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Measurements of cosmic microwave background (CMB) anisotropies provide strong evidence for the
existence of dark matter and dark energy. They can also test its composition, probing the energy density and
particle mass of different dark-matter and dark-energy components. CMB data have already shown that
ultralight axions (ULAs) with mass in the range 10−32 eV → 10−26 eV compose a fraction ≲0.01 of the
cosmological critical density. The next Stage-IV CMB experiment (CMB-S4) (assuming a 1 arcmin beam
and ∼1 μK-arcmin noise levels over a sky fraction of 0.4) to the density of ULAs and other dark-sector
components is assessed. CMB-S4 data should be ∼10 times more sensitive to the ULA energy density than
Planck data alone, across a wide range of ULAmasses 10−32 ≲ma ≲ 10−23 eV, and will probe axion decay
constants of fa ≈ 1016 GeV, at the grand unified scale. CMB-S4 could improve the CMB lower bound on
the ULA mass from ∼10−25 eV to 10−23 eV, nearing the mass range probed by dwarf galaxy abundances
and dark-matter halo density profiles. These improvements will allow for a multi-σ detection of percent-
level departures from CDM over a wide range of masses. Much of this improvement is driven by the effects
of weak gravitational lensing on the CMB, which breaks degeneracies between ULAs and neutrinos. We
also find that the addition of ULA parameters does not significantly degrade the sensitivity of the CMB to
neutrino masses. These results were obtained using the AXIONCAMB code (a modification to the CAMB
Boltzmann code), presented here for public use.
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I. INTRODUCTION

Identifying dark matter (DM) remains one of the
outstanding cosmological challenges of the current age.
While searches for direct or indirect evidence of a dark
matter candidate continue [1,2], the effect of dark matter on
cosmological observables provides a complementary
approach to constraining the dark sector.
In the face of increasingly strict experimental limits to

weakly interactingmassive particle (WIMP)DM, axions are
reemerging as a popular alternative (see Ref. [3] for an
extensive review of axions). Cosmological axion production
can proceed through decays of exotic particles (e.g. moduli)
or topological defects, thermal production from the stan-
dard-model plasma, or coherent oscillation around a mis-
aligned (from the vacuum state) initial value, known as

vacuum realignment. If axions are also produced because of
nonvanishing matter couplings, a relativistic population can
be produced, contributing to the relativistic energy density
as parametrized by a generic parameter Neff, describing the
number of relativistic degrees of freedom. Constraints on
these axion models were presented in Refs. [4–7].
Vacuum realignment is the only axion production mecha-

nism that occurs independent of assumptions about axion
couplings or inflationary physics, and produces an extremely
cold population of axions, in contrast with other mecha-
nisms. Here, we consider only axions produced by vacuum
realignment.1 Ultralight axions (ULAs) produced via vac-
uum realignment withmasses in the range 10−33 eV ≤ ma ≤
10−20 eV are well motivated by string theory, and can
contribute to either the dark matter or dark energy compo-
nents of the Universe, depending on their masses [3].
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1We do vary Neff − 3.046, but without bias as to its physical
nature.
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They are distinguishable from standard dark energy (DE)
and cold dark matter (CDM) using cosmological observ-
ables such as the cosmic microwave background (CMB)
temperature and polarization power spectra, the matter
power spectrum (as probed using the correlations of galaxy
positions and shapes) and the weak gravitational lensing of
the CMB. Constraints on the allowed contribution of ULAs
to the total DM component using these observables provide
a test of the CDM scenario.
A key goal of future cosmological experiments is

to measure the sum of the neutrino masses, Σmν (see
Ref. [8] for a review of neutrino cosmology). The current
bound on Σmν from ground-based oscillation experiments
is Σmν ≳ 0.06 eV [9]. Current cosmological neutrino
bounds indicate that Σmν < 0.23 eV at 95% confidence,
using data from Planck [10] and measurements of Baryon
Acoustic Oscillations (BAO) from the Baryon Oscillation
Spectroscopic Survey [BOSS, [11]].
Forecasted constraints for neutrino masses are that

σðΣmνÞ ¼ 15 meV for a fiducial model with Σmν ¼
60 meV, for a CMB-S4-like experiment and BAO
measurements from a DESI-like survey [12], promising
a 4σ detection of neutrino mass [13]. Much of this
improvement is driven by weak gravitational lensing of
the CMB, in particular at high multipoles l≳ 1000,
although the change in the lensing convergence power is
of order 25% even at low multipoles. The lensing deflection
power spectrum is determined from 4-pt functions of CMB
maps, extracting a factor of ∼

ffiffiffi
3

p
as much information from

CMB experiments [14].
The promise of CMB experiments in probing neutrino

masses motivates us to wonder: will future CMB experi-
ments offer dramatic improvements in sensitivity to axion
parameters? Given the known similarity of ULA and
massive neutrino imprints [15] on cosmological observ-
ables at low mass (ma ≲ 10−29 eV), how significant are
ULA-neutrino degeneracies at CMB-S4 sensitivity levels
and will they degrade our ability to do fundamental physics
with the CMB? To answer these questions, we conduct a
Fisher-matrix analysis to explore the sensitivity of future
CMB experiments to ULA masses, densities, and Σmν. We
find that CMB-S4 will allow a 2 − 5σ detection of axion
mass fractions that agree with pure Planck limits, covering
an axion mass range of 10−32 eV≲ma ≲ 10−24 eV.
Near the top of this range, CMB-S4 will break the

degeneracy of axions and CDM. Sensitivity persists (but
tapers off) towards higher axion masses of ma ∼ 10−23 eV.
CMB-S4 will push CMB tests of the ULA hypothesis
towards the mass range probed by subtle observables, like
the size of DM-halo cores and the number of missing
Milky-Way satellites. In the dark-energy-like (“DE-like”
ULAs, henceforth) ULA regime (ma ≲ 10−29 eV), we find
that the ULA mass fraction is degraded by degeneracies
with the sum of the neutrino masses, but that this
degeneracy disappears at higher masses. We find also that

future measurements of the Hubble constant could break
this degeneracy. We denote ULAs in the mass range
10−29 eV≲ma ≲ 10−25 eV as “fuzzy DM,” and those with
ma ≳ 10−25 eV as dark-matter-like (or DM-like).
We find that measurements of the lensing-convergence

power spectrum Cκκ
l drive much of the improvement in

sensitivity; if lensing is omitted, the fractional error bar on
the axion mass fraction degrades by a factor of ∼3�5 in the
“fuzzy” regime. Finally, we explore the dependence of our
results on CMB-S4’s experimental design parameters.
We begin this paper by summarizing the physics and

cosmology of ULAs and neutrinos in Sec. II. In Sec. III, we
discuss the effects of ULAs and neutrinos on cosmological
observables (e.g., the CMB’s primary anisotropies and its
lensing-deflection power spectrum), as well as the degen-
eracies between axions and cosmic neutrinos. Our assump-
tions about future data, forecasting techniques, and key
science results are presented in Sec. IV. We conclude
in Sec. V.
All power spectra presented here were computed using

the AXIONCAMB code, a modification to the CMB
anisotropy code CAMB [16], which is described in
Appendix A, is publicly available, and was used to obtain
the ULA constraints of Ref. [17].2 In Appendix B, we
discuss the computation of the nonlinear matter power
spectrum (relevant for understanding the effect on weak
lensing on the CMB).

II. REVIEW OF AXION AND
NEUTRINO COSMOLOGY

This section provides a brief introduction to axion physics,
as well as the cosmology of axions and neutrinos (reviewed in
greater depth by Refs. [3,17] and [8], respectively).
In this work we model the axion as a scalar field ϕ. The

dynamics of the scalar field are set by its potential, which we
assume for simplicity to be a VðϕÞ≃ 1

2
m2ϕ2 potential.

Hence, the equation ofmotion for the homogeneousULA, is

ϕ̈0 þ 2H _ϕ0 þm2
aa2ϕ0 ¼ 0; ð1Þ

where the conformal Hubble parameter isH ¼ _a=a ¼ aH,
and dots denote derivatives with respect to conformal time.
At early times, the axion is slowly rolling and has an

equation of state of wa ≡ Pa=ρa ≃ −1. It, therefore,
behaves like a cosmological constant, with roughly con-
stant proper energy density as a function of time. H
decreases with the expansion of the Universe and at a
time aosc such that ma ≈ 3HðaoscÞ the axion field begins to
coherently oscillate about the potential minimum.
The relic-density parameter Ωa is given by

Ωa ¼
�
a−2

2
_ϕ2
0 þ

m2
a

2
ϕ2
0

�
ma¼3H

a3osc=ρcrit; ð2Þ

2The code may be downloaded from http://github.com/dgrin1/
axionCAMB.
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where ρcrit is the cosmological critical density today. This
production mode is known as the vacuum realignment, or
misalignment, mechanism.
In the early Universe, neutrinos, like other weakly

interacting particles, are coupled to the cosmological fluid
until the weak interaction rate falls below the expansion rate
of the Universe, which is decreasing due to its expansion.
This occurs at around T ≈ 1 MeV. At this time, the
neutrinos then decouple from the plasma. At present times
(if they are already nonrelativistic), massive neutrinos have
a relic density (relative to the critical density) of

Ωνh2 ¼
Σmν

93.14 eV
: ð3Þ

Massive neutrinos behave as radiation at early times
(energy density scaling as a−4). When the temperature
drops below the neutrinos mass, they behave like matter
(energy density scaling as a−3). Thus, depending on the
mass, massive neutrinos can change the time of matter-
radiation equality, and alter the matter density at late times.
Upper bounds on the mass of standard model neutrinos
imply that they have a cosmologically non-negligible free-
streaming length caused by their relativistic motion at early
times. For wavenumbers k > kfs, neutrino clustering is
suppressed relative to that of ordinary matter, leading to
decreased structure formation for larger

P
mν (given a

fixed late-time DM content).
ULAs also suppress structure formation at large wave-

numbers, k≳ km, through their scale-dependent sound
speed [17,18]:

c2a ¼
(

k2

4m2
aa2

if k ≪ km ≡ 2maa;

1 if k ≫ km:
ð4Þ

The wavenumber km is mass dependent, moving to large
length scales as the axion mass decreases. It is important to
note that the axion suppression of structure and the
suppression from neutrinos have very different physical
origins: ULAs suppress structure growth below the Jeans
length due to their wavelike nature, while neutrinos do so
because of their large thermal velocities.
In addition to the contribution of a massive neutrino

species, we will investigate the degeneracies between
vacuum-alignment ULAs and additional massless neutrinos
and other “dark radiation” through the relativistic degrees
of freedom (Neff ), parametrized relative to the photon
energy density, ργ, as

3

ρ ¼ Neff
7

8

�
4

11

�
4=3

ργ: ð5Þ

For useful descriptions of the physics of Neff on the CMB,
see Refs. [19,20].

As noted above, ULAs produced by vacuum realignment
do not contribute to Neff . Axions produced by other
mechanisms, however, (such as thermal freeze-out or heavy
particle-decay) constitute a separate population of relativ-
istic axions, and do contribute to Neff [4–7]. It is important
to note that Neff does not distinguish between fermions and
bosons (although other cosmological observables could.
See, for example Ref. [21]), nor on the production
mechanism of the additional radiation. Thus additional
relativistic neutrinos and axions are completely degenerate
in cosmological terms: because of this we consider varying
Neff completely generically.
The lightest vacuum-realignment ULAs (ma<10−30 eV)

are degenerate with a DE-like component in the Universe,
and generate a late-time integrated Sachs-Wolfe (ISW) [22]
effect in the CMB [17,23–25]. They also change the back-
ground expansion rate of the Universe, altering the angular
diameter distance to the last-scattering surface. This affects
the position of the peak in a similarmanner to howNeff alters
the position of the peak. Hence we expect a partial degen-
eracy between ULAs and Neff for the lightest ULAs.

III. CMB OBSERVABLES

The main effects of ULAs in the temperature power in
the multipole range relevant to Planck, and in the linear

FIG. 1. Projected CMB-S4 sensitivity to the axion energy
density as a function of axion mass, compared with Fisher-
matrix Planck sensitivity: Vertical bars show 1σ errors at fixed
neutrino mass Σmν ¼ 0.06 eV, while the shaded bars show the
errors marginalizing over Σmν. We classify axions as DE-like if
ma < 10−29 eV, DM-like if ma > 10−25 eV and fuzzy DM for
masses in between. In the fuzzy DM region, CMB-S4 will allow
for percent-level sensitivity to the axion mass fraction, improving
significantly on current constraints. For Planck data alone,
neutrino degeneracies significantly degrade sensitivity to axions,
even at the 1σ level. In contrast, CMB-S4 constraints remain
robust to varying neutrino mass in the fuzzy region. The solid and
dashed lines show the 2σ and 1σ exclusion limits, i.e. the lowest
axion fraction that could be excluded at those masses.

3We recall that at very early times, when they are still
relativistic, even massive neutrinos may be described using Neff .
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galaxy power spectrum, were discussed in detail in
Ref. [17]. Primary CMB power spectra, matter power-
spectra, and lensing convergence power-spectra for ULAs
are all computed using the AXIONCAMB code, which was
used to obtain the results of Ref. [17] and is described in the
Appendix A of this paper.

A. The CMB-damping tail, distance measures,
and neutrino degeneracies

In order to interpret forecasts on the allowed values of the
energy density in ULAs and the degeneracies with neu-
trinos, we highlight the similarities and differences between
the two components at the level of effects on the cosmo-
logical observables. This comparison was made for galaxy
surveys in Ref. [15], and was also discussed in Ref. [26].
ULAs and neutrinos affect the expansion rate, changing

the angular size of the sound horizon, θs, at fixed Hubble
constant, h. Consider the case of one additional massive
neutrino eigenstate with Σmν ¼ 0.06 eV and Nmassive ¼ 1,
Nmassless ¼ 2.046. This neutrino is relativistic throughout the
radiation era, but behaves like matter at late times. The main
effect of this on the high-l acoustic peaks is to increase the
angular size of the sound horizon. This can be compensated

by reducing the Hubble constant from h ¼ 0.6715 in to
h ¼ 0.6685, in order to hold θs fixed (relative to a Σmν ¼ 0

model). ULAs also change the expansion rate relative to
pure CDM due to the early wa ¼ −1 behavior: holding θs
fixed requires a reduction in h just as for neutrinos [15,17].
In Figure 2 we show the relative difference in CMB auto

power spectra for temperature, T, E-mode polarization, and
lensing convergence, κ, for ULA and neutrino models
compared to a reference ΛCDM model:

ΔCl

Cl
¼ ðCmodel

l − Cref:
l Þ

Cref:
l

: ð6Þ

The reference model contains Neff ¼ 3.046 massless neu-
trinos, and no ULAs. Massive neutrinos are introduced as a
single massive eigenstate, i.e. Nmassive ¼ 1, Nmassless ¼
2.046, with the energy density today fixed by the mass
in as in Eq. (3). ULAs are introduced with a free mass and
energy density, and are chosen to mimic as closely as
possible the neutrino models in the observables.
The ULA and neutrino models are chosen to keep the

total matter density, Ωmh2¼Ωch2þΩbh2þΩah2þΩνh2,
and sound horizon, θs, fixed. Under these conditions, the
effects of ULAs and massive neutrinos on the CMB

FIG. 2. Relative differences between axion effects and other cosmological parameters: The error bars shown are for a CMB-S4-like
survey as described in Table II for the temperature (top), E-mode polarization (middle) and lensing deflection κ (bottom). Left:
Comparing DM-like ULAs to massive neutrinos, holding the total matter density and sound horizon fixed. For each neutrino model,
there is a corresponding ULA model that produces almost degenerate effects in all observables. Both massive neutrinos and ULAs
produce the largest effects in the lensing convergence power, where effects of order ΔCκκ

l =C
κκ
l ≃ 25% occur even at low multipoles.

Right: Comparing DE-like ULAs (with log10ðma=½eV�Þ < −30) to additional massless neutrinos, holding only the sound horizon fixed.
The ULA energy density isΩah2 ¼ 0.002. These types of models do not display any significant degeneracies. Note that the l axis of the
right panel is shown in log scale, while the left panel is linear.
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observables are remarkably similar, and it is clear that there
are parts of parameter space where significant degeneracies
exist.Were one also to vary the number ofmassive neutrinos,
Nmassive, even more degeneracies would open up [15].
For example, we observe that a ULA model with ma ¼

10−30 eV and Ωah2 ¼ 0.0005 is degenerate with the
standard fiducial neutrino model with mν ¼ 0.06 eV.
This ULA energy density occurs naturally (i.e. the
axion misalignment angle θ ≪ 1) for fa ≈ 3 × 10−2Mpl≈
7 × 1016 GeV: GUT-scale ULAs can be constrained by the
CMB, but also have significant degeneracies with other
cosmological components.
In the most massive neutrino model shown in Figure 2,

Σmν ¼ 0.7 eV, holding the sound horizon fixed requires
decreasing the Hubble constant to h ¼ 0.6415, while the
corresponding axion model only requires h ¼ 0.6635. For
the other reference models with lighter neutrinos, the
change in h required for ULAs and neutrinos is the same.
Thus, in the case of relatively heavy ULAs and neutrinos, a
local measure of H0 can help break degeneracies.
ULAs and massive neutrinos can produce Oð10%Þ

effects in the temperature power at l≳ 3000. This comes
from the lensing-induced temperature power, which at high
l is approximately [27]

CTT
l ≈ l2Cϕϕ

l

Z
dl0

l0
l04

4π
~CTT
l0 ; ð7Þ

where ~Cl is the unlensed power, and Cϕϕ
l is the power

spectrum of the lensing potential.
The lensed temperature power in ULA and massive

neutrino cosmologies is reduced compared to pure CDM by
the suppression of clustering (free streaming for neutrinos,
the Jeans instability for ULAs) and consequent reduction
of the lensing contribution to CTT

l . This effect is likely of
little importance observationally, as temperature power at
such high multipoles becomes dominated by other secon-
daries, such as galactic foregrounds, and the Sunyaev-
Zel’dovich effect, making the direct lensing contribution
hard to measure. A similar effect is also seen in the E-mode
polarization, which suffers less from foregrounds at high
multipoles. The effects of massive neutrinos and ULAs on
the lensed E-mode power at high-l are relatively small,
however, compared to the forecasted CMB-S4 error bars.
Both massive neutrinos and ULAs produce the largest

effects at relatively low multipoles in the lensing conver-
gence power, and this offers a very powerful observable to
constrain the properties of DM beyond CDM. The lensing
convergence power spectrum, Cκκ

l , is a direct measurement
of the DM distribution, and its scale dependence at high-l
measures the clustering properties of subdominant compo-
nents of the DM. In Ref. [13], it was shown that the lensing
convergence power drives the ability of future CMB
experiments to measure the sum of neutrino masses.
Figure 2 shows that the lensing convergence power also

provides a powerful method to constrain other departures
from CDM, and measures the composition and clustering
properties of DM over a wide range of scales. We will
quantify this in detail in Sec. IV B, showing the gains in
sensitivity given by CMB-S4 over Planck, and how much
of this gain is driven by lensing.
Now consider the effect of additional massless neutrinos,

parametrized by ΔNeff, and DE-like ULAs (i.e. those for
which wa ¼ −1 for some period during the matter domi-
nated era). The effects of these models on CMB observ-
ables are also shown in Figure 2. We notice the well-known
effect that ΔNeff ≠ 0 increases the amount of damping in
the CMB at high-l. Since we include radiation in the
closure budget, there is also reduced overall matter power,
and consequently reduced lensing power. DE-like ULAs
affect the lensing largely through the expansion rate and
scale-dependence of the growth at low-z. This has a knock-
on effect of slightly reducing TT and EE power at large
l≳ 1000 from reduced lensing, and in some cases creates a
partial degeneracy with Neff on these scales.
There areOð1%Þ effects in the EE power forNeff andDE-

like ULAs at l ≈ 10, the “reionization bump,” caused by the
different expansion histories and matter budgets in these
models. The low-l effects ofΔNeff andDE-likeULAs in TT
and EE are opposite in sense, which predicts the degeneracy
direction if such multipoles are included—here combining
temperature and polarization data helps break the degen-
eracy.We also noticeOð1%Þ effects ofNeff at l ≈ 100 in EE
at the “recombination bump”, similarly caused by effects on
the expansion rate. DE-like ULAs do not affect recombi-
nation relative toΛCDM, since they behave entirely like the
cosmological constant Λ at this epoch by definition.
Wenote that the reducedTTpower at high-l and change in

the shape of the reionization bump in the EEpower overlap to
some extent with the impact of a change in the value of τ, the
optical depth to reionization. As a result, we expect that if a
narrower prior on τ (obtained from future non-CMB cos-
mological data sets)were applied, or if nonstandard extended
reionization scenarios were considered, the relevant param-
eters would be degenerate with ULA parameters, and ULA
constraintswould be correspondingly degraded, analogously
to what happens for massive neutrinos [28]. Indeed, a
preliminary exploration of the complicated interplay of
ULA and reionization scenarios can be found in Ref. [29],
and will be explored further in future work.
For ΔNeff ≠ 0 and DE-like ULAs, we have adjusted H0

to hold the sound-horizon fixed. This serves to further
physically distinguish the models. Massless neutrinos
decrease θs and require an increase in H0 to hold it fixed:
hence a preference for ΔNeff ≠ 0 is sometimes found to
reconcile CMB (lower) and other (higher) measures of H0

[e.g. [30]]. On the other hand, we introduce DE-like ULAs
with constant Ωch2, and as such they come out of the DE
budget. As described in detail in Ref. [17], they require
reduced H0 to hold θs fixed, and lead to a non-Λ effect on
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the late-time ISWeffect at low l. In the most extreme cases
shown, ΔNeff ¼ 0.1, ma ¼ 2 × 10−32 eV the change in
h ¼ �0.1 respectively. Accurate local measures of H0 can
improve constraints on DE-like ULAs substantially [e.g.
[31,32]], but high-l CMB experiments such as CMB-S4
will add little to constraints on them compared to Planck.
We discuss quantitatively the inclusion of a prior on H0, in
addition to CMB-S4, in Sec. IV B.
In conclusion on this topic, we do not expect significant

degeneracies between additional massless neutrinos and
DE-like ULAs, while we expect significant degeneracies
between heavier ULAs and massive neutrinos. Via lensing,
CMB-S4 should allow detection of neutrino mass, and
greatly improve constraints on intermediate mass ULAs.
CMB-S4 should also substantially improve constraints on
ΔNeff by more precise measures of the damping tails.
Including H0 measurements should improve limits on DE-
like ULAs, and break remaining degeneracies.

B. Lensing deflection power and nonlinear clustering

The largest deviation from standard ΛCDM caused by
ULAs in the lensing deflection power occurs on small scales.
Here onemust take some care as both non-Gaussian noise in
the experimental setup, and the theoretical modeling of
nonlinear lensing add a systematic error to any inferred
constraints on DM properties. This problem is particularly
acute for more massive ULAs (ma ≳ 10−25 eV), which
undergo nonlinear clustering on observationally relevant
scales or redshifts and can contribute a large fraction to the
total DM abundance.
The lensing deflection power, Cκκ

l , depends on the
integral along the line-of-sight of the Newtonian potential
power spectrum, PΨðk; zÞ [27]. These nonlinear clustering
contributions such that nonlinear effects before important
on larger angular scales in Cκκ

l than they do for CTT
l .

The lensing power on all multipoles is dominated by
effects at z≲ 10. Formultipolesl ≈ 1000 the integral kernel
peaks at z ≈ 2. In terms of wavenumber, k, multipoles l≳
1000 are dominated by contributions from, k≳ 0.1 Mpc−1,
where density perturbations are becoming nonlinear. On
these subhorizon scales, the power spectrum of the
Newtonian potential is determined from the matter power
spectrum via Poisson’s equation. Nonlinearities in the
matter clustering in this range of redshifts and wavenumber
lead to Oð10%Þ effects in the lensing power for l≳ 1000.
The nonlinear gravitational potential power spectrum

(needed to compute Cκκ
l including nonlinear effects) is

computed in CAMB using the expression (see Ref. [33] and
references therein):

PΨ;nonlinðk; zÞ ¼
Pm;nonlinðk; zÞ
Pm;linðk;zÞ

PΨ;linðk; zÞ ð8Þ

≡Rnlðk; zÞPΨ;linðk; zÞ; ð9Þ

where Pmðk; zÞ is the matter power spectrum, and non-
linearities are computed using HALOFIT [34], a code based
on a fitting function, which is calibrated to N-body
simulations of CDM (with Ref. [35] including massive
neutrinos). One must therefore take extra care when
exploring constraints on nonstandard models from high-
multipole lensing.4 We discuss the nonlinear modeling of
the power spectrum further in Appendix B.
We now assess how the nonlinear modeling affects the

lensing deflection power of ULAs. Figure 3 shows the
lensing power ratio ðΔCl=ClÞκκ for ma ¼ 10−23 eV
assuming that either ULAs or CDM (but not both) con-
stitute all of the DM. We compare linear theory, HALOFIT,
and the halo model for ULAs of Ref. [36]. For illustration,
we consider the lensing deflection power from the halo
model under the Limber approximation (which is accurate
for high-l where nonlinearities become important) [33]:

Cϕϕ
l ¼ 8π2

l3

Z
zrec

0

dzPΨðl=x; zÞx
dx
dz

�
xrec − x
xrecx

�
2

: ð10Þ

where x ¼ xðzÞ is the comoving distance to redshift z.5

FIG. 3. Comparison of ULAs to CDM in lensing deflection
power for different models of nonlinearities, where ULAs with
ma ¼ 10−23 eV constitute all the DM. The unphysical power
increase in the HALOFIT power for ULAs, seen in Figure 4, causes
a similar unphysical increase in lensing power compared to the
halo model. On the other hand, linear theory captures the sign and
approximate magnitude of the effect seen in the halo model. Thus
when forecasting constraints at high ULA mass we choose to use
linear theory lensing as a reasonable approximation for the Fisher
matrix derivative.

4This does not just apply to nonstandard DM models, such as
ULAs. HALOFIT is calibrated using power law initial conditions,
and so care must also be taken for models with features in the
primordial power spectrum at high-k.

5We emphasize that the halo model for ULAs is not yet
incorporated into AXIONCAMB. The halo model for CDM has
only recently been incorporated into CAMB. Our comparisons
here attempt to use the halo model to motivate approximations
appropriate to forecasting. Proper inclusion of nonlinearities in
real data analysis of CMB-S4 will be crucial to avoid bias caused
by incorrect modeling.
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Figure 4 shows the overdensity ratio of ULAs to CDM,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PULAðk; zÞ=PCDMðk; zÞ

p
, over a range of scales and red-

shifts for a pure ULA DM model with ma ¼ 10−23 eV. In
this model, perturbations in the axion energy density go
nonlinear for z < 3, where nonlinear collapse reduces the
power suppression relative to CDM for k≳ 1h Mpc−1.
We notice that HALOFIT introduces a large feature,

increasing the power at the nonlinear scale, ðknl; znlÞ.
Such a feature is not seen in the halo model, and is thus
suspected to be an unphysical artifact introduced purely by
the fitting functions of HALOFIT—calibrated to CDM and
not a good description of ULAs at this scale. This
unphysical boost in the matter power caused by HALOFIT

leads to a similarly unphysical increase in the lensing
deflection power in Figure 3. The effect seen in the (more
physically motivated) halo model is that ULAs always
decrease the lensing deflection power relative to CDM.
Furthermore, perhaps surprisingly, the sign and approxi-
mate magnitude of the relative effect of ULAs compared to
CDM on the lensing deflection power in the full halo model
is well captured by linear theory.
The above observation—that linear theory captures the

relative effects of high mass ULAs on weak lensing better
than HALOFIT—determines how we decide to treat non-
linear modeling in our forecasts (see also Appendix B). We
choose by default to perform all forecasts with nonlinear
lensing turned off. This choice is expected to give the right
sign and approximate magnitude for Fisher-matrix deriv-
atives for high mass ULAs, while nonlinear modeling is not
expected to be important at low mass, where ULAs do not
nonlinearly cluster on the relevant redshift range.

IV. RESULTS

This section contains our assumptions, methodology,
and key science results. In Sec. IVA, we lay out the
assumptions made about CMB-S4 and Fisher-matrix tech-
niques used to obtain our results. In Sec. IV B, we present
our conclusions about the sensitivity of CMB-S4 to ULAs,
the improvement over Planck, the role of CMB weak
lensing in driving sensitivity improvements, and explore
degeneracies with neutrinos. Finally in Sec. IV C, we
explore how varying potential CMB-S4 survey parameters
(sky coverage, noise level, and beam width) affects the
conclusions of Sec. IV B.

A. Data and surveys

The current best constraints on the axion fraction comes
from a combination of the primary CMB (Planck, SPT, and
ACT TT power spectra, as well as low-l WMAP polari-
zation data) with the WiggleZ galaxy redshift survey [17].
We consider future constraints from a CMB-S4-like

survey as discussed in the recent Snowmass proposal
[12], with observational parameters specified in Table II.
The exact specification of a CMB-S4 experiment is still
under development. Provided it covers a significant fraction
of the sky with reasonable noise levels, CMB-S4 promises
to be an incredible instrument with which to test the dark
sector. In Sec. IV C, we test for the dependence of the
constraints on the survey parameters.
We forecast assuming a fiducial set of cosmological

parameters:

Ξ ¼ fΩbh2;Ωdh2; H0; As; ns; τ; ma;Ωa=Ωdg; ð11Þ

whereΩbh2 parametrizes the physical baryon density of the
Universe, Ωdh2 is the energy density of the dark sector
including axions, H0 is the Hubble parameters in units of
km s−1 Mpc−1, As, ns are the amplitude and spectral index
of the scalar density fluctuations and τ is the optical depth
to decoupling. As described above, the fraction of the dark
sector made of axions (at a specified fixed axion massma in
units of eV) is given byΩa=Ωd. The fiducial values and step
sizes used for this model are shown in Table I.
Where necessary we include Σmν½eV� and Neff as

additional parameters in the model space.
We use Fisher-matrix techniques to forecast constraints

on the parameters of interest [39–42]. The Fisher matrix
translates uncertainties on observed quantities such as the
lensing deflection or the CMB power spectrum into
constraints on parameters of interest in the underlying
model. The Fisher matrix is the expectation value of the
second derivatives of the logarithm of the data likelihood
with respect to the parameters Ξ:

F ij ¼ −
�∂2 lnPðDjΞÞ

∂Ξi∂Ξj

�
; ð12Þ

FIG. 4. Comparison of power spectrum ratios for HALOFIT and
the halo model of Ref. [36] for ma ¼ 10−23 eV and ULAs as all
the DM. The halo model is cut to set the power to linear if σ2 < 1
to make a fair comparison. Nonlinear clustering begins at z ¼ 2.
HALOFIT applied to non-CDM models gives an unphysical boost
in power at the onset of non-linearities, which is passed on to the
lensing power, Figure 3. Differences between the halo model and
HALOFIT at high z are due to the quantitative differences between
the AXIONCAMB transfer function and the combination of
Refs. [37,38] analytic fits used in the halo model.
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where D is the data vector of either CMB measurements or
lensing deflection, for example.
For independent experiments (or if one has prior knowl-

edge of the uncertainties on a parameter from a separate
experiment) one can add individual Fisher matrices together
to get a final Fisher matrix. In order to obtain one- or two-
dimensional constraints on parameters (i.e. one-dimensional
likelihoods or two-dimensional error ellipses), one margin-
alizes over the other nuisance parameters in the larger
parameter space under consideration.
The Fisher matrix code (OXFISH) used to forecast the full

set of observables including the lensing deflection is
described in Ref. [13], modified to include the axion
parameters, as described in Ref. [17].
We compared a five-point numerical derivative,

f0ðxÞ ¼ ½8fðxþ hÞ − 8fðx − hÞ
− fðxþ 2hÞ þ fðx − 2hÞ�=12h; ð13Þ

to the standard two-sided finite-difference derivative
method and checked that the resulting parameter uncer-
tainties were stable to the choice of derivative method. In
addition, we demanded that the derivatives of the axion
fraction converged to 0.1% precision to set the step size
used for finite-difference calculations.
We forecast the combination of our CMB-S4-like survey

with Planck temperature and polarization spectra that
match the current sensitivities between the multipoles of
30 < l < 2500. This also allows us to assess the gains
possible when moving from Planck to PlanckþS4: Fisher-
matrix forecasts are often somewhat more optimistic than
sensitivities obtained in real experiments, and so we use
Fisher forecasts for both Planck and PlanckþS4 in order to
conduct a fair comparison. For CMB-S4 we assume
measurements of the TT, EE, TE primordial CMB spectra
with an lmin ¼ 30 and an lmax ¼ 4000 for the EE, TE
spectra and lmax ¼ 3000 for the TT spectra. We include the
lensing deflection power spectrum from both surveys
between 30 < l < 3000. For the low-l data, we use

Planck HFI lowP specifications (i.e. to forecast data similar
to the Planck low-l polarization measurements). In this
case, we use slightly modified noise levels to ensure a
Gaussian prior on the optical depth of τ ¼ 0.06� 0.01.
We assume that the noise has a white power spectrum,

using the standard treatment [43],

Nαα
l ¼ ðΔαÞ2 exp

�
lðlþ 1Þθ2FWHM

8 ln 2

�
; ð14Þ

where α ¼ T or E, labels the field of interest. θFWHM is the
beam full width half maximum, and the lensing deflection
noise is estimated assuming a minimum-variance quadratic
estimate of the lensing field as described in Ref. [13]. We
assume that relevant foregrounds have been removed on all
scales up to l ¼ lmax. We don’t include information from
the BB lensing power spectrum, as the assumption of
nearly Gaussian fields (required for the validity of the

TABLE I. Fiducial model and Fisher Matrix step sizes: The
base model considered and the step sizes used to compute the
Fisher derivatives. The above model was also supplemented in
parts by including the additional extensions of the parameters
Σmν ¼ 60 meV and Neff ¼ 3.046 which were varied with step
sizes of 20 meV and 0.05 respectively.

Parameter Fiducial value Step size

Ωbh2 0.02222 0.0001
Ωdh2 0.1197 0.001
H0 [km s−1 Mpc−1] 69.0 0.1
As 2.1955 × 10−9 2.0 × 10−11

ns 0.9655 0.005
τ 0.06 0.01
ma [eV] 10−32 < ma < 10−22 [fixed per run]
Ωa=Ωd 0.02 0.005

FIG. 5. The degeneracy between ULAs and CDM for fixed
ULA masses: The fiducial value of the axion fraction,
Ωa=Ωd ¼ 0.02, is chosen to be consistent with current upper
bounds from Planck. The dashed lines show forecast constraints
based on the Planck “Blue Book” [44] sensitivities and reproduce
the constraints using the actual data (see Ref. [17] for details).
The solid lines show constraints for a CMB-S4-like survey. At the
highest masses considered, ma ≥ 10−24 eV the axion is com-
pletely degenerate with the CDM density: the total dark matter
density is well constrained, but the error on the axion fraction
becomes larger. The degeneracy direction between axions and
CDM rotates as the axion mass changes, with CMB-S4 breaking
some strong degeneracies present in Planck. In all cases, Mν has
been fixed at its fiducial value, although the constraints in Fig. 1
shows that the error on the axion fraction is only degraded for the
most degenerate masses in the fuzzy DM regime. CMB-S4 would
detect a fraction of Ωa=Ωd ¼ 0.02 at > 2σ in the mass range
10−30 eV < ma < 10−24.5 eV.
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Fisher-matrix formalism) breaks down for B-modes from
lensing, which are produced by a scalar modulation of
primordial E-modes, and is thus a higher-order (and
non-Gaussian) effect.

B. Forecasted sensitivity to dark-sector densities
and particle masses

We show the forecasted constraints on the axion energy
density from CMB-S4 including lensing in Figure 1. We
compare 1σ errors for Planck and PlanckþS4 (where
Planck is used on a reduced part of the sky as described
in Sec. IVA) around a fiducial axion fraction Ωa=Ωd ¼
2 × 10−2, and demonstrate the effect of fixing or margin-
alizing over neutrino mass. We also show forecasted 1 and
2σ exclusion lines on Figure 1. In all other error ellipse
plots we show 2σ contours, unless otherwise specified.
Figure 5 shows the power of a CMB-S4-like survey to

distinguish ULAs from CDM, by comparing constraints for
PlanckþS4 (solid lines) to constraints assuming only
Planck specifications (dashed lines). CMB-S4 will not
only tighten the constraints on the total DM content, but
closes in on the axion parameter space as well. In particular
for some masses (most notably ma ¼ 10−25 eV), CMB-S4
breaks the degeneracy between ULAs and CDM even at
very low axion fraction. CMB-S4 will allow for a multi-σ
detection of percent level departures from CDM for all
masses in the range 10−30 eV < ma < 10−24 eV. Thus

CMB-S4 presents an ability to test the composition of
DM, and thus the CDM paradigm, at the percent level.
For these most DM-like ULAs ðma ≥ 10−25 eVÞ the

current data (i.e. Planck, see Ref. [17]) do not bound the
axion fraction at the percent level. As shown in Figure 5,
Planck has essentially no constraining power for
ma ¼ 10−24 eV, when Ωa and Ωc are totally degenerate.
As the axion mass changes, the degeneracy goes from
complete (horizontal in this representation), with the error
on the total dark content unchanged irrespective of the
axion fraction, to one where the axion fraction is tightly
constrained (e.g. ma ¼ 10−29 eV). The degeneracy direc-
tion continues to change for the lighter axions as they
become more DE-like.
At the largest axion masses, the near-perfect degeneracy

between axions and CDM leaves us without a meaningful
upper limit to saturate when choosing fiducial values for
Ωa=Ωd. To test how a CMB-S4-like survey might place a
tighter upper limit on the fraction of DMmade up of ULAs,
we instead forecast the significance of a CMB detection of
ULAs while varying the fiducial fraction, and consider the
detection significance. The results are shown in Figure 6.
We fix the total DM energy density to the fiducial value

of Ωdh2 ¼ 0.1197 (marginalizing over this and all other
parameters) and vary the axion fraction as parameter of
interest. We consider a range of fixed axion masses
logarithmically spaced between ma ¼ 10−26 eV and
ma ¼ 10−22 eV. At each mass we use a range of fiducial

FIG. 6. Forecast detection significance of dark-matter-like ULAs: The left panel shows the current constraints from a forecast Planck
survey (which is consistent with the results from Ref. [17]). The right panel shows the forecast constraints from a CMB-S4-like survey
over the same fixed masses ranging from log10ðmaÞ ¼ −26 eV to log10ðmaÞ ¼ −22 eV. (For ease of viewing a random scatter has been
placed in the x direction for each mass, the dashed line gives the central mass value.) The y axis shows the assumed fiducial axion
fractions of 0.05,0.1,0.2,0.5 and 0.9, with the forecast error on the fraction. The size of the marker is proportional to the significance with
which we would detect such a fiducial axion fraction (the size is fixed for all detections> 5σ). For the Planck survey, the constraints are
eroded for masses heavier than around log10ðmaÞ ¼ −26 eV. CMB-S4 will push this boundary of ignorance by two orders of
magnitude. A CMB-S4-like survey will allow a detection of an axion fraction as low as 5% at > 5σ for log10ðmaÞ ¼ −25 eV, and a
fraction of 20% at > 3σ for log10ðmaÞ ¼ −24 eV.
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fractions ðΩa=Ωd ¼ 0.05; 0.1; 0.2; 0.5; 0.9Þ and show the
marginalized error on the fraction centred at the fiducial
value. In Figure 6, the size of the detection significance
(in units of σ) is illustrated by the size of the marker, and we
compare Planck to PlanckþCMB-S4.
For axion masses of log10ðmaÞ ¼ −24 eV using CMB-

S4 an axion fraction as low as 20% could be detected
at > 3σ, a vast improvement over Planck, which has
essentially no constraining power at this mass. We see
that Planck alone places only ∼1σ limits at high fraction for
ma ¼ 10−25 eV (consistent with the analysis of real data
in Ref. [17]), while this ‘wall of ignorance’ is moved to
ma ¼ 10−23 eV with PlanckþCMB-S4.
The solid and dashed lines in Figure 1 show a different

approach to the same issue of setting upper bounds. They
show the fiducialmodels one could rule outwith1σ (dashed)
or 2σ (solid) significance. While the highest mass ULAs,
m ≥ 10−22 eV, remain completely degenerate with CDM,
one could rule out a fraction of > 15% at 2σ confidence at
ma ¼ 10−24 eV and one could rule out an axion fraction of
> 64% at 1σ confidence at ma ¼ 10−23 eV. Figs 1 and 6
show how CMB-S4 could improve the lower limit on DM
particle mass from the CMB alone by approximately 2
orders of magnitude compared with Planck.
The degeneracies of the ULAs with other cosmological

parameters, such as Neff or Σmν, also varies depending on
the axion mass (see Figs. 7 and 8). As described already,
DE-like ULAs with masses around 10−33 eV change the
late-time expansion rate and therefore the sound horizon,

changing the location of the acoustic peaks. This has
degeneracies with the matter and curvature content.
Heavier ULAs (ma ≳ 10−26 eV) affect the expansion rate
in the radiation era and reduce the angular scale of the
diffusion distance, leading to a boost in the higher acoustic
peaks, which has a degeneracy with Neff .
Consider the degeneracy between Σmν and axion frac-

tion, varying the axion mass (Fig. 7). Certain axion masses
are more degenerate with the fiducial neutrino model than
others, making for example, a ma ¼ 10−29 eV axion more
prone to masquerading as a massive neutrino than an axion
of mass ma ¼ 10−25 eV (for a ma ¼ 10−29 eV axion, the
error on Σmν is halved relative to thema ¼ 10−25 eV case).
The degeneracy is not total, however, and we will still be
able to make a significant detection of a small axion

FIG. 7. The degeneracy of ULAs with massive neutrinos: The
lighter ULAs show a significant degeneracy with neutrino mass
for a CMB-S4-like survey, as summarized in Table II. The error
bars increasing towards lighter mass—as these DE-like ULAs are
less constrained with future data. Adding a prior on the expansion
rate will reduce the errors on these parameters, as shown in Fig. 8.

FIG. 8. Priors on the expansion rate improve constraints on the
lightest ULAs: The degeneracies between the ULAs with mass
ma < 10−30 eV and massive neutrinos (top panel) and massless
species (bottom panel) are shown for a CMB-S4-like experiment
(as specified in Table II), with the solid lines showing the
constraints without any additional prior on the Hubble constant
(there is some repetition with the left panel here and in Figure 7).
The dashed lines show the improvement when adding a prior of
1% on H0 from a DESI-like experiment [45].
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fractions, using CMB-S4. Additionally, this degeneracy
can be broken by local measurements of H0.
As a test of how H0 measurements can change con-

straints on the lightest ULAs, we added a prior of 1% onH0

to our forecasts. Current local measurements provide a
2%–3% constraint [32], while future efforts like DESI [45]
will provide roughly percent-level measurements from
BAO. The addition of this prior changes the error on the
axion fraction for an axion of mass ma ¼ 10−32 eV
(assuming a fiducial fraction of 0.02) from 0.03 to 0.005
—allowing a > 4σ detection of the axion fraction even at
the lowest masses. Local measurements ofH0 constrain the
effects that these ULAs have on the low-z expansion rate.
Figure 8 shows how adding a H0 prior to the precise

measurement of the temperature and polarization power
with CMB-S4 leads to an improvement in the error on
Ωa=Ωd at low ULA mass (ma ≤ 10−30 eV). We show how
the H0 prior affects ULA degeneracy with Σmν (left panel)
and Neff (right panel). In both cases the inclusion of a H0

prior does not have a large effect on the error in the neutrino
parameters (Σmν or Neff ), but it greatly reduces the degen-
eracy between light ULAs and neutrinos. The H0 prior
reduces the uncertrainty on Ωa=Ωd by a factor of ≈3 where
bothΣmν and the axion fraction arevaried, and a factor of≈5
when Neff is varied with the axion fraction.
The power of CMB-S4 lensing to break the degeneracy

between ULAs and CDM is shown in Figure 9, which
compares the error bar with andwithout adding in the lensing
deflection measurements (solid to dashed line comparison)

for different fiducialmodels. The largest reduction in the error
including lensingdeflectionmeasurements comes in themass
range 10−29 eV < ma < 10−24 eV.
For CMB-S4 and an axion mass of ma ¼ 10−26 eV, the

percent-level measurement of the lensing power at multipoles
l > 1000 leads to an improvement in the uncertainty on the
axion energy density of a factor of eight relative to casewhere
lensing information is excluded. Lensing also plays a key role
in the ability of CMB-S4 to improve constraints on ULAs in
the range 10−24 eV < ma < 10−22 eV.

C. Survey optimization

The specifications of a CMB-S4-like survey are shown
in Table II. One might ask what survey parameters might be

FIG. 9. Constraints on the axion fraction with and without
lensing: For a CMB-S4-like survey, the 1σ marginalized error bar
on the axion fraction, Ωa=Ωd, for the ranges of masses consid-
ered: 10−32 < ma < 10−22 eV. For masses logðma=eVÞ > −28,
lensing more than halves the error bar for the same survey
parameters where the lensing deflection is not included. The
improvement is also sensitive to the fiducial model of ULAs
assumed. This is particularly relevant given that for the heaviest
masses the ULAs are currently indistinguishable from a standard
DM component.

TABLE II. Survey parameters considered for axion forecasts:
Survey sensitivity, assumed beam size and sky fraction for a
possible CMB-S4-like survey. We test the dependence of the
axion constraints on these parameters in Sec. IV C.

fsky Beam size (arcmin) ΔT (μK-arcmin) ΔE;B (μK-arcmin)

0.4 1 1 1.4

FIG. 10. Constraints on the axion fraction as a function of
survey parameters: We vary the resolution and sensitivity for a
range of CMB-S4 survey parameters, around the baseline
parameters of 1 μK-arcmin, a resolution of 1 arcmin and a
baseline sky fraction for CMB-S4 of fsky ¼ 0.4, which is
supplemented with a correspondingly reduced area of the Planck
sky. The error degrades slowly with worse resolution (solid line)
and sensitivity (dashed line). The dot-dashed line shows the
constraints for fixed observing time, changing the fraction of sky
and accordingly modifying the sensitivity of the CMB-S4-like
survey (and the amount of sky covered in corresponding Planck
maps). Since the ULAs affect the small-scale damping tail and the
lensing deflection most strongly, moving to small, sensitive
patches of the sky increases the error on the axion density (as
opposed to having a fixed value of fsky but pushing for lower
instrumental noise levels). Conversely, tripling the beam size
does not have a strong effect on the error on the axion fraction.
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most suitable to maximize constraints on the axion param-
eter space.
We show the results of some choices for the beam size

and noise sensitivity in Figure 10. In each case we either
vary the beam and sensitivity separately (solid and dashed
lines), or we change the sky area at fixed 1 arcminute beam
resolution, while adjusting the sensitivity assuming fixed
total number of detectors and observing time. In the case
where we reduce the amount of sky observed by S4, we
adjust the corresponding area used from the Planck satellite
to include the fraction not observed by S4. This is shown in
the Figure with a dot-dashed line.
As discussed in Sec. III, ULAs affect largely the high-l

damping tail of the CMB lensing deflection power, and so
improvements in the noise properties at small angular
scales tightens constraints on ULAs. Moving to small,
deep patches of the sky does not reduce the error: to
constrain ULAs we need larger sky area given a total noise
budget.

V. CONCLUSIONS

We live in the age of precision cosmology. Future experi-
ments like the proposed CMB-S4 will significantly improve
constraints on the composition of the dark sector. We have
shown in detail how this is achieved in the case of ultralight
axions, including degeneracies with dark radiation and
massive neutrinos. CMB-S4 will move the wall of ignorance
for the heaviest axion candidates from ma ¼ 10−26 eV to
ma ¼ 10−24 eV (detection with an axion fraction of 20%
at > 3σ).
The lower limit on the dominant DM particle mass will

be increased from ma ¼ 10−25 eV to ma ¼ 10−23 eV
(1σ constraints rule out large fractions). This begins to
make contact with the much more systematic-laden upper
bounds on the axion mass and fraction from high-z galaxies
and reionization: Ωa=Ωd < 0.5 for ma ¼ 10−23 eV and
ma ≳ 10−22 eV for the dominant component [29,46,47].
This value approaches the mass range needed to explain
dwarf galaxy cores and missing Milky Way satellites (e.g.
Refs. [38,48–50]).
Perhaps more impressively, the constraints on the axion

energy density at intermediate mass could improve by an
order of magnitude. CMB-S4 could detect an axion fraction
as low as 0.02 at > 13σ for an axion mass of 10−27 eV.
Given the power of these future efforts, it will be possible

to probe the degeneracies between ULAs and other
potential DM components, such as massive neutrinos,
and light species such as massless sterile neutrinos.
Improved independent constraints on measurements of

the expansion rate (through measurements of the Hubble
constant, for example) will improve sensitivity to the
lightest, DE-like axions, and reduce the degeneracy
between these species and both Σmν and Neff . Even when
marginalizing over the neutrino mass, the error on the axion

fraction for a mass of ma ¼ 10−32 eV improves by a factor
of three with a prior on the expansion rate.
As Ωa ∝ f2a the improved sensitivity to the axion energy

density improve the axion decay constant which could be
detected from 1017 GeV with Planck to 1016 GeV with
CMB-S4 (over the relevant range of ULA masses). The
improved sensitivity to fa will begin to test the predictions
of the string axiverse scenario [51].
Axions are a well motivated dark matter candidate, and

future CMB experiments suggest an exciting opportunity to
explore the rich complexity of their parameter space,
moving towards subpercent level sensitivity to the axion
energy density or a 10σ detection if current limits to Ωa are
saturated by the true axion density, all over for a wide range
of masses. As a spectator field during the inflationary
era, axions would also carry isocurvature perburbations
(see Ref. [17] and references therein), leading to distinct
imprints on CMB observables and providing a unique new
lever arm on the inflationary energy scale, which is
otherwise only accessible through measurements of pri-
mordial CMB B-mode polarization [52]. In future work, we
will extend Planck constraints and CMB-S4 forecasts to
include the impact of isocurvature.
Unraveling the mystery of darkmatter is an important goal

for cosmology in the coming decades. The axion represents
the lowest mass DM-candidate, and a CMB-S4-like survey
will help identify (or rule out) these models of DM.
Constraints on the light, DE-like axions are improved by
independent measurements of the expansion rate of the
Universe, therebyprobingour knowledgeof the cosmological
constant, quintessence, and cosmic acceleration in general.
In this work, we have illustrated that future CMB

experiments will shed new light on the nature or existence
of the axion and usher axiverse cosmology into a new era.
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APPENDIX A: AXIONCAMB CODE

In this work, we use a specially modified version of the
CMB Boltzmann code CAMB, called AXIONCAMB, in

RENÉE HLOŽEK et al. PHYSICAL REVIEW D 95, 123511 (2017)

123511-12



order to compute the primary CMB anisotropy power
spectra CTT

l , CEE
l , and CTE

l , as well as the lensing-
convergence power spectrum Cκκ

l .
6 Weak lensing of the

CMB smears out the peaks in the primary CMB power
spectra and introduces non-Gaussian features into the
CMB temperature and polarization fields [55]; the resulting
effect on temperature/polarization 4-pt functions can be
used to reconstruct Cκκ

l , as discussed in Refs. [27,55–58].
AXIONCAMB is used to compute the matter power
spectrum PmðkÞ and then Cκκ

l , which is necessary for
our forecast. AXIONCAMB has already been used to obtain
the results of Ref. [17,52], but since that work, we have
improved the code, and present it here for public use. The
code may be downloaded on the GITHUB repository.7 We
welcome comments and useful additions/improvements to
the code.
After cosmological parameters (including the ULA

parameters ma and Ωa) are specified, AXIONCAMB begins
by solving the coupled Friedmann/Klein-Gordon system
for the homogeneous ULA field ϕ0, where the Klein-
Gordon equation in an expanding universe is given by

ϕ̈0 þ 2H _ϕ0 þm2
aa2ϕ0 ¼ 0: ðA1Þ

We use a higher-order Runge-Kutta method as described in
Ref. [59]. At early times, this is used to obtain the axion
equation of state wðaÞ and adiabatic sound-speed cadðaÞ.
These quantities can be used to evolve axion energy and
pressure perturbations in concert with the usual CAMB

variables at early times, when a ≪ aosc (ma ≪ aH), using
the generalized dark matter formalism of Ref. [60]: this is
not an approximation, but just a useful recasting of the
perturbed Klein-Gordon þ Einstein equation system at
early times.
At late times (a ≫ aosc) these equations become stiff,

and so we switch to the approximation w ¼ 0 (ρa ∝ a−3,
Pa ≃ 0), with perturbations evolved in the WKB approxi-
mation for ULAs, justified in Refs. [18,38,51,61–69].
In the WKB approximation, ULAs may be treated as a

fluid with a scale-dependent sound speed:

c2s ¼
k2

4m2
aa2

1þ k2

4m2
aa2

: ðA2Þ

This approximation captures the uncertainty-principle-
driven suppression of axion perturbation growth without
requiring a code that resolves the short oscillation timescale
(∼m−1) of ULAs. This treatment allows us to follow

perturbations continuously from the slowly rolling to fuzzy
dark matter regime for ULAs of any mass, and to explore
the parameter space of both dark-energy-like and dark-
matter-like ULAs, as described in Ref. [17]. We have
performed a variety of numerical tests (described in
Ref. [17]) to confirm that this approximation is sufficiently
accurate for analysis/forecasting of realistic CMB and
galaxy-clustering data for the foreseeable future. Further
details of the implementation are discussed in Ref. [17].
Since the work of Ref. [17], we have improved the scalar-

field evolution module of AXIONCAMB to properly include
the effect ofmassive neutrinos, using the routines/expressions
for time-evolution of the massive neutrino energy-density
implemented in CAMB and discussed in Refs. [16,70]. Note
that in AXIONCAMB we have also included the radiation
energy-density in the closure relation for cosmological
densities 1−Ωk¼ΩbþΩcþΩaþΩm

ν þΩr
νþΩγ, where

Ωm=r
ν is the cosmological energy density in massive/massless

neutrinos.

APPENDIX B: NONLINEAR MODELING

The functional form of the HALOFIT power spectrum is
based on the halo model [71]. HALOFIT and the halo model
apply only to matter collapsed into halos. In the halo model,
this is accounted for using the collapsed mass fraction
(from Press-Schechter) and the clustering of the “smooth
component,” which reduces the halo model power to the
linear power if the collapsed fraction is zero [72]. In
HALOFIT, this is accounted for by setting the power to
linear if the variance, σ2ðRÞ, on length scales, R, of interest
satisfies σ2ðRÞ < 1. Since ULAs exhibit suppressed struc-
ture formation compared to CDM, the lightest ULAs have
collapsed fraction of close to zero even at z ¼ 0.
Furthermore, HALOFIT and the halo model treat all matter
components equivalently. We must decide how to include
the lightest, subdominant, ULAs in the computation of the
nonlinear ratio, Rnlðk; zÞ. First, consider the lightest DE-
like ULAs. For these ULAs, we adopt a simple criterion for
the nonlinear modeling, by analogy to CAMB’s treatment of
DE models (and the strict equivalence between ULAs and
quintessence asma → 0). We choose to only include ULAs
in the “nonlinear matter” [i.e. in PðkÞ used to compute the
nonlinear ratio] if σ2aðR → 0; zÞ > 1, where σ2a is the
variance in the axion power spectrum.
Ideally, this criterion should be computed for every

redshift z < zrec and for all combinations of cosmological
parameters separately. Instead, for simplicity in the current
study, we make a hard cut on axion mass:

mlin ¼ 10−25 eV: ðB1Þ

ULAs with ma < mlin are treated passively in Eq. (9), i.e.
are included in PΨ;lin but do not appear in σ2m used to
compute Rnl.

6A related modification to CLASS [53] by other authors was
reported recently in Ref. [54], but this has not been publicly
released. The results of Ref. [54] seem qualitatively similar to
AXIONCAMB, though a formal code comparison would be
useful.

7http://github.com/dgrin1/axionCAMB.
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The cut, Eq. (B1), is appropriate for CMB lensing
forecasts with fiducial models allowed by the constraints
imposed by Planck-2013 TT power. The reasoning for the
choice of cut is illustrated in Figure 11. We show the
variance of axion fluctuations at z ¼ 2 for a variety of
masses and Ωah2 ¼ 0.001 (fraction ∼1%).
For ma ¼ mlin, perturbations just go nonlinear at z ¼ 2

with nonlinear scale knl ≈ 1h Mpc−1, while lighter ULAs
are still linear at z ¼ 2. This suggests that nonlinear effects
in lensing for lighter ULAs can be safely neglected (based
on the discussion of the lensing kernel in Sec. III and in
Ref. [27]). ULAs with ma < mlin are known, from TT
anisotropies at l≲ 103 where nonlinear effects are unim-
portant, to comprise only a subdominant component of the
DM [17]. We have shown that the density perturbations in
such an axion should be largely unaffected by nonlinear-
ities on scales and redshift ranges relevant to CMB lensing.
Heavier ULAs with ma > mlin can constitute large

components of the DM, and have large collapsed fractions,
and thus cannot simply be ignored in the nonlinear ratio. In
the absence of N-body simulations, in order to assess the

accuracy of using HALOFIT for such ULAs, we compare the
results of HALOFIT to those of the halomodel. TheULA halo
model power for ma ≥ 10−24 eV and Ωa=Ωd ¼ 1 can be
computed using WARMANDFUZZY [36]. In order to make
the comparison still fairer, we modify the halo model power
spectrum, setting it strictly to linear if σ2 < 1 for all R. The
effect of nonlinear modeling on the matter power and CMB
lensing deflection was shown already in Figs. 3 and 4.
We illustrate the danger of using an incorrect nonlinear

treatment in Figure 12, where we compare an “incorrect
nonlinear treatment” (naïve use of HALOFIT) to our “best
approximation” for forecasts (use of mlin and linear theory
for derivatives at high ma). As expected, for ma < mlin the
nonlinear modeling has no effect on the constraints. For
heavier ULAs, however, the size of the error can be affected
by a factor of two by incorrect nonlinear modeling, and a
false degeneracy direction introduced between the ULAs
and the CDM content. Careful treatment of nonlinear
modeling is required to test the fuzzy DM regime with
CMB-S4 lensing.
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