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Abstract 20 

A random vibration analysis of an axially compressed cylindrical shell under a 21 

turbulent boundary layer (TBL) is presented in the symplectic duality system. By 22 

expressing the cross power spectral density (PSD) of the TBL as a Fourier series in the 23 

axial and circumferential directions, the problem of structures excited by a random 24 

distributed pressure due to the TBL is reduced to solving the harmonic response function, 25 

which is the response of structures to a spatial and temporal harmonic pressure of unit 26 

magnitude. The governing differential equations of the axially compressed cylindrical 27 

shell are derived in the symplectic duality system, and then a symplectic eigenproblem is 28 

formed by using the method of separation of variables. Expanding the excitation vector 29 

and unknown state vector in symplectic space, decoupled governing equations are derived, 30 

and then the analytical solution can be obtained. In contrast to the modal decomposition 31 

method (MDM), the present method is formulated in the symplectic duality system and 32 

does not need modal truncation, and hence the computations are of high precision and 33 

efficiency. In numerical examples, harmonic response functions for the axially 34 

compressed cylindrical shell are studied, and a comparison is made with the MDM to 35 

verify the present method. Then, the random responses of the shell to the TBL are 36 

obtained by the present method, and the convergence problems induced by Fourier series 37 

expansion are discussed. Finally, influences of the axial compression on random 38 

responses are investigated. 39 
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 42 

1 Introduction 43 

Aircraft structures, such as launch vehicles and missiles, are inevitably excited by 44 

random pressure due to the turbulent boundary layer (TBL) on the outer surface of the 45 

structure. This excitation can cause low-amplitude vibration and eventually long-term 46 

structural fatigue. Meanwhile, the TBL is one of the main sources of noise, which may 47 

interfere with devices or reduce the comfort of aircraft passengers. For these reasons, the 48 

vibration of flexible structures under the TBL is of interest to many researchers and 49 

engineers.  50 

The TBL is a classical distributed pressure excitation, which is intrinsically random 51 

in both the temporal and spatial domains. When studying random responses of structures 52 

subjected to the TBL, it is usual to consider it as a random pressure field, and a 53 

wavenumber-frequency cross power spectral density (PSD) is used to describe it. A 54 

widely used model of the TBL in the literature was introduced by Corcos [1], and was 55 

based on experimental observations and fitted empirically with some theoretical guidance. 56 

However, it overestimates the wall-pressure cross PSD at wavenumbers below the 57 

convective peak. Based on Corcos’ model, Efimtsov [2] took into account the dependence 58 

of spatial correlation on boundary layer thickness and separation variables in his empirical 59 
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model. Like Efimtsov, Smol’yakov and Tkachenko [3] added a correction to improve the 60 

prediction of Corcos’ model at low wavenumber levels, without significantly affecting 61 

the convective peak levels. Graham [4] performed a comparative study for the sound 62 

radiated by a TBL driven plate, with a view to determining which model is most 63 

appropriate to noise problems in aircraft structures. 64 

In order to provide strong capabilities for structural analysis with complex boundary 65 

conditions and geometric configurations, numerical methods such as the finite element 66 

method (FEM) are widely applied to vibration analysis of structures under the TBL [5-8]. 67 

Combining classical thin shell theory and the FEM, Lakis and Paidoussis [5] presented a 68 

hybrid finite element, in which displacement functions are determined from Sanders’ 69 

shell equations instead of polynomial functions. This hybrid finite element was used for 70 

the prediction of random responses of a cylindrical shell to the TBL or arbitrary random 71 

pressure fields. Esmailzdeh et al. [6, 7] used the FEM to analyze the root mean square 72 

displacement responses of a flat rectangular plate [6] and curved thin shell [7]. 73 

Montgomery [8] developed a modelling process for aircraft structural-acoustic responses 74 

due to random sources. The analysis was based on using the FEM to represent the 75 

structure, coupled to a boundary element method (BEM) representation of the acoustic 76 

domains. Random excitations, including a diffuse field, a TBL noise and an engine 77 

shockcell noise, were considered in this analysis. However, the first basic step of FEM is 78 

the discretization of the random pressure field excited by the TBL, which means that the 79 
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continuous random field is approximated by a finite number of random variables at nodal 80 

points. Since the correlation of two arbitrary random forces at nodal points must be 81 

considered in the analysis, the computation time is very sensitive to the number of 82 

elements. For example, in [6], when the number of elements increased 4 times, the 83 

computation time increased 90 times. Moreover, as the excitation frequency increases the 84 

wavelength of structural deformation decreases, and a very fine mesh with many elements 85 

is needed to accurately simulate the small wavelength deformation. Hence, the size of the 86 

FE model of the structure increases significantly which leads to more computation time, 87 

especially for the case excited by the TBL, which has a wide frequency band. 88 

Except for using the FEM, responses to distributed random excitation such as the 89 

TBL are most often represented by a double integral over the structure, where the 90 

integrand is given by the cross PSD of the excitation and the Green’s function of the 91 

structure. However, the double integral may result in large numerical computation time. 92 

To avoid computing the double integral directly, a Fourier series was introduced by 93 

Newland [9] and Lin [10] to expand the cross PSD of the TBL, so that the responses were 94 

derived as a double summation over the wavenumber domain. In this formulation, the 95 

problem of structures subjected to the TBL was reduced to solving the structure’s 96 

harmonic response function, given as the deterministic response to a spatial and temporal 97 

harmonic pressure, and hence the computation complexity and time were reduced rapidly. 98 

Meanwhile, coefficients of the Fourier series can be obtained analytically for structures 99 
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with regular shapes, such as beams, rectangular plates or cylindrical shells, and thus the 100 

computation time can be reduced further. 101 

According to Newland [9] and Lin [10], the problem of a structure subjected to the 102 

TBL is reduced to solving the structure’s harmonic response function, following which 103 

some standard method, such as the modal decomposition method (MDM) [11-16] can be 104 

used. Based on the MDM and the boundary integral formulation, Durant et al. [11] 105 

provided a numerical approach for vibroacoustic responses of a thin cylindrical pipe 106 

excited by a turbulent internal flow, and numerical results were compared to those of an 107 

experiment. Zhou et al. [12] used the MDM to investigate the sound transmission through 108 

a double-walled cylindrical shell lined with poroelastic material in the core, excited by 109 

the TBL. The sound wave propagating in the porous material was discussed in detail. Liu 110 

[13] extended an earlier deterministic method, using the MDM and the modal receptance 111 

method to predict the random noise transmission through curved aircraft panels with 112 

stringer and ring frame attachments. Combining the wavenumber approach and MDM, 113 

Maury et al. [14, 15] presented a self-contained analytical framework for determining the 114 

vibroacoustic responses of a plate to a large class of random excitations, such as an 115 

incidence diffuse acoustic field, a fully developed turbulent flow and a spatially 116 

uncorrelated pressure field. Convergence properties of the modal formulations in different 117 

load cases were examined. However, because the TBL has a wide frequency band, a large 118 

number of modes must be used in the MDM, and modal truncation may reduce the 119 
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computational accuracy. Some researchers recommend that the cross modal terms may 120 

be neglected if certain conditions are satisfied [14], but others state that this 121 

approximation can produce a large error [17, 18]. Besides, some other approximate 122 

approaches are applied to reduce the computation of the MDM. For example, a scaling 123 

procedure named Asymptotical Scaled Modal Analysis (ASMA) was introduced by De 124 

Rosa and Franco [16] to reduce the computational cost of the MDM. ASMA is based on 125 

an assumption that the quadratic response depends on the number of modes resonating in 126 

a given frequency band and on the damping. On the other hand, for a cylindrical shell, 127 

the axial modes can be determined approximately by the modes of an equivalent beam 128 

with similar boundary conditions. Hence, modal shape functions of cylindrical shells are 129 

always described as the combination of axial beam functions and circumferential 130 

trigonometric functions. However, as pointed out by Lü and Chen [20], numerical 131 

instability may arise when calculating the modal shape functions with non-simply 132 

supported boundary conditions. 133 

Apart from the MDM, other methods, such as the spectral finite element method 134 

(SFEM) [17, 21] and the dynamic stiffness method (DSM) [22] are also applied to the 135 

analysis of structures under the TBL. These methods are formulated in a Lagrangian 136 

system, and the variables are force or displacement. Based on a Hamiltonian system and 137 

symplectic state space theory, a new solution methodology for computational and 138 

analytical solid mechanics was introduced by Zhong [23]. Problems are described by the 139 
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dual variable system, in which the basic equations are transformed to the symplectic 140 

duality system, and then a solution methodology such as the method of separation of 141 

variables and eigenfunction expansion follows. This solution methodology becomes 142 

rational, rather than the trial and error style semi-inverse approach. At present, the 143 

symplectic duality system has been successfully applied to the buckling analysis of 144 

cylindrical shells [24], the free vibration analysis of plates [25], the forced vibration and 145 

power flow analysis of plates [26, 27] and other problems. However, to the authors’ 146 

knowledge, the symplectic duality system has not yet been used in the forced vibration 147 

analysis of cylindrical shells. This provides the initial motivation for the present work, in 148 

which this approach is also applied to the solution of random responses of cylindrical 149 

shells excited by the TBL. 150 

The research object of this work is an axially compressed cylindrical shell under the 151 

TBL, in which the axial compression represents the temperature stress, air resistance or 152 

jet thrust on cylinder-like structures, such as launch vehicles and missiles. The work is 153 

structured as follows. In section 2, by way of a rigorous but simple derivation, the problem 154 

of structures subjected to the TBL is reduced to solving the harmonic response function. 155 

Then, in section 3, the governing equations of an axially compressed cylindrical shell 156 

subjected to a spatial and temporal harmonic pressure are converted into the symplectic 157 

duality system. Hence the method of separation of variables and the eigenfunction 158 

expansion method can be applied to obtain the analytical solution of the harmonic 159 
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response function. Section 4 presents numerical examples. Firstly, harmonic response 160 

functions of structures are studied and a comparison between the present method and the 161 

MDM is made to verify the accuracy and efficiency of the former one. Influences of axial 162 

compression on the harmonic response functions are discussed. Subsequently, the present 163 

method is applied to the random vibration analysis of an axially compressed cylindrical 164 

shell excited by the TBL. The random responses are examined and are also compared to 165 

those of the MDM. Convergence of results and the influences of the axial compression 166 

on random response are investigated. 167 

 168 

2 Random responses of structures subjected to TBL 169 

Consider an axially compressed cylindrical shell subjected to the random pressure 170 

field 𝑝(𝐬, 𝑡) induced by the TBL, as shown in Fig. 1, where 𝐿 is the length, 𝑅 is the 171 

radius of the middle surface, ℎ is the wall-thickness, 𝐬 is the position of excitation and 172 

𝑡 is time. The arbitrary response of the structure can then be written in the convolution 173 

integral form 174 

 175 

 𝑞(𝐫, 𝑡) = ∫ ∫ ℎ(𝐫, 𝐬, 𝑡 − 𝜏)𝑝(𝐬, 𝜏)
𝑡

0𝚪

d𝜏d𝐬 (1) 

 176 

where 𝐫, 𝐬 = (𝑥, 𝜃), ℎ(𝐫, 𝐬, 𝑡 − 𝜏) is the unit impulse response measured at a position 𝐫 177 

at time 𝑡 due to a unit impulsive point load applied at a position 𝐬 at time 𝜏, and 𝚪  178 
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 179 

Fig. 1  Schematic of an axially compressed cylindrical shell 180 

 181 

is the surface of the structure. 𝑝(𝐬, 𝜏) and ℎ(𝐫, 𝐬, 𝑡 − 𝜏) satisfy the causality conditions 182 

 183 

 

𝑝(𝐬, 𝜏) = 0 for 𝜏 < 0 

ℎ(𝐫, 𝐬, 𝑡 − 𝜏) = 0 for 𝑡 < 𝜏 

(2) 

 184 

By using Eq. (2), the integral with respect to 𝜏 in Eq. (1) can be expanded as 185 

 186 

 𝑞(𝐫, 𝑡) = ∫ ∫ ℎ(𝐫, 𝐬, 𝑡 − 𝜏)𝑝(𝐬, 𝜏)
+∞

−∞𝚪

d𝜏d𝐬 (3) 

 187 

By definition, since 𝑞(𝐫, 𝑡)  is a random function in both the time and spatial 188 

domains, the cross-correlation function of responses of the structure at two points 𝐫1 and 189 

𝐫2 can be written as 190 

 191 

 

𝑅𝑞𝑞(𝐫1, 𝐫2; 𝑡1, 𝑡2) = E[𝑞(𝐫1, 𝑡1)𝑞(𝐫2, 𝑡2)] 

= ∫ ∫ ∫ ∫ ℎ(𝐫1, 𝐬1, 𝑡1 − 𝜏1)ℎ(𝐫2, 𝐬2, 𝑡2 − 𝜏2)E[𝑝(𝐬1, 𝜏1)𝑝(𝐬2, 𝜏2)]
+∞

−∞

+∞

−∞𝚪𝚪

 

(4) 
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d𝜏1d𝜏2d𝐬1d𝐬2 

 192 

where E[ ] is the expectation operator, and hence E[𝑝(𝐬1, 𝜏1)𝑝(𝐬2, 𝜏2)] represents the 193 

cross-correlation function of the pressure field 𝑝(𝐬, 𝑡) , which can be denoted as 194 

𝑅𝑝𝑝(𝐬1, 𝐬2; 𝜏1, 𝜏2). It is assumed that 𝑝(𝐬, 𝑡) is homogeneous in space and stationary in 195 

time, so that 𝑅𝑝𝑝(𝐬1, 𝐬2, 𝜏1, 𝜏2) depends only on the time and space separation 𝜏 = 𝜏2 −196 

𝜏1 and 𝛏 = 𝐬2 − 𝐬1 and can be denoted as 𝑅𝑝𝑝(𝛏, 𝜏). By applying the Wiener-Khinchin 197 

theorem, 198 

 199 

 𝑅𝑝𝑝(𝛏, 𝜏) = ∫ 𝑆𝑝𝑝(𝛏, 𝜔)ei𝜔𝜏
+∞

−∞

d𝜔 (5) 

 200 

in which 𝑆𝑝𝑝(𝛏, 𝜔)  is the cross PSD of the TBL and 𝜔  is circular frequency. 201 

Substituting Eq. (5) into Eq. (4) gives 202 

 203 

 

𝑅𝑞𝑞(𝐫1, 𝐫2, 𝜏)

= ∫ ∫ ∫ 𝐻(𝐫1, 𝐬1, 𝜔)(𝐻(𝐫2, 𝐬2, 𝜔))
∗
𝑆𝑝𝑝(𝛏, 𝜔)ei𝜔𝜏

+∞

−∞𝚪𝚪

d𝜔d𝐬1d𝐬2 

(6) 

 204 

in which superscript * denotes complex conjugate and  205 

 206 

 𝐻(𝐫, 𝐬, 𝜔) = ∫ ℎ(𝐫, 𝐬, 𝑡)e−i𝜔𝑡
+∞

−∞

d𝑡 (7) 

 207 

is the frequency response function which gives the steady-state harmonic response at 𝐫 208 

as a result of unit amplitude harmonic excitation at frequency 𝜔 applied at 𝐬.  209 

A common semi-empirical model of the cross PSD of the TBL is attributed to Corcos 210 
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[1] as 211 

 212 

 𝑆𝑝𝑝(𝛏, 𝜔) = 𝛷𝑝𝑝(𝜔)e−𝑐𝜃𝑅𝜔|𝜉𝜃| 𝑈𝑐⁄ e−𝑐𝑥𝜔|𝜉𝑥| 𝑈𝑐⁄ e−i𝜔𝜉𝑥 𝑈𝑐⁄  (8) 

 213 

where 𝛷𝑝𝑝(𝜔)  is the auto PSD of the wall pressure, 𝑐𝜃  and 𝑐𝑥  are constants 214 

describing the spatial coherence of the wall pressure field in the circumferential and axial 215 

directions, respectively, 𝜉𝜃 = 𝜃2 − 𝜃1  and 𝜉𝑥 = 𝑥2 − 𝑥1 is the distance between two 216 

points, and 𝑈𝑐 is the convection velocity. According to [9, 10], the cross PSD 𝑆𝑝𝑝(𝛏, 𝜔) 217 

can be expressed as combinations of an exponential Fourier series in the axial direction 218 

and a trigonometric Fourier series in the circumferential direction, as follows, 219 

 220 

 𝑆𝑝𝑝(𝛏, 𝜔) = 𝛷𝑝𝑝(𝜔) ∑ 𝑆𝑝𝑝𝑥(𝑀)ei𝛼𝑀𝜉𝑥

∞

𝑀=−∞

∑ 𝑆𝑝𝑝𝜑(𝑁)cos(𝑁𝜉𝜃)

∞

𝑁=1

 (9) 

 221 

in which 𝑀  and 𝑁  are wavenumbers and 𝛼𝑀 = π𝑀 𝐿⁄ . The distances 𝜉𝑥  and 𝜉𝜃 222 

range from – 𝐿 to 𝐿 and – π to π, respectively, and thus the integrals of 𝑆𝑝𝑝𝑥(𝑀) and 223 

𝑆𝑝𝑝𝜑(𝑁) are reduced to finite intervals, i.e.,  224 

 225 

 

𝑆𝑝𝑝𝑥(𝑀) =
1

2𝐿
∫ e−𝑐𝑥𝜔|𝜉𝑥| 𝑈𝑐⁄ ei𝜔𝜉𝑥 𝑈𝑐⁄ e−i𝛼𝑀𝜉𝑥

𝐿

−𝐿

d𝜉𝑥

=
1

2𝐿
(

1 − e−𝑑1𝐿

𝑑1
+

e𝑑2𝐿 − 1

𝑑2
) 

𝑆𝑝𝑝𝜃(𝑁) =
1

π
∫ e−𝑐𝜃𝑅𝜔|𝜉𝜃| 𝑈𝑐⁄ cos(𝑁𝜉𝜃)

π

−π

d𝜉𝜃 =
1

π
(

e𝑑3π − 1

𝑑3
+

e𝑑4π − 1

𝑑4
) 

𝑑1 =
𝑐𝑥𝜔

𝑈𝑐
+

i𝜔

𝑈𝑐
− i𝛼𝑀, 𝑑2 = −

𝑐𝑥𝜔

𝑈𝑐
+

i𝜔

𝑈𝑐
− i𝛼𝑀 

(10) 
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𝑑3 = −
𝑅𝑐𝜃𝜔

𝑈𝑐
+ i𝑁, 𝑑4 = −

𝑅𝑐𝜃𝜔

𝑈𝑐
− i𝑁 

 226 

Substituting Eq. (9) into Eq. (6) gives  227 

 228 

𝑅𝑞𝑞(𝐫1, 𝐫2, 𝜏)

= ∫ ∑ ∑ 𝑆𝑝𝑝𝑥(𝑀)𝑆𝑝𝑝𝜑(𝑁)𝐺𝑀𝑁(𝐫1, 𝜔)(𝐺𝑀𝑁(𝐫2, 𝜔))
∗
𝛷𝑝𝑝(𝜔)ei𝜔𝜏

+∞

𝑁=1

+∞

𝑀=−∞

+∞ 

−∞

d𝜔 

(11) 

 229 

where 230 

 231 

 𝐺𝑀𝑁(𝐫, 𝜔) = ∫ei𝛼𝑀𝑥cos(𝑁𝜃)𝐻(𝐫, 𝐬, 𝜔)
𝚪

d𝐬 (12) 

 232 

is the harmonic response function, given as the response to a spatial and temporal 233 

harmonic pressure 𝑝𝑀𝑁(𝐬, 𝑡) = ei𝛼𝑀𝑥cos(𝑁𝜃)ei𝜔𝑡 . By applying the Wiener-Khinchin 234 

theorem to Eq. (11), the PSD of 𝑞(𝐫, 𝑡) is obtained as 235 

 236 

 

𝑆𝑞𝑞(𝐫1, 𝐫2, 𝜔)

= ∑ ∑ 𝑆𝑝𝑝𝑥(𝑀)𝑆𝑝𝑝𝜑(𝑁)𝐺𝑀𝑁(𝐫1, 𝜔)(𝐺𝑀𝑁(𝐫2, 𝜔))
∗
𝛷𝑝𝑝(𝜔)

+∞

𝑁=1

+∞

𝑀=−∞

 

(13) 

 237 

In Eqs. (11) and (13), by assuming 𝐫 = 𝐫1 = 𝐫2, the auto correlation function and 238 

PSD of 𝑞(𝐫, 𝑡) are obtained. 239 

Thus, the problem of structures subjected to TBL can be reduced to solving the 240 

structure’s harmonic response function, through expanding the auto PSD of the TBL as a 241 

Fourier series.  242 
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 243 

3 Solution of harmonic response functions in symplectic duality 244 

system 245 

 246 

3.1 Governing equations 247 

It is now assumed that all quantities vary harmonically with time as ei𝜔𝑡 and this 248 

explicit dependence will henceforth be suppressed for simplicity. Based on Kirchhoff-249 

Love shell theory [19], governing equations of an axially compressed cylindrical shell 250 

subject to the spatial and temporal harmonic pressure can be expressed as 251 

 252 

 

∂𝑁𝑥

∂𝑥
+

1

𝑅

∂𝑁𝑥𝜃

∂𝜃
+ 𝜌ℎ𝜔2𝑢 = 0 

∂𝑁𝑥𝜃

∂𝑥
+

1

𝑅

∂𝑁𝜃

∂𝜃
+

1

𝑅

∂𝑀𝑥𝜃

∂𝑥
+

1

𝑅2

∂𝑀𝜃

∂𝜃
+ 𝜌ℎ𝜔2𝑣 = 0 

∂2𝑀𝑥

∂𝑥2
+

2

𝑅

∂2𝑀𝑥𝜃

∂𝑥 ∂𝜃
+

1

𝑅2

∂2𝑀𝜃

∂𝜃2
−

𝑁𝜃

𝑅
+ 𝑁0

∂2𝑤

∂𝑥2
+ 𝑝𝑀𝑁 + 𝜌ℎ𝜔2𝑤 = 0 

(14) 

 253 

where 𝜌 is the mass density, 𝑁0 is the axial compression per unit length, 𝑢, 𝑣 and 𝑤 254 

denote the displacements of the middle surface in the 𝑥 , 𝜃 , and 𝑧  directions, 255 

respectively, which do not vary through the thickness. 256 

 257 

 𝑁𝑥 = 𝐾 [
∂𝑢

∂𝑥
+

𝜈

𝑅
(

∂𝑣

∂𝜃
+ 𝑤)] (15) 

 258 

 𝑁𝜃 = 𝐾 [
1

𝑅
(

∂𝑣

∂𝜃
+ 𝑤) + 𝜈

∂𝑢

∂𝑥
] (16) 

 259 
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 𝑁𝑥𝜃 = 𝐾
1 − 𝜈

2
(

∂𝑣

∂𝑥
+

1

𝑅

∂𝑢

∂𝜃
) (17) 

 260 

are internal forces, in which 𝐾 = (1 + i𝜂)𝐸ℎ (1 − 𝜈2)⁄  is the in-plane rigidity, where 261 

𝐸 is Young’s modulus, 𝜈 is Poisson’s ratio, and 𝜂 is the damping loss factor.  262 

 263 

 𝑀𝑥 = 𝐷 [−
∂2𝑤

∂𝑥2
+

𝜈

𝑅2
(

∂𝑣

∂𝜃
−

∂2𝑤

∂𝜃2
)] (18) 

 264 

 𝑀𝜃 = 𝐷 [
1

𝑅2
(

∂𝑣

∂𝜃
−

∂2𝑤

∂𝜃2
) − 𝜈

∂2𝑤

∂𝑥2
] (19) 

 265 

 𝑀𝑥𝜃 = 𝐷
1 − 𝜈

2𝑅
(

∂𝑣

∂𝑥
− 2

∂2𝑤

∂𝑥 ∂𝜃
) (20) 

 266 

are internal bending or twisting moments, where 𝐷 = (1 + i𝜂)𝐸ℎ3 12(1 − 𝜈2)⁄  is the 267 

flexural rigidity. The equivalent Kirchhoff in-plane and transversal shear forces are 268 

 269 

 𝑆𝑥 = 𝑁𝑥𝜃 +
𝑀𝑥𝜃

𝑅
 (21) 

 270 

 𝑉𝑥 =
∂𝑀𝑥

∂𝑥
+

2

𝑅

∂𝑀𝑥𝜃

∂𝜃
 (22) 

 271 

The rotation of the shell can be defined as 272 

 273 

 𝜙 = −
∂𝑤

∂𝑥
 (23) 

 274 

Eqs. (14)-(23) can be expressed in matrix form as 275 

 276 

 
∂𝐳

∂𝑥
= 𝐇𝐳 + 𝐟 (24) 

 277 
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where 𝐳 = {𝑢, 𝑣, 𝑤, 𝜙, 𝑁𝑥, −𝑆𝑥, 𝑉𝑥 + 𝑁0𝜙, 𝑀𝑥 + 𝑁0𝑤}T  is the state vector in the 278 

symplectic space and 𝐳 is a function of both 𝑥 and 𝜃, 𝐇 is the Hamiltonian matrix 279 

operator given in the Appendix, 𝐟 = {0,0,0,0,0,0, 𝑝𝑀𝑁 , 0}T is the excitation vector, and 280 

superscript T denotes transposition.  281 

 282 

3.2 Separation of variables and symplectic eigenproblem 283 

Taking no account of the excitation vector 𝐟, Eq. (24) becomes a homogeneous 284 

equation, and hence it is natural to apply the method of separation of variables to reduce 285 

it to a differential eigenvalue problem. Therefore, the state vector can be expressed as 286 

 287 

 𝐳 = 𝛈e𝜇𝑥 (25) 

 288 

Substituting Eq. (25) into Eq. (24) gives the symplectic eigenproblem 289 

 290 

 𝐇𝛈 = 𝜇𝛈 (26) 

 291 

From Eqs. (25) and (26), it can be concluded that the eigenvector 𝛈 and eigenvalue 292 

𝜇  characterize the vibration state of the shell. According to the periodic boundary 293 

conditions in the circumferential direction, 𝛈 can be expressed as 294 

 295 

 𝛈 = 𝐄𝑛𝛙𝑛 (27) 

 296 

where 𝛙𝑛 is a constant vector which is independent of 𝜃, and 297 

 298 
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𝐄𝑛 = diag[�̅� �̅�] 

�̅� = diag[cos(𝑛𝜃), sin(𝑛𝜃), cos(𝑛𝜃), cos(𝑛𝜃)] 

(28) 

 299 

and diag[ ] denotes a diagonal matrix. 300 

Substituting Eq. (27) into Eq. (26) gives 301 

 302 

 �̅�𝑛𝛙𝑛 = 𝜇𝑛𝛙𝑛 (29) 

 303 

where �̅�𝑛 is a constant matrix which is only dependent on the structural parameters, the 304 

circumferential wavenumber 𝑛 and the excitation frequency 𝜔. 305 

According to [23], the eigenvalues of matrix �̅�𝑛 come in pairs 𝜇𝑛 and −𝜇𝑛. In 306 

the subsequent analysis, the eigenvalues need to be sequenced according to the adjoint 307 

symplectic orthogonal relation, i.e.  308 

 309 

 𝜇𝑛,1, 𝜇𝑛,2, 𝜇𝑛,3, 𝜇𝑛,4, −𝜇𝑛,1, −𝜇𝑛,2, −𝜇𝑛,3, −𝜇𝑛,4 (30) 

 310 

Meanwhile, rearranging the associated eigenvector in the same order gives an eigenmatrix 311 

𝛟𝑛 with the following adjoint symplectic orthogonal relations 312 

 313 

 ∫ 𝛟𝑖
T𝐉8𝛟𝑗d𝜃

2π

0

= {
𝐉8 𝑖 = 𝑗
𝟎8 𝑖 ≠ 𝑗

 (31) 

 314 

where 𝐉8 = [
𝟎 𝐈4

−𝐈4 𝟎
] is an eighth-order unit symplectic matrix which satisfies 𝐉8

T =315 

−𝐉8, 𝐈4 and 𝟎8 are fourth-order unit and eighth-order zero matrices, respectively. 316 

Expanding 𝐳 and 𝐟 in the orthogonal basis composed by 𝛟𝑛, it is found that 317 
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 318 

 𝐳 = ∑ 𝛟𝑛𝐚𝑛

+∞

𝑛=1

, 𝐟 = ∑ 𝛟𝑛𝐛𝑛

+∞

𝑛=1

 (32) 

 319 

where 𝐚𝑛 and 𝐛𝑛 are components of 𝐳 and 𝐟, respectively, in the basis. Considering 320 

the adjoint symplectic orthogonal relations shown in Eq. (31), 𝐛𝑛 is obtained as  321 

 322 

 𝐛𝑛 = −𝐉8 ∫ 𝛟𝑛
T𝐉8𝐟d𝜃

2π

0

 (33) 

 323 

Since the spatial and temporal harmonic pressure 𝑝𝑀𝑁  has a trigonometric 324 

distribution as cos(𝑁𝜃) in the circumferential direction, it can be proved that 𝐛𝑛 in Eq. 325 

(33) is a non-zero vector if and only if 𝑛 = 𝑁, which means the summation in Eq. (32) 326 

needs no truncation. With this property, the computation of the present method can be 327 

reduced significantly. 328 

Substituting Eq. (32) into Eq. (24) and considering the adjoint symplectic orthogonal 329 

relations again, it is found that 330 

 331 

 
d𝐚𝑛

d𝑥
= 𝚽𝑛𝐚𝑛 + 𝐛𝑛 (34) 

 332 

where 𝚽𝑛 = diag[𝜇𝑛,1, 𝜇𝑛,2, ⋯ , −𝜇𝑛,4] is a diagonal matrix in which elements are the 333 

eigenvalues, and hence Eq. (34) denotes eight decoupled inhomogeneous differential 334 

equations. Considering the exponential distribution of 𝑝𝑀𝑁 in the axial direction, the 335 

solutions of Eq. (34) can be expressed as the sum of inhomogeneous particular solutions 336 

and homogeneous general solutions, as 337 
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 338 

 𝐚𝑛 = 𝐁𝑛𝐀𝑛 − (i𝛼𝑀𝐈8 + 𝚽𝑛)−1𝐛𝑛 (35) 

 339 

where 𝐁𝑛 = diag[e𝜇𝑛,1𝑥, e𝜇𝑛,2𝑥, ⋯ , e−𝜇𝑛,4𝑥]  and 𝐀𝑛  is a vector of undetermined 340 

coefficients, which can be determined by satisfying the boundary conditions. It is noted 341 

that since the calculations of exponent values e𝜇𝑛𝑥 are involved in the matrix 𝐁𝑛, there 342 

might be a singularity problem in procedures of the present method when real parts of 343 

𝜇𝑛𝑥  are too large. However, the difficulty can be overcome through increasing the 344 

calculation precision. 345 

 346 

3.3 Boundary conditions 347 

The cylindrical shell has four displacement constraints (𝑢, 𝑣, 𝑤, 𝜙) and four force 348 

constraints (𝑁𝑥, 𝑆𝑥, 𝑉𝑥, 𝑀𝑥) at the cross section. Combinations of the eight constraints 349 

can present any classical boundary conditions. It should be noted that any displacement 350 

constraint and the corresponding force constraint cannot coexist simultaneously, and 351 

hence each end of the cylindrical shell has only four displacement or force constraints. 352 

The boundary conditions can be expressed as 353 

 354 

 𝚼𝐳(𝑥, 𝜃) = 𝚼𝛟𝑛𝐚𝑛(𝑥) = 𝟎8×1 (36) 

 355 

where 𝚼 is an eighth-order diagonal matrix indicating the boundary conditions, e.g., for 356 

a simply support, 𝑣 = 𝑤 = 𝑁𝑥 = 𝑀𝑥 = 0, and hence 357 

 358 
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 𝚼 = diag[0,1,1,0,1,0,0,1] (37) 

 359 

Pre-multiplying both sides of Eq. (36) by 𝛟𝑛
T𝐉8 and integrating from 0 to 2π,  360 

 361 

 

∫ 𝛟𝑛
T𝐉8𝚼L𝛟𝑛

2π

0

𝐚𝑛(0)d𝜃 = 𝟎8×1 

∫ 𝛟𝑛
T𝐉8𝚼R𝛟𝑛

2π

0

𝐚𝑛(𝐿)d𝜃 = 𝟎8×1 

(38) 

 362 

where subscripts L and R denote the left and right ends of the cylindrical shell, 363 

respectively. Eq. (38) consists of eight independent equations, and after substituting Eq. 364 

(35) into it, the vector of undetermined coefficients 𝐀𝑛  can be determined. It is 365 

worthwhile to point out that the only difference for different boundary conditions in the 366 

framework of the present method is the permutation of 1 and 0 in 𝚼, and hence it is 367 

convenient to expand the present method to other types of boundary conditions. 368 

 369 

4 Numerical examples 370 

The PSD of an arbitrary response is expressed by Eq. (13) as the combination of 371 

𝐺𝑀𝑁(𝐫, 𝜔), 𝑆𝑝𝑝𝑥(𝑀), 𝑆𝑝𝑝𝜑(𝑁), and 𝛷𝑝𝑝(𝜔), in which 𝐺𝑀𝑁(𝐫, 𝜔) is only dependent 372 

on the excitation frequency, structural parameters and boundary conditions, whereas 373 

𝑆𝑝𝑝𝑥(𝑀), 𝑆𝑝𝑝𝜑(𝑁) and 𝛷𝑝𝑝(𝜔) are only related to the TBL model. Therefore, the 374 

effectiveness of the present method may be affected by two aspects, firstly the solution 375 

of 𝐺𝑀𝑁(𝐫, 𝜔), and secondly the convergence problem introduced by the Fourier series 376 

expansion. Hence the validation and discussion of the present method will be focused on 377 



21 

these two aspects. Furthermore, considering that variation of the axial compression will 378 

change the dynamic characteristics of the cylindrical shell, the influences of axial 379 

compression on random responses are investigated by the present method. 380 

In the numerical examples, the present method is applied to obtaining the random 381 

responses of a type of rocket body, which is made of high-strength alloy steels. The rocket 382 

body is simplified as a cylindrical shell with properties as follows: length 𝐿 = 5m, radius 383 

of the middle surface 𝑅 = 0.5m , wall thickness ℎ = 0.01m , mass density 𝜌 =384 

7850 kg m3⁄ , Young’s modulus 𝐸 = 215 GPa, Poisson’s ratio 𝜈 = 0.32, and damping 385 

loss factor 𝜂 = 0.01. Since the boundary conditions at the two ends have no essential 386 

influence on the performance of the present method, for the sake of brevity, results are 387 

given for the simply supported case unless specified otherwise. 388 

 389 

4.1 Harmonic response functions 390 

4.1.1 Comparisons of the present method and MDM 391 

The analytical solution of the harmonic response function is obtained by the present 392 

method in the symplectic duality system of section 3. To validate the expression derived 393 

above and to develop an understanding for the advantage of the present method, the 394 

responses of a cylindrical shell are investigated and the results are compared to those of 395 

the MDM. 396 

The MDM for the vibration analysis of a cylindrical shell can be found in [19], and 397 
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is omitted here for simplicity. It should be pointed out that modal shape functions of 398 

cylindrical shells are always described as the combination of axial beam functions and 399 

circumferential trigonometric functions. For simply supported boundary conditions the 400 

circumferential modes have forms of sin(𝑛𝜃) or cos(𝑛𝜃), and the axial modes have 401 

forms of sin (
π𝑚𝑥

𝐿
). Considering the spatial distribution of 𝑝𝑀𝑁 and the orthogonality 402 

of modes, it can be concluded that: (i) the 𝑛th order modal response is zero except if 𝑛 =403 

𝑁; (ii) the 𝑚th order modal response is zero except if 𝑚 = 𝑀 or 𝑚 + 𝑀 is odd. With 404 

this property, the number of participant modes decreases and hence the computation of 405 

the MDM can be reduced. 406 

In order to acquire a preliminary understanding of the dynamic characteristics of the 407 

cylindrical shell, a modal analysis is first performed. The natural frequencies of orders 408 

𝑛 ≤ 5 and 𝑚 ≤ 10 are listed in Table 1, where the axial compression 𝑁0 is equal to 409 

zero. 410 

Figs. 2 and 3 show the harmonic response functions 𝐺𝑀𝑁(𝐫, 𝜔) corresponding to 411 

the displacement 𝑤 and bending moment 𝑀𝑥, respectively, calculated by the present 412 

method and the MDM. The following results are given at point 𝐫 with co-ordinates 𝑥 =413 

0.3𝐿 and 𝜃 = 0.4π, if not otherwise stated. Due to the resonance and the small damping 414 

used in this work, each peak of 𝐺𝑀𝑁(𝐫, 𝜔), as shown in Fig. 2, matches one undamped 415 

natural frequency. Comparing these peaks with the results in Table 1, the orders can be 416 

determined and indicated as (𝑚, 𝑛) in Fig. 2. For the case of 𝑀 = 1 and 𝑁 = 2, only 417 
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modes with order 𝑛 = 2 in the circumferential direction and 𝑚 = 1 or an even integer 418 

in the axial direction are excited. For the case of 𝑀 = 4  and 𝑁 = 4 , a similar 419 

phenomenon can be observed. 420 

 421 

Table 1  Natural frequencies of the cylindrical shell without axial compression 422 

𝑓𝑚𝑛(Hz) 

𝑛 = 

1 2 3 4 5 

𝑚 = 

1 100 44 77 143 231 

2 315 132 100 150 234 

3 553 261 159 171 244 

4 776 407 243 210 262 

5 968 555 341 265 290 

6 1122 694 445 333 328 

7 1238 820 548 408 375 

8 1323 931 648 486 430 

9 1385 1027 743 565 489 

10 1431 1109 830 643 552 
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 423 

(a) 𝑀 = 1, 𝑁 = 2 424 

 425 

(b) 𝑀 = 4, 𝑁 = 4 426 

Fig. 2  Magnitudes of the harmonic response function corresponding to the 427 

displacement 𝑤 at (0.3𝐿, 0.4π), calculated by the present method and the MDM with 428 

different truncations 429 

430 
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 431 

(a) 𝑀 = 1, 𝑁 = 2 432 

 433 

(b) 𝑀 = 4, 𝑁 = 4 434 

Fig. 3  Magnitudes of the harmonic response function corresponding to the bending 435 

moment 𝑀𝑥 at (0.3𝐿, 0.4π), calculated by the present method and the MDM with 436 

different modal truncations 437 

438 
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The influences of the axial modal truncation 𝑚max on harmonic response functions are 439 

studied, and the results are compared to those of the present method. As shown in Figs. 2 440 

and 3, the truncation influences the responses significantly. With increasing frequency of 441 

the excitation, the number of modes required to obtain convergent solutions increases. 442 

Besides, with increasing orders 𝑀 and  𝑁, the spatial distribution of the pressure varies 443 

considerably, and hence more modes are needed to ensure the accuracy of the results. 444 

Since the bending moment 𝑀𝑥  is the derivative of the displacement 𝑤, many more 445 

modes are needed to obtain convergence on 𝑀𝑥 than on 𝑤. Nevertheless, the present 446 

method is derived analytically and no truncation is introduced. Thus, compared with the 447 

MDM, the present method has the advantage of high accuracy in the solution of harmonic 448 

response functions. 449 

The CPU times of the MDM with different modal truncations and the present method 450 

are listed in Table 2. The harmonic response functions corresponding to the displacement 451 

𝑤 are calculated at 400 points in the frequency range 1 to 1000 Hz, with a frequency step 452 

of 1 Hz. It can be observed that the CPU time of the MDM increases almost linearly with 453 

the increasing number of modes, while the present method keeps the same CPU time in 454 

all cases for the reason that no truncation is introduced. Thus, the present method has the 455 

advantage of high efficiency compared to the MDM, in the analysis of structures 456 

subjected to excitation with a wide frequency band, such as the TBL. 457 

458 
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Table 2  CPU times of the MDM and the present method for different cases  459 

𝑀 = 1，𝑁 = 2 𝑀 = 4，𝑁 = 4 

MDM, 𝑚max = 4 49 s MDM, 𝑚max = 7 81 s 

MDM, 𝑚max = 6 73 s MDM, 𝑚max = 9 103 s 

MDM, 𝑚max = 8 90 s  MDM, 𝑚max = 11 126 s 

 MDM, 𝑚max = 10 113 s  MDM, 𝑚max = 15 162 s 

Present method 78 s Present method 79 s 

 460 

4.1.2 Influences of the axial compression on harmonic response functions 461 

In order to study the influences of axial compressions on random responses of the 462 

cylindrical shell to the TBL, it is essential to firstly investigate the influences on harmonic 463 

response functions. According to the theory of elastic stability as shown in [28], the 464 

critical axial pressure of the cylindrical shell under consideration is about 9.427 ×465 

106 N m⁄ , which can be denoted as 𝑁cr. When the compression exceeds the critical value, 466 

the cylindrical shell may lose stability. Therefore, the investigation of influences of axial 467 

compression on harmonic response functions is meaningful, even when the axial 468 

compression is below the critical value. 469 

470 
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 471 

(a) 𝑀 = 1, 𝑁 = 2 472 

 473 

(b) 𝑀 = 4, 𝑁 = 4 474 

Fig. 4  Magnitudes of the harmonic response function corresponding to the 475 

displacement 𝑤 at (0.3𝐿, 0.4π) with different axial compressions 476 

477 
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 478 

(a) 𝑀 = 1, 𝑁 = 2 479 

 480 

(b) 𝑀 = 4, 𝑁 = 4 481 

Fig. 5  Magnitudes of the harmonic response function corresponding to the bending 482 

moment 𝑀𝑥 at (0.3𝐿, 0.4π) with different axial compressions 483 

484 
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The variation of harmonic response functions 𝐺𝑀𝑁(𝐫, 𝜔)  with the axial 485 

compression are shown in Figs. 4 and 5, which correspond to the displacement 𝑤 and 486 

bending moment 𝑀𝑥 at 𝑥 = 0.3𝐿 and 𝜃 = 0.4π, respectively. It is seen that the peaks 487 

of 𝐺𝑀𝑁(𝐫, 𝜔) shift to the left, as the axial compression reduces the natural frequencies. 488 

Also, for the modes of smaller circumferential order 𝑛, the axial compression has less 489 

influence on the natural frequencies. The amplitudes of the displacement 𝑤  do not 490 

change much with increasing axial compression, whereas, those of the bending moment 491 

𝑀𝑥 change significantly. Hence it can be concluded that bending moment 𝑀𝑥 is more 492 

sensitive to variation of the axial compression than the displacement 𝑤. 493 

 494 

4.2 Random responses to the TBL 495 

Random responses of the axially compressed cylindrical shell to the TBL are 496 

investigated by the present method in this section, following which the influences of the 497 

axial compression are discussed. The cross PSD of the TBL wall pressure developed by 498 

Corcos [1] is used here, with the parameters recommended in [11], i.e., 𝑐𝑥 = 0.15, 𝑐𝜃 =499 

0.75, 𝑈𝑐 = 75 m s⁄ . The auto PSD of point wall pressure 𝛷𝑝𝑝(𝜔) is a band-limited 500 

white noise with unit amplitude, and covers a frequency range from 1 to 1000 Hz. 501 

502 



31 

 503 

Fig. 6  Auto PSDs of the displacement 𝑤 at (0.3𝐿, 0.4π), calculated by the present 504 

method and the MDM with different modal truncations 505 

 506 

 507 

Fig. 7  Auto PSDs of the bending moment 𝑀𝑥 at (0.3𝐿, 0.4π), calculated by the 508 

present method and the MDM with different modal truncations 509 

510 
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4.2.1 Comparisons of the present method and MDM 511 

Harmonic response functions obtained by the present method and the MDM were 512 

studied and compared in subsection 4.1.1, whereas in this subsection comparisons are 513 

given further for the random responses obtained by these two methods. A sufficiently 514 

large truncation of 𝑀 and 𝑁, e.g. 100, is used here to ensure the convergence of the 515 

series, although this may bring some unnecessary computation. The convergence and 516 

truncation problems of the series will be studied in detail in the next subsection. 517 

Auto PSDs of the displacement 𝑤  at (0.3𝐿, 0.4π)  calculated by the present 518 

method are examined and compared to those of the MDM with different modal 519 

truncations, as shown in Fig. 6. It is seen that results of the MDM converge to those of 520 

the present method with increasing number of modes. It is also observed that the higher 521 

the excitation frequency, the more modes are needed to obtain convergent results in the 522 

MDM. Fig. 7 shows the auto PSDs of the bending moment 𝑀𝑥 at the same location, and 523 

similar phenomena to those of the displacement 𝑤 can be observed. It is noted that the 524 

bending moment 𝑀𝑥 needs more modes than the displacement 𝑤 to obtain convergent 525 

random responses. 526 

Auto PSDs of the displacement 𝑤 and bending moment 𝑀𝑥 along the axial and 527 

circumferential directions are shown in Figs. 8 and 9, respectively. Considering the spatial 528 

symmetry of responses, results are given in the range of 0 to 0.5𝐿 in the axial direction 529 

and 0 to 0.5π in the circumferential direction. For the convenience of displaying results, 530 
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auto PSDs at only a typical frequency point, i.e. 600Hz, are examined and compared. As 531 

we can see from Figs. 8 and 9, with increasing modal truncation 𝑚max, results of the 532 

MDM converge to those of the present method. This tendency can be observed from 533 

results of both the displacement 𝑤 and bending moment 𝑀𝑥 , and in both axial and 534 

circumferential directions. This indicates that the present method can provide results with 535 

very high precision. In addition, in Figs. 8(a) and 9(a), if results of the present method are 536 

used as reference solutions and the maximum errors of the MDM are controlled within 537 

1%, then at least 15 modes are needed for the calculation of the auto PSDs of the 538 

displacement 𝑤, while 28 for the bending moment 𝑀𝑥. 539 

Auto PSDs of the displacement 𝑤 and bending moment 𝑀𝑥 along the axial and 540 

circumferential directions are shown in Figs. 8 and 9, respectively. Considering the spatial 541 

symmetry of responses, results are given in the range of 0 to 0.5𝐿 in the axial direction 542 

and 0 to 0.5π in the circumferential direction. For the convenience of displaying results, 543 

auto PSDs at only a typical frequency point, i.e. 600Hz, are examined and compared. It 544 

is seen from Figs. 8 and 9 that with increasing modal truncation 𝑚max, results of the 545 

MDM converge to those of the present method. This tendency can be observed from 546 

results of both the displacement 𝑤 and bending moment 𝑀𝑥, and in both the axial and 547 

circumferential directions. This indicates that the present method can provide results with 548 

very high precision. In addition, in Figs. 8(a) 549 

550 
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 551 

(a) The axial direction and 𝜃 = 0.4π 552 

 553 

(b) The circumferential direction and 𝑥 = 0.3𝐿 554 

Fig. 8  Auto PSDs of the displacement 𝑤 along the axial and circumferential 555 

directions 556 

557 
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 558 

(a) The axial direction and 𝜃 = 0.4π 559 

 560 

(b) The circumferential direction and 𝑥 = 0.3𝐿 561 

Fig. 9  Auto PSDs of the bending moment 𝑀𝑥 along the axial and circumferential 562 

directions 563 

564 
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and 9(a), if results of the present method are used as reference solutions and the maximum 565 

errors of the MDM are required to within 1%, then at least 15 modes are needed for 566 

calculation of the auto PSDs of the displacement 𝑤, and 28 for those of the bending 567 

moment 𝑀𝑥. 568 

4.2.2 Convergence of the present method 569 

As can be seen from Eq. (13), the cross PSD of the TBL is expanded as a Fourier 570 

series, whose convergence should be discussed. The truncations of the series in the axial 571 

and circumferential directions are denoted as 𝑀max and 𝑁max, respectively. Figs. 10 and 572 

11 give results for 𝑆𝑤𝑤 and 𝑆𝑀𝑀 with different truncations, representing the auto PSDs 573 

of the displacement 𝑤 and bending moment 𝑀𝑥 of the cylindrical shell. It should be 574 

noted that when the convergence of one direction is studied, a sufficiently large truncation 575 

in the other direction is considered to ensure the convergence of the solutions. As shown 576 

in Figs. 10 and 11, the results are convergent with increasing truncations of the series in 577 

both directions. For higher frequencies, larger truncation is needed to obtain convergent 578 

results. Also, the convergence of 𝑆𝑀𝑀  is significantly slower than that of 𝑆𝑤𝑤. This 579 

phenomenon is similar to the convergence of the MDM. 580 

The convergence of the solutions at each frequency is studied further. Defining the 581 

truncation error as 582 

 583 

 𝜀(Θ) =
Res(Θ) − Res(Θ − 1)

Res(Θ)
× 100% (39) 

 584 

585 
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 586 

(a) 𝑀max 587 

 588 

(b) 𝑁max 589 

Fig. 10  Auto PSDs of the displacement 𝑤 at (0.3𝐿, 0.4π) with different truncations 590 

in axial and circumferential directions 591 

592 
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 593 

(a) 𝑀max 594 

 595 

(b) 𝑁max 596 

Fig. 11  Auto PSDs of the bending moment 𝑀𝑥 at (0.3𝐿, 0.4π) with different 597 

truncations in axial and circumferential directions 598 

599 
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 600 

Fig. 12  Convergence diagram for 𝑆𝑤𝑤 and 𝑆𝑀𝑀  601 

 602 

where Res(Θ) is the solution with respect to Θ terms, and Θ can be 𝑀max or  𝑁max. 603 

It is assumed that the solution is convergent if 𝜀(Θ) is smaller than 1%. According to 604 

the above rule, the convergence of the solutions in a frequency range between 1 and 1000 605 

Hz is studied, and some of the results are presented in Fig. 12. It is seen that more terms 606 

are needed to ensure the convergence of the solutions at higher frequencies. Also, the 607 

convergence in the axial direction is much slower than that in the circumferential direction. 608 
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 610 

Fig. 13  Auto PSDs of the displacement 𝑤 at (0.3𝐿, 0.4π) with different axial 611 

compressions 612 

 613 

 614 

Fig. 14  Auto PSDs of the bending moment 𝑀𝑥 at (0.3𝐿, 0.4π) with different axial 615 

compressions 616 

617 
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4.2.3 Influences of the axial compression on random responses 618 

The influences of axial compression on the random responses of the cylindrical shell 619 

subjected to the TBL are investigated. The boundary condition with free-free ends is 620 

considered here. Like the investigation on harmonic response functions in section 4.1.2, 621 

the axial compression is below the critical value, which equals −9.7 × 105 N m⁄  for the 622 

case of free-free ends. The auto PSDs of the displacement 𝑤 and bending moment 𝑀𝑥, 623 

at (0.3𝐿, 0.4π) with different axial compression are given in Figs. 13 and 14. It can be 624 

seen that the variation of the axial compression has a great influence on both 𝑆𝑤𝑤 and 625 

𝑆𝑀𝑀. As the axial compression increases, the peaks of PSDs shift to the left. Also, 𝑆𝑀𝑀 626 

is more sensitive to the variation of the axial compression than 𝑆𝑤𝑤.  627 

 628 

 629 

Fig. 15  Mean square values of the displacement and bending moment at (0.3𝐿, 0.4π) 630 

with different axial compressions, normalized by the results without axial compression 631 

632 
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Fig. 15 shows the mean square values of the displacement 𝑤 and bending moment 633 

𝑀𝑥  with different axial compressions. For convenience of illustration, all results are 634 

normalized with respect to those without axial compression. It can be seen that the mean 635 

square values increase with the increasing axial compression. Also, the influence of axial 636 

compression on the mean square values of the bending moment is much more significant 637 

than that on the displacement. 638 

  

(a) 𝑁0 = 0 (b) 𝑁0 = 0.3𝑁cr 

  

(c) 𝑁0 = 0.6𝑁cr (d) 𝑁0 = 0.9𝑁cr 

Fig. 16  Evolution of the distribution of the mean square value of the displacement 𝑤 639 

with different axial compressions 640 
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(a) 𝑁0 = 0 (b) 𝑁0 = 0.3𝑁cr 

  

(c) 𝑁0 = 0.6𝑁cr (d) 𝑁0 = 0.9𝑁cr 

Fig. 17  Evolution of the distribution of the mean square value of the bending moment 641 

𝑀𝑥 with different axial compressions 642 

 643 

Figs. 16 and 17 show the distributions of the mean square values of the displacement 644 

𝑤 and bending moment 𝑀𝑥, respectively. It can be seen that the amplitudes of the mean 645 

square values increase significantly with axial compression, while the distributions over 646 

the cylindrical shell do not change much. Moreover, the distributions are similar to the 647 

modal shape with order 𝑚 = 1 and 𝑛 = 2 which corresponds to the smallest natural 648 

frequency. This is because the natural frequencies are modified by the axial compression, 649 
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but the corresponding mode shapes are still the same as those without axial compression. 650 

 651 

5 Conclusions 652 

A method based on the symplectic duality system is presented to predict the random 653 

responses of the axially compressed cylindrical shell subjected to the TBL. The cross PSD 654 

of the TBL is expressed as a Fourier series. Then the problem of structures subjected to a 655 

random pressure field like the TBL is reduced to the solution of harmonic response 656 

functions. A symplectic method is developed to obtain the harmonic response functions 657 

analytically. Firstly, harmonic response functions with different wavenumbers are 658 

calculated by the present method and the MDM. The results show that the present method 659 

is efficient and accurate compared to the MDM. Then influences of the axial compression 660 

on the harmonic response functions are discussed, and it is indicated that the axial 661 

compression has more influence on the harmonic response functions with bigger 662 

wavenumbers. Secondly, random responses of the cylindrical shell to the TBL are 663 

calculated and compared to those of the MDM, and then the convergence problems 664 

induced by Fourier series expansion are discussed. It is shown that the convergence in the 665 

axial direction is much slower than that in the circumferential direction, while the 666 

convergence of the bending moment is slower than that of the displacement. Finally, the 667 

influences of axial compression on the random responses of the cylindrical shell subjected 668 

to the TBL are investigated. It is concluded that axial compression has a significant 669 
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influence on the amplitude of random responses, and that the bending moment is more 670 

sensitive than the displacement to the variation of the axial compression. However, the 671 

axial compression has little influence on the spatial distribution of random responses. 672 
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 678 

Appendix Nonzero elements in operator matrix 𝐇 679 

The nonzero elements in the operator matrix 𝐇, as shown in Eq. (24) are 680 

 681 

 𝐇12 = −𝐇65 = −
𝜈𝐾

(𝐾 − 𝑁0)𝑅

∂

∂𝜃
 (A1) 

 682 

 𝐇13 = −𝐇75 = −
𝜈𝐾

(𝐾 − 𝑁0)𝑅
 (A2) 

 683 

 𝐇15 =
1

𝐾 − 𝑁0
 (A3) 

 684 

 𝐇21 = −𝐇56 =
𝐾𝑅(1 − 𝜈)

(𝐾𝑅2 + 𝐷)(𝜈 − 1) + 2𝑁0𝑅2

∂

∂𝜃
 (A4) 

 685 

 𝐇24 = −𝐇68 =
2𝐷(1 − 𝜈)

(𝐾𝑅2 + 𝐷)(𝜈 − 1) + 2𝑁0𝑅2

∂

∂𝜃
 (A5) 

 686 
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 𝐇26 =
2𝑅2

(𝐾𝑅2 + 𝐷)(𝜈 − 1) + 2𝑁0𝑅2
 (A6) 

 687 

 𝐇34 = −𝐇87 = −1 (A7) 

 688 

 𝐇42 = −𝐇68 = −
𝜈

𝑅2

∂

∂𝜃
 (A8) 

 689 

 𝐇43 = −𝐇78 = −
𝑁0

𝐷
+

𝜈

𝑅2

∂2

∂𝜃2
 (A9) 

 690 

 𝐇48 =
1

𝐷
 (A10) 

 691 

 𝐇51 = −𝜌ℎ𝜔2 +
[2𝑁0𝑅2 + 𝐷(𝜈 − 1)](𝜈 − 1)𝐾

2𝑅2[(𝐾𝑅2 + 𝐷)(𝜈 − 1) + 2𝑁0𝑅2]

∂2

∂𝜃2
 (A11) 

 692 

 𝐇54 = 𝐇81 =
−(𝜈 − 1)2𝐷𝐾

𝑅[(𝐾𝑅2 + 𝐷)(𝜈 − 1) + 2𝑁0𝑅2]

∂2

∂𝜃2
 (A12) 

 693 

 𝐇56 =
−𝐾𝑅(1 − 𝜈)

(𝐾𝑅2 + 𝐷)(𝜈 − 1) + 2𝑁0𝑅2

∂

∂𝜃
 (A13) 

 694 

 𝐇62 = 𝜌ℎ𝜔2 −
(𝑅2𝐾2 + 𝐷𝐾 − 𝐷𝑁0)(𝜈2 − 1) + 𝑅2𝑁0𝐾

(𝐾 − 𝑁0)𝑅4

∂2

∂𝜃2
 (A14) 

 695 

 𝐇63 = 𝐇72 = −
(𝜈2 − 1)𝐾2 + 𝑁0(𝜈 + 1)𝐾 − 𝜈𝑁0

2

(𝐾 − 𝑁0)𝑅2

𝜕

𝜕𝜃
+

𝐷(𝜈2 − 1)

𝑅4

∂3

∂𝜃3
 (A15) 

 696 

 𝐇73 = −𝜌ℎ𝜔2 +
(1 − 𝜈2)𝐾2 − 𝑁0𝐾

(𝐾 − 𝑁0)𝑅2
+

(1 − 𝜈2)𝐷

𝑅4

∂4

∂𝜃4
 (A16) 

 697 

 𝐇84 =
2𝐷(𝜈 − 1)(𝐾𝜈 − 𝐾 + 2𝑁0)

(𝐾𝑅2 + 𝐷)(𝜈 − 1) + 2𝑁0𝑅2

∂2

∂𝜃2
 (A17) 

 698 
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Table captions 769 

Table 1  Natural frequencies of the cylindrical shell without axial compression 770 

Table 2  CPU times of the MDM and the present method for different cases  771 

 772 

Figure captions 773 

Fig. 1  Schematic of an axially compressed cylindrical shell 774 

Fig. 2  Magnitudes of the harmonic response function corresponding to the displacement 775 

𝑤  at (0.3𝐿, 0.4π) , calculated by the present method and the MDM with different 776 

truncations 777 

Fig. 3  Magnitudes of the harmonic response function corresponding to the bending 778 

moment 𝑀𝑥  at (0.3𝐿, 0.4π), calculated by the present method and the MDM with 779 

different modal truncations 780 

Fig. 4  Magnitudes of the harmonic response function corresponding to the displacement 781 

𝑤 at (0.3𝐿, 0.4π) with different axial compressions 782 

Fig. 5  Magnitudes of the harmonic response function corresponding to the bending 783 

moment 𝑀𝑥 at (0.3𝐿, 0.4π) with different axial compressions 784 

Fig. 6  Auto PSDs of the displacement 𝑤 at (0.3𝐿, 0.4π), calculated by the present 785 

method and the MDM with different modal truncations 786 

Fig. 7  Auto PSDs of the bending moment 𝑀𝑥  at (0.3𝐿, 0.4π) , calculated by the 787 

present method and the MDM with different modal truncations 788 
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Fig. 8  Auto PSDs of the displacement 𝑤 along the axial and circumferential directions 789 

Fig. 9  Auto PSDs of the bending moment 𝑀𝑥  along the axial and circumferential 790 

directions 791 

Fig. 10  Auto PSDs of the displacement at (0.3𝐿, 0.4π) with different truncations in 792 

axial and circumferential directions 793 

Fig. 11  Auto PSDs of the bending moment at (0.3𝐿, 0.4π) with different truncations 794 

in axial and circumferential directions 795 

Fig. 12  Convergence diagram for 𝑆𝑤𝑤 and 𝑆𝑀𝑀  796 

Fig. 13  Auto PSDs of the displacement at (0.3𝐿, 0.4π)  with different axial 797 

compressions 798 

Fig. 14  Auto PSDs of the bending moment at (0.3𝐿, 0.4π)  with different axial 799 

compressions 800 

Fig. 15  Mean square values of the displacement and bending moment at (0.3𝐿, 0.4π) 801 

with different axial compressions, normalized by the results without axial compression 802 

Fig. 16  Evolution of the distribution of the mean square value of the displacement with 803 

different axial compressions 804 

Fig. 17  Evolution of the distribution of the mean square value of the bending moment 805 

with different axial compressions 806 


