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Abstract—Our particular research in the Distributed Analyt-
ics and Information Science International Technology Alliance
(DAIS ITA) is focused on ”Anticipatory Situational Understand-
ing for Coalitions”.

This paper takes the concrete example of detecting and
predicting traffic congestion in the UK road transport network
from existing generic sensing sources, such as real-time CCTV
imagery and video, which are publicly available for this purpose.
This scenario has been chosen carefully as we believe that in
a typical city, all data relevant to transport network congestion
information is not generally available from a single unified source,
and that different organizations in the city (e.g. the weather office,
the police force, the general public, etc.) have their own different
sensors which can provide information potentially relevant to
the traffic congestion problem. In this paper we are looking at
the problem of (a) identifying congestion using cameras that,
for example, the police department may have access to, and (b)
fusing that with other data from other agencies in order to (c)
augment any base data provided by the official transportation
department feeds. By taking this coalition approach this requires
using standard cameras to do different supplementary tasks like
car counting, and in this paper we examine how well those tasks
can be done with RNN/CNN, and other distributed machine
learning processes.

In this paper we provide details of an initial four-layer
architecture and potential tooling to enable rapid formation of
human/machine hybrid teams in this setting, with a focus on
opportunistic and distributed processing of the data at the edge
of the network. In future work we plan to integrate additional
data-sources to further augment the core imagery data.

I. INTRODUCTION

Congestion is an indicator that a transport network is either
routinely not fully meeting the needs of the users (i.e. there
is not enough capacity to meet regular demand), or it is being
disrupted by an extraordinary occurrence such as an accident
or major public event. Transport network users and those
responsible for maintaining the network desire increasingly
fine-grained real-time visibility of the evolving network based
on actual usage, and the potential for harvesting this data, in
an ambient manner, from distributed devices in addition to
bespoke ancillary systems.

Multiple data sources can play a role in detecting conges-
tion, spanning multiple modalities, such as traffic cameras,
public transport data, weather etc. However, the sources may
not all be under a single authority or organisation, requiring
establishment of a ‘coalition’ of related sources and informa-
tion processing to address the problem of detecting congestion.
We term this aspect of the coalition context as a ‘coalition

of convenient sources’. By accounting for such a ‘coalition
of sources’ in a situational awareness solution there is much
opportunity to enhance the situational picture and go beyond
perception into comprehension and projection. For example,
if one camera indicates that a particular street corner is
congested, why is it congested? Will the congestion spread?
How can a coalition take prescriptive action to reduce the
congestion or to ensure that the congestion does not spread?

Developing situational understanding entails efficient usage
of both human and machine agents working together as a
hybrid team as seamlessly as possible, within a coalition
setting. To support the situational understanding requirement
we are specifically investigating machine learning and deep
learning techniques for the machine agents with the human
agents acting as consumers of the information arising, as well
as being able to modify the behaviour of the system based on
the contribution of contextually relevant human knowledge.
The ability for the human users to interact with the machine
agents is a key focus of our work, both in terms of the ability
to configure and direct the machine processes, as well as the
ability for the machine agents to explain themselves and their
processing to humans to aid interpretation.

This paper first provides an overview of the current state-
of-the art for detection and measurement of traffic congestion.
To advance our ‘coalition of convenient sources’ perspective, a
multimodal dataset has been gathered using publicly accessible
temporally and spatially coordinated data feeds which are
distributed both geographically and organisationally, i.e. the
data sources converge on a common geographic region but
could plausibly be provided by different coalition partners.
Some techniques for the analysis of this data are proposed and
compared, specifically in terms of detecting or inferring traffic
congestion in real-time. A high-level architecture is proposed
for how these distributed sensors, as well as underlying
uncertainty, could be fused to provide a holistic map of con-
gestion across the sensed network and potentially beyond. This
component-based architecture accounts for current capabilities
but also enables new relevant capabilities to be easily inserted
as they become available in the future.

II. SUMMARY OF PRIOR ART

Addressing the problem of detecting traffic congestion is
not a new challenge. With the recent explosion in sensor
availability and a drive towards ‘smarter cities’ both this body



of knowledge and the associated data sources will increase
[1]. An obvious starting point are the metrics used to deter-
mine congestion from simple determinations such as stream
speed [2] to more complex characterisations such as a Traffic
Congestability Value (TCV) [3], as well as how congestion
propagates across the network [4] and designing networks to
be congestion resistant.

There are some investigations into multiple modalities for
congestion sensing from more indirect measures such as
weather [5] and social media [6], [7], as well as more direct
observations of the traffic network, such as the use of computer
vision for analysing images for signs of congestion [8], [9].

Congestion determinations can also be part of a feedback
loop into smart or autonomous control systems [8], [10], [11],
thereby enabling the action taken to affect the sensed stimulus.

Our research in this space is focused specifically on op-
portunistic, distributed sensing, in particular alongside the use
of machine learning / deep learning tools, in scenarios where
common computational modes or tooling may not be shared
among all partners. Of clear relevance to this more distributed
and opportunistic approach are some interesting studies using
more traditional toolsets on existing map service providers to
provide wider indications of congestion [12], [13], as well as
other facets such as SVM [14], HMM Models [15], multi-
agent based models [11], long short-term memory [13], and
backpropagation (BP) Neural Networks [16].

Some have investigated the use of connected vehicles as
a distributed sensing and computation platform. Local net-
works of connected vehicles can make use of vehicle ad-hoc
networks (VANETs) to share a local picture of congestion
in a distributed fashion without relying on underlying or
existing infrastructure [17], as well as cooperating to minimise
excessive use of constrained resources [18].

III. DESCRIPTION OF DATASETS

To support the development and evaluation of the proposed
techniques a multi-modal dataset has been gathered bringing
together temporally and geographically aligned data from
public datasources. London (UK) was chosen as there were
a number of appropriate data feeds which were accessible to
researchers, mainly via the Transport for London (TfL) API
[19] which provides access to traffic cameras (still and video),
live bus updates, air quality, cycle data, and more. The CCTV
image and video data is collected every 5 minutes with a 10
second video clip and a single still image being available
for each of the approximately 1000 CCTV cameras with a
publicly available live feed. Each day of collection sees around
33GB of video data, 5GB of still images, and 750MB of other
sensor data captured, totalling around 40GB. This has been
gathered continuously since February 2017 in order to create
a consistent dataset for machine learning and pattern-of-life
model building.

Whilst much of the data comes from an authoritative source
(TfL), there are still gaps and inconsistencies which arise
sometimes owing to technical faults (e.g. camera or camera
feed issues), and at other times data is intentionally withheld

for security purposes. For instance, in the TfL CCTV data,
camera imagery may be replaced with a static holding image
stating the camera is being used to ’keep London moving’. In
a coalition environment, similar occurrences may arise where
one partner may want to intentionally withhold data due to
sensitive operations in that area or other security or privacy
related reasons.

A. Labelling of image data

An in-house web service has been developed to enable
rapid subjective labelling of the image data with a ‘ground
truth’ estimation of the levels of congestion. This is achieved
through crowd-sourcing opinions on whether images from
traffic cameras show congestion. A day’s worth of images
from a subset of cameras, selected by highest availability,
were uploaded to the tool, and then randomly presented to
participants. Through simple assigned keystrokes, participants
marked the image as either ‘No Congestion’, ‘Congestion’,
‘Don’t Know’, or ‘Broken Image’.

To enable the human users crowd-sourcing the classifica-
tions a working definition of congestion was formulated as
‘a line of traffic that would cause you to slow or stop’. This
phrasing was chosen deliberately to convey exactly what the
human users should treat as congestion regardless of their
individual background or experiences. For example, people
from large cities would likely have a different subjective defi-
nition of congestion to those living in a more rural setting. The
participants were encouraged to make a subjective assessment
of the traffic levels they see directly in the image rather
than to try to ‘second guess’ any possible machine learning
system. For example, the human users were encouraged to
take into account subtle visual clues such as the gaps between
vehicles (to suggest high speed or low speed movement), or the
presence of traffic lights. The human users were discouraged
from trying to guess how the machine agent might classify an
image but instead focus purely on their human reaction.

IV. PROPOSED ANALYSIS TOOLS

Not all the multi-modal inputs can be readily fused to
determine congestion. A lot of value resides in the imagery
data in particular, and work has been done investigating how
existing deep learning techniques can be applied to enhance
other image processing techniques to understand the conges-
tion indicated directly in the static images and video.

A. Image Segmentation to identify occupancy

Contrasting approaches of a VGG-16 model trained for
single object classification purposes against a Fully Convo-
lutional Network [20] were investigated to see their suitabil-
ity for classifying congestion from CCTV images. Initially
an image classification task was performed to see if using
a pre-trained convolutional neural network (obtained using
‘ImageNet’ dataset) it is possible to identify all the objects
present in an image gathered from a CCTV camera. The pre-
trained model was slightly modified in order to be applied in
a fully convolutional procedure as described in [20].



The preliminary results obtained were not very promising,
mainly since the original model was created to carry out
classification of a single object. Images within the dataset often
contained multiple vehicles with occlusions and overlaps. To
overcome this issue a posterior experiment was performed
where the fully convolutional VGG-16 model [21] was trained
on a segmentation dataset (‘PASCAL VOC’). However, no
improvements to prediction accuracy were obtained. Lack of
clear measures of the number of objects in the image make
it difficult to use occupancy as a measure of congestion. The
low accuracy results are likely to be caused by the use of
a completely different dataset for the training phase. Other
circumstances may also have affected the accuracy of the
predictions such as the relatively low-quality images from the
CCTV cameras, the small size of some of the vehicles in the
image, the density of vehicles in the congested images, and
frequent occlusions to the scenes.

B. Car Detection / Counting using R-CNN

As discussed in the previous section, the classification
approach is insufficient for detecting congestion from the
provided images. To address this problem, we use regional-
convolutional neural network (R-CNN). R-CNN can be used
to localize and detect multiple objects within the input image.
While the same thing can, in theory, be achieved by using
CNN to classify different sliding windows inside the given
image, this approach is too computationally expensive. R-CNN
provides a computationally efficient solution for localizing and
detecting objects in the image. Fine-tuning of the pre-trained
model using images sampled from our dataset is planned
as well as modification of the model architecture to keep
only output classes that are valid for the congestion detection
problem.

Fig. 1. Example of car detection using R-CNN

1) Results: We use TensorFlow [22] to evaluate the Faster
R-CNN algorithm [23] on example images drawn from our

dataset (see figure 1). We used a model pre-trained on the
Pascal VOC2007 [24] dataset. We ran our experiments using
a desktop machine equipped with NVIDIA TitanX GPU to
accelerate the model running time.

2) Discussion: Although our results show that R-CNN can
detect and localize cars in the images with high precision
(low false positives rate), we find that the model suffers from
low recall (high false negatives rate). In order to improve our
model, we propose the following refinements:

• Fine-tune the model using a training subset from our data-
set. Although using pre-trained model weights trained on
large dataset such as ImageNet/PASCAL VOC is useful
when having another relatively small labelled datasets
like ours. The discrepancies between the two datasets
would require that we fine-tune the model using data
sampled from our dataset.

• Replace the final fully connected layer in the fine-tuned
model with another fully connected layer with a smaller
number of output classes to remove classes that are not
applicable in our scenario (e.g. cat, TV screen, etc.). This
will result in both higher accuracy and faster running time
of our model.

V. HIGH LEVEL ARCHITECTURE

In order to manage and fuse these sensor feeds, a high level
architecture is proposed, consisting of four hierarchical layers.
Each of these layers is virtual and can span multiple agencies
within a coalition.

Fig. 2. Proposed High Level Architecture

As outlined, we are looking at the traffic congestion problem
as a setting to explore the coalition situational understanding
problem space. To do this, we have developed a conceptual



system architecture that defines and explores the relationships
between data sources and services owned by various partners
of a coalition. Ultimately, the architecture outlines the ways in
which a coalitions resources can be used to provide actionable
intelligence and decision making assistance.

In the following sections, we will begin by providing a
summary of the architecture and then present how its use can
deal with some of the challenges of the coalition environment.

A. Data Sources Layer

The data sources layer is made up of heterogeneous data
sources provided by a range of sensors, modalities, and col-
lection platforms. Ownership for each source may lie with dif-
ferent members of the coalition who grant access as required,
or any source could be publicly available and therefore open
source in nature. Many additional capabilities and complexities
can be inserted into this layer of the architecture, for example
through using fine-grained policy based access control to allow
each member of the coalition to share their sources explicitly
with certain other partners only.

B. Information Processing Layer

At the information processing layer, processing services are
maintained and shared by the partners of the coalition. These
services are responsible for producing initial conclusions from
the input data provided by the coalition data sources. For
example, identifying objects within images. This initial in-
formation may come with a level of uncertainty which will
be recorded as metadata and can then be passed through the
system, enabling it to be available to higher level services and
users to be taken into consideration when creating combined
data products from these initial results. This enables the
inherent uncertainty arising from this basic processing to be
explicitly captured and bound to the resulting information
to provide additional accountability and transparency in any
subsequent usage, and to better enable the interpretability of
results later in the pipeline.

C. Knowledge Representation Layer

The knowledge representation layer contains all processes
relating to the semantics or meaning of the data. Meaning
is almost always contextual, and the domain models which
can help define this processing context can be defined in this
layer. There are many different types of processing that can be
carried out in the knowledge representation layer and it is here
that disjoint information coming out of the lower information
processing layer can be fused or related. This is also the
layer where the human users have the most opportunity to
inject their human knowledge into the system, enabled via
the tellability function (outlined later) in the uppermost layer.
Different models and techniques can be used in the knowledge
representation layer to fulfil different kinds of processing
and many of these can be integrated to enable high-value
outcomes. For example, current work into the integration of
Subjective Logic and Bayesian Networks is showing that a
usable Bayesian Network can be constructed with far less

training data if subjective human opinions can be encapsulated
in the links [25].

D. Decision Support Layer

The final layer, decision support, allows the user agent to
utilise the resources in the layers below. Unlike the lower lay-
ers, which consists of services distributed across the coalition,
each agent would have their own instance of a user interface
which would enable querying of the available services to assist
in the tasks of the agent.

We have outlined three major functions of the decision
support layer. The first, situational awareness, is the general
ability of the system to assist the agent in making decisions
through their awareness of the environment.

The second, ‘interpretability’, outlines the ways in which
the user can query the system for reasons and explanations
that back the intelligence and recommendations being given
by the system. The interpretability response from the system
may vary in strength and modality dependant on the services
below that have been involved in the reasoning process, and
may also be mediated by the uncertainty encapsulated within
the metadata.

Finally, the decision support layer offers ‘tellability’ - the
ability for a user agent to inject knowledge in to the services
below in order to correct or improve the reasoning generated
by the system. This is a key differentiator in this architecture
which enables the human users to directly affect the behaviour
of the system through the addition of human knowledge. The
simplest case is knowledge which can be directly used by pro-
cesses within the knowledge representation layer, for example,
to perform improved reasoning or inference, or to modify the
weights in a Bayesian Network. More complex system changes
can be affected in the lower layers by the additional human
knowledge causing different configuration parameters to be
used or entirely different information processing components
to be used. Finally, the human user may tell the system about
new data sources, thereby increasing the available pool of data
sources at the lowest level of the architecture.

VI. BENEFITS TO A COALITION ENVIRONMENT

A. Computational Resource Efficiency

By having layers of services as outlined, each layer can
optimise the number of calls made to services below in order to
increase efficiency or to adhere to any usage limits imposed by
the service’s owning partner. As a concrete example, we have
used a combination of an optical flow blob detection service
combined with the R-CNN car detector mentioned previously
to identify moving cars in TfL camera video.

The R-CNN is more computationally expensive than the
optical flow algorithm and thus, to optimise the efficiency
of reasoning with the two components, calls are made every
frame to the optical flow algorithm but only made to the R-
CNN after an interval of frames.

Without the calls to the R-CNN the information generated
is reduced only to ‘blobs in motion’ and thus can’t be used
to reason about the traffic conditions since the blobs are not



identified as cars (they could be pedestrians, birds, litter, etc).
With the periodic calls to the R-CNN the system gains the
classification of certain features as being detected cars for a
given frame with no concept of motion. By taking the ‘blobs in
motion’ and the fact that in one frame of the video a given blob
was identified as a car we can therefore infer ‘cars in motion’
but only when fusing the information from these two services
together can the system perform the required reasoning in the
context of a traffic congestion scenario.

B. Load Sharing & Redundancy Through Failure and Policy
Change

Given the nature of the proposed architecture, the decision
support layer can benefit from multiple services performing
similar tasks creating redundancy and the ability to optimise
the load put on each of the redundant services.

In our work, we are exploring using both an LSTM (‘Long
Short-Term Memory’) based service and HTM (‘Hierarchical
Temporal Memory’) based service to anticipate future traffic
levels. This has allowed us to explore and demonstrate that
even given coalition constraints, such as infrastructure limi-
tations or modification to information sharing policy from a
coalition partner, the system is still able to provide assistance
to user agents as long as one service is still available. In the
case where both services are available the system can balance
the load between them if only one service is required rather
than using both for cross validation (although that use-case
is equally valid, albeit not from the perspective of reducing
system load).

C. Diversification of Sources and Strength of Reasoning

An alternative application of multiple services with similar
input/output signatures is to use both for reasoning in order to
provide cross validation and reduce uncertainty.

As highlighted earlier, the information produced by the
information processing layer can come with a level of uncer-
tainty (for example the confidence a model has in its classifica-
tion). By having services in the knowledge representation layer
that make use of multiple sources of information confidence
levels can be balanced to strengthen the intelligence being
provided to the end user agent. In addition, the use of a
diverse information service offering allows the knowledge rep-
resentation services to ’learn’ the reliability of the information
providers which can create an inherent rating of trust for each
service in the layer below.

We are currently using our developments of subjective
Bayesian networks to explore this trust aspect of the frame-
work [25].

D. Knowledge representation models and techniques

The exact details of the knowledge representation models
and techniques are still under active definition within our ar-
chitecture (in terms of specific languages, logical expressivity
levels, candidate components etc), however the functionality
to be provided by this layer is clear. Figure 3 shows the
operational context of a simplified sub-section of our overall

approach (described previously) and shows the meta informa-
tion sitting as a key resource between the human users and
the various machine components within the system. This meta-
information encapsulates the knowledge representation models
and is used to drive the behaviour of the machine components,
the selection of data sources, the higher level reasoning (if
needed) and as a source of more information provided by
the human users as described previously. The role of the DL
networks, the Bayesian network and the human user along
with the various feedback loops is described in more detail in
[26].

Fig. 3. Role of Knowledge Representation

Our aim in this part of the architecture is to provide a
single human-friendly representation language that is easily
configured and extended and is easy to parse by machine
agents. This will be used to drive each of the individual
reasoning components with translation to other representation
formats as required. Candidates for this meta information
representation language include: The Web Ontology Language
(OWL) or Resource Description Framework (RDF), JSON or
JSON-LD, a form of Controlled Natural Language (e.g. ITA
Controlled English [27]). The key requirement is full flexibility
and extensibility with a strong desire for ease of human use
and efficiency of machine processing.

VII. CONCLUSION

Overall, our proposed architecture shows promise for this
use case as well as having the potential to expand to other
broader situational understanding scenarios. At this initial
stage in our research we are exploring the overall architecture
of a possible system like this to support rapidly formed
coalitions of human-machine hybrid teams and have taken an



initial deep dive into some of the machine learning and deep
learning components with this traffic congestion scenario. In
future work we plan to more deeply integrate the capabilities
of the knowledge representation layer, enabling information
about the data sources, the processing and relevant local
knowledge from human users to be stored and acted upon. We
believe that the integration of these components plus human
input in real-time could provide the basis for a powerful and
flexible system to support such coalition teams in the near
future. We also anticipate that our component based approach
gives a fair degree of future-proofing as new techniques and
advances are made in this rapidly evolving field.

In order to prove the potential benefits of our approach
we plan to run a series of experiments with each of the
components within the architecture in order to determine their
individual performance characteristics. This will provide a
strong baseline for further potential system-level experiments
to measure the capabilities of the entire architecture, especially
in terms of rapid formation and re-configuration which would
be a key benefit arising from this hybrid approach.
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