower CCH
intensities relative to the other lines.

The remaining components are more difficult to interpret, but
tend to describe opposite variations in pairs of lines that varied
together in previous PCs. PCs 7, 9 and 10 display opposite vari-
ations in pairs of lines of the group HCN, HNC, CN and HCO+,
whose variations were correlated in the previous PCs in which
they had large weights (PC1 and 6). PC8 shows anticorrelated
variations of SO and C18O, and its component map shows a
striking spatial pattern: negative values (high SO/ C18O ratios) in
the Horsehead, the molecular gas at the base of the Horsehead,
and the small scale clumps in NGC 2024; and positive values
(low SO/ C18O ratios) in a dense filament stretching away from
NGC 2024. PC11 is strongly dominated by CS, and thus shows
specific variations of CS, mostly uncorrelated with the other
lines (somewhat anticorrelated with C18O), and that were not
described by the previous PCs. Its component map shows small
scale spots of positive values, mostly surrounding NGC 2024 and
NGC 2023. The fact that it appears so late in the decomposi-
tion can be explained by the small size of the highlighted region,
having little weight in the correlation matrix. PC12 is completely
constrained by orthogonality to the previous PCs and is thus only
an artifact of previous PCs.

4.3. Studying the effect of noise

The noisy nature of our data can have two kinds of effects. It
can first induce variability in our results (the results would vary
for a different realization of the random noise). We verified the
stability of our results by using a bootstrapping method. Boot-
strapping is a method of choice to compute uncertainties on an
estimator (here the PCA components) when the distribution of
estimator values cannot be assumed to follow a simple distri-
bution (Feigelson & Babu 2012). The idea of bootstrapping is
to use a Monte Carlo method to create new resampled datasets
of the same size as the original dataset by sampling with re-
placement from the original dataset. We constructed 5000 such
bootstrapped datasets and ran the PCA algorithm on each. To
avoid overestimating the uncertainty, and because the PCA is

invariant through the change of sign of the PCs, we ensured that
the signs were consistent before computing the distribution of
the PC coefficients. The results are presented both for the eigen-
spectra in Fig. 6, and the correlation wheels in Fig. 7.

The PC coefficients appear overall very stable, the variances
are completely negligible for PC 1 and 2, and very small for PC 3
to 6. Only PCs 7 and 8 show higher variability. This can be un-
derstood as PCA results are particularly sensitive to noise when
two PCs correspond to very close eigenvalues, and PCs 7 and 8
have the closest eigenvalues with respectively 2% and 1.9% of
the total correlation. Indeed, PCs with equal eigenvalues are de-
generate in the sense that any basis of the subspace they define
satisfies the definition of PCA. As a result, when eigenvalues are
not exactly equal but very close, the noise can result in a random
rotation of this group of PCs inside their subspace. Our results,
which focus on the first few PCs, are thus unaffected by noise
variability.

The second possible effect of noise is to bias the results.
Principal component analysis is unbiased if the noise is spher-
ical (i.e., has equal variance in all directions) in the final dataset
on which PCA is applied (i.e., after standardization in our
correlation-based variant). In this case, the noise can only hide
the lowest PCs (that describe variations smaller than the noise
level) and make them degenerate. In our case however, the noise
levels on the different molecular lines are initially close but not
equal (variations by a factor of three at most, as demonstrated in
Table 1). The non-linear reparametrization keeps these relative
variances. Finally, the last normalization step (by the standard
deviation) results in final noise variances that are proportional to
the ratios of noise standard deviation to total standard deviation
of the reparametrized intensities. These differ by up to a factor of
14.8 between the lines, and possible biases may be present in our
results, giving higher weight to the lines with the largest ratios
of noise variance to total variance. However, it was not possible
with the PCA method to avoid giving higher weight to the bright-
est lines (which led us to use the correlation-based PCA), and at
the same time ensure equal noise on all variables. We note that
previous PCA studies of molecular clouds were less concerned
by noise-induced bias as they only used lines that were clearly
detected in all pixels. We chose to perform the PCA on the full
region, which led to the identification of two PCs associated with
dense core chemistry.

5. Correlation of the principal component maps
with independently measured physical
parameters maps

In the previous section, we combined two sources of informa-
tion to interpret the main principal components: 1) astrochem-
istry, which teaches us that some molecules trace certain physical
conditions, and 2) Orion B is an extremely well-studied source,
implying that its spatial structure is well known. For instance,
the molecular cloud is known to be illuminated by well-defined
young massive stars (discussion in Pety et al. 2016). This al-
lowed us to infer a link between the first three principal com-
ponents and physical parameters such as the column density,
the volume density, and UV illumination. In this section, we
will quantitatively assert these potential relations by studying the
correlation of each component map with a set of independently
measured maps of physical parameters.
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Fig. 6. Bar plots showing the contribution of each line intensity to each principal component (with the fraction of the total correlation accounted
for by each PC given as a percentage). The uncertainties (standard deviations) shown in red are obtained by bootstrapping as described in Sect. 4.3.

5.1. Independent measure of the physical parameters

The goal of this section is to find the principal component that is
best associated to each of the physical parameters, not to assign
an absolute physical meaning to some of the components. It
is therefore not necessary to have absolute values of the inde-
pendently measured physical parameter maps. Only the relative
variation of each physical parameter is required to compute the
correlation coefficient. Figure 9 shows the different maps of the
physical parameters that we will correlate with the first three
principal components. This section describes how these maps
were obtained.

5.1.1. Column density

The dust column density map is from the Hershel Gould
Belt Survey (PI: P. Andre) Orion B map (André et al. 2010;
Schneider et al. 2013)2. This map was obtained by fitting the far
infrared spectral energy distribution by greybodies. We applied
a logarithmic scaling to the data to reduce the dynamical range.
The resulting map is plotted in the left panel of Fig. 9.

2 http://www.herschel.fr/cea/gouldbelt/en/

5.1.2. Volume density

Volume density is a difficult quantity to measure because one
needs both a mass estimate and an associated volume. Density is
thus dependent on the scale that it is computed at. We used the
catalog of cores identified and characterized in Kirk et al. (2016)
and computed masses from each cloud’s 850 µm flux using their
equation three. To do this, we assumed a common temperature
of 17 K for all clouds. From this mass and their observed size
estimates we computed a volume density for each of the dense
cores in our observed field of view. In this case correlation could
not be carried out over the full map but we correlated the density
measured for each core with the value of the principal compo-
nents measured in the nearest pixel. The data is shown as a scat-
ter plot in the middle panel of Fig. 9.

5.1.3. UV radiation field

We computed the UV radiation field by using the fact that
PAH emissivity is roughly constant per unit H and unit radia-
tion field (Draine & Li 2007). In practice, we used the WISE
(Meisner & Finkbeiner 2014) 12 µm maps divided by the col-
umn density, and clipped to a maximum value of 1022 cm−2.
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Fig. 7. Correlation wheels, showing the initial line intensities as vectors having as coordinates their correlation coefficients to each PC, represented
in the planes of successive pairs of PCs. Uncertainties from our bootstraping analysis (see Sect. 4.3) are presented as thin black contours around the
arrows’ heads (isodensity contours containing 68% of the distribution). Also represented in colored arrows are the correlations of our independent
physical parameters with the PCs (red: log NH2 , green: log nH, blue: log(U/Ū)).

We do not claim to have an absolute value of the UV radiation
field but a quantity that should be proportional to it. The quan-
tity log(U/Ū) where Ū is the mean value of U is shown in the
rightmost panel of Fig. 9.

The proper way to compute the UV radiation field from PAH
emission would be to divide by the volume density but as we
discussed in the previous paragraph, it is not possible to get a
full map of volume density. We chose to use column density as a
proxy for volume density even though it entails strong constrains
on the spacial distribution of the gas along the line of sight. Since
we are interested in relative variation of density and not absolute

values it is sufficient to assume that the matter is clustered into
clouds that are of similar spatial extents.

5.2. Correlation of principal component maps with physical
parameters

We computed the Spearman’s rank correlation coefficient be-
tween each pair of principal component maps and physical pa-
rameters maps. We used Spearman’s rank correlation instead
of the Pearson linear correlation coefficient because the poten-
tial relations between the principal components and the physical
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Fig. 8. Principal component maps. These maps represent the value of each observed pixel when they are projected in the space of the principal
components.

parameters are most certainly non linear in nature. The rank co-
efficient used is only sensitive to the ordering of the values and
is thus not affected by the possible non-linearities of the corre-
lation. Table 2 summarizes all theses values and Fig. 10 shows
the scatter plots for the most significant correlations discussed in

the next paragraphs. An alternative way of exploring the correla-
tions between the independent physical parameters and the PCs
is to represent the correlation between each physical parameters
and the PCs in the correlation wheels of Fig. 7.
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Fig. 9. Maps of the independently measured physical parameters, H2 column density (left), volumic density (middle), UV illumination (right).
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Fig. 10. Scatter plots of the first three principal components with the independent physical parameters. Contours in black and gray correspond to
68% and 95% of the samples respectively.

For this analysis, it must be kept in mind that while the
principal components are necessarily uncorrelated, the physical
parameters considered here are correlated: N(H2) is an integral
of nH along the line of sight and the two are thus strongly corre-
lated, whereas U is inversely proportional to N(H2) by construc-
tion and they are thus anticorrelated. As a result, the principal
components will tend to represent the uncorrelated part of the
variations of the underlying physical parameters.

Column density: The component map showing the highest cor-
relation coefficient with N(H2) is PC1. Spearman’s rank corre-
lation coefficient is extremely high at 0.90, and the scatter plot

(Fig. 10, left panel) shows a strongly linear relation between PC1
and log(N(H2)).

Because PC1 is the first PC (axis of largest variation), it is
unaffected by the decorrelation constraint that affects the other
PCs. This first principal component can thus be interpreted as a
global measure of total column density, as suspected in our pre-
vious discussion. Since nH and U are positively and negatively
correlated with N(H2), respectively, these physical parameters
exhibit relatively strong positive and negative correlations with
PC1.

Volume density: The PC most correlated to nH is also PC1,
due to the large correlation between N(H2) and nH. The next
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Table 2. Spearman’s rank correlation coefficient between the principal
components and the physical parameters.

log NH2 log nH log(U/Ū)
PC1 0.90 0.43 −0.66
PC2 −0.57 0.22 0.43
PC3 −0.20 0.06 0.42
PC4 −0.01 −0.23 −0.04
PC5 −0.16 0.02 0.09
PC6 0.04 −0.07 −0.26
PC7 −0.02 −0.03 0.00
PC8 −0.02 0.05 0.12
PC9 −0.02 0.06 −0.11
PC10 −0.06 −0.10 −0.07
PC11 −0.03 −0.13 −0.04
PC12 0.04 0.11 −0.05

principal components most correlated with our limited sam-
ple of volume density measurements are PC2, which shows a
Spearman’s rank correlation coefficient of 0.22, and PC4, with a
Spearman’s rank correlation coefficient of −0.23.

As was discussed in Sect. 4, PC2 and PC4 both trace chem-
ical differences typical of dense cores. PC2 and PC4 can thus
be interpreted as indicator of the presence of dense cores. We
note that this comparison was only done with a limited sample
of rather dense clouds. We can thus only say that PC2 traces
increased density among dense clouds. Because of the opposite
sign of the correlation of the density with PC4, negative values of
this PC probably trace an even higher density regime. As noted
before, the behavior of PC2 in less dense region is probably anti-
correlated with density, and these PCs are thus only indicative of
density in the high density regime.

Radiation field: For the radiation field, the most correlated PC
is again PC1 (negative correlation) because high column density
tends to result in highly shielded gas. Not considering PC1 and
PC2, the third principal component shows the highest correla-
tion with our estimation of the radiation field, with a Spearman’s
rank coefficient of 0.42. It thus describes the part of the radia-
tion field variations that are not correlated with the cloud column
density. As a result, PC3 highlights the part of the cloud where
specific sources cause increased illumination. A strong positive
correlation (0.43) with PC2 is also found, which is most likely
an artifact due to the positive values of PC2 in the diffuse re-
gions surrounding the molecular cloud (where most of the lines
involved in PC2 are undetected, making PC2 irrelevant). PC6
also has a significant correlation with the radiation field (−0.26).
These results thus confirm our previous discussion of PC3 and
PC6.

These results can be inferred graphically from the correlation
wheels of Fig. 7, in which the colored arrows tracing the location
of N(H2) nH, and U in the PC space have a significant size only
for the first four PCs. Furthermore, each arrow is roughly aligned
with one of the PCs: PC1 for N(H2), PC2 for nH and PC3 for U.

6. Discussion

6.1. Comparison with other works

PCA has been extensively used in astronomy as a multivar-
iale analysis tool starting from the work of Deeming (1964)

on the classification of stellar spectra. Its use for the study of
molecular maps of the ISM is more recent, starting with the
work of Ungerechts & Thaddeus (1987). Notable studies include
Neufeld et al. (2007), Lo et al. (2009), Melnick et al. (2011), and
Jones et al. (2012).

We first discuss the common points between these studies.
On a technical aspect, all these studies apply only subtraction
by mean and normalization by variance, and do not attempt to
introduce a non linear reparametrization of the observed inten-
sities. The effect of noise is considered by limiting the number
of observed lines to the set of brightest tracers (Lo et al. 2009)
and masking regions of low emission (Jones et al. 2012). All of
these studies identify the utility of PCA as a means of studying
the correlations between molecular lines by studying the com-
monality between tracers and their variation, and as a tool to
identify regions interesting for further study. With the notable
exception of Ungerechts & Thaddeus (1987), rarely a discussion
is made relating the principal components with the underlying
physical parameters of the ISM. However, specific correlations
or anticorrelations are often discussed in a chemical view or by
invoking opacity effects (Lo et al. 2009).

Ungerechts et al. (1997) present a dataset of 360 spatial
points in 32 lines of 20 chemical species including isotopologues
toward the Orion A molecular cloud with the 14 m FCRAO tele-
scope. Using PCA they show that the chemical abundances of
most species stay similar for the Orion ridge, and that the main
differences stand up for the BN-KL region. They note that their
first three PCs contain 80% of the observed correlation and they
use their component maps mainly to identify regions for further
astrochemical study. They nevertheless discuss that data mostly
lie in a 3D space spanned by the first three PCs because the
molecular emission probably depends on three physical param-
eters of the ISM, namely the column density, volumic density,
and gas temperature. Melnick et al. (2011) compared the distri-
bution of the ground-state transition of water vapor with that
of the ground state transition of N2H+, CCH, HCN, CN, and
13CO(5−4). Water vapor is found to best correlate with species
like 13CO(5−4) and CN, tracing the cloud surface up to a few
magnitudes of extinction, and is poorly correlated with N2H+

tracing the shielded regions. Using MOPRA, Jones et al. (2012)
have mapped the central molecular zone (CMZ) near the cen-
ter of the Galaxy in 20 spectral lines in the 85.3 to 93.3 GHz
range. They performed a PCA analysis using the strongest eight
lines (HCN, HCO+, HNC, HNCO, N2H+, SiO, CH3CN, and
HC3N) in the restricted area around SgrB2 and SgrA, where
the N2H+ line is stronger than 10 K km s−1. The analysis recov-
ers the overall similarity of the line maps. The main differences
are found in the SgrA and SgrB2 cores between the bright lines
HCN, HNC, HCO+, and the other species, and is attributed by
Jones et al. (2012) to a difference in opacity. The other PCA
components reveal specific regions where CH3CN, HNCO, and
SiO abundances are enhanced, possibly due to shocks or hot
cores. Lo et al. (2009) studied the G333 molecular cloud with
MOPRA. The PCA is performed on eight molecular lines with
high S/N ratio (13CO, C18O, CS, HCO+, HCN, HNC, N2H+,
and CCH). The PCA analysis reveals differences between the
regions traced by CCH and N2H+. In star forming regions it also
reveals an anticorrelation between 13CO, C18O, and N2H+, and
between N2H+ and HCO+. PCA is also used by Neufeld et al.
(2007) to separate the different regions impacted by supernovae
shock waves.

While the analysis discussed in the previous paragraph
used integrated line intensities, PCA has also been used on
spectral line profiles as a mean to extract information on the
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spatial properties of the turbulence (Heyer & Peter Schloerb
1997; Roman-Duval et al. 2011; Brunt & Heyer 2013), to study
line absorption depth (Neufeld et al. 2015), or to measure cloud
properties (Rosolowsky & Leroy 2006). To our knowledge no
PCA analysis takes into account the full velocity profile of the
molecular emission at every spatial position. Further inquiry on
this subject is required as it can add a further dimension, namely
the shape of the line profiles, to study the emission correlations.

6.2. Non-linearities and multiple physical regimes

Two important properties of PCA must be kept in mind. The
first is that it is a linear method. It distinguishes the axes of varia-
tions in the dataset as linear combinations of the initial variables.
Thus, non-linear (approximate) relations between the variables
cannot be properly captured. In this case, a single relation could
be described by several PCs, one describing the best linear ap-
proximation, and additional PCs describing directions in which
the non-linear relation deviates from linearity. Using our non-
linear transform, equivalent to a logarithm for high S/N val-
ues, alleviates part of the problem because it allows us to de-
scribe power-law relations. However, other non-linearities (such
as saturation for the 12CO line) are still not captured. Non-linear
extensions of PCA exist (kernel-PCA, neural network-based di-
mensionality reduction such as the self-organizing maps), but
their results tend to be harder to interpret.

The second property is that PCA is based on the global corre-
lation matrix of the data. If different physical regimes are present
in the dataset, each with different relations between the variables,
PCA will provide a global (linear) approximation including the
different regimes. Depending on the fraction of samples (pixels)
representing the different regimes, it may give more weight to
some regimes than others, neglect some regimes, or mainly rep-
resent one of the regimes.

6.3. Reduction of dimensionality

PCA is often used as a dimensionality-reduction tool, by keeping
only a subset of the PCs that account for a sufficiently large frac-
tion of the variance in the dataset. We saw that PC1 to 6 explain
more than 90% of the correlation structure of the data. More-
over, PC6 defines a transition between several PCs with similar
levels, and others with different levels (5% for PC3−4−5, 1−2%
for the PCs after 6). The projection on the first six PC thus define
a six-dimensional hyperplane in which the data is approximately
embedded. However, we saw some striking spatial features ap-
pearing in later PCs, indicating meaningful axes of variations,
such as PCs 8 and 11. The pattern of small scale spots shown by
PC11 (corresponding to overbright CS) is particularly interest-
ing, and its late apparition in the decomposition could simply be
a consequence of the small fraction of pixels concerned. Thus,
even PCs with lower fractions of explained correlation can con-
tain important information, such as specific variations occurring
in small regions only.

6.4. A synthetic view of Orion B

Using the physical interpretation of the principal components de-
rived from the previous section it is possible to derive a synthetic
view of the Orion B cloud rendered through a color image (see
Fig. 11). The principal components 1 (column density), 2 (vol-
ume density) and 3 (UV illumination) are used in the following
way: the column density is used to encode the luminosity, and

the volume density and UV illumination are combined orthogo-
nally to define a color,

hue = atan(uv, density). (2)

In this way, it is possible to identify, by color only, the physical
properties associated with every line of sight.

Most of the region is composed of low density gas either
obscured (green) or UV illuminated (yellow). Notable features
are the moderately dense (orange) photodissociation regions that
are present as the surface of pillars (e.g. around the Horsehead
nebula) and as globules surrounding the NGC 2024 massive H ii
region in the upper part of the map. A sharp illumination gradient
is visible at the base of the neck of the Horse with transition from
illuminated (yellow) to shielded (green) gas.

Concerning the dust lane in front of NGC 2024, there is a
clear sharp frontier between the northern and southern part, the
north being strongly UV illuminated (yellow, orange, and red),
the southern part much more obscured (cyan and green). The
variation in the density of dense cores are visible with transitions
from moderately dense (cyan) to higher density (dark blue) gas.

7. Conclusion

To study the correlations between maps of the emission of
12 bright lines belonging to the 3 mm band over the south-
western edge of the Orion B molecular cloud, we applied the
PCA to these data. Before this analysis, we applied a non-linear
transformation that is close to linear around zero and is equiva-
lent to a logarithmic transform at large values. The goal of this
non-linear transform is two-fold.

Firstly, although ratios of brightness temperatures are easier
to interpret, PCA assumes that the relations in the input data set
are linear. Applying the logarithm to the input data allows us
to transform ratios of brightness temperatures into subtractions
well adapted to a linear analysis.

Secondly, signal is only detected on a line-dependent subset
of the field of view. Applying the logarithm to noisy brightness
temperatures centered around zero is mathematically ill-defined.
Having a linear transform around zero solves this problem. We
tuned the transition value between the linear and logarithmic
value that is typically eight times the typical noise value of the
dataset. We showed that the results are not very sensitive to this
value.

The PCA delivers a set of maps that are a linear combination
of the input brightness temperatures, taking into account their
(anti-)correlations. Although PCA does not use the spatial infor-
mation of the input dataset, the output maps expose well-defined
structures. We thus limited our analysis to the first few princi-
pal components that expose the largest correlations present in
the initial dataset. The analysis of these correlations allowed us
to propose links between the first three components and phys-
ical parameters, in this case the column density, volume den-
sity, and UV radiation field. We quantified these links by com-
puting the correlation coefficients of these principal components
with independent measurements of the column density, volume
density, and UV illumination. The first principal component is
highly correlated to the column density measured from the dust
extinction and has positive contributions from all molecules, as
has been noted in Pety et al. (2016). The third principal com-
ponent is well correlated to our estimation of the UV illumina-
tion, with positive contributions from CCH, CN and anticorrela-
tions with N2H+ and CH3OH. The second principal component
is correlated with the volume density in the dense cores having
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Fig. 11. Synthetic view of the Orion B molecular cloud. In this colormap, the intensity of each pixel is encoded by PC1 (column density) and the
hue is encoded by the angle of the vector constructed using two orthogonal components PC2 (volume density) and PC3 (UV radiation field). It is
possible to identify limiting cases. Magenta: dense PDR, yellow: diffuse PDR, green: diffuse non illuminated, blue: dense non illuminated.
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a combined positive contribution from N2H+ and CH3OH and a
negative contribution from 12CO and 13CO.

The possibility of linking linear combinations of the bright-
ness temperatures of a set of 3 mm lines to physical parameters
such as the column density, volume density, or UV illumina-
tion opens an interesting avenue to analyze the large spectro-
imaging data sets that (sub)-mm radioastronomy starts to pro-
duce. As PCA analysis only works on the brightness tempera-
tures independent of their spatial relations, it also offers an easy
possibility to compare with large grids of detailed 1D models of
photo-dissociation regions. In future papers, we will continue to
explore this with more advanced decomposition techniques that
may take into account missing values, noise effects, or non-linear
relations in the input dataset.
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Fig. A.1. Variation of 〈|ρ|〉, the mean of the absolute values of the Spear-
man’s correlation coefficients as a function of K, with a = Kmedian(σ).
The optimal value is found for K = 8.

Appendix A: Optimal value of a in the asinh
reparametrisation

The only free parameter in the asinh reparametrization is a, the
parameter which marks the boundary between the linear and log-
arithmic regimes of the asinh function (see Fig. 3). As shown
in Table 1 the noise across different lines is similar and we ex-
press a as the product of a constant factor K by the median noise
0.08 K. The quantity we choose to maximize is the mean of the
absolute value of the correlation coefficient of the principal com-
ponents with the physical maps N(H2), U, and nH, we note this
quantity 〈|ρ|〉. Figure A.1 shows the evolution of this quantity
with increasing values of K, a maximum value of 〈|ρ|〉 around
K = 8 although an acceptable range of K values (reduction of
〈|ρ|〉) by less than 5%) spans values from 3 to 40.
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