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In recent years, there has been an increasing interest in electron spin and its potential for use in 

semiconductor devices enabling the creation of novel devices with a wide variety of potential applica- tions 

[1, 2]. Amongst the most promising of these devices are spin field effect transistors (SpinFETs) which are 

considered a future candidate for high performance computing and memory applications with ultra-low 

power consumption [3, 4, 5]. 

A through understanding of the dynamics of electron spins inside real semiconductor materials and device 

structures is crucial to making use of the spin as part of the device operation. To this end, we apply finite-

element quantum-corrected ensemble Monte Carlo simulations with electron spin to a nanoscale III-V field 

effect transistor to investigate a spin transport within  a  realistic  semiconductor device. 

The simulation was adapted to include electron spin as a separate degree of freedom using the spin density 

matrix !0(t) [6]. 

 

where !99 and !;; represent the probability of finding the electron in either a spin up or spin down state 

and !9; / !;9 represent the coherence. This can be parametrized by the electron spin-polarization vector as 

S� = 6N(êÞ é0(P)) where � = x, y, z, and 1�  are the Pauli matrices.  

The spin-orbit interaction consists of two terms the Dresselhaus Hamiltonian (HD ) which accounts for spin-

orbit coupling as a result of bulk inversion asymmetry of the crystal, and the Rashba Hamiltonian (HR) which 

accounts for spin-orbit coupling due to structural inversion asymmetry of the quantum well. 

 

Here x is taken to be the transport direction along the device channel and U the growth direction of the 

quantum well and Gë
6 ,Gí

6 « ÃGì
6Ä. 

Discretizing the equations, we obtain the update rule for the density matrix, 

 

Using basic matrix algebra it can easily be shown that 

 

With 

 

This shows that the evolution of the spin polarization vector is equivalent to a rotation determined by the 

direction of the electron momentum. 

Using this simulator, we investigated the spin dynamics across the channel of an In0.3Ga0.7As MOS-FET (Fig. 

1). The device we study is similar to the Datta-Das spin-FET [3] except that only the source 

International Workshop on Computational Nanotechnology        

168 



 
 

electrode is ferromagnetic. We simulated the e_ects of varying both the drain and gate biases and the 

application of mechanical strain. The simulation results are interesting because they suggest that the 

polarisation of the electrons initially decays as they traverse the device, as expected, but partially recovers 

as the electrons approach the drain (see Fig. 2a). 

As the drain electrode was deliberately chosen to be non-magnetic, the recovery of the magnetization cannot 

be attributed to existing polarized carriers inside the drain but must be assumed to be due to partial re-

phasing of electron spins resulting in a net magnetization. Finally the decay and the recovery depend on the 

gate voltage (Fig. 2b) and can therefore be controlled we also see a similar dependence on the applied 

strain which has the potential to be used in the operation of a nanoscale strain sensor. 

 

Figure 1: (a) 3D model of In0.3Ga0.7As MOSFET showing spin polarization of electrons along n-channel with 

4% strain in the [001] direction (Red) and unstrained (Purple). (b) Schematic of In0.3Ga0.7As MOSFET. 

 

Figure 2: (a) Magnetisation components vs. position along the channel (averaged over 10 runs) taken for 5ë 

injection at P =  8LO, i.e., after a steady state was reached. (b) Total magnetisation versus position at 

P =  8LO with different gate voltages (8Ú) and a fixed source-drain voltage (8×) of 0.9 V. 
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