
 

 

  

Directed differentiation of 
human pluripotent stem cells to 
telencephalic lateral ganglionic 

eminence progenitors using 
small molecules 

 

 
 

Shona Joy 
Supervisor: Professor Nicholas D. Allen 

 
 

This thesis is submitted for the degree of Doctor of philosophy 
at Cardiff University 

 
 

December 2016 

 



ii 

 

 
 
  

Dedicated to my Kunjothi 
 



iv 
 

Summary 

 
This thesis focused on directing the differentiation of pluripotent stem 

cells towards telencephalic lateral ganglionic eminence-like fate. The study aimed at 

developing chemically defined conditions for optimized production of cell types for 

application in Huntington’s disease. The signalling pathways known to be involved in 

in vivo telencephalon development and regional specification were addressed. The 

temporal integration of pathways was achieved in vitro by utilizing small molecule 

pathway agonists or antagonists. In chapter 3, BMP antagonism by Dorsomorphin, 

LDN193189 and DMH1 was found to promote PAX6+ neuroectoderm fate 

specification of hPSCs by day 8 of differentiation. In chapter 4, concomitant inhibition 

of BMP and WNT signalling by IWR1 and KY02111 was found to enhance FOXG1+ 

telencephalic fate and regional specification towards LGE-like fate by day 16 of 

differentiation. In chapter 5 SHH pathway activation by Purmorphamine from day 8 to 

day 16 led to telencephalic fate specification towards MGE fate whereas Activin 

exposure in the same temporal window specifically enhanced LGE-like specification. 

In chapter 6, the day16 neural progenitors were terminally differentiated and analysed 

for DARPP32/CTIP2 expression indicative of LGE derived striatal MSN-like fate. 

BMP inhibitor+ WNT inhibitor patterned progenitors generated ~60% CTIP2+ and 

~16% DARPP32+ neurons and addition of Activin nearly doubled the number of 

DARPP32+ neurons. Activation of SHH signalling downregulated these markers. 

Thus, the study using hPSC as model system identified distinct cell responses to 

different signalling pathways involved in telencephalon specification.  
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1. Introduction 

1.1 Huntington’s disease  

Huntington’s disease (HD) is an inherited monogenic neurodegenerative 

disorder. It was first described by George Huntington in 1872, who identified both its 

familial transmission pattern and clinical features. Over 100 years later, the gene 

responsible for HD was mapped to chromosome 4 in humans (Gusella et al. 1983). 

Later in 1993, the disease causing mutation was found to be an abnormal expansion 

of a CAG trinucleotide repeat located in exon1 of IT15 gene (interesting transcript 

15) now known as ‘huntingtin’ (HTT) gene (Huntington’s disease collaborative 

research 1993). The mutation is inherited as autosomal dominant. 

1.1.1 Clinical characteristics of HD  

HD is characterized by progressive development of motor dysfunction 

(such as chorea, dysphasia, postural imbalance and akinesia), cognitive impairment 

(such as deficits in skilled learning, planning and short term memory) and psychiatric 

disorders (such as depression, personality changes, irritability and apathy) (Walker 

2007). HD is late onset, manifesting in the third or fourth decade of life and 

gradually progressing over a number of years with increasing severity. Patients 

eventually die within 15-20 years from diagnosis.  

Age of symptom onset inversely correlates with the number of CAG 

repeats. Adult onset is associated CAG expansions in the range of 36-56. CAG 

repeat length between 36 and 39 may be regarded as ‘variable penetrance’ and higher 

than 39, leads to a disease state (Rubinsztein et al. 1996; Langbehn et al. 2004). 

Juvenile onset occurs with expansion exceeding 70 (Andrew et al. 1993) 

1.1.2 Selective Neurodegeneration in HD  

The neuropsychiatric characteristics associated with HD results 

predominantly from selective neuronal degeneration in the caudate nucleus and 

putamen, collectively referred to as ‘neostriatum’, which is located in the ventral 

forebrain. Within the striatal neuronal population, medium spiny neurons (MSN) 

expressing neuropeptide enkephalin  and containing inhibitory neurotransmitter γ-

aminobutyric acid (GABA) that project to the globus pallidus are preferentially 
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affected in earliest stage of HD (Albin et al. 1992; Richfield et al. 1995).(Striatum 

and MSNs are discussed further in the following section 1.2). There is also loss of 

cortical neurons including those that project to striatum (Heinsen et al. 1994). In the 

late stages of HD, there is a significant brain atrophy measured as loss of cross-

sectional tissue area in other core nuclei of brain including cortex, globus pallidus, 

substantia nigra, thalamus and hippocampus (de la Monte et al. 1988; Vonsattel et al. 

1985; Rosas et al. 2003). In contrast to about 60% cross-sectional area loss in the 

caudate and putamen, the extent of late stage atrophy in other brain regions is 20-

30%, which corresponds to the overall loss of brain mass in HD (Figure 1:1) (de la 

Monte et al. 1988). 

 

Figure 1:1 Coronal section through a normal and HD brain. A) Normal Brain showing caudate (C), 
putamen (P) and cerebral cortex(CC). B). HD brain showing atrophy in the C, P and CC. Adapted 
from Kelly et al. 2009 

The commonly used grading system for standardization of HD pathology 

is based on the data from the gross and microscopical examination of 163 clinically 

diagnosed post-mortem brains of HD patients (Vonsattel et al. 1985). Striatum was 

consistently reported to have significantly reduced neuronal density in HD brains and 

exhibited marked variation in the severity of neuropathological involvement 

(Vonsattel et al. 1985). The mildest category grade 0 is indistinguishable from the 

normal brain but with 30-40% neuronal loss in caudate nucleus. The severe category 

grade 4 includes severe striatal atrophy and with 95% neuronal loss (Vonsattel et al. 

1985). Neuronal loss and atrophy in non-striatal regions are evident in grade 3 and 4. 

At the time of death the majority of cases are grade 3 or 4 (Vonsattel and DiFiglia 

1998).  

1.1.3 The mutant Htt protein 

The huntingtin protein (Htt protein) is a cytoplasmic protein found in the 

soma, proximal dendrites and synaptic terminals of neurons (DiFiglia et al. 1995; 

C 
P 

CC 
A B 
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Trottier et al. 1995). Htt associates with mitochondria, vesicles, microtubules and 

synaptic components and is involved in energy metabolism, cellular trafficking as 

well as neurotransmission (DiFiglia et al. 1995; Sapp et al. 1997; Velier et al. 1998). 

In HD the CAG repeat expansion in HTT gene encodes a polyglutamine stretch at 

the N-terminus end of protein, thus generating a mutant Htt (mHtt) protein 

(Huntington’s disease collaborative research 1993). Immunostaining of HD brains 

with antibodies against the N terminus of Htt protein identified neuronal intranuclear 

inclusions (NII) containing mHtt protein aggregates in the striatum and cortex 

(DiFiglia et al. 1997; Becher et al. 1998). The significance of these aggregates in HD 

pathogenesis is not yet known. However, the aggregate formation is a hallmark of 

HD. Transgenic animal models for human HD gene carrying CAG repeats (animal 

models discussed further in section 1.1.4) developed NIIs as observed in biopsy 

materials from HD patients. Interestingly, it has been suggested that NII may form as 

a protective response. Transfection of striatal neurons with mHtt induced 

neurodegeneration which was protected by the addition of brain derived neurotropic 

factor (BDNF) (Saudou et al. 1998). Blocking the nuclear localization of mHtt 

suppressed its ability to form NII and resulted in an increase in cell death. This 

suggested that mHtt may act to induce cell death and NII might be a protective 

mechanism against mHtt-induced cell death (Saudou et al. 1998). Neuronal death 

was observed to be dependent on mHtt dose and polyglutamine expansion (Arrasate 

et al. 2004). The presence of inclusion bodies in cytoplasm and nucleus was found to 

improve cell survival and decrease intracellular levels of diffuse mHtt. Neurons 

without NII showed increased degeneration (Arrasate et al. 2004). 

How the mutation results in selective neuronal degeneration, is a central 

question in HD. Targeted disruption of the murine homolog of HD gene showed that 

wild type Htt protein is functionally indispensable Homozygosity resulted in 

embryonic lethality (Duyao et al. 1995; Nasir et al. 1995) whereas, heterozygosity 

resulted in increased motor activity and cognitive deficits (Nasir et al. 1995). A 

comparative study between human homozygotes and heterozygotes for HTT 

mutation revealed a similar age of diseases onset and a subtle but significant clinical 

difference. Neuroimaging showed an extensive and severely progressive brain 

atrophy in the homozygotes (Squitieri et al. 2003). Post-natal forebrain specific 

inactivation of Htt in mice led to progressive apoptotic neuronal degeneration 
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(Dragatsis et al. 2000). To assess the role loss-of- function of wild type Htt in the 

presence of CAG expansion, Van Raamsdonk et al. (2005), compared 2 HD mice 

models -YAC128+/+ expressing two endogenous wild type alleles (+/+) and mutant 

128 CAG expansion and YAC128-/- expressing no wild type alleles (-/-) but 

expressing mutant 128 CAG expansion. The loss of wild type in YAC128-/-, led to 

severe motor dysfunction and shortened longevity. Both groups showed similar 

striatal neuropathology, however the modest worsening of striatal neuronal atrophy 

was evident in YAC128-/- (Van Raamsdonk et al. 2005). Thus, potential loss-of-

function effects of wild type Htt conferred by toxic gain-of- function of mutant Htt 

protein may have a direct relevance to HD pathophysiology. This possible dual 

nature of pathogenic mechanism in HD can be explained by the functional 

differences between wild type and mutant Htt protein. Antibodies that discriminate 

between normal and mutant forms of Htt implied that the mutation caused a 

conformational change in the protein (Trottier et al. 1995). CAG expansion 

abolished the ability of wild type htt protein to bind to proteins, inhibited endocytosis 

and secretion of neurotransmitters and activated apoptosis (Gervais et al. 2002). 

Furthermore, CAG expansion was demonstrated to increase the proteolytic cleavage 

of Htt protein (Gervais et al. 2002; Goldberg et al. 1996). Mice expressing caspase 6 

non-cleavable mHtt maintained normal neuronal function and did not develop striatal 

neurodegeneration, when compared with mice expressing cleavable mHtt (Graham et 

al. 2006). Altered N-methyl-D-aspartic acid (NMDA) receptor activity caused by 

CAG expansion was shown to result in striatal MSN degeneration (Huntington’s 

disease collaborative research 1993; Vonsattel and DiFiglia 1998). The mHtt has 

been shown to disrupt multiple cellular functions by impairment of BDNF synthesis, 

vesicular trafficking and mitochondrial function which may contribute to neuronal 

degeneration (Sawa et al. 2003; Bano et al. 2011).  

1.1.4 HD research models 

1.1.4.1 Human studies 

Human studies highlighted a metabolic defect and an involvement of 

mitochondrial dysfunction in HD pathology. Mitochondria are the site of 

tricarboxylic acid (TCA) and electron transport chain (ETC), where the bulk of ATP 

production within cells takes place. Mitochondria serve vital roles in cellular 

signalling, buffering intracellular Ca2+ and regulating apoptosis (Wallace et al. 
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2010). The putative mechanisms contributing to neuronal death include metabolic 

deficit, oxidative stress, excitotoxicity. Evidence from positron emission topography 

(PET) showed a marked reduction in glucose utilization in the caudate, putamen and 

cerebral cortex in symptomatic HD patients (Kuhl et al. 1985; Kuwert et al. 1990). 

The rate of reduction in striatal glucose utilization precedes the bulk of tissue loss in 

HD and in asymptomatic at-risk subjects (Kuwert et al. 1993; Antonini et al. 1996). 

Nuclear magnetic resonance (NMR) imaging demonstrated elevated lactose 

concentration (a compensatory glycolytic response to mitochondrial dysfunction) in 

the striatum and occipital cortex of symptomatic HD patients, but not in at-risk or 

asymptomatic patients (Jenkins et al. 1993; Jenkins et al. 1998). The impaired 

metabolism was correlated with the degree of motor function in patients; the extent 

of caudate hypometabolism correlated with decline in clinical test scores for 

dementia, rigidity and bradykinesia. Similarly, putaminal hypometabolism predicted 

chorea, defects in eye movements and cortical hypometabolism was seen in patients 

suffering mood changes and physiological disturbances, before the onset of motor 

symptoms (Kuwert et al. 1990). mHtt has been shown to affect mitochondrial 

biogenesis and function (Bano et al. 2011). Biochemical studies of HD post-mortem 

tissues revealed impaired energy metabolism (Bano et al. 2011). Biochemical 

analysis of post-mortem samples of grade 3 and grade 4 (advanced) HD patients 

showed marked reduction in ETC complexes activity in the caudate and putamen 

(Brennan et al. 1985; Gu et al. 1996; Browne et al. 1997). Similar studies with grade 

1 (early) patients samples showed no impairment in complexes in the striatum or 

cortex (Guidetti et al. 2001). Reduced activity of other mitochondrial enzymes such 

as aconitase (Tabrizi et al. 1999) and pyruvate dehydrogenase (Butterworth et al. 

1985) was also reported in caudate and putamen from grade 3 and 4 patients. 

Another PET study in the striatum of early HD patient showed an increased oxygen 

consumption relative to glucose utilization and selective glycolysis defect but no 

defective mitochondrial oxidative metabolism (Powers et al. 2007). Furthermore, 

studies showed increased oxidative damage in HD, as evidenced by markers of 

oxidative stress such as DNA strand breaks and accumulation of oxidative damage 

products. In-situ end labelling to identify DNA fragmentation in apoptotic or necrotic 

nuclei showed increased levels of DNA breaks in postmortem HD striatal neurons, 

the extent of which was correlated with CAG repeat length (Browne et al. 1999). An 

increase in oxidation of DNA base deoxyguanosine to generate 8-hydroxy-
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deoxyguanosine (OH8Dg) was observed in caudate nuclear DNA of grade 4 HD 

patient (Browne et al. 1997). In parallel, oxidative damage to lipids and proteins was 

also reported as seen by elevated levels of malonialdehyde, lipofuscin, heme 

oxygenase and 3-nitrotyrosine in HD striatum and cortex (Browne et al. 1999). 

Lysosomal and endosomal like organelles with Htt immunoreactivity have also been 

reported in HD brains (Sapp et al. 1997). 

Post-mortem human brain from end stage HD patients, thus offer insight 

into disease pathology, however limit the study of longitudinal progression of 

disease. Currently, studies rely on animal and cellular models of HD to assess 

disease pathology and CAG expansion associated neuronal degeneration. 

1.1.4.2 Toxin induced animal models 

The earliest animal models of HD were based on the selective 

vulnerability of striatal neurons to excitotoxins or mitochondrial toxins (reviewed in 

Ramaswamy et al. 2007). Quinolinic acid (QA) is a widely used excitotoxin to 

model the behavioural and neurochemical features of HD in transplantation studies. 

It induces cell death by binding to NMDA receptors on striatal neurons. Toxicity 

induced by QA involved increase in reactive oxygen species, DNA damage and 

peroxidative damage. Intra-striatal administration of QA resulted in striatal 

degeneration with predominant depletion of GABAergic MSNs. (Schwarcz and 

Köhler 1983; Beal et al. 1986). The mitochondrial toxin, 3-nitropropionic acid (3-

NP) acts by inhibiting complex II of TCA and ETC in mitochondria and leads to 

elevated lactate concentrations and reduced ATP levels. Administration of 3NP 

resulted in free radical generation and produced progressive locomotor deterioration 

and striatal neuronal death in rodents (Borlongan et al. 1997). The acute nature of 

lesions in these models contrasts with the gradually progressive and age-dependent 

HD pathogenesis.  

1.1.4.3 Genetic animal models 

The identification of the gene mutation led to the development of  genetic 

animal models of HD (reviewed in Pouladi et al. 2013). The invertebrate models of 

HD have been generated using either full length HTT or truncated HTT N-terminal 

fragments in Drosophila melanogaster (Jackson et al. 1998; Romero et al. 2008) and 

Caenorhabditis elegans (Faber et al. 1999). These models exhibited mutant HTT 
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aggregates, as well as recapitulated the progressive degenerative phenotype and 

motor abnormalities. 

Rodent HD models in which brain is more analogous to the primate brain 

than are invertebrates models, have been developed to characterize the many aspects 

of HD including behaviour deficit and neuropathology. These models fall into 3 

categories- knockout, knock-in and transgenic models. In knockout murine models 

with targeted disruption of the Htt gene, homozygous knockouts were embryo-lethal 

whereas heterozygous knockouts survived and displayed increased motor activity 

and cognitive deficits as well as showing neuronal loss in subthalamic nuclei of basal 

ganglia (Nasir et al. 1995). Knock-in HD mice models are generated by replacing a 

part of endogenous Htt gene with either a full length or truncated human HTT with 

expanded CAG repeats. Carrying the mutation in its appropriate genomic and protein 

context, these models are considered a precise genetic HD model. HdhQ92 and 

HdhQ111 mice models with 92 and 111 CAG repeats respectively, displayed repeat 

instability; length of repeat was increased in subsequent generations predisposing 

them to juvenile onset of symptoms, similar to observations in human (Wheeler et al. 

1999). Both HdhQ92 and HdhQ111 showed a few behavioural deficits and no overt 

striatal degeneration, but pathology was evident by the presence of NIIs. CAG140 

knock-in mouse with full length human HTT containing 140 repeats, displayed 

progressive motor dysfunction. There was also progressive increase in size and 

number of NIIs in striatum, cortex, hippocampus and cerebellum (Menalled et al. 

2003). CAG150 model with 150 CAG repeats, displayed late-onset behavioural 

deficits as well as a severe neuropathology with striatal NIIs, cellular dysfunction 

and degenerating axons (Lin et al. 2001). Knock-in models thus showed the 

profound effect of length of CAG repeats on HD phenotype and suggested that a 

substantive neuropathology more representative of human HD may be induced with 

knock-in models with higher CAG repeats.  

Transgenic models express either full length or truncated human HTT 

randomly inserted into the genome. R6/2 models contains HD promoter exon 1 and 

with 144 CAG repeats (Mangiarini et al. 1996). Although 144 CAG repeats models 

that of juvenile HD, R6/2 mice mimicked the adult-onset HD with appearance of 

NIIs (Davies et al. 1997), overall reduction in brain volume, striatal atrophy, 

significant striatal neuronal loss as well as progressive neurological phenotype 
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including chorea, involuntary stereotypic movements and tremor (Mangiarini et al. 

1996; Stack et al. 2005). The other transgene models, YAC 128 and BACHD were 

created using yeast artificial chromosome (YAC) (Slow et al. 2003) or bacterial 

artificial chromosome (BAC) (Gray et al. 2008) respectively. These models express 

entire human genomic mutant HTT transgene including all exons and introns as well 

as regulatory sequences ensuring temporal and tissue specific expression. YAC128 

mice contain 128 CAG repeats and BACHD mice and rat contain 97 repeats. Both 

models exhibited progressive motor, cognitive and psychiatric disturbances as well 

as developed selective striatal and cortical atrophy with the expression of NIIs (Slow 

et al. 2003; Gray et al. 2008). In a comparative study of behavioural patterns of 

various HD models (knock-in model HdhQ111 and transgenic models -R6/2 mice 

with 240 CAG repeats, BACHD and YAC128) overall R6/2 and BACHD model 

exhibited robust and progressive phenotype (Menalled et al. 2009). However, rodent 

models do not often fully recapitulate the human neuronal phenotypes (Chan 2009). 

A transgenic non-human primate model of HD has been developed Transgenic 

rhesus macaque that express 84 CAG repeat show nuclear inclusions as well as 

display clinical HD features including dystonia and chorea (S. Yang et al. 2008). 

Overall, animal models of HD have allowed extensive study on some aspects of HD. 

Each animal model has different strengths and should be chosen to match specific 

research questions. The main limitations of the animal models include fundamental 

differences from humans, cost and availability. In terms of developing therapeutic 

approaches, the results from animal studies do not necessarily cross over into human 

clinical trials with the same level of success 

1.1.4.4 Cell culture models of HD (Non stem cells models)  

Various in vitro models using non-neuronal and neuronal cell lines have 

been generated by transfection with full length Htt with normal or expanded CAG 

repeats. Primary neuronal cells lines from animal models of HD have been also been 

established as in vitro HD models. These models have allowed the study of the 

intracellular mechanism including Htt protein distribution within cells and role of Htt 

aggregates in pathogenies.  

Non-neuronal lines 293T (human embryonic kidney cell line) and 

monkey kidney cells expressing full length or truncated Htt with 15 CAG showed 

cytoplasmic distribution of huntingtin and expression of higher repeats of 44 or 128 
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CAG resulted in perinuclear aggregates (Martindale et al. 1998). In mouse Neuro2a 

(N2a) neuroblastoma cells, transient transfection with full length Htt showed diffuse 

cytoplasmic localization of protein, whereas transfection with truncated N-terminal 

Htt fragment, resulted in aggregates in both cytoplasm and nucleus as well as 

enhanced cell toxicity to apoptosis inducing agents (Cooper et al. 1998). Similarly, 

expression of polyglutamine expanded huntingtin induced apoptosis in HN33 

(immortalized rat hippocampal neuronal cell line), whereas expression of normal Htt 

showed no toxic effect (Liu 1998). With PC-12 (rat pheochromocytoma) model, 

stable expression of mutant Htt lead to formation of inclusion bodies in both 

cytoplasm and nucleus in a time and polyglutamine length-dependent manner 

(Lunkes and Mandel 1998). A truncated N-terminal Htt fragment was involved in 

inclusion bodies in cytoplasm at early time points and in the nucleus at later time 

points (Lunkes and Mandel 1998). Primary neuronal cultures have been established 

from knock-in model HdhQ111 (Trettel et al. 2000) and transgenic models-YAC and 

BACHD. Striatal cells generated from HdhQ111 expressed the mutant protein and 

displayed a disrupted striatal homeostasis (Trettel et al. 2000). YAC128 MSNs co-

cultured with cortical cells partially recapitulated cortico-striatal circuitry and 

highlighted the aberrant pathways in HD (Milnerwood et al. 2012). BACHD striatal 

neurons provided a platform to develop neuroprotective drugs to ameliorate HD 

memory deficit (Doria et al. 2013) 

1.2 Striatum and Medium spiny neurons 

Striatum is a part of basal ganglia, which extends from ventral forebrain 

through the midbrain (Figure 1:2). It is a major component of basal ganglia circuitry 

along with globus pallidus (GP), substantia nigra (SN) and substhalamic nucleus 

(STN) and is critically involved in control of motor movements and cognitive 

functions. Striatum receives input from SN, cerebral cortex and thalamus and sends 

outputs to SN and GP.  

Striatum comprises of caudate nucleus and putamen. It is heterogeneous 

both anatomically and neurochemically and displays multiple levels of 

compartmental organization. It comprises a variety of neurons that can be 

characterized based on size, spine density, axon target destination, utility of 

neurotransmitters/neuropeptide (Prensa et al. 1999).  
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Figure 1:2 The basal ganglia. Striatum consists of the caudate nucleus and the putamen. Striatum 
receives input from substantia nigra, cerebral cortex and thalamus and send outputs to subthalamic 
nucleus and globus pallidus. Adapted from Biological Psychology 6e, figure 11.18 

1.2.1 Medium spiny neurons and Basal ganglia circuitry  

 

Figure 1:3 Photomontage of medium spiny neurons. MSNs with branched spiny dendrites. Taken 
from Kita and Kita 2011. 

Medium spiny neurons (MSNs) constitute about 95% of striatal neurons 

in rodents (Chang et al. 1982) and over 80% in humans (Wictorin 1992), whilst 

aspiny interneurons make up 2-3% in rodents (Rymar et al. 2004) and upto 23% in 

primates (Graveland et al. 1985). MSNs have a medium sized cell body with a 

diameter of 20-25µm and branched dendrites with densely studded spines (Figure 

1:3). MSNs are the predominant projection neurons of striatum and are sub-classified 

by the neuropeptide and receptor expression and patch or matrix localization (Gerfen 

1992).  

MSNs use inhibitory transmitter, gamma amino butryric acid (GABA) as 

the principle neurotransmitter. GABAergic MSNs give rise to two major pathways. 

(Figure 1:4). The direct pathway involves striatonigral MSNs that project to GP 
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internal (GPi) and midbrain –SN and ventral tegmental area. The indirect pathway 

involves striatopallidal MSNs that project to GP external (GPe) and indirectly 

influence GPi and SN via subthalamic nucleus (STN) (Gerfen 1992; Leisman et al. 

2012). Striatonigral MSNs express neuropeptides substance P and dynorphin and D1 

dopamine receptor (Drd1a) whereas striatopallidal neurons express neuropeptide 

enkephalin, D2 dopamine receptor (Drd2) and A2a adenosine receptor (A2aR) 

(Gerfen 1992). MSNs receive excitatory glutamatergic input from cortex and 

thalamus as well as modulatory dopaminergic inputs from midbrain SN pars 

compacta (SNc) (Leisman et al. 2012). Dopamine modulates the relative 

responsiveness of striatonigral and striatopallidal MSNs to cortical input which 

determines the pattern of activity of output (Gerfen 1992). Dopaminergic projections 

from SN to D1 dopamine receptors of striatonigral MSNs facilitates cortical 

glutamatergic signalling in activation of direct pathway to GPi and SN which project 

to thalamus. Dopaminergic projections to D2 receptors of striatopallidal MSNs 

attenuate excitatory cortical input in activation of indirect pathway to GPe that via 

STN feeds into direct pathway (Leisman et al. 2012). Striatonigral MSNs promotes 

movements by disinhibition of thalamocortical projections, whereas striatopallidal 

MSNs inhibits movements by inhibition of thalamocortical projections (Leisman et 

al. 2012).  

 

Figure 1:4 Basal ganglia circuitry. Striatum receives inputs from cerebral cortex and thalamus 
(excitatory pathways). It also receives dopaminergic (DA) projections from substantia nigra pars 
compacta (SNc). Striatum sends output to globus pallidus external and internal (GPe and GPi) as well 
as substantia nigra pars reticula (SNr) (inhibitory pathways). Subthalamic nucleus (STN) sends 
excitatory projections to GPe, GPi and SNr. Gpi or SNr inhibits thalamus. The thalamus projects to 
cortex. In the direct pathway, striatum inhibits GPi which in turn inhibits its normal inhibitory action 
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on thalamus and leads to greater excitation from thalamus to cortex. The indirect pathway excites GPi 
thereby increasing its inhibition on thalamus. (Leisman et al. 2012). 

Based on neurochemical properties, striatum is divided into patch (or 

striosome) and the matrix compartments. MSNs segregated into patch or matrix 

compartments have distinct project targets; patch neurons provide inputs to 

dopamine neurons in SNc and matrix neurons provide inputs to GABAergic neurons 

in SNr (Gerfen 1989;Gerfen 1992). Both patch and matrix receives input from 

cortical regions to affect motor, cognitive and emotional behaviours; patch receives 

cortical input from deep layers V and VI whereas matrix receives cortical input from 

superficial layer V and supragranular layers (Gerfen 1989; Gerfen 1992). In the adult 

striatum, patch neurons express high levels of opiate receptors, and matrix neurons 

express acetylcholinesterase, calcium-binding protein calbindin and somatostatin 

(Gerfen 1989; Gerfen 1992). 

Interestingly, at the earlier stages in HD, MSNs in the indirect pathway 

are affected largely than MSNs in the direct pathway (Deng et al. 2004; Han et al. 

2010). The functional abnormalities in the indirect pathway were associated with 

chorea-like movement. At late stage in HD, abnormalities in the direct pathway were 

associated with rigidity and bradykinesia (Han et al. 2010). Differential vulnerability 

was also observed in cerebral cortex, with loss of layer V and VI neurons to a greater 

extent than  layer III neurons (Han et al. 2010).  

1.2.2 DARPP-32 

Dopamine and cyclic adenosine 3’,5’- monophosphate-regulated 

phosphoprotein, with a molecular weight of 32kDa (DARPP-32) is a striatal enriched 

protein expressed by more than 90% of GABAergic MSNs in rodent brain (Anderson 

and Reiner 1991; Ouimet et al. 1998). DARPP-32 plays the key role in the 

integration of neuromodulator dopamine and neurotransmitter glutamate signals in 

striatum (Fernandez et al. 2006). Both dopaminergic and glutamatergic stimulation 

regulate DARPP-32 phosphorylation, but in opposite directions. Stimulation of 

dopamine 1 receptor enhances cyclic adenosine 3’,5’- monophosphate (cAMP) 

dependent-protein kinase (PKA) which in turn phosphorylates DARPP-32 (Walaas et 

al. 1983). The phosphorylated form D34 inhibits protein phosphatase-1 (PP1) 

(Hemmings et al. 1984). PP1 dephosphorylates glutamate receptors or GABA 

receptors or voltage-gated ion-channels or calcium/calmodulin kinases and 
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transcription factors, reviewed in (Svenningsson et al. 2004). Stimulation of 

glutamate receptor such as NMDA elevates intracellular calcium and activates 

calcineurin which in turn dephosphorylates DARPP-32, thereby reducing inhibitory 

activity on PP1(Halpain et al. 1990). Cell division kinase 5 (CDK5) mediated 

phosphorylated form DARPP D75 inhibits PKA and thereby reduces effect of 

dopamine signalling on PKA target such as glutamate receptor AMPA (Bibb et al. 

1999). Activation of protein phosphatase-2A (PP2A) by calcium upon glutamate 

receptor activation enhances PKA and dephosphorylates D75 (Fernandez et al. 

2006). To summarise, DARPP32 plays a critical role in basal ganglia circuitry in 

response to dopaminergic and glutamatergic inputs. 

1.3 Neural development 

The neural development discussed here focuses on the developing 

telencephalon and the signalling and molecular mechanism leading to cell fate 

specification of lateral ganglionic eminence (LGE), the origin of putative striatum. 

The scarcity of human material is a major limiting factor for the detailed study of 

human embryogenesis and development. Nevertheless, extrapolation from 

mammalian, avian and amphibian models have provided a working model of early 

events in the development of human telencephalon. In this section, I discuss briefly 

the early patterning of the embryo (section1.3.1), the principle events in 

telencephalon induction and LGE specification (section1.3.2), the role of relevant 

signalling pathways (section1.3.3) and finally, the transcription factors in the 

developing telencephalon (section1.3.4). 

1.3.1 Early patterning of the embryo  

In vertebrates, the development of the nervous system is linked to the 

early patterning of the embryo and is triggered by multiple signalling pathways from 

‘signalling centres’. During early embryogenesis (Figure 1:5), following fertilization, 

the diploid zygote undergoes multiple cell divisions, compaction and progress to a 

structure called the blastocyst. The early blastocyst consists of an inner cell mass 

(ICM) or embryoblast and outer cell mass called trophoblast. At day 6 post 

fertilization, the blastocyst begins to implant into uterine wall via trophoblast. The 

embryo at this stage consists of extraembryonic ectoderm and the ICM segregated 

into hypoblast (primitive endoderm) and epiblast, together called the bilaminar disc. 
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Prior to and during gastrulation, the epiblast is patterned by multiple signalling 

pathways that initially establish the axis of the embryo and then specify the three 

germ layers- ectoderm, mesoderm and endoderm that form the embryo. The 

hypoblast divides into embryonic endoderm and extraembryonic endoderm. In early 

mouse embryonic development, just prior to gastrulation, a small population of 

embryonic endoderm cells translocate to the prospective anterior end of embryo to 

give rise to anterior visceral endoderm (AVE). The anterior-posterior axis (A-P axis) 

of the embryo emerges gradually as the AVE represses posteriorizing signals in the 

overlying epiblast. In the posterior region of the embryo, the subset of epiblast cells 

initiate formation of primitive streak (PS) (a linear midline condensation of cells). 

The appearance of PS marks beginning of gastrulation. The epiblasts cells egressing 

through the anterior PS forms definitive endoderm and mesoderm, together referred 

to as mesendoderm. The endoderm emerges onto the embryo outer surface. The 

epiblast after the formation of mesoderm and endoderm is called ectoderm. The 

mesenodermal cells emerging through the anterior most end of primitive streak give 

rise to major signalling centres- the primitive node which generates axial 

mesendoderm (AME), which will populate the embryo midline to form the 

prechordal plate and the notochord (Figure 1:6 and Figure 1:7) (Beddington and 

Robertson 1999; Lu et al. 2001). These structures are the source of key growth 

factors that play a critical role in the induction of neuroectoderm, neurulation and 

subsequently patterning of the neural tube that eventually establishes the embryo 

nervous system. At neuroectoderm and neural tube stages, local signalling centres, 

such as anterior neural ridge (ANR) at the anterior border of the neural plate and roof 

plate and floor plate at dorsal and ventral midline of neural tube, act as ‘organizing 

centre’ to pattern and specify molecularly distinct domains of neural tube.  

1.3.2 The principal events in telencephalon induction and LGE 

development  

The entire central nervous system originates from the embryonic 

ectoderm through three subsequent events- neural induction, neurulation and neural 

patterning. During neural induction, under the influence of AVE signals, the 

embryonic ectoderm thickens and is specified to form the neural plate 

(neuroectoderm) and becomes distinct from the surface ectoderm (Figure 1:6). The 

ectoderm at this stage thus contains two distinct progenitor domains: the neural plate 
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that forms the central nervous system and the non-neural ectoderm that forms the 

future epidermis. The neural plate gradually elongates the entire length of the 

vertebrate axis. During neurulation (Figure 1:7), the lateral folding of neural plate 

results in elevation of each side, along a midline neural groove. Gradually, the neural 

folds meet, fuse at dorsal midline to form neural tube and separate from the 

overlying ectoderm. During this process, the cells at the junction between neural 

plate and non-neural ectoderm form the neural crest cells and begin to migrate to 

different regions in the embryo to form peripheral neurons, glia, melanocytes, bone 

and connective tissue. (Beddington and Robertson 1999; Gammill and Bronner-

Fraser 2003).  

 

Figure 1:5 Early embryo developmental stages. Fertilized egg gives rise to blastocyst formed of ICM 
and trophectoderm. At post-implantation blastocyst stage, ICM segregated into epiblast and hypoblast. 
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During subsequent development, the hypoblast divides into embryonic endoderm and extraembryonic 
endoderm. Distal visceral endoderm cells from the embryonic endoderm migrate anteriorly and form 
anterior visceral endoderm (AVE). Primitive streak is formed at the opposite pole from AVE. Adapted 
from Zirra et al. 2016. 

Figure 1:6 Neural Induction. Under the influence of AVE signals, the neuroectoderm is induced. The 
mesodermal cells migrate in all directions and envelope the embryo between the ectoderm and 
endoderm. At the anterior most end of primitive streak, the node develops. Adapted from Zirra et al. 
2016.  

As the neural tube develops, it bends, resulting in flexures that give rise 

to vesicles along the A-P axis: telencephalon and diencephalon (together make up the 

forebrain), mesencephalon (midbrain), rhombencephalon (hind brain) and the spinal 

cord (Figure 1:8A) (Wilson and Houart 2004). The embryonic telencephalon 

develops from the anterior most part of neural tube. The dorsal telencephalon 

(pallium) forms the neocortex and ventral telencephalon (subpallium) forms the 

striatum, also is the origin of neurons that populate olfactory bulb, GP and cortex 

(Figure 1.8.B). (Evans et al. 2012). In the subpallium, the progenitors proliferation 

and the rapid migration of the post mitotic neurons result in three intraventricular 

bulges- lateral, medial ganglionic eminence (LGE/MGE), collectively called as 

whole ganglionic eminence (WGE) and the septum. At E10.5, MGE was seen as a 

neuroepithelial protrusion into lateral ventricle. Between E11.5 and E12.5, LGE 

emerged between the cortex and MGE. By E12.5, the telencephalon was composed 

of three molecularly distinct layers (Sussel et al. 1999). The neuronal progenitors are 

born in the two proliferative zones - ventricular zone (VZ), which lies on the 

perimeter of lateral ventricles and subventricular zone (SVZ), which spans the basal 

regions of VZ. The postmitotic cells migrate out of the proliferative zones towards 

the mantle zone (MZ) where they complete differentiation to generate mature 

neurons and interneurons (Sussel et al. 1999; Evans et al. 2012). The dorsal LGE 

progenitors give rise to olfactory bulb neurons and ventral LGE progenitors give rise 

to MSNs that populate the caudate and the putamen of the striatum (Wichterle et al. 

2001). MSNs make up nearly 90% of LGE neurons. Interneurons born in the LGE 
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migrate to populate cortex, olfactory bulb and striatum. MGE forms amygdaloid 

body and GP and MGE born interneurons migrate to cortex, GP and striatum (Evans 

et al. 2012) 

 

Figure 1:7 Neurulation. The neural plate border is induced by signalling between the neuroectoderm 
and the non-neural ectoderm and from the underlying paraxial mesoderm. During neurulation, the 
neural plate borders elevate and form neural fold. This causes the neural plate to roll into a neural 
tube. Neural crest cells are derived from the dorsomedial borders of the neural fold. The non-neural 
ectoderm forms the epidermis. The mesodermal cells emerging through the anterior most end of 
primitive streak form the prechordal plate (lies under forebrain) and the notochord (lies under the rest 
of CNS), to further act as signalling centres of developing CNS. The roof plate (at dorsal midline) and 
the floor plate (at ventral midline) influence the dorso-ventral pattering of the newly formed neural 
tube. Adapted from Gammill and Bronner-Fraser 2003 
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During early gastrulation, the signals produced in the node and its 

anterior derivatives, mesendodermal (AME) and prechordal plate influence the 

telencephalon development (Figure 1:7and Figure 1:8). For the rest of the CNS, the 

notochord takes the role of prechordal plate. By mid to late gastrulation, at neural 

plate and neural tube stage, signals from the anterior margin of neural plate, called 

anterior neural ridge (ANR, at the junction between anterior neural and non-neural 

ectoderm) and the roof plate and the floor plate influence telencephalon specification 

(Wilson and Houart 2004). The morphogens such as FGF, WNT, RA, BMP and 

SHH emanating from these signalling centres spread away forming a concentration 

gradient (Figure 1:8 C). The positional identity and regional specification along 

anterior-posterior (A-P) and dorso-ventral (D/V) axis of neural tube depends on the 

concentration of these morphogen signals. The synergism of the signals 

spatiotemporally induces the expression transcription factors (Figure 1:9, discussed 

in detail in 1. 3.4) that in turn induce patterning and eventually establishes the CNS.  

 

Figure 1:8 Neural tube A-P and telencephalon D-V patterning- (A, C.1) The neural tube is patterned 
to form the telencephalon and diencephalon (together forebrain), mesencephalon (midbrain), 
rhombencephalon (hindbrain) and spinal cord by the anterior-posterior gradient of FGF and posterior-
anterior gradient of WNT and RA. (B, C.2) Dorso-ventral gradient of BMP and WNT and ventro-
dorsal gradient of SHH and FGF establish the dorsal and ventral identity. The dorsal telencephalon 
(pallium) forms the neocortex and the ventral telencephalon (subpallium) (LGE and MGE) forms the 
striatum and globus pallidus. The dotted line indicates the pallial-subpallial bounday (PSB). The 
ventricular zone (VZ) and the subventricular zone (SVZ) contain proliferative neuronal progenitors. 
The progenitors migrate tangentially and radially to populate the specific regions of the brain. 
Adapted from Kiecker and Lumsden 2005; Evans et al. 2012. 
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Figure 1:9 Schematic coronal section through E12.5 telencephalon showing dorsal and ventral 
domains: The expression of pallial markers (Pax6, Emx1, Emx2, Ngn1, Ngn2) and subpallial markers 
(Dlx1, Dlx2, Gsx2, Gsx1, Ascl1, Nkx2.1) is shown. Some of the important gene interactions are also 
shown. The interaction between Pax6 and Gsx2 maintains the pallial-subpallial boundary. Figure 
adapted from Evans et al. 2012. 

 

1.3.3 Signalling pathways involved in the telencephalon development 

and regional specification 

1.3.3.1 BMP antagonism  

The Bone Morphogenetic proteins (BMPs) belong to transforming 

growth factorβ (TGF-β) family of secreted proteins. They were initially discovered in 

extract of bone by their ability to induce ectopic bone formation when implanted into 

muscle pouches in rabbit, hence the name BMP (Urist 1965). In the canonical BMP 

pathway (Figure 1:10), BMPs bind to single pass transmembrane serine/threonine 

kinase receptors- type I BMP receptors (BMPRI) (activin receptor-like kinase ALK3 

(BMPRIa), ALK6 (BMPRIb)) and BMPRII (activin type IIa and activin type IIb). 

Upon binding, the constitutively active BMPRII, transphosphorylates BMPRI 

intracellular domain, which then recruits and phosphorylates R-SMAD- SMAD 1/5/8 

(P-SMAD1/5/8). P-SMAD1/5/8 forms a heterotrimeric complex with CO-SMAD- 

SMAD4. It is then translocated to the nucleus and cooperates with other transcription 

factors to regulate target genes (Whitman 1998).  
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Figure 1:10 Canonical BMP signalling - Upon BMP binding, BMPR II transphosphorylates BMPRI 
that in turn phosphorylates SMAD1/5/8. P-SMAD1/5/8 heterotrimeric complex with SMAD4 
translocate to the nucleus and modulate target gene expression by cooperating with other transcription 
factors. Adapted from Anderson and Darshan 2008.  

During neural induction, BMPs and their inhibitors specify the epidermal 

and neural fate of ectoderm. The fundamental insight into the present understanding 

of mammalian neural induction came from the work of Spemann and Mangold 

(1924). They found that grafting tissues from dorsal blastopore lip of early 

salamander gastrula to the ventral side of another embryo, induced a second set of 

axial structures including host derived second nervous system, on the ventral side. 

The ventral ectodermal cells would normally give rise to epidermis, suggesting that 

signals from dorsal blastopore induced neural fate (Spemann and Mangold 1924). 

The dorsal blastopore lip was termed ‘Spemann’s organizer’. Analogous grafting 

experiments in other vertebrates reinforced the ‘organizer’ as ‘neural inducer’, called 

‘henson’s node’ in chick (Waddington 1933) and the ‘node’ in mouse (Beddington 

1994). Years later following the discovery of the organizer, the animal cap 

experiments in Xenopus proposed the first model of neural induction. The animal 

cap (ectoderm cells of blastula) when cultured intact, formed epidermal tissue and 

when dissociated into single cells, neural fate was induced (Grunz and Tacke 1989). 

It was proposed that the factors lost upon cell dissociation negatively control neural 
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induction in animal cap. Supporting this notion, over expression of synthetic RNA 

encoding the dominant negative mutant form of a TGF-β receptor (Activin receptor) 

in animal cap, led to conversion of epidermal fate to neural fate (Hemmati-Brivanlou 

and Melton 1994). Subsequently, it was demonstrated that treatment of dissociated 

animal cap cells with members of TGF-β family- Activin or BMP4 inhibited neural 

fate. Activin did so by inducing mesoderm, whereas BMP4 did so by inducing 

epidermis (Wilson and Hemmati-Brivanlou 1995). Later, the inhibitors of TGF-β 

family such as Noggin, Chordin and Follistatin secreted by the ‘organizer’ were 

found to be the endogenous neural inducers. Simultaneous depletion of these factors 

from organizer by specific morpholinos prevented acquisition of neural fate (Khokha 

et al. 2005). These findings demonstrated that antagonism of BMP signalling is 

essential for neural induction.  

BMP antagonists have been implicated in forebrain development. During 

early development in mouse (E7.5-8.5), Noggin (Nog) and Chordin (Chrd) were 

found to expressed in the node and AME derivatives including prechordal plate as 

well as in ANR (Bachiller et al. 2000; Anderson et al. 2002). Chrd
-/-;Nog

-/- and 

Chrd-/-;Nog
+/- mice double mutants lacked anterior neural structures but preserved 

posterior structures (Bachiller et al. 2000; Anderson et al. 2002). Chrd
-/-;Nog

+/- 

mutants showed decreased Fgf8 expression in the ANR (Anderson et al. 2002). 

Ectopic application of BMPs in mice and chick forebrain explants reduced Fgf8 and 

inhibited the expression of telencephalon markers Foxg1 and Six3 (Furuta et al. 

1997; Anderson et al. 2002; Ohkubo et al. 2002; Yang and Klingensmith 2006). In 

contrast, application of BMP2 had no effect, when forebrain explant was co-cultured 

with the underlying AME (Yang and Klingensmith 2006). Thus, these studies 

indicated that BMP antagonists promote forebrain establishment. 

Further BMPs function in telencephalon D/V patterning. At E8.5- E13.5 

mice, Bmps were expressed in dorsomedial telencephalon (roof plate) where it 

overlapped with that of Msx1 and was complementary to Foxg1 (Furuta et al. 1997). 

BMP4 soaked beads induced Msx1 in lateral telencephalic neuroectoderm explants 

(where BMPs are not expressed) and inhibited ventral markers Nxk2.1 and Dlx2 

(Furuta et al. 1997). Similarly, ectopic BMP expression in developing chick embryo 

was found to inhibit Dlx2 and Nkx2.1 (Golden et al. 1999; Ohkubo et al. 2002). 

Chrd
-/-;Nog

+/- mutants showed increased Msx1 expression indicative of ectopic BMP 
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signalling. These mutants displayed reduced expression of ventral marker Nkx2.1 and 

a loss of Shh expression in the prechordal plate (Anderson et al. 2002). Additionally, 

ablation of telencephalic roof plate caused reduction in cortex volume and reduced 

cortical marker Lhx2 (Monuki et al. 2001). Taken together, BMPs promote dorsal 

fate and restrict ventral telencephalon specification.  

1.3.3.2 WNT antagonism   

Wingless (Wnt) ligands are secreted glycoproteins. In the canonical Wnt 

pathway (Figure 1:11), Wnts bind to membrane bound Frizzled (Frz)/low-density 

lipoprotein receptor-related protein (LRP) complex that recruits intracellular 

Dishevelled (Dsh). This destabilizes destruction complex which included glycogen 

synthase kinase 3β (GSK-3β)- adenomatosis polyposis coli (APC)- axin complex and 

thereby prevents degradation of β-catenin. Upon translocation to nucleus, β-catenin 

binds and activates transcription factors such as TCF/LEF which regulate the 

expression of Wnt target genes. In the absence of WNT, FRZ and LRP5/6 are not 

bound. β-catenin joins the destruction complex and subsequently degraded and there 

is no gene expression (Komiya and Habas 2008). 
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Figure 1:11Canonical WNT signalling- Upon WNT stimulation, signalling through Frizzled 
receptor/LRP5/6 co-receptor complex allows activation of Dishelleved (DSH) and repression of 
GSKβ-APC-AXIN destruction complex. This prevents β-catenin degradation, enabling it to 
translocate to the nucleus and activates TCF to modulate target gene expression. In the absence of 
WNT, β-catenin is phosphorylated by the GSK3β-APC-AXIN complex and is targetted for 
degradation and target genes are not expressed. Adapted from Staal and Clevers 2005.  

In early mouse embryo, Wnt proteins are expressed in the primitive 

streak at the posterior side, while their antagonists such as Cerberus (Cer-l, inhibitor 

of both Wnt and BMP) (Belo et al. 1997) and Dkk1(Kemp et al. 2005) are expressed 

in the AVE and AME. In mouse, grafts of organizer alone induced ectopic axis 

lacking anterior tissues whereas a combination of organizer and AVE induced 

complete secondary axis. Yet, AVE alone was not able to ectopically induce anterior 

neural markers (Tam and Steiner 1999). However, surgical removal of AVE resulted 

in loss of anterior neural tissue and did not affect more posterior regions of 

developing CNS (Thomas and Beddington 1996). On the other hand, loss of WNT 

activity in Wnt3
-/- mice mutants resulted in loss of primitive streak, node or its 

derivative. Despite preserving a normal AVE, these mutants lacked normal A-P 

patterning (Liu et al. 1999). Thus, AVE signals alone are not sufficient and that 

signals from primitive streak or its derivatives (i.e., posteriorizing signals) are 

required to drive A-P patterning. AVE signals acts by repressing posteriorizing 

signals in adjacent anterior ectoderm as evidenced in embryonic explants assays in 

which co-culture of ectoderm with AVE, resulted in repression of posterior markers 

and no anterior neural induction (Kimura et al. 2000). In line with this, other studies 

further identified the role of Wnt inhibitors in the suppression of the posterior fate 

and induction of anterior structures. In Xenopus, dominant negative Bmp receptor 

(tBR) alone or in combination with noggin or chordin yielded incomplete secondary 

axis, whereas tBR or noggin in combination with Wnt antagonists- XCer, dkk1and 

frzb- induced a complete secondary axis including heads with anterior neural 

structures (Glinka et al. 1997; Glinka et al. 1998). On the other hand, targeted 

deletion of Dkk1 in mice or co-inhibition of Dkk1 as well as Noggin and chordin in 

both mice and Xenopus lead to anterior truncations (Mukhopadhyay et al. 2001; 

Barco Barrantes et al. 2003). Thus, while inhibition of BMP signalling is the major 

molecular determinant of neural induction, concomitant inhibition of posteriorizing 

signal such as WNT is required for induction of anterior neural structures. 

In addition to promoting posterior neural fates, WNT pathway is 

involved in regional patterning within prosencephalon which forms the 
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telencephalon and diencephalon. Genetic inactivation of TCF3 (a member of Tcf/Lef 

family, a transcriptional repressor of Wnt targets) and Axin1 (negative intracellular 

WNT signalling scaffolding protein) in zebrafish headless (hdl) and masterblind 

(mbl
-/-) mutants respectively, resulted in loss of telencephalon (Kim et al. 2000; 

Heisenberg et al. 2001). mbl
-/- mutants displayed anteriorly expanded diencephalon 

with ectopic expression of Wnt8b (Houart et al. 2002). Abrogation of Wnt8b activity 

or overexpression of wild-type Axin1 restored telencephalon in mbl
-/- mutants 

(Houart et al. 2002; Heisenberg et al. 2001), indicating that local Wnt antagonism 

within anterior neural plate is required for telencephalon development. Supporting 

this notion, transplantation of Wnt1 or Wnt8 expressing cells into anterior neural 

border of zebrafish wildtype embryos, resulted in the inhibition of telencephalic 

markers bf1, emx1 and fgf8 and complementary expansion of midbrain marker 

pax2.1 (Houart et al. 2002). Whereas Tlc (secreted Frizzled-related protein sFRP that 

bind to and antagonize Wnt by inhibiting ligand/receptor interaction), promoted 

telencephalic gene expression in a concentration dependent manner and abrogation 

of its function compromised telencephalon development (Houart et al. 2002). 

Further, in mbl
-/- mutants, Tlc expressing cells suppressed ectopic wnt8b expression 

and restored telencephalon (Houart et al. 2002). Thus, WNT antagonism promote 

telencephalic fate. 

Wnt signalling also contributes to telencephalon D/V patterning. BAT-

gal reporter mice (in which the expression of β-galactosidase under the control of 

TCF/LEF binding site reflected Wnt signalling) showed active Wnt signalling in the 

pallium but not in the subpallium between E11.5 and E16.5 (Backman et al. 2005). 

Inactivating Wnt target β-catenin using a conditional Cre/loxP system before 

neurogenesis (E8.5-11) resulted in downregulation of dorsal markers Ngn2, Emx1 

and Emx2 and in ectopic expansion of ventral markers Dlx2, Gsx2 and Ascl1 in the 

pallium. Interestingly, the expression of Pax6 and Nkx2.1 in these mutants was 

similar to that of wildtype. Activating β-catenin in the subpallium led to repression of 

ventral markers including Nkx2.1 and expansion of dorsal markers including Pax6 

(Backman et al. 2005). Similarly, in chick embryo ventral explants, Wnt3a exposure 

dose dependently resulted in reduction of Nkx2.1+ cells and increase in Pax6+, Ngn2+ 

and Emx1+ cells, whereas exposure to Wnt antagonist Frz receptor8 protein blocked 

generation of Pax6+, Ngn2+ and Emx1+ cells (Gunhaga et al. 2003). Thus, WNT 
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signalling maintains the pallial identity by suppressing the ventral markers and by 

controlling dorsal marker expression. However, inactivating β-catenin after the onset 

on neurogenesis did not alter D/V specification of telencephalon progenitors, 

suggesting that the role of WNT signalling in telencephalon D/V patterning is 

relatively early (Backman et al. 2005). 

Later, WNT signalling regulates progenitor expansion and neurogenesis 

in the ventral telencephalon. MGE proliferative zone showed expression of Tcf4 at 

E12.5 mice embryo. Inhibition of Tcf4 by expression of dominant repressor form of 

Tcf/Lef1 or treatment with Dkk1 reduced cell proliferation in MGE slice cultures 

(Gulacsi and Anderson 2008). Eliminating β-catenin from Nkx2.1 expressing cells 

greatly diminished the size of MGE by E14.5 resulting from reduced cell 

proliferation. Normal expression pattern of PAX6 and GSX2 and ectopic expansion 

of mantle zone Calbindin+ and LHX6+ neurons into proliferative zone in these 

mutants suggested that removal of β-catenin mediated Wnt signalling in MGE 

caused cells to exit cell cycle prematurely (Gulacsi and Anderson 2008). Moreover, 

mutants displayed reduced number of MGE derived cholinergic and cortical 

interneurons. A role of non-canonical Wnt signalling has been implicated in neuron-

glial fate decision in the ventral telencephalon. Loss of non-canonical Wnt receptor 

Ryk resulted in increased production of oligodendrocytes at the expense of 

GABAergic neurons. Wnt3a stimulation mediated by RyK promoted GABAergic 

neuronal fate over oligodendrocyte fate (Zhong et al. 2011). Thus, following 

forebrain A-P and D/V domains establishment, WNT signalling regulates the 

progenitor expansion and cell fate decision and drives the differentiation.  

1.3.3.3 SHH signalling 

SHH, a member of Hedgehog (Hh) family of proteins, is a secreted 

morphogen. In SHH pathway (Figure 1:12), upon SHH binding to PATCHED 

(PTC), SMOOTHENED (SMO) is released. This activates GLI (glioma-associated 

oncogenes) family of transcription factors, which induce the expression of SHH 

target genes. In the absence of SHH, PTC binds and inhibits SMO and cannot 

activate GLI complex genes and target genes are not expressed.  

SHH acts in a temporal and concentration dependent  manner to specify 

distinct progenitor subtypes within ventral telencephalon (Stamataki et al. 2005; Yu 
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et al. 2009). During telencephalon development, Shh was initially expressed by the 

prechordal plate (Shimamura et al. 1995). By E9, it was expressed mainly in the 

ventral telencephalon (Shimamura et al. 1995) and by E12.5, it was shifted into the 

mantle area (Nery et al. 2001). 

 

Figure 1:12 The SHH pathway- Upon SHH binding to PATCHED (PTC), SMOOTHEND (SMO) is 
released. This allows activation of GLIA which binds to the DNA to activate gene expression. In the 
absence of SHH, PTC represses SMO by binding to it and cannot activate GLI complex. The GLI 
repressor (GLIR) represses target gene expression. Adapted from Szkandera et al. 2013. 

Shh null mutant mice displayed a complete lack of ventral telencephalon 

structures resulting in a single vesicle with Emx1 expression throughout (Chiang et 

al. 1996). Similarly, ablation of Hh signalling at E8.5, using Smo
c/-

/;Foxg1
cre (Cre 

recombinase under regulatory control of Foxg1 removes Smo flanked by loxP sites, 

resulting loss of expression Gli1) resulted in loss of ventral telencephalon patterning 

with absence of Nkx2.1 and Gsx2 and concomitant expansion of Pax6 expression 

throughout dorsal and ventral telencephalon at E10 (Fuccillo et al. 2004). By E12.5, 

the mutants completely lacked all ventral ganglionic eminences, showed absence of 

MGE derived cortical interneurons (as judged by absence of Lhx6 and GAD67) and 

oligodendrocyte precursors (as judged by absence of Olig2 and Pdgfra) as well as 

displayed ventrally expanded expression of dorsal markers Ngn2 and Emx2 (Fuccillo 

et al. 2004). Interestingly, abrogation of Hh signalling, (specifically loss of 

expression Ptch1 and Gli1) between E10 and E12 using Smo
n/c

;Nestin
cre resulted in 

grossly normal telencephalic patterning with normal expression domains of Pax6, 
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Ngn2, Gsx2, Dlx2, Nkx2.1 and Lhx6 (Machold et al. 2003). However, in some 

mutants Nkx2.1 expression was diminished, MGE was reduced by 50% in size and 

was often fused with LGE. There was also a deficit in the production of 

oligodendrocytes precursors and severe reduction in progenitor population in the 

cortex, olfactory bulb and hippocampus (Machold et al. 2003). Collectively, loss-of-

function studies indicated that HH signalling is required for ventral specification and 

that a temporal change in the signalling specifies the different cell populations 

originating within ventral telencephalon 

Further supporting evidences for temporal and spatial responsiveness to 

Shh, come from in vitro exposure and ectopic expression studies. Rat E9.5 

presumptive telencephalic explants cultured in the presence of recombinant Shh 

protein (6nM) induced widespread Nkx2.1 expression. By contrast, E11.5 explants 

cultured in the presence of same or high Shh (960nM) showed no expression of 

Nkx2.1, but at 6nM, showed induction of Dlx,Isl1/2 and Ikaros as well as repression 

of Emx1 and Tbr1 suggesting a LGE/striatal identity rather than MGE or pallial 

(Kohtz et al. 1998). Interestingly, beyond E12.5, Shh was not able to ventralize, but 

induced 50% higher Nestin+ cells suggesting a mitogenic effect on progenitors 

(Kohtz et al. 1998). Retroviral mediated activation of Shh signalling in E8.5 to E10.5 

mouse telencephalon resulted in differential induction of ventral markers; Nkx2.1 

induction was restricted to LGE, whereas Gsx2 and Dlx2 induction was observed 

throughout neocortex, with concomitant repression of Pax6 and dorsal proneural 

genes Ngn2, Math2 and NeuroD (Rallu et al. 2002). Furthermore, Gli1 (usually 

expressed at border between LGE and MGE) and Ptc (usually expressed in MGE) 

induction all along D/V and A/P axis suggested that all regions within telencephalon 

were equally competent to respond to Shh signalling (Rallu et al. 2002). 

Shh signalling is mediated by Gli transcription factors- Gli1, Gli2 and 

Gli3. Both Gli1 and Gli2 act as transcriptional activators, whereas Gli3 functions as 

transcriptional repressor. Studies on Gli mutants have revealed their role in D/V 

patterning and specification of cell types generated from the ventral telencephalon. 

Gli3
-/- mutants displayed defective dorsal telencephalon with ectopic expansion of 

Gsx2 (co-expressed with Pax6), Dlx2, Ascl1 and Isl1 into cortex which was severely 

reduced in size (Tole et al. 2000; Rallu et al. 2002) and lacked expression of Emx2, 

Emx1, Bmp2,4,6,7 and Wnt3a (Theil et al. 1999; Tole et al. 2000). A normal ventral 
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patterning was evident in Gli3
-/- mutants, by the expression of Shh, Gli1 and Nkx2.1 

confined to ventral telencephalon (Tole et al. 2000), thus suggesting that Gli3 is 

required for suppression of ventral markers in dorsal telencephalon. Interestingly, 

removal of Gli3 from Shh
-/- mutant (which showed markedly diminished ventral 

most expression of Dlx2 and Gsx2 and absence of Nkx2.1) largely rescued D/V 

patterning;  the expression of Dlx2, Gsx2, Ascl1 and Nkx2.1 was restored to their 

normal domains and the mutually exclusive expression pattern of Pax6 and Gsx2 

confirmed existence of corticostriatal boundary (Rallu et al. 2002). On the other 

hand, Gli1
-/-;Gli2

-/- and Gli1/2
-/- double mutants, showed establishment of 

telencephalon D/V patterning as evidenced by normal expression pattern of Pax6, 

Gsx2, Dlx2, Lhx6 and GAD67. Gli1
-/- mutants also maintained normal expression of 

Nkx2.1 and Nkx6.2, whereas Gli2
-/- and Gli1/2

-/- expressed Nkx2.1 in MGE with a 

decreasing gradient towards LGE and was lost in the region where its expression 

normally would overlap with Gli1. These mutant lacked Nkx6.2 expression and by 

E14.5, showed a reduction in Lhx6 expression but had normal Ebf1 striatal 

expression (Yu et al. 2009). Thus, perturbation of Gli1/2 mediated SHH signalling 

affected specification of ventral most progenitors and differentiation of telencephalic 

neurons. Gli2/3
-/- mutants lacking the expression of all three Gli genes lost the 

positional identity of ventral telencephalic cells; there was ectopic dorsal expansion 

Dlx2, Gsx2, Isl1, Lhx6 and GAD67, MGE-restricted Nkx2.1 expression as well as a 

severe reduction in Lhx6
+, GAD67

+ and Ebf1
+ and PGGFRα+ neurons (Yu et al. 

2009). Taken together, these studies demonstrate that GLI3 and SHH antagonize 

each other’s function. GLI3 suppresses ventral markers. SHH signalling in the 

ventral telencephalon primarily functions to repress GLI3 as well as activate 

downstream targets through GLI activators.  

1.3.3.4 FGF signalling  

FGF signalling through RAS/MAPK is explained in Figure 1.17. FGFs 

most notably Fgf8 and Fgf3 and FGF receptors Fgfr1, Fgfr2 and Fgfr3 were 

expressed in ANR and later in ventral telencephalon. They play an important role in 

the induction and patterning of telencephalon. Fgf8 in the ANR regulates Foxg1 

expression; removal of ANR resulted in loss of Foxg1 and FGF8 soaked beads 

induced Foxg1 expression in mouse anterior neural plate explants lacking ANR 

(Shimamura and Rubenstein 1997). Within prosencephalon explants, ectopic FGF8 
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by means of FGF8 beads induced sulcus (which separates telencephalon into anterior 

(rostral) and posterior (caudal) vesicles) and inhibited Otx2 (caudal forebrain marker) 

(Crossley et al. 2001), thus revealing that FGF signalling promote telencephalic fate 

within prosencephalon. Fgf8
-/- mutant mice (in which some Fgf8 expression 

persisted) displayed abnormally small telencephalon, which resulted from reduced 

Foxg1 expression, reduced cell proliferation and increased apoptosis. There was also 

rostral expansion of Otx2 and Wnt8b, suggesting caudalization in the anterior 

prosencephalon in the absence of Fgf8 (Storm et al. 2006). Targeted deletion of 

increasing number of FGF receptors in the anterior neural plate affected the extent of 

telencephalon truncations; Fgfr1 mutants showed slight reduction in telencephalon 

size, Fgf1:Fgfr2 double mutants displayed more severe truncations and 

Fgfr1:Fgfr2:Fgfr3 triple mutants completely lost telencephalon with no Foxg1 

expression (Paek et al. 2009). Consistent with the loss of telencephalon, there was 

increased cell death in Fgfr triple mutants suggesting that FGF signalling acts to 

promote survival of Foxg1+ cells (Paek et al. 2009). 

Further, loss-of-function studies revealed a role of FGF signalling in 

ventral telencephalon specification. In zebrafish, inhibition of FGF signalling by 

injecting dominant negative form of Ras (RasN17) or by FGF receptor antagonist 

SU5402 did not alter normal expression of foxg1 and otx2 (Shinya et al. 2001), 

suggesting normal establishment of telencephalic and diencephalic territories in the 

absence of Ras/MAPK signalling. However, these mutants showed aberrant 

telencephalon patterning with loss of ventral markers dlx2, isl1 and nkx2.1b and 

extended expression of dorsal markers emx1 and tbr1 throughout pallium and 

subpallium (Shinya et al. 2001; Walshe and Mason 2003). Reduced FGF signalling 

in zebrafish ace-/- (fgf8 homologue) and fgf3/8-depleted (using morpholinos) mutants 

also led to similar ventral defects (Shanmugalingam et al. 2000; Walshe and Mason 

2003). Consistent with these studies, mice Fgf8
-/- and Fgf1:Fgfr2 double mutants 

showed reduced ventral structures with repression of ventral markers and ectopic 

expansion of dorsal markers in subpallium (Storm et al. 2006; Gutin et al. 2006; 

Paek et al. 2009). 

Shh expression is intertwined with Fgf8 expression in ventral 

telencephalon (Ohkubo et al. 2002). The ventralization reported in GLI3 mutants 

(explained in 1.3.3.3) correlates with FGF signalling. In Shh
-/-

 mutants, the ventral 
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structures were lost and lacked FGF expression whereas, in both Gli3
-/- and Shh

-/-

;Gli3
-/-

 mutants, the ventral telencephalon development was preserved or restored 

and there was expansion of FGF expression (Theil et al. 1999; Rallu et al. 2002; 

Kuschel et al. 2003). Therefore, SHH through its ability to attenuate GLI3 repressor, 

indirectly promote FGF function. In Fgf1:Fgfr2 double mutants, Shh and Gli 

expression remained despite the lack of most or all of ventral telencephalon 

precursors as observed with loss of SHH signalling. Removal of Gli3 in Fgf1:Fgfr2 

mutants, did not rescue ventral structures as observed in Shh
-/-

;Gli3
-/- mutants (Gutin 

et al. 2006).Thus, FGF receptors are required for SHH-ventralizing effect and FGF 

signalling acts downstream of Shh and Gli3 to specify ventral telencephalon. 

Additionally, FGF8 soaked beads induced ectopic expression of ventral markers in 

mouse dorsal telencephalon explants and inhibition of SHH signalling did not 

prevent this effect (Kuschel et al. 2003), thus suggesting that FGF8 can specify 

ventral telencephalon independent of SHH signalling. 

Within ventral telencephalon, FGFs act to promote MGE fate and 

suppress LGE fate. In chick ventral telencephalic explants, FGF2 or FGF8 increased 

the number of Brdu+ cells, induced normal numbers of NKX2.1+ cells and blocked 

generation of ISL1+ neurons (Gunhaga et al. 2000), whereas FGFR4 an inhibitor of 

FGF signalling blocked generation of NKX2.1+ progenitors and largely induced 

PAX6+ MEIS2+ LGE-like phenotype (Marklund et al. 2004). Furthermore, in dorsal 

telencephalic explants FGF8 blocked induction of retinoic acid-induced MESI2+ 

ISL1+ neurons (Marklund et al. 2004). These studies suggested that a) FGF 

signalling prevents LGE fate induced by retinoic acid and thereby promotes MGE 

fate in the ventral telencephalon and b) in addition to patterning, FGF signalling 

prevents generation of post-mitotic neurons and increases proliferation of 

telencephalic progenitors. 

1.3.3.5 RA signalling 

Retinoic acid (RA) is a morphogen, implicated in LGE and striatal 

neuronal differentiation. RA is generated through sequential oxidation of retinold 

(vitamin A) (Figure 1:13). Retinol enters the cell through interaction with receptor 

STRA. Inside the cell, retinol can bind to cellular retinol binding protein (CBRP) or 

for storage, converted to retinylesters via lecitin retinol acyltransfeare (LRAT). 

CRBP-bound retinol is oxidised by two classes of enzymes; alcohol 
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dehydrogenases/retinol dehydrogenases (ADH/RDH) oxidise retinol to 

retinaldehyde, and retinaldehyde dehydrogenases (RALDHs) oxidise retinaldehyde 

to RA. CYP26 can further oxidise RA for degradation. Cellular RA binding protein 

(CRABP) transports RA into the nucleus. RA then binds to retinoic acid receptors 

(RARs) and retinoid X receptors (RXRs) and subtypes (α, β and γ) which upon 

heterodimerization, binds to RA responsive elements (RARE) and regulates their 

expression. RA can diffuse to adjacent cells to activate target gene expression (Kin et 

al. 2012). 

 

Figure 1:13 RA and paracrine RA signalling- In serum, retinol is bound to retinol-binding 
protein 4 (RBP4), synthesized in the liver. Retinol enters cells through STRA. In the cell, 
retinol is either converted into retinyl esters via LRAT or binds to the CRBP. The CRBP-
bound retinol is oxidized to retinaldehyde by ADH/RDH and retinaldehyde is oxidized to 
RA by RALDH1/2/3. CYP26 can oxidize RA for degradation. CRABP facilitates 
transportation of RA into the nucleus where RA binds its receptors-RAR and RXR. The 
ternary complex binds to RARE and activates the RA target genes. RA can diffuse to 
adjacent cells to activate target gene expression. Adapted from Maden 2002; Kin et al. 2012  
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Radial glial cells in LGE were found to produce high levels of retinoids 

and LGE represents a localized source of retinoid signalling (Toresson et al. 1999). 

As compared to MGE or cortex, LGE and developing striatum showed enriched 

expression of markers of RA synthesis, including CRBP1 in VZ (E12.5- E16.5), 

Raldh3 in SVZ (E14.5), RARα in SVZ (E12.5-E16.5), RARβ (E16.5) and RXRγ in 

striatal primordium (Toresson et al. 1999; Marklund et al. 2004; Li et al. 2000; Liao 

and Liu 2005; Liao et al. 2005;Molotkova et al. 2007).  

Studies utilizing either agonists or antagonists for RARs or genetic 

ablation of RADLHs or RARs have highlighted the role of RA in telencephalon 

development and LGE specification. In chick embryos, early inhibition of RA 

signalling by citral or by RAR/RXR antagonists soaked beads at stage 10 resulted in 

lack of telencephalon, whereas late inhibition at stage 18 had no effect. At the 

molecular level, RAR/RXR antagonists treatment resulted in loss of FGF and SHH 

expression as well as downregulation of FOXG1, NKX2.1, NKX6.2 and DLX2 

(Schneider et al. 2001). Administration of RA restored the expression of FGF and 

SHH and either RA or FGF2/SHH treatment rescued telencephalon defects, 

indicating that RA mediated expression of FGF and SHH at early stage is required 

for early telencephalon morphogenesis (Schneider et al. 2001). Treatment of 

prospective LGE explants from stage 14 chick embryos with RAR antagonist 

blocked generation of MEIS2+ LGE progenitors, whereas inhibitors of FGF, SHH 

and BMP signalling had no effect (Marklund et al. 2004). Conversely, exogenous 

RA treatment induced MEIS2+ ISL1+ LGE phenotype in both dorsal and ventral 

explants and blocked generation of NKX2.1+ phenotype in ventral explants 

(Marklund et al. 2004). Similarly, in intact embryos, RAR antagonist-soaked beads 

grafted adjacent to the prospective telencephalon suppressed normal LGE 

specification and RA soaked beads induced LGE character in prospective dorsal 

telencephalon (Marklund et al. 2004). Thus, RA signalling was required to specify 

LGE fate in chick embryo studies. However, in contrast to chick embryos, Raldh2
-/-

;Raldh3
-/- mice lacking all RA activity showed normal expression of Fgf and Shh at 

E8.75 and Meis2 at E10 (Molotkova et al. 2007). An alternative approach utilizing 

Cre-dependent expression of dominant negative receptor (DN-RARα) to ablate RA 

signalling in telencephalon from E9, led to defective cell proliferation in dorsal 

telencephalon and increased cell death in both dorsal and ventral telencephalon 
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(Rajaii et al. 2008). However, the expression of Fgf8, Shh and Foxg1 remained 

unaltered and the mutants showed normal D/V patterning, thus contradicting the 

reports in chick embryos. Paradoxically, in the absence of RA signalling, Nkx2.1+ 

MGE progenitors co-expressed Isl1 thus suggesting that RA signals may function by 

suppressing some intrinsic LGE differentiation within MGE progenitors (Rajaii et al. 

2008).  

RA signalling in the LGE regulates the development of striatal neurons 

and interneurons. Stimulation of RA signalling either by treatment with agonists for 

RAR/ RXR or by supplementation of RA specifically induced DARPP32+ neurons 

in E13.5 LGE cultures, whereas there was no DARPP32 induction in MGE or 

cortical cultures (Toresson et al. 1999). RA supplementation of Gsx2
-/- mutants 

(which exhibited marked reduction in LGE Raldh3 expression), during the period of 

striatal neurogenesis, increased DARPP-32 expression (Waclaw et al. 2004). 

Involvement of RARβ mediated signalling was further demonstrated in a gain-of-

function study; ectopic expression of RARβ in cortical explants (that lacked RA 

receptors), upregulated DARPP-32 (Liao and Liu 2005). Further evidences for RA 

activity came from knock out studies. Null mutation of RARβ in RARβ-/- mice led to 

aberrant striosomal compartmentalisation in rostral striatum (made up of late-born 

striosomal cells) but the caudal striatum (made up of early born striosomal cells) was 

spared. The defective neurogenesis of late-born neurons resulted from reduction in 

both cyclin E2 (cell cycle protein regulating G1 to S transition) and Ascl1 (proneural 

gene) (Liao et al. 2008). RARβ-/- rostral striatum showed loss of striosomal enriched 

tyrosine phosphatase (STEP), µopioid receptor (MOR1), dynorphin, DARPP32 and 

tyrosine hydroxylase (TH) (Liao et al. 2005; Liao et al. 2008). This could be 

correlated to the in vivo endogenous RA signalling; LGE RA signalling was found to 

be low during neurogenesis of early-born S cells whereas a substantial level was 

present during neurogenesis of late-born S cells (Liao et al. 2008). Loss of RALDH3 

activity in Raldh3
-/- embryos resulted in reduction of GAD+/TUJ1+ interneurons 

migrating to cortex and olfactory bulb as well as Foxp1+ striatal projection neurons, 

at E14.5 in vitro cultures (Chatzi et al. 2011). At E18.5, Raldh3 loss led to specific 

loss of Drd2 expression in the nucleus accumbens and significant reduction in RARβ 

expression in striatum (Molotkova et al. 2007). 
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1.3.4 Transcription factors involved in D-V regionalisation of the 

developing telencephalon  

1.3.4.1 Developmental transcription factor profile in Human samples 

Recently, a pioneering study by Onorati et al. (2014) that involved a 

systematic immunohistochemistry analysis of human embryos 2 to 20 post-

conception weeks showed regional domains of TF expression and their refinement 

during human striatal development. The expression of TFs at early neuroectoderm as 

it acquired dorsal or ventral telencephalic fates was identified in 2-8 week embryos. 

At 2 weeks + 5 days (2w+5d) embryo, when the neural plate invagination gives rise 

to neural folds, expression of OTX2, PAX6 and NKX2.1 was detected in neural 

folds. Starting at 3w+3d, PAX6 and SOX2 expression were identified in closing 

neural tube. The first molecular sign of telencephalic fate was evident at 3w+ 4d 

embryo by the expression of OTX2 and FOXG1 in prosencephalon and expression of 

NKX2.1 confined to ventral prosencephalon. At 7w+2d, OTX2 and FOXG1 were 

found in entire telencephalon particularly in VZ and the beginning of dorsal ventral 

organization was evident by complementary expression of TFs; PAX6 expression 

was restricted to pallium while GSX2 expression was detected in subpallium, thus 

defining the pallial-subpallial boundary (PSB) and NKX2.1 expression marked 

MGE.  The progenitor domains and mature neurons compartment within LGE were 

evident at the beginning of foetal stage at 8w and striatal neurons were defined at 8-

11 week embryos. At 8w, proliferating LGE VZ progenitors expressed FOXG1, 

OTX2, GSX2 and ASCL1 while LGE SVZ progenitors expressed ASCL1, EBF1 and 

ISL1. The mutually exclusive subpallial expression of GSX2 and ASCL1 and pallial 

expression of PAX6 and TBR2 clearly demarcated the PSB. At 8-11 w, in the ventral 

post mitotic MZ where internal capsules began to appear, striatal neurons were 

defined by the co-expression of ISL1, EBF1, FOXP1, FOXP2, CTIP2, DARPP-32, 

GABA and NKX2.1. At 11w, massive SVZ overlaid the developing striatum 

separated into the caudate and putamen by the internal capsule. During mid-foetal 

development at 20 w embryo where neurogenesis continued, a dynamic change in 

expression pattern of some TFs was seen. ISL1 initially expressed in all striatal 

precursors was restricted to a fewer cells in caudate-putamen and some IS1+ cells did 

not co-express FOXP1 or FOXP2 or CTIP2, but expressed DARPP32. NKX2.1 was 

restricted to only 4% of striatal cells and did not co-express CTIP2. FOXP2 
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expression was reduced to ~ 25% of striatal cells. CTIP2+ striatal cells co-expressed 

CALB, FOXP1, FOXP2 and DARPP32 and displayed a GABAegic identity.  

Interestingly at this stage, neocortex also showed expression of FOXP1, FOXP2, 

CALB, NKX2.1 and DARPP-32. However, unlike striatal MSNs CTIP2/DARPP-32 

co-localization was rarely seen and DARPP-32+ neocortical neurons were not 

GABAergic. 

 Very recently, Straccia et al. (2015), compared mRNA expression 

profile of 7-9 weeks human WGE and fetal cortex as well as adult caudate, putamen 

and motor cortex and identified markers characteristic of each developmental stage. 

The high expression of SIX3, DLX1, DLX5, DLX6, LHX6 and EBF1 distinguished 

WGE from cortex. Compared to WGE, the adult striatum down regulated the 

expression of DLX1, DLX2, DLX5, LHX6 and EBF1 and upregulated the expression 

of DARPP-32, ADORA2A, CALB1, DRD1, DRD2, PENK and TAC1 (Straccia et al. 

2015). 

The expression domains of core transcription factors involved in 

telencephalon D/V development is shown in Figure 1:9and their role in discussed 

below. 

1.3.4.2 FOXG1 

FOXG1 (Brain factor 1 BF-1) belong to HNF3/forkhead family of 

transcription factors (Tao and Lai 1992). In mammals, it was first identified in rat 

foetal brain. No expression was found  in liver, intestine, lung, kidney, spleen and 

testis (Tao and Lai 1992). Detection by in situ hybridisation, revealed an expression 

from embryonic day E10 (at which no telencephalon-diencephalon boundary is 

distinguished) in anterior neuroepithelium. As development progressed, the 

expression pattern was restricted to the telencephalon and was absent from the 

diencephalon (Tao and Lai 1992). Foxg1 plays a role in establishing the early 

regional subdivision of developing forebrain and in further telencephalon 

development. 

Xuan et al. 1995 generated Foxg1 null mutant mice, by replacing most of 

coding sequence of Foxg1 with a lac Z and neomycin cassette. The expression of β-

galactosidase enzyme was thus under the control of Foxg1 promoter and expression 

of β-gal detected by X-gal histochemistry, identified Foxg1 expression. Foxg1 was 
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detected in neural tube from E8.5 and E9.5 at which Foxg1
-/- mutants appeared 

grossly similar to that of wild types. However, from E10.5, mutants displayed a 

progressive reduction in size of telencephalic vesicles and at E12.5, ganglionic 

eminences were not present and showed only thin neuroepithelium (Xuan et al. 

1995; Martynoga et al. 2005). E12.5 mutants expressed only dorsal telencephalic 

markers Emx2 and Pax6 and no ventral telencephalic markers Dlx2 and Dlx1(Xuan 

et al. 1995). Consistent with this study, absence of ventral markers Nkx2.1, Ascl1, 

Dlx2 and Gsx2 and expansion of dorsal markers Pax3 and Pax6 were reported in 

Foxg1
-/- mutant telencephalon (Martynoga et al. 2005). Analysis of cell proliferation 

by Bromodeoxyuridine (Brdu) labelling (that incorporate into cells in S phase) 

revealed that only dorsal telencephalic cells and not ventral telencephalic cells were 

actively proliferating in mutants (Xuan et al. 1995). Characterization of cell 

proliferation by Brdu and iododeoxyuridine (IddU) double labelling (that determines 

the total length of cell cycle and the length of S phase), demonstrated prematurely 

lengthened cell cycle in Foxg1
-/- mutant telencephalon (Martynoga et al. 2005). 

Concurrently from E10.5 in Foxg1
-/- mutants, an excess of neurons was produced, 

thus depleting progenitor populations and limiting growth of telencephalon. In 

addition, Foxg1
-/- mutants showed significant reduction in the expression of Fgf8 at 

E10.5 and increased BMP expression at E11.5 (Martynoga et al. 2005). In Xenopus, 

over expression of XBF-1, suppressed neural differentiation and resulted in 

proliferation (Bourguignon et al. 1998). Collectively these studies demonstrate that 

Foxg1 regulates telencephalon progenitor proliferation and neurogenesis and in its 

absence, ventral telencephalon fate is not specified 

Subsequently, foxg1 was shown to inhibit dorsal telencephalic identity by 

repression of Wnt/βcatenin signalling pathway, specifically wnt8b in zebra fish 

(Danesin et al. 2009). By using by morpholino knocking down foxg1, this study 

reinforced the earlier findings and demonstrated that absence of ventral fate in foxg1 

morphants was caused by their transformation into dorsal fates and partial 

displacement into hypothalamic territory. Furthermore, broad overexpression of 

foxg1 in Hh-depleted embryos induced ventral fate in ventral telencephalon and shh 

overexpression in foxg1 morphants inhibited dorsal marker tbr1. Thus indicating that 

FOXG1 and SHH act independently in repression of dorsal fate and induction of 

ventral fate (Danesin et al. 2009). FOXG1 was observed to act cell autonomously in 
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Foxg1
-/-

/;Foxg1
+/+ chimeric embryos. Foxg1

-/- cells located in dorsal telencephalon 

expressed dorsal markers Pax6, Tbr1 and Ngn2. Foxg1
-/- cells in the LGE failed to 

express ventral markers Gsx2 and Mash1, instead expressed dorsal markers, whereas 

surrounding wild type cells in the LGE expressed ventral markers. This indicated 

that Foxg1
-/- cells did not alter specification of wild type cells and that Foxg1 is 

required in ventral telencephalon in a cell autonomous manner to ensure cell 

competence to adopt ventral identity (Manuel et al. 2010). The proportion of Foxg1
-/-

 

cells in S phase of cell cycle was significantly smaller compared to wild type 

indicating a reduction in their proliferation (Manuel et al. 2011). The expression of 

Pax6 (which is also a cell cycle regulator) was lower than normal in these cells. Over 

expression of Pax6 in Foxg1
-/-

/Pax77 chimeric embryos, resulted in partial rescue of 

proliferation defects, thus indicating that Foxg1 regulates progenitor proliferation 

cell autonomously by mechanisms that include regulation of Pax6 (Manuel et al. 

2011). 

1.3.4.3 PAX6 

PAX6 is a paired box (Pax) transcription factor, first detected in the 

neuroectodermal cells of mouse developing forebrain at E8.5-E9.5 (Stoykova and 

Gruss 1994). Analysis of human foetal samples revealed PAX6 co-expression with 

SOX2 at E18 (Carnegie stage 8-9) in neuroectodermal cells, when the neural plate 

began to form (X. Zhang et al. 2010). The expression was retained in multi-layered 

neural plate at E21 (Carnegie stage 8-9). By E26 (Carnegie stage 11-12), when 

forebrain and midbrain had clearly demarcated, PAX6 expression was restricted to 

forebrain (X. Zhang et al. 2010). In mouse at E12.5, when both LGE and MGE were 

morphologically distinct, PAX6 was expressed in the dorsal telencephalon 

throughout cortical VZ and in the lateral most part of LGE (Stoykova et al. 1997; 

Toresson et al. 2000). PAX6 expression was largely complementary to that of GSX2 

in the ventral telencephalon and this expression pattern was maintained throughout 

the embryogenesis marking a boundary between cortical VZ and the LGE (Toresson 

et al. 2000).  

PAX6 modulates D/V patterning of the developing telencephalon. The 

mice small eye mutant, Pax6Sey/Sey which lacked functional Pax6 protein displayed 

severe forebrain patterning defects with abnormal cortical-striatal boundary (pallial-

subpallial boundary) (PSB) (Stoykova et al. 1997). The expression of dorsal markers 
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such as Ngn2 and Emx1 were diminished and ventral markers Gsx2, Dlx2 and Ascl1 

showed ectopic expression across the boundary into dorsal regions (Toresson et al. 

2000; Stoykova et al. 1997; Stoykova et al. 2000; Kroll and O’Leary 2005). The 

expression of MGE markers Shh, Nkx2.1 and Lhx6 was expanded into LGE territory 

and shifted LGE-MGE boundary (Stoykova et al. 2000). By mid-neurogenesis, there 

was ectopic production of GABAergic interneurons (LGE/MGE derived) and the 

cortical plate appeared thinner due to the diminished production of glutamatergic 

neurons (generated in dorsal telencephalon, normally) (Kroll and O’Leary 2005). 

Taken together, PAX6 plays a critical role in establishing PSB and it specifies pallial 

identity by repressing subpallial fates in dorsal telencephalon.  

1.3.4.4 GSX2 

Gsx2 (formerly known as Gsh2) belongs to homeobox transcription 

factor family, (Hsieh-Li et al. 1995) first detected within developing mouse forebrain 

between E9 and E14. During telencephalon development, its abundant expression 

was restricted to the ganglionic eminences (Hsieh-Li et al. 1995; Szucsik et al. 

1997). 

Targeted deletion of Gsx2 in Gsx2
-/- mutants resulted in reduction in size 

of LGE at E12.5-E14.6 (Szucsik et al. 1997). There was a loss of PSB (which is 

established as early as E10.5 in mouse through differential expression of markers) in 

Gsx2
-/- mutants (Yun et al. 2001). Altered gene expression pattern was evident in 

E12.5 mutants as seen by reduced expression of Dlx1, Dlx2 and Ascl1 (Szucsik et al. 

1997; Corbin et al. 2000; Toresson et al. 2000), accompanied by ectopic expansion 

of Pax6, Ngn2 and Tbr2 into LGE (Corbin et al. 2000; Toresson et al. 2000; Yun et 

al. 2001). Conversely, Pax6
-/- mutants displayed expansion of Gsh2 and Ascl1 into 

Pax6 domains (Toresson et al. 2000; Yun et al. 2001) and removal of Pax6 from 

Gsx2 mutants (Gsx2
-/-

;Pax6
-/- double homozygous mutants), rescued telencephalic 

patterning (Toresson et al. 2000; Waclaw et al. 2004). Interestingly, expression of 

MGE marker Nkx2.1 was not affected in the Gsx2
-/- mutants (Szucsik et al. 1997). 

Taken together, these studies demonstrate that Gsx2 is required for expression of 

Dlx1, Dlx2 and Ascl1 while repressing dorsal fate via cross-repression with Pax6. 

E12.5 Gsx2
-/- mutants also showed a decrease in expression of Ebf1 

(essential for cell transition from SVZ to striatal mantle zone), Gad67 (catalyses 
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formation of GABA) and Raldh3 and decreased retinoid production (Corbin et al. 

2000; Waclaw et al. 2004). Although, Gsx2
-/-

;Pax6
-/- showed improved striatal 

patterning and larger striatum compared to Gsx2
-/- mutants, the expression of Raldh3 

was not rescued (Toresson et al. 2000). Furthermore, both Gsx2
-/- and Gsx2

-/-
;Pax6

-/- 

mutants had reduced number of DARPP-32 neurons (Corbin et al. 2000; Waclaw et 

al. 2004). Supplementation of RA during striatal neurogenesis increased DARPP-32 

Gsx2
-/- mutant (Waclaw et al. 2004), thus identifying the requirement of Gsx2 for 

retinoid production. Collectively, these studies establish the role of Gsx2 for normal 

striatal development to maintain the correct molecular identity of LGE precursors. 

Interestingly, as development progressed, by E15.5-E18.5 (mid-

neurogenesis), Gsx2
-/- mutants showed a recovery in expression of Dlx1, Dlx2, Ascl1, 

Ebf1 and Gad67 within VZ of the developing striatum. However, striatum remained 

reduced in size (Corbin et al. 2000). Concomitantly, Gsx1 expression was notably 

expanded in the Gsx2
-/- LGE. No obvious striatal defects were detected in Gsx1

-/- 

mutant, whereas Gsx1
-/-

;Gsx2
-/- double homozygous mutant displayed more severe 

disruption than Gsx2
-/- mutant, indicating that Gsx1 compensates at least in part for 

the loss of Gsx2 in Gsx2
-/- mutant (Toresson and Campbell 2001). In wild type, at 

E12.5 and onwards, Gsx2 was shown to be expressed in a high dorsal (in dLGE) to 

low ventral (in vLGE and MGE) gradient (Yun et al. 2001; Pei et al. 2011) whereas 

Gsx1 expression was localised in vLGE and MGE near VZ/SVZ boundary (Pei et al. 

2011). This Gsx2 gradient was perturbed with an increased number of Gsx2+ cells in 

vLGE of Gsx1
-/- mutants between E16.5 and E18.5. Furthermore, overexpression of 

Gsx1 resulted in dramatic down-regulation of Gsx2 expression in the ventral 

telencephalon and overexpression of Gsx2 significantly reduced Gsx1 expression 

(Pei et al. 2011). Thus, Gsx2 and Gsx1 reversely control the expression of each 

other. Misexpression of Gsx1 lead to lengthening of cell cycle, as a result enhanced 

neurogenesis, whereas, misexpression of Gsx2 caused an increase in cell cycle 

retention index, as a result maintained progenitors in an undifferentiated state (Pei et 

al. 2011). 

1.3.4.5 DLX2 

Dlx genes belong to homeodomain transcription factors and comprise six 

known mammalian members, organized as three clusters- Dlx1/2, Dlx3/4 and Dlx5/6 

(Panganiban and Rubenstein 2002). Dlx2, Dlx1, Dlx5 and Dlx6 showed overlapping 
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but distinct temporal sequence of expression in the LGE (Eisenstat et al. 1999). In 

situ hybridization and immunoreactivity studies at E12.5 showed expression of Dlx2 

in subset of VZ, co-expression of Dlx1, Dlx2 and Dlx5 in SVZ and expression of 

Dlx5 and Dlx6 in post mitotic migrating neurons in SVZ and mantle zone (Liu et al. 

1997; Eisenstat et al. 1999). This expression pattern indicates that Dlx genes function 

at different stages in striatal differentiation. 

Histological analysis of brains of mice single mutants for Dlx1 (Dlx1
-/-) 

and Dlx2 (Dlx2
-/-

) showed a subtle phenotype, whereas Dlx1/2
-/- double mutant had 

an enlarged SVZ- like region with low number of proliferating cells (Anderson et al. 

1997). In the double mutants, early born neurons migrated into striatum like region 

that was enriched with striosomal (patch) markers- DARPP32, acterylycholinesterase 

(AchE) and tyrosine hydroxylase (TH). However, Brdu birth-dating (single injection 

of Brdu at different developmental stages from E11.5 and analysing location of Brdu 

positive cells) and organotypic slice cultures (analysing cell migration of Dil labelled 

cells) revealed that the later born neurons (beginning at E12.5), failed to migrate into 

mantle zone. They accumulated within defective LGE where they partially 

differentiated into MAP2 positive and DARPP32 negative neurons (Anderson et al. 

1997). Furthermore, molecular abnormalities were evident at E12.5 by the absence of 

Dlx5, Dlx6 and Oct6 (Anderson et al. 1997). At E15.5, there was a reduction in 

expression of retinoid receptors- Rarβ and RXRγ and reduction in number of MSNs 

expressing striatonigral markers - D1R and Substance P and striatopallidal markers- 

D2R and Enkephalin (Long et al. 2009). There was also a severe reduction in 

expression of Er81, Sp8, Meis1, Meis2 and Foxp1 in SVZ and moderate reduction in 

expression of Ctip1, Ebf1, Foxp2, Islet1 in MZ. This was compounded with an 

ectopic expression of pallial markers- Ebf3 and Id2 and MGE markers- Gbx1 and 

Gbx2 in dLGE SVZ ( Long et al. 2009). Further, Dlx1/2
-/- had low expression of 

GAD67 and vesicular GABA transporter (vGAT) and displayed massive reduction in 

cortical GABAergic interneurons that are derived from VZ and SVZ (Anderson et al. 

1997; Long et al. 2009). Thus, Dlx2 and Dlx1 are required for generation and 

migration of later born neurons (striatal matrix) and for proper LGE development 

and striatal differentiation in addition to promoting GABAergic neurons fate. 

Interestingly, Dlx1/2
-/- mutant SVZ showed increased expression of Gsx2, Gsx1, 

COUP-TF1, Ascl1 and genes in Notch signalling pathway- Notch1, Notch3, Delta- 
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like 1(Dll1) and Hes5 (Yun et al. 2002), suggesting a role of Dlx1/2 in repressing the 

expression of these genes for differentiation of SVZ progenitors.  

1.3.4.6 ASCL1 

ASCL1 (Achaete-scute homolog 1, originally named as mammalian 

achaete scute homolog-1, MASH1) is a basic helix-loop-helix (bHLH) gene essential 

for ventral telencephalon development (Casarosa et al. 1999; Fode et al. 2000; 

Castro et al. 2011). Ascl1 was broadly expressed in VZ and SVZ at E12.5 ventral 

telencephalon (Parras et al. 2004; Castro et al. 2011). It was co-expressed with Dlx2 

(Yun et al. 2002) and was complementary to Ngn1/2 (Fode et al. 2000).  

Ascl1 controls neuronal progenitor specification and later steps of 

neuronal differentiation as well as regulates genes in cell cycle progression (Casarosa 

et al. 1999; Yun et al. 2002; Castro et al. 2011). Ascl1 null mutant showed decreased 

number of Brdu+ cells in VZ and SVZ and displayed pronounced reduction in MGE 

at E12.5. Interestingly, LGE progenitors appeared unaffected (Casarosa et al. 1999). 

However, there was loss of Notch ligand Dll1, Dll3 and Notch target Hes5, 

indicative of decreased notch signalling in both LGE and MGE VZ and SVZ. 

Additionally, there was ectopic expression of SVZ markers such as Dlx1, Dlx5, Dlx6 

and Gad67 in VZ, suggesting that in the absence of Ascl1, VZ cells prematurely 

acquired SVZ phenotype (Casarosa et al. 1999; Yun et al. 2002). At E17.5-E18.5, 

LGE early born GABAergic interneurons were absent in MZ (Casarosa et al. 1999; 

Yun et al. 2002). Dll1
-/- mutants shared a similar phenotype to that of Ascl1

-/- 

mutants, thus suggesting that Ascl1 influences Notch pathway to control progenitor 

specification and drive early neurogenesis.  

Forced expression of Ascl1 in Ngn mutants resulted in misspecification 

of early born cortical neurons with ectopic expression of Dlx1, Dlx2, Dlx5 and 

Gad67 (Fode et al. 2000). Ascl1 has been shown to bind to an E-box sequence in 

I12b enhancer located in Dlx1/2 intergenic region and regulate their expression 

(Poitras et al. 2007). An increased expression of Ascl1 and Notch pathway genes was 

observed in Dlx1/2
-/- mutant (as explained above) and there was a loss of DARPP-32 

and DRD2 expression (Yun et al. 2002). Removal of Ascl1 from Dlx1/2
-/- 

background further exacerbated striatal phenotype (Long et al. 2009). Thus, 

combined function of Ascl1 and Dlx1/2 regulate LGE development and striatal 



Introduction 

-42- 

differentiation. Ascl1 and activation of Notch signalling are required for early 

neurogenesis. Dlx1/2 act, in part, by downregulating notch signalling to drive late 

neurogenesis (Yun et al. 2002). 

1.3.4.7 NKX2.1 

NKX2.1 (also known as Thyroid Transcription factor TTF1) is a 

homeobox transcription factor. The initial expression of Nkx genes was found in the 

medial neural plate overlying SHH-secreting axial mesoderm (Shimamura et al. 

1995; Shimamura and Rubenstein 1997). Consistently, the expression of Nkx2.1, 

Nkx2.2 and Nkx6.1 was induced by SHH (Ericson et al. 1995; Shimamura and 

Rubenstein 1997; Kohtz et al. 1998; Sussel et al. 1999). Nkx2.1 expression is 

restricted to the forebrain. Within telencephalon, Nkx2.1 was expressed in the MGE 

VZ and SVZ as well as in post mitotic cells (Sussel et al. 1999). Elimination of Shh 

resulted in reduced Nkx2.1 expression (Gulacsi and Anderson 2006) with 

dorsalization of ventral telencephalon (Chiang et al. 1996), whereas, over-activation 

of Shh lead to dorsal expansion of Nkx2.1 (Goodrich et al. 1997). As mentioned 

above, SHH acts by repressing Gli3 repressor function. Elimination of Gli3 did not 

alter Nkx2.1 expression that remained confined to the enlarged MGE in Gli3
-/-

 

mutants, whereas, Cyclopamine (SHH signalling antagonist) treatment of Gli3
-/- slice 

cultures resulted in downregulation of Nkx2.1 expression, suggesting that SHH-

induced Nkx2.1 expression is mediated by Gli3-independent mechanism (Gulacsi and 

Anderson 2006).  

NKX2.1 is involved in regulating MGE progenitor specification. Nkx2.1 

null mutants displayed severely reduced MGE (Sussel et al. 1999). At molecular 

levels, there was ventral expansion of Pax6 and MGE acquired LGE markers, thus 

was specified to form caudate and putamen at the expense of MGE derivatives- 

globus pallidus, cholinergic striatal interneurons and cortical interneurons (Sussel et 

al. 1999). Similarly, early loss of Nkx2.1 at E9.5-10.5, in conditional knockout 

mutants favoured the production of MSNs at the expense of cortical interneurons 

(Butt et al. 2008). Interestingly E12.5 mutants, displayed neither ectopic generation 

of MSNs nor loss of cortical interneurons, instead showed an increased ectopic 

production of caudal ganglionic eminence (CGE) derived interneurons that migrate 

into cortex (Butt et al. 2008). Thus, suggesting that Nkx2.1 acts in a temporal manner 

and might induce MGE identity by repressing LGE and CGE fate. In support of this 



Introduction 

-43- 

notion, Nkx2.1 was shown to regulate MGE markers Lhx6, Lhx7 and Shh and repress 

LGE markers, and CGE markers (Elias et al. 2008) and ectopic expression of Lhx6 in 

Nkx2.1 null mutants rescued interneurons generation (Du et al. 2008).  

Nkx2.1 directs the migration and differentiation of post mitotic neurons. 

Nkx2.1 expression was found to be downregulated in GABAergic interneurons 

migrating to the cortex and it was maintained in cholinergic interneurons migrating 

to the striatum (Nóbrega-pereira et al. 2008). Nkx2.1 overexpression led to reduction 

in neurons reaching the neocortex. Interestingly, loss of Nkx2.1 in conditional 

knockouts (under the control of Lhx6 promoter which turns on in post mitotic cells) 

did not increase the number of cortical interneurons (Nóbrega-pereira et al. 2008). 

However, post mitotic loss of Nkx2.1 inhibited neuronal migration to the striatum 

(Nóbrega-pereira et al. 2008) 
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1.4 Stem cells 

Stem cells are undifferentiated cells capable of self-renewal and 

differentiation into various specialized cell types in the body (Figure 1:14) (Gardner 

and Beddington 1988). Stem cells are generally termed according to differentiation 

potential (pluripotent or multipotent) and place of development (embryonic or adult) 

(Figure 1:15). A multipotent adult stem cell can self-renew and can form multiple 

differentiated cell types within a distinct tissue/organ. They reside in a variety of 

tissues in the adult body and contribute to replenishing and regeneration of diseased 

and damaged tissue (Dor and Melton 2004). For example, haematopoietic stem cells 

in bone marrow differentiate into all lineage of blood cells. A pluripotent stem cell 

(PSC) can self-renew and can form all the different cell types in the developing 

embryo excluding extra-embryonic tissue such as placenta (Smith 2006). In vivo, 

pluripotency is possessed transiently by the inner cells mass of the blastocyst stage of 

the developing embryo (explained previously in 1.3.2) and can be maintained in vitro 

by deriving embryonic stem cells (ESC) (Figure 1:15.B). Pluripotency could also be 

‘induced’ by in vitro reprogramming of somatic cells and can be maintained as 

induced pluripotent stem cells (iPSCs) (Takahashi and Yamanaka 2006). Human 

pluripotent stem cells (hPSC)-including both hESC and hiPSC the particular focus of 

this project are discussed here 

 

Figure 1:14 When a stem cell divides, it produces either identical daughter cells (self-renewal) or 
specialized cell types (differentiation), in response to signalling cues 
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Figure 1:15 Multipotent adult and pluripotent  embryonic or induced stem cells:  A). Multipotent adult stem cells 
reside in various organs such as brain, heart and bone and give rise to tissue specific cells. B). Pluripotent stem cells are 
derived from blastocyst ICM or induced in vitro from somatic cells by forced expression of transcription factors and can 
form cells of  all 3 germ layers. Adapted from Stemcellhealthcare.com 2014; Medicinenet.com 2010 
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1.4.1 Embryonic  stem cells 

Evans and Kaufman (1981), established the first pluripotent mouse ESC 

line by plating down delayed-implantation blastocyst (the embryonic development 

delay was induced at 2.5 days post fertilization, causing embryos not to implant into 

uterine wall). The ICM from the expanded blastocyst was isolated and cells were 

grown on a layer of mitotically inactivated STO fibroblasts. The resulting cells 

displayed characteristics of pluripotent cells and retained a normal karyotype. 17 years 

later, Thomson et al. (1998) derived hESCs from the blastocyst stage of human 

embryos that were produced for clinical purpose by in vitro fertilization. The stem 

cells colonies formed, fullfilled all the criteria for hESC; retained pluripotency and 

self-renewal as well as normal karyotype when grown on mouse embryonic fibroblasts 

(MEF). When grafted to severe combined immnodeficient (SCID) mice, they 

generated large germ cell tumors containing a diversity of differentiated cells 

(Thomson et al. 1998). Later advances in culturing methods and techniques for ICM 

isolation led to derivation of hundreds of hESC lines from donated embryos (Vazin 

and Freed 2010). 

1.4.2 Induced pluripotent stem cells 

Induced pluripotent stem cells (iPSC) are generated from somatic cells 

using defined transcription factors and are capable of self-renewal and differentiation, 

like ESCs. iPSCs not only overcome the ethical issues regarding the use of human 

embryos but also allow generation of patient-specific cells. The groundbreaking 

discovery of iPSCs technology was made by Takahashi and Yamanaka (2006). iPSCs 

were generated from mouse embryonic or adult fibroblasts by genome-integrating 

retrovirus-mediated constitutive expression of four ESC transcription factors– Oct3/4 

(Octamer binding transcription facor-3/4), Sox2 (Sex determining region Y-box2), 

cMyc and Klf4 (Kruppel like factor-4), termed ‘Yamanaka factors’. Subsequently, 

human iPSCs were generated using ‘Yamanaka factors’ from foetal, neonatal and adult 

human dermal fibroblasts (Takahashi et al. 2007; Park et al. 2008). These iPSCs were 

similar to ESCs in morphology, proliferation, surface markers, gene expression and 

epigenetic state, in addition, demonstrated differentiation potency both in vitro and in 

vivo (Takahashi and Yamanaka 2006; Takahashi et al. 2007; Park et al. 2008).  

The original iPSC reprogramming strategy using Yamanaka factors 

remains robust and largely unaltered to date. However, identification of ESC-enriched 
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genes and screening for transcription factor combinations to reprogram somatic cells 

led to various adaptations to improve efficiency or safety. Lentiviral expression of 

reprogramming cocktail –OCT4, SOX2, NANOG and LIN28- eliminated both CMYC 

and KLF4 oncogenes and successfully generated iPSCs from human fibroblasts, 

although with decreased efficiency compared to Yamanaka factors (Yu et al. 2007). 

An enhancement of efficiency (~10 fold increase in number of iPSC colonies) was 

achieved by combining all 6 transcription factors- OCT4, SOX2, NANOG, CMYC, 

KLF4 and LIN28 cloned into lentivirus (J. Liao et al. 2008). A much improved 

efficiency of 23-70 fold was reported from human foetal and adult fibroblasts, by 

addition of SV40 large T antigen to reprogramming cocktail from Takahashi et al. 

(2007) and Yu et al. (2007), which acts by inhibiting p53(Mali et al. 2008). Silencing 

p53 expression by addition of p53siRNA to Yamanka factors increased iPSC 

generation up to 100 fold even when CMYC was eliminated, by blocking cellular 

apoptosis (Zhao et al. 2008). Exploration of cell signalling pathways and mechanisms 

underlying reprogramming led to use of small molecules to replace exogenous 

reprogramming factors and to enhance the process. Valproic acid (inhibitor of histone 

deacetylase) replaced CMYC and KLF4 and enhanced reprogramming (Huangfu et al. 

2008). CHIR99021 (glycogen synthase 3 inhibitor, activates WNT signalling) and 

Parnate (inhibitor of lysine-specific demethylase-1) combined or PS48 (activator of 

PI3K/AKT signalling) alone, enhanced reprogramming of human keratinocytes (which 

endogenously express CMYC and KLF4) using OCT4 and KLF4 and thus replaced 

exogenous SOX2 and CMYC (W. Li et al. 2009; Zhu et al. 2010). Further, CHIR99021 

and Parnate enhanced reprogramming of OCT4 only transduced human keratinocytes, 

umbilical vein endothelial cells and amniotic fluid-derived cells (Zhu et al. 2010). A 

combination of SB431542 (inhibitor of TGFβ signalling) and PD0325901 (inhibitor of 

MAPK/ERK signalling) increased efficiency to >100 fold (Lin et al. 2009) and both 

together with sodium butyrate (inhibitor of histone deacetylase) greatly accelerated the 

reprogramming of human fibroblasts, using retroviral expression of Yamanaka factors 

(Zhang et al. 2011). There have been major advancement in the method of delivering 

reprogramming factors also. Retroviral or Lentiviral vectors showed random 

integration into iPSC genome and led to tumour formation in chimeric animals (Yu et 

al. 2007; Takahashi et al. 2007; Okita et al. 2007) which hinders the utilization of 

resulting cells. iPSCs free of transgenes and vector integration have been derived using 

OriP/EBNA1 (Epstein-Barr nuclear antigen-1) based episomal vectors (J. Yu et al. 
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2009; Okita et al. 2013), Sendai virus (Fusaki et al. 2009), cell penetrating peptide (D. 

Kim et al. 2009), modified synthetic mRNA (Warren et al. 2010) and piggyBac 

transposon (Wang et al. 2011). The various delivery methods with different 

combination of reprogramming factors differed in their efficiency. To date, divergent 

human cell types have been reprogrammed to iPSCs including keratinocytes (Aasen et 

al. 2008), amniotic cells (C. Li et al. 2009), neural stem cells (J. B. Kim et al. 2009), 

hepatocytes (Liu et al. 2010), adipose cells (Qu et al. 2012) and cord blood and 

peripheral blood cells (Okita et al. 2013) for myriad applications.  

Despite the advances in reprograming technology, the mechanistic 

understanding of reprogramming remains incomplete. At the molecular level, the 

generally accepted model of iPSC  reprogramming consists of 3 sequential phases - 

initiation, maturation and stabilization (Samavarchi-Tehrani et al. 2010; David and 

Polo 2014; Hawkins et al. 2014). Initiation occurs in virtually all transfected cells and 

is characterized by somatic genes expression being switched off, reactivation of 

telomerase activity, increase in cell proliferation, cell metabolic switch from 

mitochondrial oxidative phosphorylation to glycolysis and mesenchymal to epithelial 

transition (MET). During the maturation phase, the epigenetic changes in pre-iPSC 

colonies allow the activation of endogenous expression of pluripotency genes. By 

stabilization phase, stable iPSC colonies gain transgene independency and maintain 

self-renewal and pluripotency. Mechanistically, SOX2 was shown to suppress 

mesenchymal genes and KLF4 induced epithelial gene expression such as E-

CADHERIN (a cell adhesion molecule), thus promoted MET which is critical and is a 

hallmark of reprogramming (Liu et al. 2013). As explained above various inhibitors of 

TGFβ and MAPK signalling have been used to enhance reprogramming. It is likely 

due to the prevention of TGFβ-induced epithelial to mesenchymal transition in vivo 

(EMT, the opposite of MET, involved in embryogenesis and differentiation) (Thiery 

and Sleeman 2006). The metabolic switch from oxidative phosphorylation to 

glycolysis is likely to be an adaptation to the in vivo hypoxic environment of early 

embryo where ESCs are originated. In support of this notion, reprogramming under 

hypoxic condition has been shown to improve efficiency (Yoshida et al. 2009).  

Upregulation of glycolytic genes by PS48 (explained above) therefore explains its 

effect on promoting reprogramming (Zhu et al. 2010). CMYC, when combined with 

OCT4, SOX2 and KLF4 greatly enhanced the generation of partially reprogrammed 

iPSCs, which had not turned on endogenous pluripotency genes, however, CMYC also 
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increased tumorigenicity (Nakagawa et al. 2008; Maekawa et al. 2011). In mice, 

substituting cMyc with Glis1 (GLIS family zinc finger 1) promoted pro-reprograming 

pathways including MET, Lin28, Nanog and Wnt and enhanced stable iPSC generation 

(Maekawa et al. 2011). LIN28 expression and p53/p21 inhibition stimulated cell 

proliferation by regulating cell cycle genes (Hanna et al. 2009). LIN28 expression and 

TGFβ inhibition also promoted NANOG expression which appeared to play the pivotal 

role in transition from pre-iPSC maturation phase to reprogrammed-iPSCs stabilization 

phase of (Hanna et al. 2009; Samavarchi-Tehrani et al. 2010). Similarly, activation of 

WNT signalling enhanced NANOG expression and  replaced exogenous SOX2 (W. Li 

et al. 2009). The expression of endogenous pluripotency genes in stable-iPSC colonies 

is facilitated by demethylation of gene promoters, therefore various DNA and histone 

methyltransferases inhibitors have been employed (explained above) to accelerate 

iPSC reprogramming.  

1.4.3 Core transcriptional network of hPSC pluripotency and self-renewal 

Understanding the factors that regulate the unique hPSC characteristics is 

fundamental for harnessing the potential of these cells for various applications. Several 

lines of evidence in mESC and hESC show that precise levels of core transcription 

factors –OCT4, SOX2 and NANOG robustly maintains ESC identity, yet permit cells to 

respond to developmental cues. During early mouse development, Oct4, Nanog and 

Sox2 was required to maintain pluripotent cells of ICM and epiblast (Nichols et al. 

1998; Mitsui et al. 2003; Avilion et al. 2003). In mESC, a conditional expression and 

repression of Oct3/4 showed that a two fold increase in expression lead to 

differentiation into primitive endoderm and mesoderm, whereas its repression, induced 

loss of pluripotency and dedifferentiation to trophoblast. Thus, a precise level of Oct4 

maintained pluripotency (Niwa et al. 2000). Nanog knockdown in mESCs drove 

differentiation into extra-embryonic endoderm (Mitsui et al. 2003). Nanog also 

blocked neuroectoderm (Ying et al. 2003) and mesoderm (Suzuki et al. 2006) 

differentiation. Unlike Oct4, Nanog overexpression promoted self-renewal and 

maintenance of pluripotent state (Mitsui et al. 2003). Sox2 knockdown in mESCs 

induced multilineage differentiation. However, unlike Oct4 and Nanog, Sox2 

expression is not restricted to ESCs and is also present in multipotent cells of 

extraembryonic ectoderm and neuroectoderm (Avilion et al. 2003). A slight over 

expression of Sox2 in ESC decreased expression of its own gene as well as Oct4 and 
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Nanog (Boer et al. 2007). Thus, a precise Sox2 expression levels is critical for ESC 

state. 

In hESCs, consistent with the findings in mESC, OCT4 knockdown 

resulted in loss of expression of stem cell markers and results in trophoblast 

differentiation (Matin et al. 2004; Hay et al. 2004). NANOG knock down resulted in 

differentiation to extraembryonic lineages (Hyslop et al. 2005). And SOX2 knock 

down resulted in reduced expression levels of OCT4 and NANOG as well as 

trophoblast differentiation (Fong et al. 2008). It has been showed that the core 

transcription factors (TF) trio of OCT4, SOX2 and NANOG governs pluripotency and 

self-renewal in hESC (Boyer et al. 2005). Genome-wide ChIP-on chip analysis (to 

identify the DNA binding sites of these transcription factors) showed that these 3 TFs 

act as core regulators; they bound to a large number of genes and that they co-occupied 

the promoters of target genes. These target genes were found to be either active genes 

or inactive genes. The notable targets among the active genes included OCT4, SOX2, 

NANOG and components of TGF-β and WNT signalling pathways that play a role in 

hES pluripotency. The inactive genes included many of those implicated in 

developmental process, such as transcription factors for differentiation into extra-

embryonic tissues or germ layers (Boyer et al. 2005). A regulatory circuitry with 

interconnected autoregulatory loop between these core transcription factors was 

postulated in the same publication. OCT4 and SOX2 act together as heterodimer on the 

transcription of their own gene as well on that of NANOG, whereas NANOG acts on 

its own gene and OCT4 and SOX2 (Boyer et al. 2005). To summarise, the OCT4, 

NANOG, SOX2 trio prevents differentiation along other lineages and maintains hPSC 

pluripotency and self-renewal.  

1.4.4 Signalling pathways in  hPSC pluripoteny and self-renewal 

The predominant signalling pathways involved in hPSC pluripotency and 

self-renewal are TGF-β/Activin/nodal and basic fibroblast growth factor (FGF) 

signalling (Figure 1:16). TGF-β/Activin/nodal bind to Alk4/5/7Activin receptors and 

activate SMAD2/3. It has been demonstrated that SMAD2/3 binds and directly 

controls NANOG to maintain the pluripotent state (Xiao et al. 2006; Xu et al. 2008; 

Vallier et al. 2009). SMAD2/3 signalling is involved in self-renewal as well as 

differentiation. This dual role was shown to be governed by PI3K signalling (Singh et 

al. 2012). PI3K signalling, when active, limited the absolute levels of phosphorylated 
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SMAD2/3 within a range to maintain self-renewal by activating target including 

NANOG. Under low PI3K signalling activity, phosphorylated SMAD2/3 was increased 

and in conjunction with WNT effectors promoted target genes involved in 

differentiation (Singh et al. 2012). Fibroblast growth factor-2 (FGF2) regulates PI3K 

and MAPK/ERK signalling in hPSCs (Dalton 2013). At low concentration, FGF2 

activated MAPK/ERK signalling. Under these conditions, ERK threshold for 

differentiation was not exceeded and self-renewal state was maintained. At elevated 

concentration, Fgf2 activateed both ERK and PI3K/AKT, but AKT suppressed 

MEK/ERK activity and maintained ERK activity within a range for self-renewal. 

(Dalton 2013). 

 

Figure 1:16 Core signalling networks that regulate pluripotency and self-renewal of human pluripotent 
stem cells: FGF2 at low concentration promotes self-renewal by activation of MAPK/ERK, by 
maintaining ERK threshold. Elevated FGF2 concentration drives ERK as well as PI3K/AKT which 
feeds back to suppress MEK/ERK activity. AKT also modulates SMAD2/3 threshold and maintains 
GSK3β activity, compatible with NANOG expression to maintain the self-renewing state. Adapted from 
Dalton 2013 

 

1.4.5 Application of hPSCs for HD 

A major focus of HD research is directed towards understanding and 

modelling the mechanisms that contribute to degeneration of GABAergic MSNs. 

Derivation of hESC lines and discovery of hiPSC technology have created the 
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opportunities to model early human development and disease states in vitro. 

Deciphering early developmental mechanisms to drive in vitro differentiation of 

hPSCs harbouring mutant HTT allele, into striatal neuronal cell types provides a 

human cell based powerful platform to monitor disease related changes during 

neurogenesis. It may simultaneously enable the identification of target for drug 

screening as well as offer renewable source of specialized cells for cell based 

therapies. Here, I discuss the recent literature demonstrating the derivation of in vitro 

models of HD established by ESC and iPSC technologies and current hPSC 

differentiation strategies to generate MSN like neurons. 

1.4.5.1  hPSC models of HD 

The common aspiration is that hPSC models of HD will overcome the 

limitations of using post-mortem tissues and animal models. HD-hESCs have been 

derived by several groups from preimplantation genetic diagnosis (PGD) in vitro 

fertilization (IVF) embryos, that carry HTT allele (Mateizel et al. 2006; Niclis et al. 

2009; Tropel et al. 2010; Seriola et al. 2011; Bradley et al. 2011; Niclis et al. 2013). 

These various HD-ESCs lines expressed pluripotent markers at both mRNA levels and 

proteins levels and showed the ability to differentiate into cell types of three germ 

layers both in vivo and in vitro (Tropel et al. 2010; Seriola et al. 2011; Bradley et al. 

2011). All the lines had normal karyotype and could be maintained in culture long 

term. Importantly, the HD-ESC lines showed the presence of 40-51 CAG repeats and 

expression of mutant gene at protein and mRNA levels that remained stable in the 

undifferentiated stage (Niclis et al. 2009; Seriola et al. 2011; Bradley et al. 2011). 

Compared to wild type-hESCs, in vitro neural differentiation of HD-hESCs showed 

similar levels of SOX2 and PAX6 at early progenitor stage and β-III-tubulin and 

MAP2 at later neuronal stage ((Niclis et al. 2009; Bradley et al. 2011; Feyeux et al. 

2012). Although a short expansion, compared with large CAG expansion seen in 

neurons of HD patients, there was a low level CAG instability with 5-6 CAG repeat 

expansion in mutant allele of HD-ECS derived neurons (Niclis et al. 2009). 

Furthermore, some transcriptional changes linked to HTT mutation was captured 

during in vitro neural differentiation that included upregulation of coiled-coil-helix-

coiled-coil-helix domain containing 2 (CHCHD2, involved in mitochondrial function) 

and tripartite motif family protein4 (TRIM4, involved in protein kinase A pathways) in 

HD-hESCs derived neurons (Feyeux et al. 2012). There was also elevated glutamate-

evoked response in CGA51 HD-hESC derived neurons (Niclis et al. 2013).  



Introduction 

-53- 

hiPSCs avoid any ethical concerns related to hESC research and permit 

utilization of patient derived cells that mirror HD mutation in the donor. The first 

human HD-iPSC line was derived from juvenile onset HD patient fibroblasts with 72 

CAG repeat in the HTT gene, using retroviral vector delivery of yamanaka factors 

(Park et al.2008). These HD-iPSCs exhibited pluripotency markers at both mRNA and 

protein levels. Characterization by quantitative proteomic analysis revealed the 

pathological conditions, in particular, an increased susceptibility to oxidative stress, 

induction of apoptotic pathways and dysregulation of cytoskeleton associated proteins- 

in HD-iPSCs compared to normal hIPSC or hESCs (Chae et al. 2012). Subsequent 

neural differentiation of HD-iPSC produced SOX1+ PAX6+ NESTIN+ neural 

progenitors which upon terminal differentiation generated ~10% DARP32+ striatal 

neurons (N. Zhang et al. 2010). Both neural progenitors and neurons maintained same 

CAG expansion as in patients. Some features of HD phenotype were exhibited during 

in vitro differentiation, such as enhanced caspase 3/7 activity in neural progenitors 

upon growth factor withdrawal (N. Zhang et al. 2010), HTT aggregate formation upon 

addition of proteasome inhibitor MG132 (Jeon et al. 2012) and increased cell death 

and stunted neurite outgrowth in MAP2+ neurons (Chae et al. 2012). In vivo at 9 

months transplantation to mouse brain, HD-iPSC-derived neuronal cells showed HTT 

aggregates (Jeon et al. 2012). Camnasio et al. (2012) generated HD-iPSC lines from 

two patients- one heterozygous mutant HTT (44 repeats) and a homozygous mutant 

HTT (39–44 repeats) using lentiviral vectors. Analysis of pluripotency markers and in 

vitro and in vivo differentiation into derivatives of three germ layers confirmed 

pluripotency of these lines. CAG repeat length was maintained during reprogramming, 

long-term culture and neuronal differentiation. Neural differentiation efficiency of 

these HD-iPSCs was similar to that was seen in wild type iPSCs and yielded 

NESTIN+ PAX6+ neural progenitors which upon terminal differentiation generated β-

III tubulin+ or MAP2+ neurons. Unlike previously reported by Zhang et al. (2010) in 

HD-iPSC with 72 CAG repeat, there was no difference in caspase activation. 

However, there was increased lysosomal activity in HD-iPSCs and HD-iPSC-derived 

neurons compared with wild type iPSCs (Camnasio et al. 2012). Juopperi et al. (2012) 

generated HD-iPSC lines from a father (50 CAG repeats) and daughter (109 CAG 

repeats) using a retroviral method. Both lines demonstrated pluripotency, as described 

previously for other HD-iPSC lines. Interestingly, differentiation to neural lineage 

produced phenotypically normal functional neurons, whereas differentiation into 
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astrocytic lineage showed the presence of clear cytoplasmic vacuoles (a phenomenon 

previously reported in blood lymphocytes from HD patients) which were more 

pronounced in HD-iPSC with 109 repeats (Juopperi et al. 2012). Remarkably, the 

vacuoles appeared without addition of stressors and increased over time. The HD iPSC 

Consortium (2012) reported generation of various HD-iPSC lines with 60, 109 and 180 

CAG repeats using lentiviral vectors. Most of the lines exhibited CAG stability with 

passage or upon differentiation. Neural differentiation of HD-iPSC yielded SOX1+ 

SOX2+ NESTIN+ PAX6+ progenitors that expressed mutant HTT proteins and showed 

dysregulation of actin cytoskeleton, decreased cell-cell adhesion properties and 

reduction in energy metabolism. Further differentiation and maturation of progenitors 

yielded MAP2+ GABA+ neurons with functional expression of voltage activated K+, 

Na+ and Ca2+ currents and generated induced and spontaneous action potential, 

however in the HD180 line, no spontaneously firing neurons were detected. These 

neurons had increased caspase 3/7 activity and showed increased cell death (The HD 

iPSC Consortium 2012). Furthermore, microarray profiling of neural progenitors and 

neurons revealed CAG repeat–associated gene expression that distinguished patient 

lines from control and early onset vs late onset (The HD iPSC Consortium 2012). 

Genetic correction of HTT gene has been attempted in HD-72 iPSCs generated by Park 

et al. (2008) to replace CAG expansion with 21 repeat via homologous recombination. 

The corrected HD-iPSCs generated DARPP32+ neurons in vitro and in vivo. The 

correction normalized pathological HD signalling such as cadherin, BDNF and caspase 

activation as well as reversed HD phenotypes such as altered mitochondrial 

bioenergetics and susceptibility to cell death (An et al. 2012).  

Together, the studies described here demonstrate that hPSC models 

recapitulate HD pathogenesis and provide insight into underlying cellular and 

molecular events. They are advantageous over post-mortem tissues and animal models 

in that neuronal differentiation and disease pathology could be reproduced and be 

monitored. hiPSCs provide proof-of-concept for future high-throughput therapeutic 

screens.  

1.4.5.2 Directed differentiation of hPSC into medium spiny neurons 

Over the last few years, the establishment of hPSCs lines has led to the 

generation of protocols for directing their differentiation into cell types of interest. For 

generation of striatal cell types that are of direct relevance to HD, the present protocols 
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in literature are targeted at specifying hPSCs into DARPP32 expressing MSN like 

neurons (summarised in Table 1). A small number of publications have also reported 

on functionality of these hPSC derived progenitors for striatal reconstruction from 

grafting into HD animal models.   

The directed differentiation protocols have exploited the knowledge on the 

in vivo embryo developmental pathways to drive hPSC differentiation sequentially 

through neuroectoderm, telencephalon and LGE intermediates to a striatal like 

neuronal population. The protocols exploit either a non-adherent embryoid body (EB) 

culture or an adherent monolayer culture using substrates. Recapitulation of neural 

development is achieved in vitro by temporal integration of developmental signals by 

means of exogenous growth factors or small molecules. For the purpose of this thesis, 

LGE-like specification of hPSCs is reviewed here as 3 successive developmental 

stages neural induction, progenitor specification and neuronal differentiation.  

1.4.5.2.1. Neural Induction 

The various approaches to drive hPSC differentiation along neural lineage 

include co-culture on stromal cells (murine stromal cells MS5 or PA6), culture in 

neuralizing medium and dual smad inhibition. Co-culture method relies on the neural 

inducing properties of stromal cells. hES co-culture on MS5 (in DMEM/F12 

containing 15% knock out serum replacement (KSR) and amino acids) with 

subsequent culture in N2 medium (containing DMEM/F12 supplemented with insulin, 

transferrin, putrescine, selenium chloride and progesterone) yielded neural rosettes 

expressing PAX6, NESTIN, NCAM and SOX1 at 3 weeks of differentiation (Perrier et 

al. 2004; Aubry et al. 2008). Co-culture of HD-iPSCs on PA6 followed by growing 

neural rosettes in suspension in N2 medium yielded high levels of SOX2 and NESTIN 

(Jeon et al. 2012). Although seemingly efficient, the stroma feeder neural induction 

has the drawback of relying on nonhuman cell derived unidentified factors. Many 

studies have focused on developing more defined culture conditions. Culture of hES 

EB (chopped hESC colony fragments maintained in suspension as spheres) in 

neuralizing medium containing human serum albumin, insulin, transferrin, lipids and 

amino acids resulted in loss of pluripotent markers POUF1 and NANOG and 

acquisition of PAX6, NCAM and SOX1 by 16 days (Joannides et al. 2007). hESC EBs 

grown in ESC medium (containing 15% knock out serum replacement and FGF-b) for 

4 days, then in N2 medium (containing DMEM/F12, aminoacid, heparin and N2 
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supplement) for 2 days and plated down onto laminin formed SOX1+ SOX2+ PAX6+ 

neural rosettes over 10-15 days (Pankratz et al. 2007; Ma et al. 2012). A modification 

of this EB protocol by replacing ESC medium gradually over 8 days with 20% foetal 

bovine serum containing medium and then plating EB onto poly-orinithine/laminin in 

medium supplemented with 25ng/ml bFGF induced 95% SOX1+ PAX6+ NESTIN+ 

neural progenitors from HD-iPSCs (N. Zhang et al. 2010). Understanding of 

developmental cues has not only allowed to refine the neural induction protocols but 

also to investigate these early events under in vitro condition. Inhibition of BMP 

signalling by Noggin treatment of hESCs (cultured in the presence of serum), blocked 

BMP-mediated differentiation into extra-embryonic endoderm and induced the 

expression of PAX6 and NESTIN (Pera et al. 2004). This effect of Noggin was 

reproduced for neural specification of hES EBs under chemically defined serum free 

condition (Itsykson et al. 2005). Supplementing Noggin during neural induction on 

MS5 also promoted neural specification (Lee et al. 2007; Chambers et al. 2009). Nodal 

inhibition accomplished by over expression of full length Lefty2 or truncated form of 

Cerberus in hESC and culture as EB in CDM (50% IMDM and 50% F12NUT-MIX 

supplemented with insulin, transferrin and bovine serum albumin) enhanced neural 

specification as seen by increased expression of NESTIN and SOX1 (Smith et al. 

2008). Similar effects were reproduced during hESC EBs differentiation for 14-16 

days in CDM supplemented with small molecule inhibitor of Activin/Nodal signalling- 

SB431542 (Smith et al. 2008). Synergistic action of Noggin and SB431542 for a 

highly efficient neural conversion of hESCs was demonstrated by Chambers et al. 

(2009). Under monolayer adherent culture conditions, supplementing KSR medium 

with Noggin and SB431542 for 11 days increased efficiency to > 80% compared with 

< 10% PAX6+ cells when Noggin or SB431542 were used alone (Chambers et al. 

2009). Temporal analysis of gene expression revealed that SB431542 treatment alone 

induced rapid loss of NANOG, suppressed mesodermal marker BRACHYURY and 

increased expression of trophoblast marker CDX2. Addition of Noggin suppressed 

CDX2 and endodermal marker SOX17. Thus, SB431542 and Noggin synergistically 

would promote neural specification by destabilizing pluripotency network and 

suppressing differentiation towards trophoblast/mesodermal/endodermal fate. 

Temporal fate analysis of Noggin/ SB431542 treatment revealed a transient FGF5+ 

OTX2 + epiblast like stage at day 5 followed by induction of SOX1 and PAX6 by day 

7 (Chambers et al. 2009). Furthermore, in comparison to MS5/Noggin protocol, 
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Noggin/ SB431542 yielded high efficiency neural conversion (Chambers et al. 2009). 

Noggin/ SB431542 dual smad inhibition protocol thus obviates the need for feeder 

cells and induces high neural conversion of hESCs under more defined conditions. It is 

advantageous over other protocols in terms of scalability for generating clinical grade 

neural progenitors.  

1.4.5.2.2. Progenitor specification towards LGE like fate 

hPSC differentiation could be directed to a specific progenitor type by 

exposing to signals that establish early AP axis and D/V regionalization and 

specification. During my research study, I analysed the role of WNT and SHH 

signalling at this context. Here I review the key findings published in the same period 

by other research groups.  

As described in session 1.3.3, during early development, antagonism of 

WNT activity is required to establish the telencephalon. Neural progenitors derived 

using stromal co-culture, serum free EB method or dual smad inhibition protocol 

exhibit FOXG1+ telencephalic progenitors by default (Elkabetz et al. 2008; Pankratz et 

al. 2007; Chambers et al. 2009; DelliCarri et al. 2013). Use of WNT inhibitor DKK1 

(100ng/ml) to efficiently induce FOXG1+ telencephalic precursors was first described 

with mouse ESC (Watanabe et al. 2005; Ten Berge et al. 2008). Similarly, plating of  

neurogenic hES EBs (generated using serum free EB method), in the presence of 

DKK1 (500ng/ml), as well as Lefty A and BMP inhibitor- BMPRIA-Fc induced 

telencephalic fate; at day 35, the cultures contained FOXG1+(~34%), PAX6+(~98%) 

and NKX2.1+(<1%) progenitors (Watanabe et al. 2007). Dual-SMAD inhibition 

combined with DKK1 (100ng/ml) treatment highly enhanced expression of FOXG1 

and SIX3 and downregulated expression of caudal markers OTX1 and LMX1A 

(Nicoleau et al. 2013). In contrast, treatment with WNT3a promoted OTX1 and most 

caudal HOXB3 markers (Nicoleau et al. 2013). In the absence of any morphogen, 

FOXG+ hPSC progenitors adopted PAX6+ dorsal telencephalon fate (Chambers et al. 

2009; Li et al. 2009; Nicoleau et al. 2013). This default dorsal telencephalon fate is 

attributed to endogenous WNT ligands which promote a repressive form of GLI3 

which in turn antagonizes SHH signalling (Li et al. 2009). Treatment with 100ng/ml or 

500ng/ml DKK1 did not alter proportion of PAX6 or NKX2.1 among FOXG1+ cells 

(X. Li et al. 2009). Thus inhibition of WNT signalling efficiently induced FOXG1, 

however it did not mediate ventral telencephalon specification.  



Introduction 

-58- 

SHH, as described in 1.3.3, is a known morphogen for ventral 

telencephalon patterning. SHH, either a defined dose or with combinatorial WNT 

inhibition, has been used to promote ventral telencephalon specification during mESC 

and hPSC differentiation. SHH treatment increased Nkx2.1+ or Isl1/2+ among Foxg1+ 

cells during mESC EB (Watanabe et al. 2005) and hESC EB differentiation (Watanabe 

et al. 2007). A dose dependent SHH effect has been demonstrated; the highest dose 

lead to MGE fate while a moderate dose specified LGE during mESC (Danjo et al. 

2011) and hESC neural conversion (Ma et al. 2012). The highest SHH doses (500-

1000ng/ml) reduced PAX6 while increased NKX2.1 and MEIS2 and did not affect 

FOXG1 and OTX2 (Li et al. 2009; Ma et al. 2012). Moderate SHH dose (200ng/ml) 

minimally elevated NKX2.1, optimally reduced PAX6, highly induced MASH1, 

MEIS2 and GSX2, suggesting LGE fate (Ma et al. 2012). In conjunction with DKK1, 

SHH significantly enhanced GSX2, DLX2, ASCL1 and NKX2.1 (Watanabe et al. 2007; 

Aubry et al. 2008; Li et al. 2009; Delli Carri et al. 2013; Nicoleau et al. 2013) and 

downregulated PAX6, EMX1 and TBR2 (Li et al. 2009; Nicoleau et al. 2013). 

Interestingly, SHH mediated ventralization (at optimal 50ng/ml that enhanced LGE 

markers) was shown to be enhanced by small molecule WNT antagonist XAV939 

(explained in 1.5.2) in a dose dependent manner; there was proportional upregulation 

of GSX2, DLX2, ASCL1 and MEIS2 from 0.25 to 1µM XAV-939. There was no further 

increase of these genes at 4µM XAV-939, in contrast, there was progressive increase 

in NKX2.1 and LHX6 indicating MGE fate (Nicoleau et al. 2013). However, in the 

absence of SHH, this ventralizing property of XAV-939 was reduced, even the highest 

dose was not sufficient to promote MGE identity (Nicoleau et al. 2013). Thus 

coordination between WNT and SHH pathways may mediate LGE specification of 

hPSCS (Li et al. 2009; Nicoleau et al. 2013).  

Studies indicate that SHH mediated ventral telencephalon specification is 

both temporal and dose dependent. Early SHH treatment during mESC neural 

conversion was not able to generate telencephalic progenitors (Danjo et al. 2011). 

Similarly during hESC differentiation (dual smad inhibition combined with WNT 

inhibition and SHH activation), an early SHH exposure suppressed FOXG1 induction, 

whereas late exposure did not have significant effect on telencephalon markers 

(Fasano et al. 2010; Ma et al. 2012; Maroof et al. 2013). In XAV-939 treated day 20 

cultures, addition of SHH or cyclopamine at day 4 or 10 did not alter telencephalic 

fate, but induced ventralization in dose dependent manner (Nicoleau et al. 2013). In 
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vitro timing of SHH is also shown to affect MGE derived cortical interneuron identity 

during hPSC derived NKX2.1:GFP+ cells differentiation; late SHH exposure (10-18 

days), robustly induced cortical interneuron progenitor markers OLIG2 and NKX6.2 

and LHX6 (Maroof et al. 2013). And in all SHH treated cultures (2-18, 6-18 and 10-18 

days ), there was also an induction of floor plate marker FOXA2  (Maroof et al. 2013). 

Recently, a novel method using Activin A (referred to as Activin hereafter) 

was shown to induce LGE characteristics in hPSC derived anterior neural progenitors 

(Arber et al. 2015). Activin treatment induced upregulation of GSX2, DLX2, ASCL1, 

NOLZ1, EBF1 and CTIP2 and downregulation of PAX6 mRNA. At protein level, 

abundant expression of GSX2+ (55±10%), DLX2+ (25±12%), CTIP2+ (50±12%), 

FOXP2+ (16±6.7%) and NOLZ1+ (16.7±1.7%) were detected (Arber et al. 2015). The 

same study reported that Activin and SHH act differentially in regulating LGE fate. 

Compared to Activin treatment, SHH treatment alone or in combination with Activin, 

upregulated mRNA expression of NKX2.1 and LHX8, but did not increase LGE 

specific CTIP2, NOLZ1, GSX2 and DLX2 mRNA expression (Arber et al. 2015). 

Blocking endogenous SHH signalling by cyclopamine (at a dose that inhibited 

NKX2.1 induction) did not affect Activin mediated upregulation of GSX2, CTIP2 or 

FOXP2 (Arber et al. 2015). This finding suggested that Activin induces LGE/striatal 

characteristics independently of SHH signalling. A steady increase in the number of 

CTIP2+ with increasing time of Activin treatment may suggest its requirement for 

stable maintenance of CTIP2 phenotype and induction of MSN like fate (Arber et al. 

2015). Interestingly, Nicoleau et al. (2013) showed that in conjunction with DKK1, 

high dose of SHH (200ng/ml) decreased CTIP2+ and increased NKX2.1+ cells 

(Nicoleau et al. 2013). These finding suggests that SHH mediated LGE specification 

may occur via an indirect signalling of MGE fate induction, whereas Activin may 

directly mediate LGE specification.  
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1.4.5.2.3 Neuronal differentiation towards MSN phenotype 

The relevance and quality of exogenous signal-mediated LGE progenitor 

specification of hPSCs, is largely dependent on the strength of this commitment during 

terminal neuronal differentiation and maturation. Neuronal differentiation of ventral 

progenitors patterned by SHH treatment, generated GABA+ DARPP32+ neurons in 

SHH dose-dependent manner; progenitors generated at 200ng/ml produced the best 

yield compared to 500ng/ml (Ma et al. 2012). At day 47 of differentiation in the 

presence for VPA for 6 days followed by BDNF, GDNF, Insulin-like growth factor 

(IGF1) and cAMP, the majority of neurons were βIII-tubulin+, among which 1.2+0.8% 

were choline acetyltransferase+ (ChAT) and 90.2+4.2% were GABA+ MEIS2+ 

GAD65/67+ neurons with numerous spines on their dendrites. 89.7+9.3% GABA+ 

neurons co-expressed DARPP32 (Ma et al. 2012). In vivo at four months post 

transplantation, day40 LGE-like progenitors transplanted into QA lesioned SCID mice 

generated GABA+ MEIS2+ CTIP2+ DARPP32+(58.6+3%) neurons with numerous 

synaptophysin+ dendritic buttons along MAP2+ dendrites (Ma et al. 2012).Presence of 

human specific synaptophysin+ DARPP32+ neurons in susbstatia nigra indicated 

striatal projection neuron characteristics. Furthermore, GABA+ cell bodies showed 

robust co-labelling of TH and vGlu suggestive of dopaminergic and glutamatergic 

input respectively. Collectively, these results indicated that graft derived GABA 

neurons connected with endogenous circuit (Ma et al. 2012).  

Neuronal differentiation of PA6-stromal induced rosettes EBs by plating 

down EBs in the presence of BDNF produced LGE progenitors as well as striatal 

neurons ((Jeon et al. 2012). LGE progenitors were OTX2+ (76.0+1.3%) FOXG1+ 

(38.4+3.4%), GSX2+ (28.8+2.8%) and DLX2+ (34.1+4.5%). Co-localized expression 

of DARPP32+ (27.0+1.7%) with GSX2 and DLX2 and the presence of GABA+ 

(75.1+2.2%) confirmed striatal MSN like phenotype. The cultures also contained 

neuronal proteins such as CALB+ (19.1+2.1%), MAP2+ (89.1+5.5%), Synaptophysin+ 

(20+3.8%) and NeuN+ (88%) (Jeon et al. 2012). In vivo, at 12 weeks post-

transplantation, the graft derived cells contained some NESTIN+ progenitors as well as 

striatal neurons that were GABA+ DARPP32+ GAD65/67+ (Jeon et al. 2012). Terminal 

differentiation of MS5 stroma-induced rosettes with subsequent DKK (100ng/ml) 

+SHH (200ng/ml) patterning, was carried out by mechanically isolating neural rosettes 

and re-plating in medium containing dibutyryl-cAMP (dbcAMP) and valproic acid 
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(VPA) (Aubry et al. 2008). At day 63, the cultures contained numerous 

PAX6+/NESTIN+ (60-70%) progenitors as well as MAP2+ (22+2%) mature neurons. 

Among MAP2+ neurons, 53+6% co-expressed DARPP32, 36+2% co-expressed 

GABA, 10+2% co-expressed Calbindin (CALB) and 55+7% co-expressed Calretinin. 

At mRNA level, expression of DARPP32, GAD67 and CALB were upregulated (Aubry 

et al. 2008). In vivo differentiation upon transplantation of day 45 cultures into QA 

lesioned rat striatum, generated human nuclear antigen+ (HNA) MAP2+ NeuN+ 

neurons among which 21+7% were DARPP32+ (Aubry et al. 2008). Ventral 

progenitors derived from EB based neural induction followed by DKK1, SHH 

(250ng/ml) and BDNF patterning, generated ~10% DARPP32 upon terminal 

differentiation in the presence of BDNF, VPA, cAMP and Y27632. The neurons were 

also immunoreactive for β-tubulin, GABA and CALB (N. Zhang et al. 2010). 

Li et al. (2009) reported that default dorsal telencephalic progenitors 

(induced in the absence of any morphogens) at 6 weeks of terminal differentiation, 

generated 9% ISL1+ post mitotic neurons, whereas DKK1+SHH patterned progenitors 

generated 40% ISL1+ cells. Further differentiation of DKK1+SHH progenitors till 

week10, resulted in neuronal maturation into striatal GABAergic identity as evidenced 

by expression of βIII tubulin, MAP2, CTIP2 (14%) and some staining for GAD65/67, 

GABA and DARPP32 (Li et al. 2009). In contrast, default dorsal progenitors 

differentiated into CTIP2+ (57%) vGLUT1+ glutamatergic neurons (Li et al. 2009). In 

vitro differentiation of LGE like progenitors generated by dual smad inhibition with 

combinatorial SHH (200ng/ml)/ DKK (100ng/ml), yielded neurons of GABAergic 

MSN phenotype (DelliCarri et al. 2013). At day 45 of differentiation in the presence of 

B27 and BDNF, neuronal network contained βIII-tubulin+ (80%), MAP2+ and TAU+ 

cells along with proteins of GABAergic specification- GAD65/67 and GABA- as well 

as proteins of striatal specification- CALB1, CTIP2, FOXP1, FOXP2 and DARPP32 

(DelliCarri et al. 2013). Temporal mRNA expression analysis revealed gradual 

increase of ARPP21, DARPP32 and DRD1 from day 45 to day 80 and high expression 

of ISL1 at day 45 and downregulation thereafter. At day80, the cultures contained βIII-

tubulin+ (17%), NESTIN+ (7%), MAP2+ (50%) and GFAP+ (25%). MAP2+ neurons 

co-expressed DARPP32+ (20%), GABA+ (78%), CTIP2+ (60.3%) and CALB1+ 

(53%). βIII-tubulin+ co-expressed DRD2 and CTIP2. Striatal interneurons were also 

detected as CALB1+/ CTIP2- (15.7%), Calretinin+ (7%) and SST+ (0.2%) (DelliCarri 

et al. 2013). Furthermore, in vivo maturation of progenitors towards MSN fate was 
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demonstrated; at 9 weeks post transplantation in QA lesioned HD rat brain extensive 

FOXP1, FOXP2 and DARPP32 staining was detected (DelliCarri et al. 2013). In vitro 

differentiation of LGE like progenitors generated using SHH (50ng/ml) and increasing 

dose of XAV-939 (0.25, 1 and 4µM), yielded striatal characteristics in XAV-939 dose 

dependent manner (Nicoleau et al. 2013). The best yield of MSNs was observed at 

1µM XAV-939. After 45 days of differentiation in medium containing BDNF, cAMP 

and valproic acid (VPA), culture persisted expression of FOXG1 and expressed post 

mitotic markers MAP2 (~70%), alpha synuclein (SNCA) or synaptophysin (SYP). 

Robust maturation into MSN like neurons were evident; ~30% of MAP2+ neurons co-

expressed DARPP32, CTIP2, FOXP1 and DRD2 and ~25% of MAP2+ neurons co-

expressed Calbindin. The cultures were also immunoreactive for HuCD (~70%) of 

which ~5% co-expressed Calretinin (Nicoleau et al. 2013). In vivo, at 5 months post 

transplantation into QA lesioned rat, graft derived cells HNA+ FOXG1+ DARPP32+ 

neurons co-expressed CTIP2 and FOXP1 (Nicoleau et al. 2013).  

Differentiation of Activin A patterned progenitors, in media supplemented 

with BDNF and GDNF showed an increase in striatal markers (Arber et al. 2015). At 

day 36 of differentiation, there was an upregulation of PPP1R1B (DARPP32), 

ARPP21 (cAMP regulated phosphoprotein), CALBINDIN, PENK (proenkeohalin), 

TAC1 (tachykinin), DRD2 and GAD1 and downregulation of TH (tyrosine hydroxylase 

associated with dopamine neurons) (Arber et al. 2015). At protein level, there was 20 

to 50% DARPP32+ neurons, depending on cell line tested. All DARPP32+ co-

expressed MAP2, NeuN, PSD65 and CTIP2. A proportion of CTIP2+ co-expressed 

Calbindin and all CTIP2+ cells co-expressed GAD65/67 (GAD2/1) revealing 

GABAergic striatal projection neurons phenotype. A small number of TBR1+, SST+ 

(somatostatin) were also detected (Arber et al. 2015). Furthermore, at 16 weeks post 

transplantation in rat HD model, graft derived cells exhibited GABA (86+4.6%) and 

DARPP32 (~50%) co-expressing HuNu. 43+11% and 35+8% of HuNu+ cells co-

expressed FOXP2 and Calbindin respectively. There were also cells immunoreactive 

for substance P and DRD2 suggesting the presence of both direct and indirect pathway 

MSNs (Arber et al. 2015).  
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Table 1 hPSC directed differentiation protocols 

References  Cell lines Patterning using growth factors   In vitro differentiation  In vivo differentiation 

markers  

 

 
 

Neural 
Induction 

LGE like 
Progenitor 
specification 

Media 
supplements 

Progenitor markers 
 

Striatal neuron 
markers 

Arber et al. 
2015 

hESC 
(H1,H7 
,H9) 
hIPSC 
(2F8,4FH) 

Noggin + 
SB431542 or 
Dorsomorphin/
LDN+ 
SB431542 in 
N2B27 media 
(DMEM-
F12/Neurobas
al (2:1)+ N2+ 
B27 
(-Retinoic 
acid) 

Activin A in 
N2B27 media 

BDNF + 
GDNF 
in N2B27 
media 

At protein level : 
NESTIN, 
FOXG1,OTX2, 
GSX2+ (55+10%), 
DLX2+ (25+12%),  
CTIP2+ (50+12%),  
FOXP1+ (16+6.7%),  
NOLZ1+ (16.7+1.7%) 
At mRNA level: GSX2, 
DLX2, ASCL1, NOLZ1, 
EBF1, CTIP2 

At protein level :  
MAP2, NeuN, 
DARPP32+ (20-50%), 
CTIP2,  SST+ (<1%),  
CALBINDIN, 
GAD65/67,  CR+ 
(6+1.2%), TBR+1 
(10%) 
At mRNA level: 
PPP1R1B , ARPP21, 
CALB, PENK, TAC1 
DRD2,GAD1 

At protein level :  
GABA (86+4.6%), 
DRD2, 
SUBSTANCE P, 
PSD65, TBR1. And 
as a percentage of 
HuNu+ cells 
(49+5%); DARPP32+ 
(49+5%), FOXP2+ 
(43+11%), CALB+ 
(35+8%) 

Nicoleau et 

al. 2013 
hESC 
(H9, RC9) 
hIPSC 
(190c17) 

Noggin + 
SB431542 or 
LDN+ 
SB431542 in 
N2B27 media 

DKK1+ 
SHHC25II or 
XAV939+ 
SHHC25II in 
N2B27 media 

BDNF + 
dbcAMP+ 
VPA 
in N2B27 
media 

At protein level : 
FOXG1 (78-90%), 
OTX2 (81+1%), 
GSX2(~40-60%),  
NKX2.1 (~30%) 
CTIP2(<10%) .  
At mRNA level: 
FOXG1, SIX3 GSX2, 
DLX2, ASCL1, 
NKX2.1,MEIS2 
,LHX6 

At protein level :  
FOXG1 and as a 
percentage of MAP2+ 
(~70%); DARPP32+ 
(~30%), CALB+ 
(~25%) 
And as % of HuCD+ 
(~70%); Calretinin+  
(5%) 
At mRNA level: 
MAP2, CTIP2, 
ARPP21, DARPP32, 
GAD1,CALB,DRD1, 

At protein level :  
FOXG1,CTIP2, 
DARPP32,D2DR, 
SubsP, FOXP1 
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SubstP 
Aubry et al. 
2008 

hESC 
(SA-01, 
H9) 
 

MS5 stromal 
co-culture 

DKK1+ SHH in 
N2 medium 

BDNF + 
dbcAMP+ 
VPA in N2 
medium 
 

At mRNA level: 
GSX2, DLX2 

At protein level : 
PAX6+ (60%), 
NESTIN+ (70%) and 
as % of MAP2+ 
(22+7%); DARPP32+ 
(53+6%), GABA+ 
(36+2%), CALB+ 
(10+2%),  Calretinin+ 
(55+7%)  
At mRNA level: 
DARPP32, GAD67 
and CALB 

At protein level : 
HNA, MAP2,NeuN, 
DARPP32 

Ma et al. 
2012 

hESC 
(H9, H1) 
 

Serum free  EB 
method 

SHH or 
pumorphamine 
in N2 medium 

VPA + 
BDNF + 
GDNF+ 
cAMP+ 
IGF1 in 
N2B27 
medium 
 

At protein level : 
MASH1, MEIS2 GSX2 

At protein level : 
GABA+ /MEIS2+/ 
GAD65/67+ 
(90.2+4.2%) of which 
89.7+9.3%  
DARPP32+ 
 

At protein level : 
GABA+ MEIS2+ 
CTIP2+ DARPP32+ 

(58.6+3%) , 
synaptophysin+ 
MAP2+ 
 

Delli Carri et 
al. 2013 

hESC 
(H9, 
HS401) 
hIPSC 
(DF3F) 

Noggin + 
SB431542 or  
Dorsomorphin + 
SB431542 in 
N2 media 

DKK1+ 
SHHC25II in 
N2 medium 

B27+ BDNF 
in N2 medium 

At protein level : 
FOXG1 (58%), OTX2  
(88%) 
PAX6 (64%) 
GSX2 (63.7+8%) 
  
 

At protein level : 
βIII-tubulin+ (17%), 
NESTIN+ (7%), 
GFAP+ (25%) and as a 
percentage of MAP2+ 
(50%); DARPP32+ 
(20%), GABA+ (78%), 
CTIP2 + (60.3%) and 
CALB1+ (53%) 
CALB+/ CTIP2- 
(15.7%), Calretinin+ 
(7%) and SST+ (0.2%)   

At protein level : 
FOXP1, FOXP2 and 
DARPP32 
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At mRNA level: 
ARPP21, DARPP32, 
ISL1, DRD1 

Watanabe et 

al. 2007 
hESC 
(KhES-
1,2 and 3) 
 

Serum free  EB 
method 

DKK1+SHH+L
efty A+ 
BMPRIAFc 

 At protein level : 
As a % of FOXG1+ 
(34%); PAX6+(~20%), 
NKX2.1+(~42%), β-
tubulin 

Not tested  Not tested 

Zhang et al. 
2010 

HD iPSC EB method in 
20% FBS media 

DKK1+ SHH in 
N2 medium 

BDNF + 
dbcAMP+ 
VPA in N2 
medium 

Not tested At protein level : 
DARPP32+ (~10%), β-
tubulin, GABA and 
CALB  

Not tested 

 Li et al. 2009 hESC 
(H9, H1) 
 

Serum free  EB 
method 

DKK1+ SHH in 
N2 medium 

VPA + 
BDNF + 
GDNF+ 
cAMP+ 
IGF1 in 
N2B27 
medium 

At protein level : 
FOXG1, NKX2.1, PAX6  

At protein level : 
ISL1 (41%), βIII tubulin, 
MAP2, CTIP2(14%)  
GAD65/67, GABA 
DARPP32 
  

Not tested 

Jeon et al. 
2012 

HDiPSC 
72 CAG 

PA6 stromal co-
culture followed 
by EB culture 

 BDNF in N2 
medium 

 
 

At protein level : 

OTX2+ (76.0+1.3%) 
FOXG1+ (38.4+3.4%), 
GSX2+  (28.8+2.8%),  
DLX2+ (34.1+4.5%), 
MAP2+ (89.1+5.5%) 
DARPP32+ (27.0+1.7%) 
CALB+ (19.1+2.1%) 
SYNAP+ (20+3.8%) 
GABA+ (75.1+2.2%) 

NeuN+ (88%)  

At protein level : 

NESTIN+ GABA+ 
DARPP32+  
GAD65/67+  
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1.5 Small molecules mediated differentiation  

Small molecules offer a powerful tool to target signalling pathways in a 

controlled manner to study the molecular mechanisms of differentiation. Small 

molecules can replace the expensive recombinant proteins and therefore are suitable 

for the development of chemically defined and cost effective culture conditions for 

generating clinical- grade hPSC derivatives. This thesis aims to use small molecules to 

direct hPSC differentiation. Here, I briefly introduce the small molecules used in this 

thesis and present the recent progress (other similar studies published during the period 

of my research) on the use of small molecules in neural induction and 

telencephalon/LGE specification 

1.5.1 BMP Inhibitors 

Dorsomorphin (6- [4- (2-Piperidin-1-ylethoxy) phenyl] -3-pyridin-4-

ylpyrazolo [1,5-a] pyrimidine, also referred to as compound C) was the first identified 

small molecule inhibitor of BMP signalling (Figure 1:17A.1). Dorsomorphin was 

identified by screening a diverse chemical library that perturbed zebrafish embryo D-V 

axis formation. Dorsomorphin selectively inhibits BMP type I receptors ALK2, ALK3 

and ALK6 and blocks BMP mediated SMAD 1/5/8 phosphorylation (IC50=0.47 µM) 

(Yu et al. 2008). Structure-activity relationship (SAR) studies of Dorsomorphin led to 

the discovery of more potent analogue LDN193189 (4(6-(4-(piperazin-1-yl) phenyl 

pyrazolo[1,5-a] pyrimidin-3-yl) quinoline hydrochloride (Figure 1:17A.2), which like 

Dorsomorphin, inhibits BMP type I receptors ALK2 and ALK3 but at lower 

concentrations (IC50=5nM and 30nM respectively) (Cuny et al. 2008; Boergermann et 

al. 2010). At higher concentrations, both Dorsomorphin and LDN193189 were also 

shown to have “off target” effects against vascular endothelial growth factor (VEGF), 

Platelet-Derived Growth Factor Receptor-β (PDGFRβ) and BMP induced non-smad 

signalling  such as p38 MAPK, Akt and ERK1/2 (Hao et al. 2010; Boergermann et al. 

2010; Vogt et al. 2011). Another structural derivative of DM called, DMH1 (4-[6-[4-

(1-Methylethoxy) phenyl] pyrazolo[1,5-a] pyrimidin-3-yl]-quinoline) (Figure 

1:17.A.3) specifically inhibits ALK2 receptor (IC50=108nM) and exhibits no 

detectable inhibition of AMPK, VEGFR-2 or PDGFRβ receptors (Hao et al. 2010).  

During hPSC neural differentiation, Dorsomorphin, LDN193189 or DMH1 

in combination with SB431542 generated PAX6+ neuroectodermal cells to a level 
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comparable to Noggin treatment (Morizane et al. 2011; Surmacz et al. 2012; Neely et 

al. 2012; Nicoleau et al. 2013; Delli Carri et al. 2013; Arber et al. 2015) (Table 1). 

1.5.2 WNT inhibitors  

XAV939 (3,5,7,8-Tetrahydro-2-[4-(trifluoromethyl)phenyl]-4H thiopyrano 

[4,3-d] pyrimidin-4-one) (Figure 1:17 B.1) identified through a chemical genetic 

screen was found to antagonize WNT/ β-catenin mediated transcription by directly 

binding to Tankyrase (TNKS) (IC50=4-11nm) (Huang et al. 2009). Another inhibitor, 

IWR-1-endo (4- (1,3,3a,4,7,7a-Hexahydro-1,3-dioxo-4,7-methano-2H-isoindol-2-yl)-

N-8-quinolinyl-Benzamide), (inhibitors of Wnt response-1, referred to as IWR-1), 

(Figure 1:17 B.2) was identified through cell based screening from a synthetic 

chemical library and was shown to block Wnt-stimulated transcriptional response in 

reporter assays (IC50=180nm). IWR1 induced an increase in Axin2 protein level at 

least in part through TNKS1 and S2 inhibition and promoted β-catenin destruction by 

promoting the stability of Axin-scaffolded destruction complexes (Chen et al. 2009; 

Huang et al.2009). KY02111 (N-(6-Chloro-2-benzothiazolyl)-3, 4-dimethoxy-

benzenepropanamide) (Figure 1:17 B.3) another potent inhibitor was discovered in 

hPSC-based screening. KY02111 treatment dose dependently inhibited TCF reporter 

activity and induced downregulation of WNT target genes possibly by acting 

downstream of APC and GSK3β in β-catenin destruction complex, a manner distinct 

from XAV939 and IWR-1 (Minami et al. 2012). 

During hPSC differentiation, XAV939 (0.25 to 4 µM) was able to replace 

DKK1 and induced FOXG1 and SIX3 expression (Nicoleau et al. 2013; Maroof et al. 

2013). In addition, XAV939 treatment dose dependently enhanced SHH mediated 

ventralization with upregulation of ventral markers (Nicoleau et al. 2013) (explained 

previously in 1.4.). Use of IWR-1 and KY02111 specifically for telencephalon 

induction has not been reported yet. 

1.5.3 SHH agonists  

Small molecule modulation of receptor Smoothened activation by 

Purmorphamine or SAG has been demonstrated to activate Hh signalling and replace 

SHH protein. Purmorphamine (9-Cyclohexyl-N-[4-(4-morpholinyl)phenyl]-2-(1-

naphthalenyloxy)-9H-purin-6-amine) (Figure 1:17 C.1) was originally identified 

through high-throughput cell based screening as an osteoblast inducing agent (Wu et 

al. 2002). Purmorphamine directly binds and activates SMO (EC50=1µM) and 
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modulates its effects through upregulation of Hh pathway downstream members Gli 

and Patched (Sinha and Chen 2006). SAG (N-Methyl-Nʹ-(3-pyridinylbenzyl)-Nʹ-(3-

chlorobenzo[b] thiophene-2-carbonyl)-1,4-diaminocyclohexane) (Figure 1:17 C.2) is a 

synthetic chlorobenzothiophene-containing compound which acts binding to SMO 

(EC50= 0.03µM), but inhibits Hh signalling at >1µM (Chen et al. 2002).  

During human striatal line STROC05 neuronal differentiation, 

Purmorphamine at 1.0µM increased DARRP32+ MSNs (El-akabawy et al. 2011). In 

hPSC models of telencephalon development, PM at 0.65µM concentration induced 

MEIS2+, ASCL1+ LGE-like progenitors, which differentiated into DARPP32+ MSNs 

(Ma et al. 2012). At higher concentrations, Purmorphamine alone at 2µM or at 1.0µM 

in combination with dual smad inhibition (SB431542+LDN193189) and Wnt 

inhibition (XAV 939), induced MGE progenitors with upregulation of 

NKX2.1,NKX6.2, GSX2, DLX2, OLIG2, and LHX6 which differentiated into 

GABAergic cholinergic neurons and cortical interneurons (Nat et al. 2012; Maroof et 

al. 2013). Similarly, SAG at 0.01- 0.1µM dose dependently induced MGE progenitors 

at the expense of LGE fate and generated GABAergic interneurons (Kim et al. 2014) 
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A.1) Dorsomorphin A.2) LDN193189 A.3) DMH1 

B.1) XAV939 B.2) IWR-1 B.3) KY02111 

C.1) Purmorphamine C.2) SAG 

Figure 1:17 Structure of small molecules. 
A) Inhibitors of BMP signalling- A.1) 
Dorsomorphin, A.2) LDN193189, A.3) 
DMH1.  
 
B) Inhibitors of WNT signalling- B.1) 
XAV939, B.2) IWR-1, B.3) KY02111. 

C) Agonists of Hh signalling- C.1) 
Purmorphamine, C.2) SAG 
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1.6 Aims of the thesis  

The generation of neuronal progenitors from hPSCs by directed 

differentiation offers significant opportunities for in vitro disease modelling and 

regenerative medicine. This thesis will focus on understanding the mechanisms 

underlying the generation of LGE-like progenitors from hPSC that are of direct 

relevance to HD. To achieve this, the insight from neural developmental biology will 

be applied and the timing and the context of developmental signals will be studied 

using small molecules. The stages of neuronal differentiation will be characterized 

for molecular markers at mRNA and protein levels.  

The sequential stages of neuronal differentiation and thesis chapters 

focus are outlined in Figure 1:18. Chapter 3 addresses neural induction and 

investigates the effect of BMP inhibition by DM, LDN or DMH. Chapter 4 addresses 

forebrain specification and investigates the role of WNT inhibition by IWR or KY. 

Chapter 5 address ventral forebrain specification and investigates the role of SHH 

activation by PM or SAG. Following this, in chapter 6 the neuronal progenitors are 

differentiated in vitro and neurons are characterized for a striatal phenotype. 
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1. Neural Induction 2. Progenitor specification  3. Terminal differentiation 

hES/iPSC Early progenitors Late progenitors Neurons 

Chapter 1: BMP inhibition (D0-D8)  

Chapter 2: WNT inhibition (D0-D16)  

Chapter 3: SHH activation (D8-D16)  Chapter 4: Terminal differentiation (D16-D37)  
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Figure 1:18 Thesis outline: hPSC are directed to differentiate into MSN like phenotype through sequential steps- Neural Induction, progenitor specification and terminal 
neuronal differentiation. The thesis chapter focuses on temporal integration of signalling pathways- BMP inhibition in chapter 3, WNT inhibition in chapter 4, SHH 
activation in chapter 5. Following which in chapter 6, the differentiated neurons are analysed for a striatal like phenotype 
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2. Materials and Methods 

This chapter details the materials and in-vitro methodologies for the 

maintenance and directed neural differentiation of the human embryonic (hES) and 

induced pluripotent stem cells (hiPSc) as well as the molecular methods for the 

analysis of gene expression at mRNA and protein levels 

2.1 In-vitro Methods 

Initially during my project, the hESc were grown and maintained in hES 

medium containing serum replacement on a layer of mitotically inactivated mouse 

embryonic fibroblast (MEF). Later during the project, this feeder-based undefined 

culture containing xenogeneic elements was replaced with commercially available 

mTeSR1 medium and matrigel substrate for a standardized and better-defined culture 

condition.  

Neural differentiation of hESC was achieved initially in the project, by 

embryoid body (EB) culture in which hESC aggregates were grown in suspension. 

EBs were then attached to poly-L-Lysin and Laminin coated plates to expand the 

neural progenitors. The EB culture system provides the advantage of mimicking in 

vivo embryonic developmental process to some extent. However, the heterogeneous 

size of EBs, difficulty in culture maintenance due to EBs sticking together and low 

yield of neural progenitors were problematic for studies to analyse the effect of 

different small molecules modulators of signalling pathways. So later in the project, 

EB culture conditions were adapted to an adherent monolayer small molecule based 

protocol, where hPSCs were grown on matrigel coated plate for early differentiation of 

neural progenitors and then onto poly-D-lysin and matrigel coated plates for their 

terminal differentiation. 

Unless stated otherwise, all cell culture reagents and all tissue culture 

plates were purchased from Life technologies, Paisley, UK and Fisher Scientific, 

Loughborough, UK, respectively. All cells were grown at 370C in 95% air, 5% CO2 

incubator (Binder, Germany). More information on materials and equipment including 

suppliers and catalogue numbers are listed in section 2.4 
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2.1.1 Derivation, Mitotic inactivation and Cryopreservation of mouse 

embryonic fibroblasts  

2.1.1.1 Derivation of primary culture 

Mouse embryos (Bl6 or 129sv genetic background) were harvested at 12.5 

days post-coitum from timed matings. After removing head and all internal organs, 

embryos were transferred to a dry sterile 90mm Sterilin culture dish, washed twice 

with 10ml phosphate buffered saline (PBS) pH 7.4 and minced using a sterile scalpel 

blade. The minced tissues were collected in a 50ml falcon and incubated with 

collagenase type IV (at a concentration of 2mg/ml in pre-warmed medium and filtered 

using 0.2µm syringe filter (Fisher Scientific)) for 20 minutes at 370C. Using a 10ml 

serological pipette (Sigma-Aldrich, Dorset, UK), the cells were pipetted vigorously up 

and down to acquire a cell suspension and centrifuged at 3000 rpm for 5min. The cell 

pellet was re-suspended in mouse embryonic fibroblast medium (MEF medium) 

consisted of Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% 

foetal bovine serum (FBS) and 1% Antibiotic/Antimycotic solution and plated at a 

ratio of 2embryos/144mm Nunc plate. This was labelled as passage 0 (MEF-P0). 

Cultures were fed daily 

2.1.1.2 Propagation of MEF culture 

P0 cultures were passaged upon reaching 80% confluency. For passaging, 

the media was aspirated off, cells were washed once with 10ml PBS per plate and 

incubated with 0.05% Trypsin-EDTA (5ml/plate) for 5 min at 370C in 5%CO2 

incubator. Tryspin-EDTA was inactivated by adding double the amount of MEF 

medium and the cells were harvested to a 50ml falcon and centrifuged at 3000rpm for 

5 min. The cell pellet was re-suspended in fresh MEF medium and plated at 1:5 ratio 

(i.e., cells from 1 plate were plated into 5 plates). The cells were labelled as MEF-P1. 

Cultures were fed daily. MEF-P1 cultures were passaged and maintained until P3. 

Cultures were terminated at P3 

2.1.1.3 Mitotic inactivation of MEF with γ-irradiation 

MEF cultures were irradiated upon reaching 80% confluency. MEF 

cultures at P1 to P3 were used to generate irradiated MEF (MEFi) stocks. For 

irradiation, cells were harvested from culture dishes using 0.05% Trypsin-EDTA as 
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described above and cell pellet was re-suspended in 20ml MEF media in a 50ml 

falcon. The cells were irradiated for 30 min at 216 rad/min for total of 6480 rad.  

2.1.1.4 Freezing inactivated MEF 

For freezing, the cell suspension after irradiation was centrifuged at 

3000rpm for 5 min. The cell pellet was re-suspended in freezing medium consisted of 

MEF medium with 10% dimethyl sulfoxide (DMSO) (Sigma-Aldrich). Cell count was 

performed using haemocytometer as described below. Cells were frozen at 1-2 x106 

cells/1ml cryovial (VWR, Leicestershire, UK) in 1ml freezing media. These cells were 

labelled as MEFi. The vials were placed in -80 freezer overnight in cryochamber 

Mr.Frosty (Fisher scientific) containing isopropanol for a cooling rate of 1°C per 

minute. The next day, vials were transported to liquid nitrogen dewar.  

2.1.2 Cell count using Haemocytometer 

To determine viable cell count, dye exclusion method was performed, for 

which single cell suspension was mixed with 0.4% Trypan Blue solution (Sigma-

Aldrich) at a ratio of 1:1. The haemocytometer and glass slide (Fisher scientific) were 

cleaned with distilled water and ethanol. 10µl of the cell-trypan blue suspension was 

pipetted into the space between hemocytometer and glass slide and was viewed under 

microscope. Viable cells being impermeable would appear colorless whereas 

permeable dead cells would appear blue. The viable cells in the centre square of the 

haemocytometer were counted. The total number of viable cells/ml was calculated 

using the formula:  

Total number of cells= Cell count x 104 x dilution factor, where 104 is the 

volume of small square in the haemocytometer calculated by multiplying the width by 

the height (1mm each) by the depth (0.1mm each).  

2.1.3 hES culture and maintenance on MEFi feeder layers 

2.1.3.1 Preparation of MEFi feeder layers  

For generating feeder layers, 6cm,Nunc culture plates were coated with 

0.1% gelatin (2ml/plate) (Merck Millipore,UK) for 1 hour in incubator. The MEFi 

frozen vial after spraying thoroughly with 70% ethanol was transported to Class II 

safety cabinet and was thawed by dropwise addition of 1ml pre-warmed MEF media. 

The semi-thawed cell suspension was transferred to a 15ml falcon containing 4ml 
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media and was centrifuged at 1000rpm for 3 min. The cell pellet was re-suspended in 

fresh MEF medium and cells were plated at a cell density 250x103 cells/6cm gelatin-

coated plate. MEFi plates was used upto 5 days for maintaining hES cells. 

2.1.3.2 Maintenance of hES colonies 

Human ES cells (H9, WiCell Research Institute) were maintained on MEFi 

feeder layers in hESC complete medium which consisted of knock-out DMEM (KO-

DMEM) supplemented with 15% Knock-out serum replacement (KSR), 1% MEM 

non-essential amino acids,1% 200mM L-glutamine, 1% Penicillin-streptomycin, 

0.1mM β-mercaptoethanol and Fgf2 (Peprotech, London, UK) at final concentration of 

10ng/ml. hESs were passaged every 3-4 days. For passaging, the culture medium was 

aspirated off, cells were washed with PBS and incubated with Collagenase type IV (at 

a concentration of 1mg/ml in KO-DMEM and filtered before use) and 10µM/ml rock 

inhibitor for 25 min at 370C in 5%CO2 incubator until the colony edges began to lift. 

The culture plate was gently tapped and colonies were lifted off by addition of hES 

medium using a P1000 gilson. The colonies were harvested to 15ml falcon and 

centrifuged for 3 min at 1000 rpm. The cell pellet was re-suspended in 200ul hES 

medium and was broken down into smaller clumps using P200 gilson. hES complete 

medium with Fgf2 for plating was then added. Y-27632 dihydrochloride, the Rho 

kinase inhibitor (Rock inhibitor) (Abcam, Cambridge,UK) at a concentration of 

10µM/ml was added in the media on the day of passaging. To prepare feeder plates, 

medium from MEFi feeder plates was aspirated off before washing with PBS. H9 cell 

clumps were then plated onto these feeder layers at 1:4 ratio (i.e., cells from 1 plate 

were plated to 4 plates) and maintained in hES complete medium. The media was 

replaced daily. 

2.1.3.3 Freezing and Thawing hES colonies 

For freezing, H9 colonies were harvested using Collagenase as described 

above. The cell pellet was re-suspended gently without breaking the colonies much, in 

freezing media consisted of 10% DMSO in FBS plus 10µM/ml rock inhibitor. The 

cyrovials were placed in Mr.Frosty overnight before placing in liquid N2 dewar. hES 

from at 1 x6cm plate was frozen into 1 cryovial.  

 hESc was thawed by drop wise addition of hES medium and care was 

taken to maintain the colonies intact. Following centrifugation at 1000 rpm for 3 min, 
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cell pellet was re-suspended in hES complete medium with 10ng/ml FGF-b. Cells from 

1 cryovial was plated onto 3x6cm MEFi feeder layers. 10µM/ml Rock inhibitor was 

supplemented in the media on the day of thawing. Cultures were fed daily and were 

passaged at 3-4 days after thawing as described above.  

2.1.4 hPSC culture and maintenance on Matrigel in mTeSRTM1 

2.1.4.1 Coating plates with Matrigel 

BD MatrigelTM (VWR) was thawed overnight at 40C and aliquots 

volumes between 275-350µl as per dilution factor in the data sheet provided for each 

batch was frozen at -200C. On the day before plating hPSCs, aliquot was thawed 

overnight at 40C .On the day of plating, one aliquot was added to 25ml cold KO-

DMEM in a 50ml falcon and used immediately to coat plates (1ml/well for 6 well 

plate, nunc and 2ml per 6cm plate, nunc). Coated plates were incubated at 370C in 

5%CO2 incubator for at least 1 hour and matrigel was removed just prior to plating 

down the cells 

2.1.4.2 Preparation of mTeSR media  

mTeSR1 media (Stem cell Technologies, Manchester, UK) was prepared 

as per manufacturer’s instructions. Briefly, to prepare mTeSR1 complete media, 5x 

supplement provided in the kit thawed overnight at 40C and 1% Penicillin-

streptomycin were added to the basal media. The complete media was aliquoted into 

50ml falcons and froze at -200C. On the day before cell plating, aliquot was thawed 

overnight at 40C. 

2.1.4.3 Maintenance of hPSC colonies 

hPSCs (H9, passage 40-60 ,WiCell Research Institute) and hiPSC (34D6, 

passage 20-35, kind gift of Prof. Siddharthan Chandran, Edinburgh,UK and generated 

as previously described Bilican et al., 2012) were maintained on matrigel coated 6cm 

nunc plates in mTeSRTM1 complete media. hPSCs were passaged every 4-5 days using 

dispase (1ml/6cm plate of 1mg/ml solution) (Stem cell Technologies) with 10µM/ml 

rock inhibitor for 20 min at 370C in 5%CO2 incubator. After 20min, dispase was 

aspirated off. Cells were washed once with KO-DMEM to dilute away any residual 

dispase. hPSC colonies were detached from culture dish by addition of KO-DMEM 

using a P1000 gilson, transferred to a 15ml falcon and centrifuged at 1000 rpm for 3 
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min. The cell pellet was re-suspended in 200ul mTeSR medium to break down the 

colonies into smaller clumps. The required amount of mTeSR complete medium with 

10µM/ml rock inhibitor was added. Rock inhibitor was supplemented in the media 

only on the day of passaging. The cells were plated onto matrigel coated dishes at 1:5 

ratio. Cultures were fed daily. 

2.1.4.4 Freezing and Thawing hPSCs 

hPSC colonies were harvested using dispase as described above. The cell 

pellet was re-suspended taking care to maintain the colonies intact in CryostorTM CS10 

supplemented with 10µM/ml rock inhibitor. Colonies from 1x6cm plate was frozen 

into 1 cryovial. 

Frozen hPSCs were thawed by dropwise addition of 1ml pre-warmed 

mTeSR1 media, transferred rapidly as semi-thawed cell suspension to 15ml falcon 

containing 4ml media and centrifuged at 1000rpm for 3 min. The cell pellet was re-

suspended in fresh mTeSRTM1 medium and plated onto matrigel coated dishes. hPSCc 

from 1 cryovial was plated onto 2x6cm plates. Cultures were fed daily and passaged 4 

days after thawing 

2.1.5 Mycoplasma testing of hPSCs 

Mycoplasma being a common contaminant of eukaryotic cell cultures, cell 

cultures were routinely analysed by MycoProbe™ Mycoplasma Detection Assay 

(R&D systems, Abingdon, UK). This colorimetric assay detects the presence 16S 

ribosomal RNA (rRNA) of the eight most common species of mycoplasma 

contaminants through an enzyme linked substrate reaction assay.  

For the assay, all the microplates and reagents provided in the kit (cell lysis 

diluent, capture and detection probes, wash buffer, substrate solution, amplifier 

solution and positive control) were prepared to working concentration as per kit 

instructions.  

Cell culture supernatant samples were prepared by dilution in the lysis 

buffer provided in the kit. All samples were done in duplicates. The lysed samples 

were stored on ice or at -20°C for use at a later time. For the assay, samples alongside 

with positive and negative control samples were hybridized with biotin-labelled 

capture oligonucleotide probes and digoxigenin-labeled detection probes targeted to 

16S rRNA. This hybridisation solution was transferred to streptavidin microplate to 
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capture rRNA/probe. Following washes to remove unbound material, an anti-

digoxigenin alkaline phosphatase conjugate was added. The substrate solution 

followed by amplifier solution was added. The colour would develop in proportion to 

the amount of mycoplasma. The colour development was stopped by addition of stop 

solution and the intensity of colour was measured using a microplate reader set to 

690nm (Fluro Optima, BMG lab tech). The average optical density (OD) of negative 

control was subtracted from all average OD values of all samples. The calculated value 

below 0.05, in the range 0.05-0.10, above 0.1 was taken as negative, suspect and 

positive respectively as per kit instructions 

2.1.6 Alkaline phosphatase staining of hPSCs  

For quick routine characterization of undifferentiated hPSCs, Alkaline 

phosphatase (AP), a membrane marker of undifferentiated hPSC was detected using 

NBT/BCIP substrate (Sigma-Aldrich). Cells were grown in 6 well plate. The media 

was aspirated off and cells were washed with PBS containing Ca2+ and Mg2+ (PBS 

Ca2+Mg2+). The cells were fixed with freshly made 4% ice-cold paraformaldehyde (4% 

PFA) (Sigma-Aldrich) for 20 min at 4°C. Following three times washes with PBS 

Ca2+Mg2+, the cells were incubated with NBT/BCIP substrate (1ml/well,6 well plate) 

for 30 min in dark. The cells were washed with PBS Ca2+Mg2+ and viewed under 

bright field microscope. The undifferentiated hPSC colonies expressing AP would 

appear as purple red colonies whereas differentiated colonies would appear colourless. 

2.1.7 hPSC neural differentiation 

2.1.7.1 Embryoid body differentiation 

H9 ESC colonies grown on MEFi were harvested using collagenase as 

described above. The colonies were re-suspended in chemically defined medium, 

(ADF+ medium) consisted of advanced DMEM/F12, supplemented with 1% 

Penicillin-streptomycin, 1% 2mM L-glutamine, 1% lipid concentrate, 12.5mg/ml 

transferrin (final concentration of 150µg/ml), 10mg/ml Insulin (final concentration 

14µg/ml) and 0.1mM β-mercaptoethanol. Colonies were chopped to 150µM fragments 

using tissue chopper and plated on untreated bacteriological grade sterlin culture dish 

as floating aggregates. This was referred to as day 0 of differentiation (D0). The 

colonies from 2 x 6cm nunc dishes were plated onto 1 x10cm sterlin dish. Half media 

change was performed every other day by swirling the plate to bring the embryoid 
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bodies (EB) to the middle of the plate and carefully taking off half media and adding 

fresh media. 

To analyse the effect of SMAD pathway modulation, the medium was 

supplemented with small molecule modulators of the pathway from D0 of 

differentiation. SB431542 was re-suspened in ethanol and used at 10µM until D4. 

Recombinant protein Noggin was re-suspened in PBS+0.1% BSA and used at 

300ng/ml until D8. To replace Noggin with small molecules Dorsomorphin, 

LDN193189 or DMH1, were re-suspended in DMSO and used at 0.25,0.5 and 1µM.  

On D8, EBs were plated down to expand as monolayer adherent neural 

progenitor cultures. 13mm glass coverslips (VWR) was first coated with poly-L-Lysin 

(PLL) (Sigma) at a concentration of 10µg/ml in PBS Ca2+Mg2+ for atleast 1 hour. 

Following washes with PBS, they were allowed to air dry overnight in the safety 

cabinet. On the day of cell plating, the PLL-coated coverslips were coated with 80µl of 

Laminin at a concentration of 10µg/ml in distilled water for at least 1 hour. Laminin 

was removed prior to plating down cells without letting coverslips to dry off.  

D8 embryo bodies were collected in 15 falcon and centrifuged at 500 rpm 

for 2 min. For plating, EBs were dissociated into single cells by incubating EBs with 

Stempro accutase containing 10µM rock inhibitor for 20 min at 370C, followed by 

triturating the cells gently using P1000 gilson. The cell suspension was spun at 1000 

rpm for 3 minutes and the cell pellet was re-suspended in ADF+ medium. Cell count 

was performed using haemocytometer and cells were plated as 80µl droplet at a 

density 50x103 cells per PLL/Laminin coated coverslip placed in the bottom of 24 well 

plate. The cells were allowed to adhere for an hour at 370C and then 500µl of medium 

was added to each well. For some of the experiments, ADF+ medium was 

supplemented with small molecules between D8 and D16 to analyse their effects on 

neural progenitor cultures.  

2.1.7.2 Monolayer differentiation 

For monolayer differentiation, hPSCs were plated in mTeSR1 on matrigel 

coated 6cm nunc plate. On day 2 post-plating when the plate reached 60-70% 

confluency, the mTeSR1 media was replaced with SLI medium (4ml/6cm nunc plate) 

which consisted of advanced DMEM/F12 supplemented with 2% NeuroBrew21 

without retinoic acid (Miltenyi, Surrey, UK), 1% 200mM L-glutamine, 1% Penicillin-

streptomycin, 10µM SB431542 and 1µM LDN 193189 (both from CHDI, Los 
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Angeles, USA). This was labelled as D0 of differentiation. The media was changed 

daily. On D4 of differentiation when cells were fully confluent, they were passaged at 

a ratio of 1:2. Cells were pre-treated with 10 µM rock inhibitor for an hour and 

incubated with stempro accutase (2ml/6cm plate) containing 10µM rock inhibitor for 5 

minutes at 370C. By addition of some culture media, the cells were harvested to 15 ml 

falcon and spun at 1000rpm for 3 minutes. The cell pellet was re-suspended in SLI 

media with 10µM rock inhibitor and plated at 1:2 ratio onto matrigel coated 6cm nunc 

plates. The medium was replaced daily. On D8 of differentiation, cultures were 

passaged again as above. The cells pellet were re-suspended in LI medium which 

consisted of advanced DMEM/F12 supplemented with 2% NeuroBrew21without 

retinoic acid, 1% 200mM L-glutamine, 1% Penicillin-streptomycin, and 0.25 µM LDN 

193189. 

For studies on neural patterning, cells were plated onto matrigel coated 

coverslips placed in the bottom of 24 well plate. SLI and LI medium was 

supplemented small molecules to analyse their effect. All small molecules were re-

suspended in DMSO. IWR1 was added either at D0 or D8 until D16 at 0 to 10 µM 

concentration. KY02111 was added at D0 until D16 at 0 to 10 µM concentration. 

Purmorphamine was added at D8 until D16 at 0.5 to 1µM concentration. SAG was 

added at D8 until D16 at 0.001 to 0.1µM concentration. Activin A was added at 

20ng/ml at D8 

2.1.7.2.1 Terminal differentiation of neural progenitors  

13mm glass coverslips (VWR) were treated with nitric acid (Sigma-

aldrich) overnight in 50ml falcon on rocker (Stuart mini see saw rocker, Bibby 

Scientific Ltd., Stafforshire, UK) at room temperature. Following 5 washes in distilled 

water and final wash in absolute ethanol, the coverslips were spread in a glass petridish 

and baked overnight at 1500C in oven (Swallow, LTE Scientific Ltd., Lancashire, UK). 

Baked coverslips were placed in the bottom of 24 well plates using ethanol and flame-

sterilized tweezers. Coverslips were first coated with 80µl of 100µg/ml poly-D-lysine 

(PDL) (Sigma-aldrich), in borate buffer pH 8.4 for about an hour at room temperature 

and then washed 3 times with sterile water and air dried. Then the coverslips were 

coated with 50µl matrigel for an hour at 370C. Immediately prior to plating down the 

cells, the matrigel was removed 
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For terminal neural differentiation, D16 neural progenitors were harvested 

using accutase as described above. The single cell suspension was re-suspended in 

SCM1 medium which consisted of advanced DMEM/F12 supplemented with 2% 

NeuroBrew21 with retinoic acid (Miltenyi), 1% 200mM L-glutamine,1% Penicillin-

streptomycin, 2µM CDK4/6 inhibitor PD0332991 (CHDI), 10µM γ-secretase inhibitor 

DAPT (CHDI), 10ng/ml brain-derived neurotrophic factor (BDNF) (Miltenyi), 10µM 

adenylate cyclase activator Forskolin (CHDI), 3µM glycogen synthase kinase-3 

(GSK3) inhibitor CHIR 99021 (CHDI), 300µM γ-amino butyric acid (GABA)(Tocris, 

Oxfordshire, UK), 1.8mM CaCl2 (Sigma-aldrich) and 200µM Absorbic acid (Sigma-

aldrich)). Cell count was performed using haemocytometer and cells were plated at 

density of 50x103 cells/PDL-matrigel-coated coverslip in 80µl droplet in SCM1. Cells 

were allowed to adhere for an hour at 370C and then 500µl SCM1 was added to each 

well. A 50% media change was performed on 2nd and 5th day after plating i.e., on 

D18 and D21 of differentiation. At 1 week i.e., on D23, SCM1 was 100% replaced 

with SCM2 which consisted of 1:1 advanced DMEM/F12: neurobasal A medium 

supplemented with NeuroBrew21 with retinoic acid, 1% 200mM L-glutamine,1% 

Penicillin-streptomycin,, 2µM PD0332991, 10ng/ml BDNF, 3µM CHIR 99021, 

1.8mM CaCl2 and 200µM absorbic acid. Cells were maintained in SCM2 for 3 weeks 

i.e., until D37 with 50% media change at every 3rd day 

2.2 Molecular Methods 

2.2.1 Detection of gene expression at mRNA level 

2.2.1.1 RNA extraction and quality check  

 RNA was extracted using RNAeasy mini kit, QIAshredder spin columns 

and RNase-free Dnase set (all from Qiagen, Hilden, Germany). First, the cell culture 

medium was aspirated off and cells were washed with PBS once. The workbench, all 

surfaces and pipettes for RNA extraction were cleaned with RNAse zap. The RNA 

extraction reagents were prepared as per the kit instructions. The cells were lysed and 

simultaneously homogenized directly in the cell culture plate using RLT buffer; a 

highly denaturing guanidine-thiocyanate–containing buffer that immediately 

inactivates RNses. As per kit instruction, 350µl RLT buffer was used for <5x106cells 

and lysate harvested to eppendorf and vortexed. The lysate at this stage could be stored 

in -800C for months. Frozen lysate was thawed at 370C in water bath for approximately 

2 minute until completely thawed. The samples were homogenized further using 
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QIAshredder spin columns. Homogenization shears high molecular weight genomic 

DNA and cellular components that may otherwise cause clogging of columns and 

inefficient binding of RNA to RNeasy spin column. Thawed lysate was loaded onto 

QIAshredder column placed in a 2ml collection tube and spun at 13000 rpm for 2 

minute. 1 volume of 70% ethanol was then added to the homogenized lysate and 

mixed well by pipetting. Ethanol promotes appropriate binding conditions. The whole 

sample was then transferred to RNeasy spin column placed in a 2ml collection tube 

and spun as above. The total RNA binds to the silica-based membrane of the column. 

RNeasy technology removes most of the DNA. However, further DNA removal was 

achieved using RNase-free DNase I as per kit instruction. The DNase was removed in 

subsequent wash steps as per kit instructions using the provided buffers. Finally, RNA 

was eluted into 30µl RNase free water.  

The amount and quality of RNA was determined using Nanodrop ND1000 

spectrophotometer (Labtech international, Uckfield, UK). The ratio of absorbance at 

260nm and 280nm, A260/A280 for pure RNA is ~ 2.  Contamination from any 

residual buffers or reagents alters this ratio 

2.2.1.2 C-DNA synthesis  

 RNA extracted was used on the same day of extraction for C-DNA 

synthesis. RNA concentration from 250ng to 1000ng was transcribed. The same RNA 

concentration was used in every sample in an experiment. The required amount of 

RNA was pipetted out into PCR tubes. For the first strand synthesis, the following 

reagents were added into each PCR tube 

Random primers (1/12 dilution of 3µg/ml) 1µl 

10mM dNTPs 1µl 

Water to make upto 12µl Xµl 

(all from Life Technologies) 

The mix was then incubated at 650C for 5 minutes. Following a brief chill 

on ice and a quick spin, the following reagents were added 

5x first strand buffer 4µl 

0.1M DTT 2µl 

RNAse Out Rnase Inhibitor  1µl 

(all from life technologies) 
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The mix was then incubated at 250C for 2 minutes. Finally, 1µl of 

Superscirpt II rerverse transcriptase (Life technologies) was added and incubated at 

250C for 10 minutes, then 420C for 50 minutes and then 700C for 15 minutes. For 

every C-DNA synthesis reaction, a minus RT reaction, i.e., a sample without any 

superscirpt II rerverse transcriptase was also set. The C-DNA could be stored in -200C 

for months. The C-DNA samples were used for qPCR reactions 

2.2.1.3 Quantitative Real-time polymerase chain reaction( QRT-PCR) 

Real time detection of PCR products were achieved using fluorescent 

based DyNAmo HS SYBR Green qPCR kit (Fisher scientific) which contains Hot-

Start DNA Polymerase, SYBR Green I, PCR buffer, MgCl2, dNTPs and dUTP. SYBR 

Green I fluoresces when bound to double-stranded DNA (dsDNA). When free in the 

reaction mix, SYBR Green I exhibits little fluorescence and as dsDNA is generated 

during PCR cycles, it gives upto a 1000 fold increase in fluorescence. The dye emits at 

520nm and overall fluorescent signal which is proportional to the amount of dsDNA 

generated as the target is amplified, can be detected 

For QPCR reaction, the C-DNA and minus RT samples were diluted in 

water. If 1µg RNA was used for reverse transcriptase reaction, C-DNA was diluted at 

1:20 and 1µl was used per well,96 well plate (optical plate, Life technologies) for 

QPCR reaction. Each biological C-DNA sample was prepared in 3 replicate wells and 

each reaction mix contained, 

C-DNA1:20 1µl 

Sybergreen mastermix  10µl 

Forward and reverse primers, 10pmol  1µl 

Water (Life technologies) 8µl 

 

Along with minus RT sample, a non-template control (NTC) i.e., all above 

reagents minus C-DNA template was also included for every primer pair used. This 

would detect any PCR contamination as wells distinguish the unintended amplification 

products for example, primer dimers from intended products. Each sample was 

analyzed for gene of interest (GOI) as well reference genes, to offset for technical 

variations. The reaction was set up was singleplex i.e., GOI and reference genes were 

analyzed in different wells. In an experiment with many treatments and biological 

replicates, all treatments from a single biological replicate were run on a single plate. 
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Ideally, all primer pairs for GOI and reference genes would be analysed on a single 96 

well plate. When multiple GOIs were analysed using the same samples, different genes 

were analyzed on different plates to be more economical. 

The plates containing samples were sealed using clear adhesive polyester 

film (Biorad) to avoid sample evaporation during PCR. The sealed plates could be 

stored in -200C freezer. Amplification conditions used were 950C for 15 minute 

followed by 40 cycles of 950C for 30 seconds, 600C for 30 seconds and 720C for 30 

seconds. Melt curves were generated between 530C and 950C from readings every 

0.50C. 

Biorad CFX connect real time thermocycler was used to amplify the target 

and monitor the fluorescence that reflected the amount of target sequence amplified in 

each cycle. The PCR amplification plot shows an exponential phase in which the 

amount of target is almost doubled every cycle. As the reaction proceeds, a non-

exponential plateau phase follows the exponential phase when one or more PCR 

reaction components becomes limiting. Biorad CFX connect real time software uses 

the exponential phase of PCR for quantification. The more abundant the target sample, 

the earlier the quantification cycle value (Cq) is given. Biorad software provides the 

options to determine Cq value either at a baseline threshold value set for all samples 

above background fluorescent level or based on the kinetic parameters of amplification 

curve of each replicate of samples. To account for any asymmetric amplification 

efficiency variations among PCR runs, the latter option was used. The Cq value is the 

intersection point between the abscissa axis and tangent of the inflection point of 

amplification curve obtained by the non-linear regression of raw data. 

The differences in Cq values between samples can be correlated for 

quantification. Target amplification was quantified by relative quantification method, 

referred to as comparative Cq method or 2-ΔΔCq method (Schmittgen et al., 2012). This 

method assumes that the PCR efficiency of GOI is similar to the reference gene and is 

close to 100% (please see below under the session ‘primer designing’ for PCR 

efficiency calculation) and relative gene expression is presented as 2-ΔCq , where ΔCq= 

Cq(GOI) – Cq(Reference). This normalization to reference gene accounts for variation 

in extraction yield, C-DNA synthesis yield and efficiency of PCR amplification. Fold 

change, 2-ΔΔCq is presented as the ratio between relative expression of treatment 

sample and that of untreated control sample. For data analysis, means of 3 technical 

replicates of a sample within an experiment were calculated and then means of sample 
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in all biological replicates were calculated. Standard error of mean (SEM) was 

calculated after 2-ΔΔCq transformation. Final data was represented as mean + SEM. 

Statistical analysis was performed on ΔCq values of biological replicates for assessing 

the significance of differences between treatments. 

Cq value >33 was analysed with caution as it may imply a low efficiency 

or a low target. If all the samples in an experiment or positive control had Cq > 33, the 

data was not reported to avoid false-positive results. If one or more of the treatment 

had Cq < 25 , then Cq=33 was taken as cut off value. 

2.2.1.4 QPCR primer designing 

The information on sequence and mRNA transcript variants was retrieved 

using NCBI tools and the primers were designed using NCBI Primer-BLAST 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/). The primer pairs were designed to; 

span exon-exon boundary to avoid potential genomic DNA contamination, be 18-24 

nucleotides in length for practical annealing temperatures, contain 50%GC content, 

melt at temperature in the range of 57-620C and generate an amplicon < 250 base pairs 

in size as longer products do not amplify as efficiently. The primer pairs were analysed 

using Oligo analyser tool (https://www.idtdna.com/calc/analyzer) for secondary 

structure. 

All primers were verified for specificity and efficiency. Melt curve 

analysis was performed to verify the specificity by identifying the products amplified. 

DNA melts at a characteristic temperature and the melting temperature (Tm) is defined 

as the temperature at which half of the helical structure of DNA is lost. During melt 

curve analysis, each sample is slowly heated from user defined temperature below Tm 

of desired product to a temperature above melting point. Melting of amplicons releases 

SYBER Green I bound to it. This results in a significant change in fluorescence and 

provides a Tm (the midpoint of fluorescence transition), characteristic of every 

amplified product and thus permits to distinguish between desired product from primer 

dimer or non-specific product. Primer dimer due to their small size melts at lower 

temperature than the desired product and any non–specific amplification product melts 

above or below that of desired product. Biorad real time thermocycler plots the 

fluorescence as a function of temperature and calculates melting peak by taking the 

differential derivative (dF/dT) of this melt curve plot. Primer pairs that produced a 

https://www.idtdna.com/calc/analyzer
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single amplicon peak in positive sample and no peak in NTC were used for qPCR 

analysis.  

A serial dilution of known template concentration (RNA prepared in house 

from human foetal brain whole ganglionic eminence or Total RNA - Human Fetal 

Normal Tissue: Brain: Frontal Lobe (Amsbio, Abingdon, UK)) was used to verify the 

amplification efficiency. The independent variable i.e., log of concentration of each 

dilution was plotted on X axis and the dependent variable Cq for that concentration 

was plotted on Y axis. Correlation coefficient (R2), and the slope were used to provide 

information about PCR reaction. R2 close to 0.999 indicated linearity of the standard 

curve. Amplification efficiency was determined from the slope of log-linear phase of 

amplification curve by the following equation.  

PCR efficiency= 10-1/slope -1 

A slope of -3.32 gives an efficiency close to 100%. Primer sets with 

efficiency between 90 and 110% which corresponds to a slope between -3.58 and -3.10 

was accepted for qPCR. (See Table 2. for qPCR primers and Appendix 2.1for melt 

curve analysis and efficiency testing) 

Table 2 QRT-PCR primer sequences  

Gene Primer sequence (5' -3') 

Forward Reverse 

DLX2 GCCTCAACAACGTCCCTTAC
T 

TCACTATCCGAATTTCAGGCTC
A DLX5 CGCTAGCTCCTACCACCAGT 

 
GGGCTCGGTCACTTCTTTC 

FOX G1 AGGAGGGCGAGAAGAAGA
AC 

ACTCGTAGATGCCGTTGAGC 
 GLI 1 CTACATCAACTCCGGCCAAT CGGCGTTCAAGAGAGACTG  

GSX2 ATGTCGCGCTCCTTCTATGT
C 

ATGCCAAGCGGGATGAAGAAA  
ID1 GGTGCGCTGTCTGTCTGAG CTGATCTCGCCGTTGAGG 
ID3 CTGGACGACATGAACCACT

G 
GTAGTCGATGACGCGCTGTA 

LEF1 ACCAGATTCTTGGCAGAAG
G 

CAGACCAGCCTGGATAAAGC 
 NKX2.1 AGGACACCATGAGGAACAG

C 
CCCATGAAGCGGGAGATG 
 OCT4 CTCACCCTGGGGGTTCTATT CTCCAGGTTGCCTCTCACTC  

PATCHED1 GGAGCTTCGGCACTACGA 
 

ATTCGGGATGGACCACAGT 
 PAX6 AGGCCAGCAACACACCTAG

T 
AGCCAGATGTGAAGGAGGAA 

SLUG AAGCATTTCAACGCCTCCAA
A 

AGGATCTCTGGTTGTGGTATG
AC B-ACTIN CCCAGCACAATGAAGATCA

A 
ACATCTGCTGGAAGGTGGAC 

GAPDH TGCACCACCAACTGCTTAGC GGCATGGACTGTGGTCATGAG 

2.2.1.5 High-throughput QRT-PCR 

Quantitative high-throughput open array platform (Life technologies) uses 

TaqMan gene expression assays (see Table 3 for the probes) preloaded onto open array 

plates and enables multiple PCR assays to run simultaneously. The C-DNA samples of 
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A260/280 close to 1.8, were sent to Dr. Joseph M Canals, University ofBarcelona-

IDIBAPS where the assays were conducted and analysed as per manufacture’s 

instructions.  

The software assesses the gene expression by relative quantification as 

described above in 2.2.1.3. Software integrated algorithms calculate the geometric 

mean of 3-4 reference genes as ‘normalization factor’. Fold change gene expression 

was determined as ratio between normalized expression of treatment and that of 

control. Means of 3 biological replicates with technical PCR replicates were assessed 

and data was represented as mean fold change + SEM. Statistical analysis was 

performed on ΔCq values of biological replicates for assessing the significance of 

differences between treatments 
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Table 3 TaqMan probes ID 

Gene name Probe Ids 

 ISL1 Hs00158126_m1 
LMX1B Hs00158750_m1 
 MSI1 Hs00159291_m1 
PVALB Hs00161045_m1  
NKX2-1 Hs00163037_m1 
TH Hs00165941_m1 
DCX Hs00167057_m1 
ALDH1A3 Hs00167476_m1 
ADORA2A Hs00169123_m1 
GATA4 Hs00171403_m1 
EOMES Hs00172872_m1 
IKZF1 Hs00172991_m1 
NPY Hs00173470_m1 
KIT Hs00174029_m1 
PENK Hs00175049_m1 
CALB1 Hs00191821_m1 
DLX5 Hs00193291_m1 
 SIX3 Hs00193667_m1 
IKZF2 Hs00212361_m1 
FOXP1 Hs00212860_m1 
SLC17A7 Hs00220404_m1 
SLC17A6 Hs00220439_m1 
OTX2 Hs00222238_m1 
DLX6 Hs00231999_m1 
LHX1 Hs00232144_m1 
TBR1 Hs00232429_m1 
LHX6 Hs00232660_m1 
FOXA2 Hs00232764_m1 
MMP9 Hs00234579_m1  
PDX1 Hs00236830_m1 
PAX3 Hs00240950_m1 
DRD2 Hs00241436_m1 
TAC1 Hs00243225_m1 
EMX2 Hs00244574_m1 
BCL11B Hs00256257_m1 
HOXB4 Hs00256884_m1 
HOXB9 Hs00256886_m1 
MAP2 Hs00258900_m1 
PPP1R1B Hs00259967_m1 
ZNF503 Hs00262121_m1 
CNP Hs00263981_m1 
CHRM4 Hs00265219_s1 
ASCL1 Hs00269932_m1 
DLX2 Hs00269993_m1 
TLX1 Hs00271457_m1 
OLIG2 Hs00300164_s1 
SST Hs00356144_m1 
KFL4 Hs00358836_m1 
FOXP2 Hs00362817_m1 
GSX2 Hs00370195_m1 
ARPP21 Hs00372261_m1 
DRD1 Hs00377719_g1 
EBF1 Hs00395513_m1 
EMX1 Hs00417957_m1 

CALB2 Hs00418693_m1 
NR4A2 Hs00428691_m1 
POU3F1 Hs00538614_s1 
MEIS2 Hs00542638_m1 
GLI3 Hs00609233_m1 
GAD2 Hs00609534_m1 
T Hs00610080_m1 
AIF1 Hs00610419_g1  
DLX1 Hs00698288_m1 
NEUROG2 Hs00702774_s1 
NES Hs00707120_s1 
OLIG1 Hs00744293_s1 
NKX6-2 Hs00752986_s1 
CHAT Hs00758143_m1 
GSX1 Hs00793699_g1 
TUBB3 Hs00801390_s1 
NR2F1 Hs00818842_m1 
NR2F2 Hs00819630_m1 
PBX2 Hs00855025_s1 
S100B Hs00902901_m1 
MNX1 Hs00907365_m1 
GFAP Hs00909233_m1  
GPR6 Hs00920605_s1 
RARA Hs00940446_m1  
NCAM1 Hs00941830_m1 
SNAI2 Hs00950344_m1 
OTX1 Hs00951099_m1 
ETV1 Hs00951941_m1 
ZBTB16 Hs00957433_m1 
DACH1 Hs00974297_m1 
RARB Hs00977140_m1 
CDH2 Hs00983056_m1 
B2M Hs00984230_m1 
CDH1 Hs01023894_m1 
NEUROG1 Hs01029249_s1 
FTSJD1 Hs01052115_s1 
SOX2 Hs01053049_s1 
OPRM1 Hs01053957_m1 
PAX2 Hs01057416_m1 
SOX1 Hs01057642_s1 
CDX2 Hs01078080_m1 
PAX6 Hs01088112_m1 
GLI1 Hs01110766_m1 
DBX2 Hs01117258_m1 
RBFOX3 Hs01370653_m1 
TJP1 Hs01551861_m1 
RARG Hs01559234_m1 
POU5F1 Hs01654807_s1 
FOXG1 Hs01850784_s1 
UBC Hs01871556_s1 
SP8 Hs01941366_s1  
KRT18 Hs01941416_g1 
NANOG Hs02387400_g1 
HPRT1 Hs02800695_m1 
GPR88 Hs03027832_s1 
HSP90AB1 Hs03043878_g1 
RPL13A Hs04194366_g1 
18S Hs99999901_s1 
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2.2.2 Detection of gene expression at protein level 

2.2.2.1  Immunocytochemistry  

To detect and generate a quantitative data on the amount of protein of 

interest within cells, immunocytochemistry (ICC) was performed. During this project, 

an indirect immunofluorescence was performed in which protein antigen was detected 

by use of specific primary antibody that binds to it. The affinity between antigen and 

antibody was visualised under a fluorescence microscope by using fluorophore-

conjugated secondary antibody that binds to primary antibody. 

For ICC, the culture media was removed and cells attached to coverslips in 

culture dishes were washed with 1 x PBS (Life technologies). Cells were fixed with 

fresh 4% paraformaldehyde (PFA) (Sigma-Aldrich) in PBS for 10-15 minute at room 

temperature and were subsequently washed 3 times in PBS. The fixing step 

immobilizes the antigen of interest while retaining cellular and subcellular architecture. 

PFA through free amino group form intermolecular bridges and thus cross links 

antigen. Following fixation, to allow access of antibody to antigen, cells were 

permeabilized using either 0.1%-0.3% triton-X (Sigma-Aldrich) in PBS for 20 min or 

ice cold absolute ethanol for 2 min, depending on the antibodies used. No 

permeabilization was required for surface antigens. The cells were washed 3 times in 

PBS. For some antigens, extensive cross-linking during fixation may mask the epitope 

that antibody binds to and antigen retrieval was performed by using either 1M Glycine 

(Sigma-Aldrich) for 20 minutes at room temperature or heating at 600C for 10 min. To 

prevent any non-specific antibody binding, a blocking buffer containing 3% bovine 

serum albumin (BSA) (Sigma-Aldrich), 3% normal goat serum (Dako) and 0.1% 

Triton-X in PBS (filtered before use) was applied to cells for an hour at room 

temperature. Triton-X was excluded in blocking buffer for surface antigens. Following 

blocking, the cells were incubated for an hour at room temperature with the primary 

antibody at appropriate dilution in blocking buffer. For double immuno-labelling, both 

primary antibodies were added simultaneously. The primary antibodies used were 

either monoclonal (pure immunoglobulins with known specificity) or polyclonal 

(containing a mixture of immunoglobulins against a specific antigen with subtle 

changed in epitope specificity). A droplet method of antibody incubation was 

performed for all cells, except terminally differentiated neurons in which antibody 

incubation was performed directly in culture plates where cells were grown. In droplet 
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method, 60µl of antibody dilution was placed on parafilm on the top of a bed of moist 

filter paper in a 10cm petridish. The coverslip with cells was gently inverted onto this 

droplet ensuring a tight contact between cells and antibody. For all staining, 2 controls- 

a biological negative sample and a no primary antibody sample were performed. After 

an hour, the coverslips were placed in bottom of a 24 well plate and were washed 

gently 3 times in PBS. Care was taken to minimize cells peeling off from coverslips. 

The cells were then incubated for 45 minutes at room temperature in dark with 

appropriate secondary antibody droplet (all at 1:400 dilution in blocking buffer) as 

described above. The secondary antibody used was specific to the primary antibody 

class i.e., IgGs or IgM and was against the species in which primary antibody was 

raised. Please see table 4 below for the list of antibodies used and details of 

permeabilization and blocking buffer. Following secondary antibody incubation, 

coverslips were placed back in the bottom of 24 well plates and washed 3 times in 

PBS. Coverslips were mounted with vector shield containing DAPI nuclear stain onto 

a glass microscope slide. The edge of coverslips was sealed with clear nail varnish. 

The mounted sealed coverslips could be stored at 40C in dark until imaging.  

Table 4 Antibody Dilutions and Conditions for ICC 

Antibody Species and 

specificity  

Dilution Permeabilization 

 

Antigen 

retrieval 

Blocking 

 

Calbindin Rabbit 
polyclonal 
IgG (Swant) 

1:500 0.3% Triton in 
PBS, 20 min, 
RT 
  

 2%NGS+ 
3% BSA in PBS 

CK18 
 

Guinea pig 
polyclonal 
IgG (Progen 

Biotechnik)  

1:500 
 

  2%NGS+ 
3% BSA+ 
0.1% Triton X in 
PBS 
 

CTIP2 
Rat 
monoclonal 
IgG (Abcam) 

1:500 
0.1% Triton X 
in PBS, 20 min, 
RT 

 2%  NGS+ 3% 
BSA + 0.1%  
Triton x in PBS 

DARPP32 
Rabbit 
monoclonal 
IgG (Abcam) 1:200 

0.1% Triton X 
in PBS, 20 min, 
RT 

1M 
Glycine, 
20 min 
RT 

2%  NGS+ 3% 
BSA + 0.1%  
Triton x in PBS 

FOXG1 
Rabbit 
polyclonal 
IgG (Tebu-

Bio) 1:1000 

0.1% Triton X 
in PBS, 20 min 
RT 

1mM 
EDTA,  
10 min at 
60 degree 
water-
bath 

2%NGS+ 3% 
BSA+ 0.1% 
Triton X  in PBS 

GABA 
Rabbit 
polyclonal 1:100  

 2%NGS+ 3% 
BSA 
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IgG (Sigma) 

GSX2 

Rabbit 
polyclonal 
IgG 
(Millipore) 1:500 

0.1% Triton X 
in PBS, 20 min, 
RT 

 
2%  NGS+ 3% 
BSA+ 0.1% 
Triton x in PBS 

ISL1 

Rabbit 
monoclonal 
IgG (Abcam) 1:500 

Ice cold 
absolute 
ethanol, 2min  

2%NGS+ 3% 
BSA in PBS 

KI67 

mouse 
monoclonal 
IgG (Vector 

Labs) 1:100 

0.1% Triton X 
in PBS, 10 min 
RT  

2% NGS+ 3% 
BSA+ 0.1% 
Triton X in PBS 

MAP2 
Mouse 
monoclonal 
IgG (Sigma) 1:600 

Ice cold 
absolute 
ethanol, 2min  

2% NGS+ 3%  
BSA 

NESTIN 

Mouse 
monoclonal 
IgG 
(Millipore) 1:500   

2%NGS+ 3% 
BSA+ 0.1% 
Triton X in PBS 

NKX2.1 
Rabbit 
monoclonal 
IgG (Abcam) 1:150 

0.1% Triton X 
in PBS, 20 min , 
RT  

2%NGS+ 3% 
BSA+ 0.1% 
Triton X in PBS 

OCT4 

Mouse 
monoclonal 
IgG (Santa 
Cruz) 1:100 

Ice cold 
absolute 
ethanol, 2min  

2%NGS+ 3% 
BSA+ 0.2% 
Triton X in PBS 

PAX6 Mouse IgG 
(DSHB) 1:10 

0.1% Triton X 
in PBS, 20 min 
RT  

2%NGS+ 3% 
BSA+ 0.1% 
Triton X in PBS 

PSD95 
Rabbit IgG 
(Abcam)  1:100   

2% NGS+ 3%  
BSA+ 0.05 % 
Tween 20 in PBS 

SOX2 

Rabbit 
polyclonal 
IgG 
(Millipore) 1:500 

Ice cold 
ethanol, 2 min 
RT  

2%NGS+ 3% 
BSA+ 0.2% 
Triton X in PBS 

Synapto-
physin 

Mouse 
monoclonal 
IgG (Abcam) 1:200   

2% NGS+ 3% 
BSA+ 0.05% 
tween 20 in PBS 

2.2.2.2 Imaging and quantification of cells  

Cells were visualised under UV fluorescence using Olympus BX61 

microscope. Cells were imaged for nuclear stain as well as counterstaining with 

antibodies using different filters. Images were processed using Analysis software and 

Adobe photoshop. All images across treatments within an experiment were processed 

in the same manner. 

For quantification of cells, 5-10 random fields per coverslip covering the 

edges and centre were imaged at 20X magnification. The images (straight from the 

microscope and not processed in photoshop) were quantified using either manually or 
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Cell profiler (Carpenter et al., 2006, http://www.cellprofiler.org/citations.shtml). For 

analysis by Cell profile software, the objects were identified by set size of nuclei with 

fixed intensity threshold; for each channel the size range was set to distinguish objects 

from any noise in the image and the intensity threshold was set to decide whether each 

pixel was foreground (region of interest) or background. 2 biological replicates per 

tested condition were quantified and the total cell count was averaged. The number of 

cells immuno-positive for antigen of interest was calculated as a percentage of total 

nuclei. 

2.2.2.3  Western blotting 

Western blotting was performed to detect the expression of phosphorylated 

SMAD1/5/8. The culture medium was aspirated and cells were washed with ice-cold 

PBS. The culture dishes were placed in ice and cells were lysed in 300µl ice-cold 

radio-immunoprecipitation assay buffer (RIPA) containing phosphatase inhibitor and 

protease inhibitor (all from Sigma-Aldrich). The cells were scraped, lysate was 

transferred to eppendorf tubes and incubated at 40C for 30 minutes with intermittent 

agitation. The samples were then centrifuged at 12000 rpm for 20 minutes at 40C. The 

supernatant was aliquoted and frozen at -800C. 

Samples were thawed on ice and the amount of proteins was quantified 

using Pierce BCA protein assay kit (Thermoscientific, Waltham, MA, USA). This 

colorimetric detection of protein is based on reduction of Cuprous, Cu2+ to Cu1+ by 

protein in an alkaline medium and detection of colored reaction product using a 

reagent containing bicichoninic acid (BCA) that chelates to Cu1+.. Protein 

concentrations were determined with reference to a standard protein BSA provided in 

the kit. For this, a serial dilution of BSA ranging from 25µg/ml to 2000µg/ml was 

made. 25µl of each standard and sample in triplicate were pipetted into a microplate 

well (Fisher Scientific). 200µl of BCA working reagent prepared as per manufacture’s 

instruction, was added to each well and the plate was mixed thoroughly on a plate 

shaker for 30 seconds. The plate was incubated at 370C for 30 minutes. The plate was 

then cooled to room temperature and the absorbance was read at 562nm on a 

spectrophotometer (Fluro Optima, BMG lab tech). The protein concentration in 

samples was determined from the standard curve generated by plotting BSA standards 

concentration vs. their absorbance.  
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Western blotting was performed using polyacrylamide gel with a 10% 

resolving gel and 5% stacking gel (Table 5). Resolving gel was prepared and left to set 

with distilled water layered on the surface. The water was then replaced with stacking 

gel and left to set with the appropriate comb. Samples (volume aliquoted for 30µg 

protein) were prepared by adding sample loading buffer to samples at a ratio of 1:1 in 

0.2ml PCR tubes and denatured at 950C for 5 minutes in Techne TC512 thermocycler 

(Bibby Scientific Ltd). The gel set was placed in running tank containing 1X running 

buffer (Table 5) and the comb was removed. The samples were then loaded alongside a 

full range rainbow ladder Novex® Sharp Pre-Stained Protein Standard (Life 

technologies). The proteins in the samples were separated by running the samples at 

100V through stacking gel and 120 V through resolving gel until the dye front of 

loading reached the base of the resolving gel. 

 For electro-blotting of the protein onto membrane, Hybond ECL 0.2µ pore 

size nitrocellulose membrane (GE healthcare) was soaked briefly in distilled water and 

in transfer buffer (TBS) (Table 5) for 10 minutes. The gel was placed on the top of the 

membrane and was layered between filter papers and sponges previously soaked in 

TBS (as sponge: filter: gel: membrane: filter: sponge). This gel-membrane cassette was 

then placed in Mini-PROTEAN apparatus set-up (Biorad) containing TBS buffer. The 

protein transfer was carried out at 100V for an hour. The membrane was carefully 

removed, rinsed in water once and with wash buffer (Table 5). The protein transfer 

was checked by staining with Ponceau S solution. The stain was removed subsequently 

in wash buffer. 

The protein of interest, phosphorylated SMAD1/5/8 was detected by 

immuno-detection. The membrane was blocked with 5% w/v milk (Marvel,UK) in 

TBST (Table 5) for 1 hour. Membrane was first incubated with rabbit polyclonal P-

SMAD1,5,8 antibody (Cell signalling, Danvers,MA) at 40C overnight and washed 3x 5 

minutes in TBST at room temperature. The membrane was then incubated with goat 

anti-rabbit horseradish peroxidase conjugated secondary antibody (GE life science) at 

1:10000 dilution for an hour at room temperature and washed 3x 5 minutes in TBST. 

Signal generation was undertaken using SuperSignal WestDura substrate 

(Thermoscientific) as per manufacture’s instruction. The signals were detected using 

chemiluminiscent film (Roche, Hertfordshire, UK) placed over the membrane in 

Hypercassette (Amersham Bioscience, Buckinghamshire, UK) and exposing for an 
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hour. The film was developed using an automatic developer Xograph Compact X4. 

The intensity of protein bands in the film was quantified by ImageJ software. 

Table 5 Composition of gels and solutions used for Western blotting 

 Composition
*
 

 

 

Gels 

10% Resolving gel 10% (w/v)Acrylamide (Biorad), 0.37M Tris  
pH 8.8,  0.1% SDS, 0.1 % Ammonium 
persulphate, and 0.06% 
tetramethylethylenediamine (TEMED)  

5% Stacking gel 5% Acrylamide, 0.125M Tris pH 6.8 
(Roche), 0.1% SDS, 0.05 % Ammonium 
persulphate, and 0.5% TEMED  

 

 

 

Buffers 

Sample loading buffer 2 % SDS, 10% Glycerol, 60mM Tris  
pH 6.8, 0.005% Bromophenol blue and 500 
mM DTT  

10x Running buffer 0.25 M Tris base, 1.92 M Glycine, 0.1 % 
SDS, and pH 8.3. Diluted to 1x before use. 

Transfer buffer 0.25 M Tris base, 1.92 M Glycine, and 20 % 
Methanol. 

Wash buffer 0.1 % Tween 20 in 1x PBS (Life 

technologies) 

Stain Ponceau S 0.1% (w/v) in 5 % acetic acid  

*All materials from Sigma-Aldirch unless stated otherwise. 

 

2.3 Statistical methods 

Statistical analyses of data were performed in Graphpad prism v6.0 

(GraphPad Software Inc., La Jolla, CA, USA). Parametric data were analysed using two-

sample t-tests or one-way analysis of variance (ANOVA) with Dunn’s comparison 

post doc when appropriate to compare differences between pairs. Non-parametric data 

were analysed using Kruskal-Wallis with Dunn’s comparison. Where experiments 

were perfomed once or twice, i.e. N = 1 or 2, the results presented are semi-

quantitative and could not be tested for statistical significance.  

2.4 Materials  

Initially in the project, all the small molecules were purchased from 

different supplier which are listed in the table 6 and later some of the small molecules 

were provided by CHDI, Los Angeles, CA, USA.  
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Table 6 Materials 
Materials/reagents Catalogue No Supplier 

Accutase, stempro A1110501 Life Technologies 
Acetic acid, glacial  A/0360/PB17  Fisher Scientific  
Acrylamide (30% ) 161-0158 Biorad  
Advanced DMEM/F12 12634028 Life technologies 
Alexa Fluor 488 goat α mouse IgG 
(H&L)  

A11001  Life technologies  

Alexa Fluor 488 goat α rabbit IgG 
(H&L)  

A11008  Life technologies 

Alexa Fluor 488 goat α rat IgG 
(H&L)  

A11006  Life technologies 

Alexa Fluor 594 goat α mouse IgG 
(H&L)  

A11005  Life technologies 

Alexa Fluor 594 goat α rabbit IgG 
(H&L)  

A11012  Life technologies 

Ammonium persulfate  A/6160/53  Fisons 
Antibiotic/Antimycotic Solution 15240-062 Life technologies 
Ascorbic acid A4544 Sigma-Aldrich 
BCA protein assay kit 13276818 Fisher scientific 
BCIP/NBT liq substrate system (Alk 
Phosph Detection Kit) 

B1911 Sigma 

BD Matrigel Growth Factor 
Reduced 

354230 VWR 

BDNF – Human Research Grade  130-096-286 Milteny 
Blotting paper   Z74759-100  Sigma-Aldrich  
Boric Acid B6768 Sigma 
Bovine Serum Albumin A9418 Sigma  
Box, Microslide MNK 337050M Fisher scientific 
Calbindin  antibody CB38a  Swant  
Calcium chloride (anhydrous) 499609-1G Sigma 
CHIR 99021  4423 Tocris  
CHIR 99021 CHDI-00401952-

000 
CHDI 

CK18  antibody GP-CK18 Progen Biotechnik 
Collagenase Type IV 17104019 Life Technologies 
Complete mini EDTA-free protease 
inhibitor cocktail tablets  

11873580001  
 

Roche  
 

coverslip round 13mm 631-0149 VWR 
Cryostor CS10 7930 Stem cell 

Technologies 
CTIP2 antibody  ab18456  Abcam  
Cyclopamine-KAAD 239804 Calbiochem 

Merck Millipore 
DAPT 2634 Tocris 
DAPT CHDI-00396736-

000 
CHDI 

DARPP32 antibody  ab40801  Abcam  
DEPC treated DNAse free H2O  46-2224  Life Technologies  
Dimethylsulfoxide ampules D2650 Sigma-Aldrich 
Dispase 7923 Stem cell 
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Technologies 
Distilled Water, Sterile 15230188 Life Technologies 
DMEM Glutamax 61965-059 Life Technologies 
DMH1 4126 Tocris 
dNTPs-  
Set of dATP, dCTP, dGTP, dTTP  

U1240  
 

Promega  
 

Donkey α rabbit IgG HRP  NA934V  GE  
Dorsomorphin P5499-5MG Sigma-Aldrich  
EmbryoMax® ES Cell Qualified 
0.1% Gelatin Solution 

ES-006-B Millipore 

Ethanol  99.8+%, Absolute 10437341 Fisher Scientific 
Foetal Bovine Serum 10270106 Life Technologies 
Forskolin 1099 Tocris 
Forskolin CHDI-00000087-

0000 
CHDI 

FOXG1  antibody NCFAB Tebu-Bio 
GABA 0344 Tocris 
GABA   antibody A2052 Sigma-Aldrich 
Glycerol 990% G5516 Sigma-Aldrich 
Glycine G8898 Sigma 
GSX2  antibody ABN162 Millipore 
Haemacytometer cover glass  21mm 
x 26mm 

MNK-504-030M Fisher Scientific 

Haemacytometer improved neubauer MNK-420-010N Fisher Scientific 
Human Activin A 120-14 Peprotech 
Human FGF Basic 100-18B Peprotech 
Insulin from Bovine Pancreas I6634 Sigma 
Islet1 antibody  Ab109517  Abcam 
Isopropanol 10326503 Fisher Scientific 
IWR1 CHDI-00476979-

0000 
CHDI 

IWR1,endo 3532 Tocris 
KI67  antibody VP-K452 clone 

MM1 
Vector Labs 

Knockout DMEM 1 X 10829018 Life Technologies 
Knockout Serum Replacement 10828-028 Life Technologies 
KY 02111 4371 Tocris 
Laminin, mouse   06-0002  Stemgent  
LDN 193189 04-0019 Stemgent 
LDN 193189 CHDI-00396388-

0000 
CHDI 

L-Glutamine 200mM 25030-024 Life Technologies 
Lipid concentrate, Chem. Defined 119-05-031 

 
Life Technologies 

Lumi-film chemiluminescent 
detection film  

11666916001  Roche  

MACS NeuroBrew-21 130-093-566 Milteny 
MACS NeuroBrew-21  
w/o Vitamin A 

130-097-263 
 

Milteny 

MAP2 (Mouse) antibody  M1406  Sigma-Aldrich  
Matrigel BD 734-1440 VWR 
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MEM non essential amino acids 11140-035 Life Technologies 
Methanol  32213  Sigma-Aldrich  
MicroAmp™ Fast 96-Well Reaction 
Plate, 0.1 ml (qPCR plates) 

4314320  
 

Life Technologies 

Microscope, Bright field inverted Diavert Leitz 
Microscope, Phase contrast EVOS AMG Fisher Scientific 
Microseal B adhesive seals (qPCR 
plate seal) 

MSB-1001 Biorad 

mTeSR™1 5850 Stem cell 
Technologies 

Nanodrop ND1000  Labtech 
international 

NESTIN  antibody MAB5326 Millipore 
Neurobasal- A 10888-022 Life Technologies 
Neurobasal-A medium 1X Liquid 10888-022 Life Technologies 
Nitric acid 438073-500ML Sigma 
NKX2.1 antibody ab76013 Abcam 
Normal goat serum  X0907  DAKO  
Novex® Protein ladder  LC5800  Life Technologies  
OCT4  antibody sc5279 Santa Cruz 
Paraformaldehyde P6148 Sigma 
PAX6 antibody  DSHB 
PBS (1x) pH 7.24 10010056 Life Technologies 
PBS DULB, with Ca & Mg 140-40-091 Life Technologies 
PD 0332991 isethionate 4786 Tocris 
PD 0332991 isethionate CHDI-00482855-

0001  
CHDI  
 

Penicillin/Streptomycin 
(5000U/5000µg) 

15070063 Life Technologies 

Poly-L-lysine hydrobromide P6407 Sigma 
PSD-95  antibody ab18258  Abcam  
Purmorphamine 540220 Calbiochem 
Purmorphamine CHDI-00396749-

0000 
CHDI 

Qiashredder 79654 Quiagen 
QPCR , Biorad CFXTM connect 

Real time 
Biorad 

Rack, 100 well, assorted colours 11700344 Fisher Scientific 
Random Primers 48190-011 Life Technologies 
Recombinant Human Noggin 120-10C Peprotech 
RIPA lysis buffer  R0278  Sigma-Aldrich  
Rnase Inhibitor, Rnase Out 
Recombinant 

10777-019 Life Technologies 

RNAse Zap R-2020 Sigma 
RNase-Free DNase Set 79254 Quiagen 
Rneasy mini kit 74104 Quiagen 
Rock Inhibitor (Y-27632)  Abcam  
SAG 566660 Calbiochem 

Merck Millipore 
SB431542 - Alk4,5 and 7 inhibitor ab120163 Abcam 
SB431542 - Alk4,5 and 7 inhibitor CHDI-00447536- CHDI 
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0000  
SDS (powder) L3771  Sigma-Aldrich 
Slides (microscope), polysine, 
75x25x1mm 

10149870 Fisher scientific 

Sodium tetraborate 221732 Sigma 
SOX2  antibody AB5603 Millipore 
SSEA4  antibody clone MC-813-70 DSHB 
SuperscriptII RnaseH- Reverse 
Transcriptase 

18064022 
 

Life Technologies 

SuperSignal West Dura 
chemiluminescent substrate  
 

34075  
 

Thermo Scientific  
 

SYBR  Green DyNAmo qPCR Kit FZF-410L Fisher scientific 
Synaptophysin  antibody ab8049  Abcam  
TEMED  T9281  Sigma-Aldrich  
Thermal cycler,PCR TC512-PCR Techne 
Total RNA - Human Fetal Normal 
Tissue: Brain: Frontal Lobe  

R1244051-50  
 

Amsbio  
 

Transferrin T8158-100MG Sigma 
Tris base (121.4 MW) 10 708 976 001 Roche  
Triton® X-100 T8787 Sigma-Aldrich  
Trypan blue  T8154  Sigma-Aldrich  
Trypsin - EDTA 1X 25300-054 Life Technlogies 
Tween-20  P1379  Sigma-Aldrich  
Vectashield  H-1400  Vector 

laboratories  
Water, Ultra pure DEPC treated 750024 Life Technologies 
Y27632 dihydrochloride, rock 
inhbitor  

688000 Abcam 

Y27632 dihydrochloride, rock 
inhbitor  
 

CHDI-00197406-
0001 

CHDI 
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3. Investigation of small molecule 

mediated BMP antagonism on neural 

induction 

3.1 Aim  

To analyse the effect of BMP antagonism on neural induction of hPSCs, 

utilizing the small molecule BMP inhibitors Dorsomorphin, LDN193189 and DMH-1 

3.2 Background 

During neural induction in vivo, the embryonic ectoderm is specified to 

form neuroectoderm and non-neuroectoderm. Neuroectoderm forms the neural tube 

that will give rise to the CNS and separates from the non-neuroectoderm that will form 

the epidermis. During this process, the neural crest originates at the junction between 

these two cell domains and migrates away to form the peripheral nervous system, 

skeletal cranial and connective tissue and pigment cells (Beddington and Robertson 

1999; Gammill and Bronner-Fraser 2003). Since the ground breaking discovery by 

Spemann and Mangold, the role of BMP,TGF-β/Activin inhibition in neural induction 

has been well established. Over expression of dominant negative TGF-β receptor or 

BMP inhibitors- Noggin, follistatin and chordin strongly induced neural fate 

(Hemmati-Brivanlou and Melton 1994; Sasai and De Robertis 1997), whereas 

treatment with TGF-β family members- Activin and BMPs or morpholinos-mediated 

depletion of BMP inhibitors  prevented the acquisition of neural fate (Wilson and 

Hemmati-Brivanlou 1995; Khokha et al. 2005). In the presence of BMP4, epidermal 

fate was induced in the ectoderm (Wilson and Hemmati-Brivanlou 1995). 

In vitro, supplementing Noggin (which acts by binding to BMP ligands 

and prevents their binding to receptors) to hESC neural differentiation cultures under 

serum or serum free condition or on MS5 cells enhanced neuroectoderm markers 

PAX6 and NESTIN (Pera et al. 2004; Itsykson et al. 2005; Lee et al. 2007; Elkabetz et 

al. 2008). Similarly, NESTIN and another neural marker SOX1 expression was 

enhanced by inhibition of TGF-β/Activin/Nodal signalling by overexpression of 

Lefty2 or Cerberus or by small molecule SB431542 (which acts by specifically 

inhibiting ALK receptors ALK4, ALK5 and ALK7, blocks SMAD2/3 phosphorylation 

and has no effect on BMP signalling) (Smith et al. 2008). Synergistic action of Noggin 
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and SB431542 under chemically defined conditions efficiently yielded >80% PAX6+ 

neuroectodermal cells which was higher than Noggin or SB431542 only treatment. 

Also SB431542+Noggin treatment efficiently suppressed differentiation to other 

lineages (Chambers et al. 2009).  

 In this chapter, I investigated the effect of Dorsomorphin and its structural 

derivatives- LDN193189 and DMH-1 on hPSC neural induction to replace the function 

of recombinant Noggin. Dorsomorphin, LDN193189 and DMH-1 block BMP 

mediated SMAD 1/5/8 phosphorylation. Dorsomorphin and LDN193189 act by 

inhibiting BMP type I receptors ALK2, ALK3 and ALK6 and DMH-1 by selectively 

inhibiting ALK2 receptor (Yu, Hong, et al. 2008; Cuny et al. 2008; Boergermann et al. 

2010; Hao et al. 2010). (Other similar studies published during the period of my study, 

utilizing the same small molecules are discussed later in this chapter). 

3.3 Experimental design 

For hPSC neural induction, the dual inhibition of SMAD signalling (i.e., 

simultaneous inhibition of SMAD2/3 phosphorylation by SB431542 and inhibition of 

SMAD1/5/8 phosphorylation by BMP inhibitors) was applied to an embryoid body 

(EB) culture. H9ESC colonies were lifted from MEF feeder layers, chopped to 150µM 

fragments and transferred to neural induction medium containing 10µM SB431542 till 

day 4 and either noggin (300ng/ml) or 0.25 µM to 1 µM of Dorsomorphin or 

LDN193189 or DMH-1 till day 8 (D8) (Figure 3:1A). On D8, EBs were harvested and 

gene expression was analysed at the mRNA level by QRT-PCR and at protein levels 

by immunocytochemistry (Figure 3:1.B). The neuroectodermal fate was analysed by 

measuring the expression of neuroectodermal markers PAX6, SOX2 and NESTIN and 

pluripotency maker OCT4. In parallel, the presence of neural crest cells was analysed 

by measuring markers- SLUG and P75 (Jiang et al. 2009) and the presence of 

epidermis cells was analysed by measuring CK18 

Pax6 was first detected at E8.5-E9.5 neuroectoderm during mice 

development (Stoykova and Gruss 1994). PAX6 was co-expressed in SOX2 positive 

cells at E18 mice and Carnegie stage 8-9 human foetal samples, when the neural plate 

began to form. This expression was retained at E21 mice/ Carnegie stage 10 human 

foetal samples in pseudo multi-layered closing neural tube (Zhang et al. 2010; Onorati 

et al. 2014). PAX6 was demonstrated to be necessary and sufficient for early 

neuroectoderm specification from hESCs (Zhang et al. 2010). PAX6 over expression 
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enhanced neuroectoderm specification, whereas, PAX6 knock-down blocked the 

differentiation into neuroectoderm and this effect was not rescued by dual SMAD 

inhibition by SB431542 and Noggin (Zhang et al. 2010). Thus, PAX6 is possibly an 

intrinsic crucial downstream effector of neural inducers. PAX6 isoforms Pax6a and 

Pax6 were shown to bind to promoters of pluripotent genes such as Oct4 and Nanog 

and repressed their function. Pax6a was shown to occupy the promoters of neural 

genes and activated their expression (Zhang et al. 2010). Thus, PAX6 acts as a key 

inductive signal for neuroectoderm fate. SOX2 is a transcription factor, expressed in 

presumptive neuoectoderm (Kishi et al. 2000; Zhang et al. 2010; Onorati et al. 2014). 

In Xenopus ectoderm, overexpression of dominant negative Sox2 (dnSox2) mRNA 

inhibited formation of CNS and neural crest cells (Kishi et al. 2000). In vertebrate 

CNS, SOX2 functions by maintaining neural progenitor (NPCs) identity. Constitutive 

expression of SOX2 inhibited neuronal differentiation and maintained NPC 

characteristics, while SOX2 inhibition induced NPC exit from cell cycle and early 

onset of neuronal differentiation (Graham et al. 2003). SOX2 is also one of the core 

trios of hPSC pluripotency and has been demonstrated to govern ESC specification to 

neuroectoderm by repressing differentiation into other lineages (Thomson et al. 2011). 

As ECSs differentiated both Oct4 and Sox2 expression fell initially and then were 

differentially regulated. Neuroectoderm cells were marked by induction of Sox2 and 

downregulation of Oct4 while, downregulation of Sox2 and induction of Oct4 marked 

mesoendodermal cells (Thomson et al. 2011). Nestin expression was first observed at 

E7.5 neuroectoderm. Upon neuronal differentiation and maturation, its expression was 

downregulated. During P19 NPCs differentiation and in developing chick neural tube, 

Sox2 was found to bind to Nestin enhancers and regulated its expression (Jin et al. 

2009). PAX6, SOX2 and NESTIN were used as markers of neuroectoderm in this 

study. 
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Figure 3:1 A) Neural induction culture regime. H9s grown on MEFis were lifted and plated as 
suspension cultures in medium supplemented with SB431542 till D4 and either noggin or Dorsomorphin 
(DM) or LDN193189 or DMH-1 till D8. B) Markers analysed on D8 EBs harvested to determine neural 
commitment 

3.4 Results 

3.4.1 Small molecule mediated inhibition of induced BMP activity  

For the application of small molecule BMP inhibitors in hPSC neural 

induction, their effectiveness in the inhibition of BMP activity was first assessed in H9 

hESCs. Undifferentiated H9 cells were pre-treated for an hour, with increasing 

concentrations of either BMP inhibitors- Dorsomorphin , LDN193189 and DMH-1 (all 

at 0.25 µM,0.5 µM and 1µM) or 0.1% Ethanol (vehicle, as negative control) or 

300ng/ml of Noggin (positive control). Following stimulation with 2ng/ml of BMP4 

for another 1 hour, the samples were lysed and subjected to western blot to analyse the 

level of BMP-induced SMAD1/5/8 phosphorylation (P-SMAD1/5/8) as well as βactin, 

as loading control. 

Western blot analysis (Figure 3:2) demonstrated no SMAD1/5/8 

phosphorylation in untreated H9 cells without any treatment (lane 1) and its strong 

induction by BMP4 treatment (lane 2). In cultures stimulated with BMP4 (lane 2-13), 

pre-treatment with Noggin effectively blocked this induction (lane 3), whereas, vehicle 

only treatment had no effect (lane 4). Pre-treatment with Dorsomorphin (lane 5-7) or 

LDN193189 (lane 8-10) or DMH-1 (lane11-13) attenuated P-SMAD1/5/8 in a dose-

dependent manner. The intensity of bands was quantified using image J software. P-

SMAD1/5/8 intensity of each treatment was determined by measuring the ratio of P-

H9 on MEFi Neural Induction –Embryoid body culture  

-D2                  D0                  D4                                                                  D8 

SB431542 10µM 

+ Noggin (0.3µg/ml) or DM or LDN193189  or DMH-1 (0.25 to 1 µM) 

A 

B D8 EBs analysed for markers of  
1. BMP activity- ID1, ID3 
2. Neuroectoderm- PAX6, SOX2 and NESTIN 
3. Neural crest- SLUG, P75 
4. Epidermis- CK18 
5. Pluripotency- OCT4  
6. Proliferation-KI67 
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SMAD1/5/8 and β -actin. The relative intensity percentage normalised to maximum 

response signal ie, BMP4 alone treatment was then plotted (Figure 3:2). This analysis  

generated a dose-response pattern of small molecules in blocking BMP induced P-

SMAD1/5/8. 
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Figure 3:2 Attenuation of BMP4 induced phosphorylation of SMAD1/5/8 in undifferentiated H9 cells by small 
molecules- Western blot analysis of P-SMAD1/5/8 in H9 cells pre-treated with vehicle or Noggin (300ng/ml) or  
increasing concentrations of small molecules Dorsomorphin (DM) or LDN193189 (LDN) or DMH-1 and then 
stimulated with BMP4 (2ng/ml). 30µg of total proteins were loaded into each lane. βActin was the loading control. 
Band intensity of PSMAD1/5/8 signal was quantified with ImageJ software. Y axis in the graph represents relative 
intensity percentage normalised to maximum response signal generated by BMP4 treatment (=100%) without 
Noggin or small molecules pre-treatment 
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3.4.2 QRT-PCR characterization of small molecule mediated inhibition of 

endogenous BMP activity during H9 neural induction  

Next, the effectiveness of small molecule in blockade of endogenous 

BMP signalling during neural induction (Figure 3:1) was analysed. At D8, the 

expression levels of ID1 and ID3, direct transcriptional targets of BMP signalling 

(Yang et al. 2008) was analysed by QRT-PCR. The expression levels normalised to 

reference gene β-actin (see appendix Table 3.1 for ΔCq) The fold change determined 

relative to untreated only control (=1), 2-ΔΔCq was plotted (Figure 3:3).  

A similar level of ID1 and ID3 expression were seen in untreated (ID1= 

1.0; ID3=1.0) and SB431542 treated cultures (ID1=0.9; ID3=1.1) (Figure 3:3A and 

C). Addition of Noggin decreased the expression (ID1=0.4; ID3=0.3) compared with 

SB431542 alone (Figure 3:3 B and D). Substituting Dorsomorphin or LDN193189 or 

DMH-1, for Noggin resulted in an increased inhibition of both ID1 and ID3 levels 

(Figure 3:3 B and D). Dorsomorphin treatment at 0.25µM (ID1= 0.3; ID3 = 0.1), 

0.5µM (ID1= 0.2; ID3= 0.3) and 1.0µM (ID1= 0.3; ID3= 0.3) reduced the expression 

levels compared to SB431542 alone. Similarly, LDN193189 treatment at 0.25µM 

(ID1=0.0; ID3=0.1), 0.5µM (ID1=0.0; ID3=0.1) and 1.0µM (ID1=0.0; ID3=0.1) and 

DMH-1 treatment at 0.25µM (ID1=0.1; ID3=0.2), 0.5µM (ID1=0.1; ID3=0.2) and 

1.0µM (ID1=0.1; ID3=0.2) inhibited the expression, compared with SB431542 

alone. Within Dorsomorphin group, LDN193189 group or DMH-1 group, addition of 

increasing concentrations from 0.25µM to 1.0µM did not appear to result in an 

increased inhibition and the levels seen from 0.25µM to 1.0µM were comparable. 

LDN193189 treatment appeared to result in lower expression levels than 

Dorsomorphin, DMH-1 or Noggin treatments. However, further experimental would 

be needed to obtain a statistical significance.  

3.4.3 QRT-PCR characterization of neural induction   

To investigate whether the inhibition of endogenous BMP signalling by 

Noggin or small molecules enhance neural induction, the expression of 

neuroectodermal marker PAX6, neural crest marker SLUG and pluripotency marker 

OCT4 were analysed in day 8 EBs (see appendix Table 3.2 for ΔCq). The fold 

change determined relative to untreated or SB431542 alone (=1) was plotted 
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Figure 3:3 Modulation of endogenous BMP signalling by Noggin or small molecules during H9 
differentiation- ID1 expression A) Untreated vs SB431542 (SB) treatment and B) SB431542 vs 
treatment groups- Dorsomorphin (DM), LDN193189 (LDN) and DMH-1 (DMH). ID3 expression C) 
Untreated vs SB431542 treatment and D) SB431542 vs treatment groups The expression levels were 
normalised to endogenous β-actin. Yaxis in the graph represents expression levels relative to untreated 

or SB431542 only treated i.e., 2
-ΔΔCq 
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PAX6 expression was significantly increased in cultures treated with 

SB431542 (3.4+0.5) compared with untreated cultures (1.0+0.1) (t4=6.7, p<0.001) 

(Figure 3:4 A). Addition of Noggin (2.3+0.2) or small molecules in combination 

with SB431542, further significantly increased the expression level compared with 

SB431542 only treatment (1.00+0.1) (F10,21=8.5, Dunnett’s multiple compassion, 

p<0.0001) (Figure 3:4.B). SB431542+Dorsomorphin treatment at 0.25µM (2.1+ 0.2), 

0.5µM (3.1+0.2) and 1.0µM (3.1+0.4) yielded similar expression levels. 

SB431542+LDN193189 treatments also showed similar expression levels at 0.25µM 

(3.2+0.3), 0.5µM (3.3+0.3) and 1.0µM (3.1+0.6). Similarly, SB431542+DMH-1 

enhanced PAX6 expression levels at 0.25µM (3.5+0.5), 0.5µM (3.8+0.3) and 1.0µM 

(3.4+0.7), compared with SB431542. There was no significant difference in 

expression level in response to increasing concentrations from 0.25µM to 1.0µM of 

small molecules and among Noggin, Dorsomorphin or LDN193189 or DMH-1 

treatment groups. 

SLUG expression was significantly decreased in cultures treated with 

SB431542 (0.3+0.1) compared with untreated cultures (1.0+0.1) (t4=5.3, p<0.01) 

(Figure 3:5 A). Addition of Noggin (1.3+0.3) or small molecules in combination 

with SB431542, did not significantly alter the expression levels (F10,19=1.5, p=n.s) 

(Figure 3:5.B). SB431542+Dorsomorphin treatment at 0.25µM (1.0+0.1), 0.5µM 

(1.2+0.1) and 1.0µM (0.9+0.1) yielded similar expression levels. 

SB431542+LDN193189 treatments at 0.25µM (0.6+0.1), 0.5µM (0.6+ 0.1) and 

1.0µM (0.9+0.3) also did not differ significantly. Similarly, SB431542+DMH-1 

treatment did not have any effect on the expression levels at 0.25µM (0.7+0.1), 

0.5µM (0.8+0.0) and 1.0µM (0.8+0.2). There was no significant difference in 

expression level in increasing concentrations from 0.25µM to 1.0µM of small 

molecules and among Noggin, Dorsomorphin or LDN193189 or DMH-1 treatment 

groups. 

 QRT-PCR of OCT4 generated very weak signal in all day8 EBs. Thus, 

no further analysis was performed.
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Figure 3:4 Effect of dual SMAD inhibition by SB431542 and either Noggin or small 
molecules on induction of neuroectoderm marker PAX6. A) Untreated vs SB431542 (SB) 
treatment and (B) SB431542 vs treatment groups- Dorsomorphin (DM), LDN193189 (LDN) 
and DMH-1 (DMH). The expression levels were normalised to endogenous β-actin. Y axis in 
the graph represents expression levels relative to untreated or SB431542 only treated (ie, 2 -

ΔΔCq =1). Data represented as mean + SEM, of 3 different experiment replicates. One way 
ANOVA with Dunnett’s multiple comparison test was used to determine level of 
significance. ****p<0.0001, **p <0.01. 
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Figure 3:5 Effect of dual SMAD inhibition by SB431542 and either Noggin or small 
molecules on induction of neuroectoderm marker SLUG. A) Untreated vs SB431542 (SB) 
treatment and B) SB431542 vs treatment groups- Dorsomorphin (DM), LDN193189 (LDN) 
and DMH-1 (DMH). The expression levels were normalised to endogenous β-actin. Yaxis in 

the graph represents expression levels relative to untreated or SB431542 only treated (ie, 2
-

ΔΔCq 
=1). Data represented as mean + SEM, of 3 different experiment replicates, N=2 for 

DMH-1 group biological replicates. **p <0.01 
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3.4.4 Immunocytochemistry characterization of neural induction   

To further characterize the neural specification, immunocytochemistry 

analysis was performed. The highest dose of each small molecule (with minimal 

cytotoxicity) was taken. Day 8 EBs cultured in the presence of vehicle, SB431542, 

SB431542+Noggin, SB431542+Dorsomorphin at 1.0µM, SB431542+LDN193189 at 

0.5µM and SB431542+DMH-1 at 1µM were enzymatically (using accutase) 

dissociated into single cells and plated. Cultures were then immuno-stained for 

neuroectodermal markers- PAX6, SOX2 and NESTIN. The immunofluorescence 

signal was quantified and represented as percentage of Hoechst positive cells. 

PAX6 expression was localized to the nucleus (Figure 3:6). The 

proportion of PAX6 immuno-positive cells was higher following dual inhibition of 

SMAD signalling. There was a smaller increase in SB431542 only treatment 

(25.5+3.7%) when compared with untreated (15.3+3.3%) control. Noggin or small 

molecules in combination with SB431542, resulted in higher PAX6 expression, but 

the proportion of PAX6+ cells in SB431542+Noggin (60.8+2.0%), 

SB431542+Dorsomorphin (66.9+3.9%), SB431542+LDN193189 (77.0+3.2%) or 

SB431542+DMH-1 (65.7+0.7%) treated cultures were comparable.   

SOX2 expression was localized in the nucleus (Figure 3:7). The 

proportion of SOX2 immuno-positive cells in untreated (85.1+4.0%), SB431542 

(80.3+1.2%), SB431542+Noggin (84.0+1.4%), SB431542+Dorsomorphin 

(83.6+1.0%), SB431542+LDN193189 (85.4+5.1%) or SB431542+DMH-

1(80.0+1.2%) were comparable. 

NESTIN immunoreactivity was present in the cell soma and extended to 

the neuronal like projections (Figure 3:8). The proportion of NESTIN immuno-

positive cells was significantly higher following SB431542 treatment or dual SMAD 

inhibition (no statistical test was performed as only N=1 was performed). The 

percentage of NESTIN immuno-positive cells in untreated, SB431542, 

SB431542+Noggin, SB431542+Dorsomorphin, SB431542+LDN193189 and 

SB431542+DMH-1 respectively, were found to be 33.5+7.10%, 90.8+2.5%, 

94.4+3.0%, 91.6+1.6%, 91.0+3.1% and 93.2+5.1%. 
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Figure 3:6 Fluorescent immunocytochemistry analysis of PAX6 in D8 cultures. D8 EBs were 
generated in the absence or in the presence of BMP inhibitors. EBs were then dissociated, re-
plated as single cells onto PLL coated coverslips and fixed on the same day for 
immunocytochemistry analysis. Cells were immunostained for PAX6 (red) and counter stained 
for Hoechst nuclear stain (blue). Representative images are given- (A1-F1) of Hoechst stained 
cells, (A2-F2) PAX6 stained cells and (A3-F3) Hoechst /PAX6 merge, generated in the 
presence of (A1-A3) no treatment, (B1-B3) SB431542 (SB), (C1-C3) SB431542 + Noggin at 
300ng/ml, (D1-D3) SB431542 + Dorsomorphin (DM) at 1.0µM, (E1-E3) SB431542 + 
LDN193189 (LDN) at 0.5µM and (F1-F3) SB431542 + DMH-1 at 1.0µM.. Scale bar for all 
images in bottom right image = 100µm. Multiple fields/coverslips were imaged. Graphs 
represent (G) the number of Hoechst-stained nuclei counted for each treatment and (H) 
proportion of PAX6 as % of total nuclei. Data represented as mean ± SEM of 2 different 
experiment replicates  
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Figure 3:7 Fluorescent immunocytochemistry analysis of SOX2 in D8 cultures. D8 EBs 
were generated in the absence or in the presence of BMP inhibitors. EBs were then 
dissociated, re-plated as single cells onto PLL coated coverslips and fixed on the same 
day for immunocytochemistry analysis. Cells were immunostained for SOX2 (red) and 
counter stained for Hoechst nuclear stain (blue). Representative images are given- (A1-
F1) of Hoechst stained cells, (A2-F2) SOX2 stained cells and (A3-F3) Hoechst/SOX2 
merge, (A1-A3) undifferentiated hESC (D0) and D8 EBs generated in the presence of 
(B1-B3) no treatment, (C1-C3) SB431542 (SB), (D1-D3) SB431542 + Noggin at 
300ng/ml, (E1-E3) SB431542 + Dorsomorphin (DM) at 1.0µM, (F1-F3) SB431542 + 
LDN193189 (LDN) at 0.5µM and (G1-G3) SB431542 + DMH-1 at 1.0µM. Scale bar 
for all images in bottom right image = 100µm. Multiple fields/coverslips were imaged. 
Graphs represent (G) the number of Hoechst-stained nuclei counted for each treatment 
and (H) proportion of SOX2 as % of total nuclei. Data represented as mean ± SEM, 
N=2 biological replicates.  
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Figure 3:8 Fluorescent immunocytochemistry analysis of NESTIN in D8 cultures. D8 EBs 
were generated in the absence or in the presence of BMP inhibitors. EBs were then dissociated, 
re-plated as single cells onto PLL coated coverslips and fixed on the same day for 
immunocytochemistry analysis. Cells were immunostained for NESTIN (red) and counter 
stained for Hoechst nuclear stain (blue). Representative images are given- (A1-F1) of Hoechst 
stained cells, (A2-F2) V stained cells and (A3-F3) Hoechst/NESTIN merge, generated in the 
presence of (A1-A3) no treatment, (B1-B3) SB431542 (SB), (C1-C3) SB431542 + Noggin at 
300ng/ml, (D1-D3) SB431542 + Dorsomorphin (DM) at 1.0µM, (E1-E3) SB431542 + 
LDN193189 (LDN) at 0.5µM and (F1-F3) SB431542 + DMH-1 at 1.0µM.. Scale bar for all 
images in bottom right image=100µm. Multiple fields/coverslips were imaged. Graphs 
represent (G) the number of Hoechst-stained nuclei counted for each treatment and (H) 
proportion of NESTIN as % of total nuclei. Data represented as mean ± SD, N=1,experiment 
replicates 
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In parallel to the neuroectodermal markers, the neural crest marker P75 

and epidermal marker Cytokeratin 18 (CK18) were analysed (no statistical test was 

performed as only N=1 was performed). P75 expression was localized on surface of 

cells (Figure 3:9) and quantification revealed a similar proportion of positive cells 

across untreated control and treatment samples. P75% in untreated, SB431542, 

SB431542+Noggin, SB431542+Dorsomorphin, SB431542+LDN193189 and 

SB431542+DMH-1 respectively, were found to be 10.2+2.2%, 13.2+2.8%, 

9.2+0.9%, 11.5+3.7%, 13.6+2.1% and 14.7+2.5%.  

CK18 expression was localized in the cytoplasm (Figure 3:10). 

Quantification of the filamentous CK18 protein was problematic, however of the 

total population, CK18+ region was negligible.  

The amount of proliferative neural precursors in the differentiating EBs 

were analysed by immunocytochemistry for KI67 (MKI67), a marker of cells in the 

all the phases of cell cycle (G1, S, G2, and mitosis) was performed. The proportion 

of KI67 immuno-positive cells was determined as the percentage of total nuclei 

(KI67%) (figure 3.11). There was no difference in KI67% between vehicle or 

treatment group. The immuno-positive cells in vehicle, SB431542, 

SB431542+Noggin, SB431542+Dorsomorphin, SB431542+LDN193189 and 

SB431542+DMH-1 respectively, were found to be 44.4+2.9%, 54.4+3.7%, 

45.9+7.2%, 50.9+7.1%, 44.6+8.4% and 45.3+3.8% . 

Finally, the amount of OCT4 immunoreactive cells were analysed. There 

was no expression in any of the D8 EBs, whereas the undifferentiated hESCs stained 

highly OCT4+ (figure 3.12). 
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Figure 3:9 Fluorescent immunocytochemistry analysis of P75 in D8 cultures.  D8 EBs were 
generated in the absence or in the presence of BMP inhibitors. EBs were then dissociated, re-
plated as single cells onto PLL coated coverslips and fixed on the same day for 
immunocytochemistry analysis. Cells were immunostained for P75 (red) and counter stained 
for Hoechst nuclear stain (blue). Representative images are given- (A1-A3) no treatment, (B1-
B3) SB431542 (SB), (C1-C3) SB431542 + Noggin at 300ng/ml, (D1-D3) SB431542 + 
Dorsomorphin (DM) at 1.0µM, (E1-E3) SB431542 + LDN193189 (LDN) at 0.5µM and (F1-
F3) SB431542 + DMH-1 at 1.0µM.. Scale bar for all images in bottom right image=100µm. 
Multiple fields/coverslips were imaged. Graphs represent (G) the number of Hoechst-stained 
nuclei counted for each treatment and (H) proportion of P75 as % of total nuclei. Data 
represented as mean ± SD, N=1,experiment replicates 
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Figure 3:10 Fluorescent immunocytochemistry analysis of CK18 in D8 cultures. D8 EBs were 
generated in the absence or in the presence of BMP inhibitors. EBs were then dissociated, re-plated as 
single cells onto PLL coated coverslips and fixed on the same day for immunocytochemistry analysis. 
Cells were immunostained for CK18 (red) and counter stained for Hoechst nuclear stain (blue). 
Representative images are given- (A1-F1) of Hoechst stained cells, (A2-F2) CK18 stained cells and 
(A3-F3) Hoechst/CK18 merge, generated in the presence of (A1-A3) no treatment, (B1-B3) 
SB431542 (SB), (C1-C3) SB431542 + Noggin at 300ng/ml, (D1-D3) SB431542 + Dorsomorphin 
(DM) at 1.0µM, (E1-E3) SB431542 + LDN193189 (LDN) at 0.5µM and (F1-F3) SB431542 + DMH-
1 at 1.0µM. Scale bar for all images in bottom right image = 200µm. 
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Figure 3:11Fluorescent immunocytochemistry analysis of KI67 in D8 cultures.  D8 EBs were 
generated in the absence or in the presence of  BMP inhibitors. EBs were then dissociated, re-
plated as single cells onto PLL coated coverslips and fixed on the same day for 
immunocytochemistry analysis. Cells were immunostained for KI67 (red) and counter stained 
for Hoechst nuclear stain (blue). Representative images are given- (A1-F1) of Hoechst stained 
cells, (A2-F2) KI67 stained cells and (A3-F3) Hoechst/KI67 merge, generated in the presence 
of (A1-A3) no treatment, (B1-B3) SB431542 (SB), (C1-C3) SB431542 + Noggin at 300ng/ml, 
(D1-D3) SB431542 + Dorsomorphin (DM) at 1.0µM, (E1-E3) SB431542 + LDN193189 
(LDN) at 0.5µM and (F1-F3) SB431542 + DMH-1 at 1.0µM.. Scale bar for all images in 
bottom right image=100µm. Multiple fields/coverslips were imaged. Graphs represent (G) the 
number of Hoechst-stained nuclei counted for each treatment and (H) proportion of KI67 as % 
of total nuclei. Data represented as mean ± SD, N=1 experiment replicates 
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Figure 3:12  13Fluorescent immunocytochemistry analysis of OCT4 in D8 cultures. D8 
EBs were generated in the absence or in the presence of  BMP inhibitors. EBs were then 
dissociated, re-plated as single cells onto PLL coated coverslips and fixed on the same day 
for immunocytochemistry analysis. Cells were immunostained for OCT4 (red) and counter 
stained for Hoechst nuclear stain (blue). Multiple fields/coverslips were imaged 
.Representative images are given- (A1-A3) undifferentiated hESC (D0) and D8 EBs 
generated in the presence of (B1-B3) no treatment, (C1-C3) SB431542 (SB), (D1-D3) 
SB431542 + Noggin at 300ng/ml, (E1-E3) SB431542 + Dorsomorphin (DM) at 1.0µM, 
(F1-F3) SB431542 + LDN193189 (LDN) at 0.5µM and (G1-G3) SB431542 + DMH-1 at 
1.0µM. Scale bar for all images in bottom right image = 100µm 
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3.5 Discussion 

Neural induction of hPSCs requires an exit from the pluripotent stem cell 

stage and differentiation into neuroectoderm bypassing differentiation into other 

germ layers and other ectodermal cell types. As described in the introduction, TGF-

β/nodal/Activin signalling via SMAD2/3 maintains hPSC pluripotency (Xiao et al. 

2006; Xu et al. 2008; Vallier et al. 2009). Previous reports showed that inhibition of 

SMAD2/3 signalling by SB431542 reduced OCT4 and NANOG expression and 

induced differentiation into NESTIN+ SOX1+ neuroectoderm fate (Smith et al. 2008) 

as well as trophoblast fate (Chambers et al. 2009; Morizane et al. 2011). Trophoblast 

fate was initiated by BMP mediated SMAD1/5/8 signalling; supplementation of 

BMP4 induced hPSC conversion to trophoblast (Xu et al. 2002) whereas, 

supplementation of Noggin blocked this differentiation (Xu et al. 2002; Chambers et 

al. 2009). TGF-β/nodal/Activin and BMP signalling also initiated hPSC mesoderm, 

endoderm and extra-embryonic endoderm differentiation (Pera et al. 2004; Sumi et 

al. 2008). Supplementation of Noggin suppressed this non-neural differentiation and 

enhanced neural differentiation (Pera et al. 2004; Itsykson et al. 2005). Later, the 

concomitant inhibition of SMAD2/3 and SMAD1/5/8 by SB431542 and Noggin was 

reported to be more effective than SB431542 or Noggin alone treatments. It resulted 

in highly efficient neuroectodermal conversion of hPSCs by downregulating 

pluripotency and suppressing differentiation towards, trophoblast, mesoderm and 

endoderm (Chambers et al. 2009). This strategy of dual-SMAD inhibition was 

applied to an EB based culture to investigate the effect of small molecule BMP 

inhibitors in my study (figure 3.1).  

3.5.1  Effect of BMP inhibitors on neuroectodermal and pluripotency 

markers 

The main result of this study was the demonstration that inhibition of 

BMP signalling promoted PAX6, but not SOX2 and NESTIN expression, under the 

culture conditions used. At the protein level, the untreated control cultures contained 

~15% PAX6+, 85% SOX2+ and 34% NESTIN+ cells, indicative of default acquisition 

of neural identity under the culture conditions used. SB431542 only treatment 

enhanced PAX6 mRNA expression (3 fold), but resulted in a comparable percentage 

of PAX6+ (~26%) and SOX2+ (~81%) and strongly induced NESTIN+ (90%). This 

data was consistent with the previous reports; SB431542 alone treatment in an 
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adherent culture caused only a slight increase in PAX6 protein (Zhou et al. 2010; 

Surmacz et al. 2012) and in an EB based culture, upregulated NESTIN expression 

and resulted in marginally high but not significantly different SOX1 expression 

(Smith et al. 2008; Morizane et al. 2011). Addition of Noggin in combination with 

SB431542, further enhanced PAX6 expression at both mRNA (2.3 fold) and protein 

levels (~60% PAX6+), but not SOX2 (~84%) and NESTIN (~94%) proteins. This 

data on PAX6 was consistent with the previously reported hESC monolayer based 

dual-SMAD inhibition by SB431542 and Noggin, in which, combined treatment for 

11 days yielded >80% PAX6+ cells, compared with <10% when SB431542 or 

Noggin was used alone (Chambers et al. 2009). The difference in PAX6% obtained 

in my study can be attributed to the discrepancies between the culture conditions and 

concentration of Noggin used. Temporal analysis of gene expression in their study 

revealed SOX1 as the earliest marker, preceding PAX6. Only one time point was 

analysed in my study. Based on the induction of PAX6 which was shown to be a 

definitive human neuroectoderm fate determinant (Zhang et al. 2010), it could be 

concluded that compared with no treatment or SB431542 alone treatment, dual 

SMAD inhibition by SB431542 and Noggin in my study efficiently induced 

neuroectodermal fate in hESCs.  

Substituting Dorsomorphin or LDN193189 or DMH-1 for Noggin had a 

comparable effect. However, no dose dependent effect of small molecules was seen 

on PAX6 mRNA levels. At all the doses -0.25, 0.5 and 1.0µM, all the 3 small 

molecules induced around 3-4 fold increase in PAX6 expression. EBs generated 

using the highest tolerable dose (with minimal cytotoxicity as monitored under phase 

contrast microscope. Dorsomorphin at 5µm and LDN193189 above 1µM were 

cytotoxic) - Dorsomorphin at 1µM, LDN193189 at 0.5µM and DMH-1 at 1µM 

yielded 67%, 77% and 66% PAX6, respectively and the difference was not 

statistically significant. The same cultures also showed 80-85% SOX2 and 90-93% 

NESTIN expression. At the time of my study, use of these small molecules to replace 

Noggin was a novel concept and during the period of my study, similar studies were 

reported, supporting the dual-SMAD inhibition strategy for efficient neural 

induction. Dorsomorphin alone treatment dose dependently (0.1 to 5µM) induced 

PAX6, SOX1 and NESTIN expression and reduced trophoblast markers, indicating 

that Dorsomorphin by itself permissively supported neural induction (Kim et al. 
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2010; Morizane et al. 2011). Although decreased, considerable expression of 

markers of pluripotency, mesoderm and endoderm were still detectable in those 

cultures. Simultaneous treatment with SB431542 and Dorsomorphin effectively 

reduced those markers and highly enriched neural markers (Kim et al. 2010; 

Morizane et al. 2011). LDN193189 was shown to be a more potent and efficient 

inducer of PAX6+ cells than Dorsomorphin; under monolayer culture for 8 days, 

SB431542+LDN193189 (1µM) treatment induced ~80% PAX6 in comparison to 

~60% PAX6 with SB431542+Dorsomorphin (5µM) +Noggin (50ng/ml). The dose-

response curve demonstrated PAX6 induction with an EC50=4.84nm (Surmacz et al. 

2012). The efficacy of DMH-1 on neural induction has been reported. Comparing 

SB431542+Noggin (500ng/ml) or SB431542+DMH-1 (0.5µM) in a monolayer 

based protocol showed similar level induction of PAX6 at both protein and mRNA 

levels (Neely et al. 2012). In their study, induction of SOX1 preceded PAX6 

expression as previously reported by Chambers et al. (2009). Interestingly, temporal 

analysis of gene expression revealed a differential regulation of SOX1 at mRNA and 

protein levels; while both Noggin and DMH-1 treatment upregulated SOX1 by day3, 

its expression was downregulated by day 5-7 in the presence of DMH-1, whereas it 

remained elevated in the presence of Noggin. Protein analysis revealed Noggin and 

DMH-1 dose dependent increase of SOX1 expression, but not on PAX6 expression 

(Neely et al. 2012). DMH-1 at 5µM and Noggin at 500ng/ml generated a comparable 

SOX1 expression level even though the SOX1% varied between the cell lines used 

(Neely et al. 2012).  

Small molecule dose-dependent effect was seen on the inhibition of 

BMP-induced phosphorylation of SMAD1/5/8 signalling in undifferentiated hESCs. 

Therefore, all the doses were tested for neural induction to analyse a dose-dependent 

effect. Due to technical difficulties in obtaining enough protein from D8 EBs to be 

analysed by western blotting, inhibition of BMP signalling was analysed by QRT-

PCR of ID1 and ID3. At D8, all the 3 doses tested, equally inhibited BMP signalling, 

explaining the comparable PAX6 transcript level achieved by small molecules 

treatment. As mentioned, Dorsomorphin, LDN193189 and DMH-1 act by inhibiting 

BMP type I receptors. Dorsomorphin at IC50 = 0.47µM (Yu et al. 2008) and 

LDN193189 at IC50 = 5 nM and 30 nM inhibited ALK2 and ALK3 receptors 

respectively (Cuny et al. 2008). DMH-1 at IC50 = 108 nM inhibited ALK2 receptors 
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specifically (Hao et al. 2010). Including doses above and below IC values of small 

molecules on BMP inhibition in this study, would have revealed an optimal dose in 

PAX6 induction. This would also determine the most effective small molecule as 

well as minimise the possible off target effects. Both Dorsomorphin and 

LDN193189, but not DMH-1 was shown to have off-target effects against VEGF, 

PDGFRβ and BMP mediated non-SMAD signalling such as p38, MAPK, Akt and 

ERK1/2 (Hao et al. 2010; Boergermann et al. 2010; Vogt et al. 2011). There is also 

need for caution, when comparing the different protocols to analyse the effect of 

addition of BMP inhibitors on neural gene expression. Any discrepancies between 

dual-SMAD inhibitions studies discussed above, may also be attributed to the cell 

lines used and the many variable factors of the neutralizing cultures as outlined in 

table 4.  

Table 7 Comparison of dual-SMAD inhibition protocols  

Reference Basal medium composition Culture 

method 

Noggin /Small 

molecules  

My study 
(2010-2013 lab 
work) 

Advanced DMEM/F-
12+1%L-Glutamine 
(2mM)+ Lipid concentrate+ 
Insulin+ Transferrin+ β-
mercaptoethanol 

EB- 8 days SB431542431542 
(10μM) 
Dorsomorphin(0.25 
-1μM) 
LDN193189 (0.25 
-1μM) 
DMH1 (0.25 -
1μM) 
 

Chambers et al. 
2009 

knockout serum replacement 
media for 5 days then in 
increasing amounts of N2 
media (25%, 50%, 75%) 
was added to the knockout 
serum replacement medium 
every 2 days 

MS5 feeder 
or 
monolayer-7 
days 

SB431542431542 
(10μM) 
Noggin (500ng/ml) 

Kim et al. 2010 
 

DMEM/F12 medium+ 20% 
KSR+, 1x non-essential 
amino acid+ 0.1mMbeta- 
mercaptoethanol  

EB -10 days SB431542431542 
(10μM) 
Dorsomorphin (0.1 
-5μM) 
Noggin (1000/ml) 

Morizane et al. 
2011 
 

DMEM/Ham’sF12+ 5% 
KSR + 2 mM L-glutamine + 
and MEM nonessential 
amino acid solution  

 
PA6 feeders 
or EB -14 
days 

 
SB431542431542 
(10μM) 
Dorsomorphin 
(0.02 -20μM)  
Noggin (300ng/ml)  
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Concomitant with the induction of neural markers, there was loss of 

OCT4 in all the D8 EBs including the untreated control. At the mRNA level, 

negligible signals were generated. Similarly, at the protein level D8 EBs showed no 

expression, whereas undifferentiated hESCs were almost 100% OCT4+. ESC 

neuroectoderm commitment has been shown to be marked by Sox2 expression and 

downregulation of Oct4 (Thomson et al. 2011). Here, undifferentiated hESCs were 

SOX2+/OCT4+ and all D8 EBs were SOX2+/OCT4-. As mentioned above, during 

dual-SMAD inhibition, SB431542 treatment effectively downregulated pluripotency 

markers OCT4 and NANOG (Chambers et al. 2009; Kim et al. 2010; Morizane et al. 

2011). The expression of comparable proportion of SOX2 in all D8 EBs, indicated 

that, under this specific culture condition used in my study, OCT4 downregulation 

and SOX2 expression occurred independently of SB431542 and BMP inhibitors. 

This expression pattern can also be attributed to the inherent differentiation 

propensity of the hESC line used. 

3.5.2 Effect of BMP inhibitors on neural crest and epidermal markers 

Both neuroectoderm and neural crest cells are derived from the ectoderm. 

Generation of neural crest cells was examined in the culture by measuring P75 and 

SLUG expression. The presence of neural crest cells was evident by the expression 

10-15% P75+ cells in all D8 EBs. SB431542 alone or in combination with BMP 

inhibitors did not seem to alter the expression levels. It should be noted that the 

Surmacz et al. 
2012 
 

Knockout DMEM+ 20% 
KSR 

Monolayer 
– 8 days 

SB431542431542 
(10μM) 
LDN193189  
 (0.001 -1μM)  
Dorsomorphin 
(5μM)  
Noggin (50ng/ml) 

Neely et al. 2012 
 

Knockout DMEM/F12+ 
15% KSR, glutamax+  
penicillin/streptomycin + 
nonessential amino acids+ 
55 μM β-mercaptoethanol. 
And then in  25% N2-
medium (DMEM/F12, N2 
supplement, and high D-
glucose at a final 
concentration of 4.5 g/L 

Monolayer 
– 7 days  

SB431542431542 
(10μM) 
DMH-1  
(0.5-10µM) 
Noggin 
 (50-500ng/ml)  
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experiment was not replicated to determine a statistical significance. Analysis of 

SLUG mRNA showed significant downregulation by SB431542 treatment compared 

with untreated. However, addition of Noggin or small molecules did not alter the 

expression level. Generation of neural crest cells had been reported previously in 

dual-SMAD inhibition protocols as a by-product. Although the culture yielded high 

proportion of PAX6+ cells, neural crest markers were expressed in PAX6- cells 

(Elkabetz et al. 2008; Chambers et al. 2009; Kreitzer et al. 2013). The initial cell 

plating density seemed to play a critical role in SB431542 + Noggin or SB431542 + 

LDN193189 monolayer based differentiation; high plating densities led to near-

exclusive generation of PAX6+ cells whereas, low plating densities promoted 

generation of neural crest cells (Chambers et al. 2009; Kreitzer et al. 2013). Role of 

other signalling pathways such as WNT signalling has been demonstrated in neural 

crest development. Activation of WNT signalling combined with dual-SMAD 

inhibition was able to divert neuroectoderm fate towards neural crest fate. This was 

evident by the inhibition of PAX6 and SOX2 and marked increase in SLUG mRNA 

and P75 expression (Menendez et al. 2012).  

Generation of the non-neural ectoderm derivative, epidermis was 

analysed in the cultures using CK18 antibody. D8 EBs contained low proportion of 

CK18+ cells. The experiments were not replicated to determine statistical 

significance among the treatments. Though appeared to be negligible, this may 

indicate a low level endogenous BMP activity in these cultures. Supplementation of 

exogenous BMPs has been shown to efficiently drive hESC stromal co-culture or EB 

based ectodermal differentiation towards an epidermal fate (Aberdam et al. 2008).  

Finally, the presence of 45-50% KI67+ cells confirmed that EBs 

contained actively proliferating progenitors. BMP inhibition did not alter the 

proportion. Thus, dual-SMAD inhibition permits generation of neural progenitors 

that can be expanded and patterned to generate different neuronal types. Dual-SMAD 

inhibition strategy along with temporal integration of other developmental pathways 

has permitted the derivation of cortical (Shi et al. 2012), striatal (DelliCarri et al. 

2013; Nicoleau et al. 2013; Arber et al. 2015), and midbrain neurons (Kriks et al. 

2011; Kirkeby et al. 2012) from hPSCs.  

In conclusion, hESCs were differentiated into neural lineage cells using 

an EB based protocol. The basal medium used in the study, showed neutralizing 
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effect as evidenced by the induction of PAX6, SOX2 and NESTIN and 

downregulation of OCT4. Addition of SB431542 enhanced NESTIN and PAX6. 

Addition of Noggin or Dorsomorphin or LDN193189 or DMH-1 in combination 

with SB431542, highly enhanced PAX6 transcript and PAX6 protein. Although a 

dose-dependent effect on inhibition of induced BMP activity was demonstrated by 

Dorsomorphin, LDN193189 and DMH-1 at the undifferentiated hESC stage, at D8 

all the doses of small molecules equally inhibited BMP signalling. This resulted in a 

comparable induction of PAX6. Effect of Noggin and small molecule BMP inhibitors 

were comparable. The differentiated cultures were heterogeneous and contained low 

proportion of neural crest and epidermis cells. 
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4 Investigation of small molecule mediated 

WNT antagonism on hPSC telencephalon 

specification 

4.1 Aim  

To analyse the effect of WNT antagonism on telencephalon induction from 

hPSCs, utilizing the small molecule WNT inhibitors- IWR1 and KY02111 

4.2 Background 

Evidences from early patterning studies on animal models have 

demonstrated the role of WNT antagonism on telencephalon induction and 

specification. In early embryos, WNT proteins are expressed in the primitive streak at 

the posterior side. WNT antagonists such as Cer1 and Dkk1 expressed in signalling 

centres AVE and AME, act by repressing posterior signals and thereby enhance 

anterior neural fate specification (Belo et al. 1997; Kimura et al. 2000; Kemp et al. 

2005). Simultaneous inhibition of WNT and BMP signalling by over expression of 

antagonists induced a complete secondary axis (Glinka et al. 1997; Glinka et al. 1998), 

while targeted deletion of Dkk1 lead to anterior truncations (Mukhopadhyay et al. 

2001; Barco Barrantes et al. 2003). As telencephalon developed (E11.5-E16.5), WNT 

signalling was shown to be active in the pallium but not in the subpallium (Backman et 

al. 2005). Inhibition of WNT signalling resulted in the repression of dorsal markers 

and in the ectopic expansion of ventral markers, while the activation of WNT 

signalling in the subpallium resulted in the ectopic expansion of dorsal markers 

indicating the role played by WNT signalling in dorsal telencephalon (Gunhaga et al. 

2003; Backman et al. 2005).  

In vitro, in the absence of patterning signals, the default identity of 

neuroectodermal cells derived from hPSCs using stromal co-culture, serum free EB 

method or dual SMAD inhibition, has been reported as FOXG1+ anterior fate 

(Pankratz et al. 2007; Elkabetz et al. 2008; Chambers et al. 2009; Neely et al. 2012; 

Delli Carri et al. 2013). hPSC differentiation protocols have employed the expensive 

recombinant protein DKK1 for efficient induction of FOXG1+ cells (Watanabe et al. 

2007; Li et al. 2009; Zhang et al. 2010; DelliCarri et al. 2013; Nicoleau et al. 2013). In 
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the absence of any morphogens, these FOXG1+ cells mostly adopted PAX6+ dorsal 

telencephalon identity (Chambers et al. 2009; Li et al. 2009; Nicoleau et al. 2013).  

In this chapter, I investigated the effect of WNT antagonism by small 

molecule inhibitors IWR1 and KY02111 during hPSC neural differentiation. IWR1 

acts by inhibiting Tankyrase1 and 2 and promotes β-catenin destruction complex 

(Chen et al. 2009; Huang et al. 2009). KY02111 acts in a manner distinct from IWR1, 

possibly by acting downstream of GSK3β and APC in β-catenin destruction complex 

(Minami et al. 2012).  

4.3 Experimental design 

The effect of WNT antagonism on hPSC-derived neuroectoderm 

specification towards a telencelphalic fate was studied. Neuroectoderm cultures were 

generated using the SMADi strategy described in the previous chapter. Initially, the 

effect of IWR1 on the inhibition of induced as well as endogenous WNT activity was 

assessed in neuroectoderm progenitors generated using dual-SMAD inhibition 

(SB431542+LDN193189) EB protocol (Figure 4:2.A and Figure 4:3A). EB cultures 

often needed disrupting using a pipette due to their clustering together. This resulted in 

heterogeneous sized EBs as well as in low yield of neuroectoderm progenitors. Hence, 

the SB431542+LDN193189 protocol was adapted to a monolayer protocol (Figure 

4:1.A).Pluripotent hPSCs were grown on matrigel in mTeSR1 medium. On D0, 

mTeSR1 was replaced with neural induction medium containing 10μM SB431542 till 

D8 and LDN193189 till D16 (in the modified protocol, the inhibition of BMP 

signaling was continued until D16. After re-plating on D8, the concentration of 

LDN193189 was reduced to 0.25µM due to cytotoxicity at higher concentration). 

Three sets of experiments were performed. 1) IWR1 was added at D0 and cultures 

were analysed at D8 and D16, time points representative of initial neural induction 

phase and subsequent telencephalon induction and specification phase. 2) Time point 

addition of WNT inhibitors was examined by addition of IWR1 at either D0 or D8 and 

cultures were analysed at D16. 3) Dose response was performed by addition of IWR1 

or KY02111 (at 0.1, 1 and 10 µM) at D0. Cultures were harvested and were analysed 

by QRT-PCR and/or immunocytochemistry on D16. Telencephalon induction and D/V 

specification were assessed by measuring the expression of FOXG1, PAX6, GSX2 and 

DLX2. The best dose of each IWR1 and KY02111 were further characterized using 
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high-throughput QRT-PCR array, for specific markers of CNS, pluripotency and other 

germ layers as outlined in Figure 4:1.C.  

  Figure 4:1 A) Cell culture regime for hPSC telencephalon induction. H9s were grown in mTeSR1 on 
matrigel coated plates. On D0, mTeSR1 was replaced with medium containing SB431542 till D8, 
LDN193189 til D16 and IWR1 till D16. Cultures were re-plated at 1:2 ratio on D4 and again on D8 
and maintained til D16 on matrigel coated plates B) Markers analysed by QRT PCR and/or ICC on 
D16. C) Markers analysed by quantitative high -throughput array on D16 (figure taken from Straccia 
et al. 2015). The X-axis and Y–axis represent the rostro-caudal and dorso-ventral axis of human brain 
development. Left panel shows early neural genes. Bottom panel shows general neuronal and glial 
gene markers. Far left shows markers of pluripotency, ectoderm, mesoderm and endoderm 

hPSC on mTeSR 

-D2                            D0                       D4                              D8                                       D16      

     Telencephalon induction and specification –monolayer 

SB431542 10µM 

+ LDN193189 1 µM                          LDN193189 0.25µM  

+ IWR1 or KY021110.1 to 10µM (D0-D16) 

P1 P 2 

B.  D16 markers analysed by QRT-PCR or ICC 
1. WNT activity- LEF1 

2. Telencephalon- FOXG1 

3. Telencephalon D/V specification- PAX6, GSX2, DLX2, NKX2.1   

C.  D16 markers analysed by Quantitative high-throughput 
array  

A 
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4.4 Results  

4.4.1 Effect of IWR1 on inhibition of induced WNT activity 

To analyse the modulation of WNT activity, H9 neural progenitors were 

generated using the dual-SMADi EB protocol. D8 EBs were dissociated and plated as 

single cells in basal media (Figure 4:2.A). To determine an optimal dose to elicit an 

acute WNT response in the culture, a pilot assay was performed on D12 with 25 to 

200ng/ml WNT3a for 20 hours along with an untreated control. Analysis of immediate 

WNT signalling target LEF1 was analysed by QRT-PCR (see appendix table 4.1 for 

ΔCq). The fold change over control ‘0’ng/ml for 25, 20, 100 and 200ng/ml WNT3a 

treatment was 1.08, 1.18, 1.36 and1.48 respectively (Figure 4:2.B). WNT 3a at 

100ng/ml was used in later studies to elicit WNT activity in cultures.  

To analyse the effect of IWR1 on the inhibition of WNT activity, the 

cultures were pre-treated with 0.0001 to 10µM of IWR1 for 2 hours followed by the 

addition of WNT3a. The cultures harvested after 12 hours were analysed for LEF1 

expression (see appendix table 4.1 for ΔCq). Fold change over ‘0’ µM IWR1 was 

plotted (Figure 4:2 C). ANOVA revealed a significant dose dependent inhibition by 

IWR1 pre-treatment compared with WNT3a only treatment (F4,10=4.9, p=0.02). 

Dunnett’s multiple comparisons test confirmed no significant difference at 0.001µM 

(0.7+0.1) and 0.1µM (0.9+0.1) and significantly lower expression at 1µM (0.6+0.1) 

and 10µM (0.6+0.1).  

4.4.2 Effect of IWR1 on inhibition of endogenous WNT activity 

Next, the effect of IWR1 on inhibition of endogenous WNT signalling was 

analysed. D8 EBs plated as single cells were cultured in the presence of 0.001 to 10µM 

IWR1 from D8 to D16 (Figure 4:3.A). At D16, cultures were analysed for the 

expression of LEF1. A high degree of cell death was observed at 10µM and hence was 

eliminated from the analysis (see appendix table 4.1 for ΔCq). ANOVA showed a 

significant a dose-dependent inhibition of LEF1 (F4,10=15.0, p=0.0003) (Figure 4:3.B). 

Dunnett’s multiple comparisons test confirmed significantly lower LEF1 expression at 

0.1µM (0.4+0.1) and 1µM (0.4+0.0) of IWR1 compared to that of untreated control 

(1.0+0.1). At lower concentration of 0.001µM (1.1+0.1) and 0.01µM (0.8+0.5) there 

was no statistical significance compared to control.  
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Figure 4:2 Modulation of WNT activity by WNT3a and IWR1 in day 12 neural 
progenitors- A) Cell culture regime. D8 EBs were plate as monolayer onto PLL coated 
plates. On D12 neural progenitors were treated with 0 to 200ng/ml for WNT3a or pre-
treated with IWR1 for 2 hours followed by addition of 100ng/ml WNT 3a for the 
experiments. B) Dose dependent induction of LEF1 by WNT3a after 20 hours (n=1, pilot 
study). C) Dose dependent inhibition of LEF1 by IWR1. Dotted line indicates the maximal 
response elicited by 100ng/ml WNT3a treatment. Data represented as mean ± S.E.M, N= 3, 
experiment replicates . * P = 0.02 
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Figure 4:3 Modulation of endogenous WNT activity by IWR1. A) Cell culture regime. D8 NEBs plated 
as monolayer onto PLL coated plates were treated with 0.001 to 10µM IWR1 till D16. B) Dose 
dependent inhibition of LEF1 by IWR1 on D16. Data represented as mean ± S.E.M ,N= 3, experiment 
replicates set in parallel. ** P < 0.0 

4.4.3 Effect of IWR1 on telencephalon induction - time point analysis  

Please note that from this point onwards, throughout this thesis, monolayer 

based protocol (referred as SMADi- hereafter) outlined in Figure 4:3 was used.  

First, to determine the time point for analysing the impact of WNT 

antagonism on telencephalon induction, IWR1 at 1.5µM was added to neural induction 

cultures from D0 (Note- this experiment was performed on 34D6 iPSC line). The 

samples were harvested at D8 and D16. The expression levels of neuroectoderm 

makers- PAX6 and SLUG and telencephalon marker FOXG1 were monitored by QRT-

PCR. As no ‘untreated’ control was included in the study, the expression normalised to 

the reference gene GAPDH (2-ΔCq) was plotted (see appendix table 4.2 for ΔCq), 

instead of fold change over untreated control (2-ΔΔCq) (Figure 4:4). Analysis of PAX6 

expression revealed no significant difference between D8 (41.5+11.3) and D16 

(43.5+10.6) (t4=0.1, p=n.s) (Figure 4:4.A). SLUG expression showed slightly lower but 

not significantly different expression between D8 (2.0+0.4) and D16 (0.8+0.3) (t4=2.0, 

p=n.s) (Figure 4:4.B). There was significant induction of FOXG1 at D16 (394.1+95.8) 

compared to D8 (42.1+ 20.3) (t4=4.8, p=0.009) (Figure 4:4.C).  
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Next, to analyse whether WNT antagonism specifies telencephalon during 

the initial phase of neural induction, two time points for the addition of IWR1 to 

SMADi-monolayer cultures were considered. IWR1 was added to the neural induction 

cultures either at D0 or D8. FOXG1 expression was analysed at day 16 by high-

throughput QRT-PCR (see appendix table 4.3 for ΔCq). The fold change expression 

over untreated control was plotted. As the experiments were perfomed on N=2, no 

statistical tests were performed. However, a high fold induction of FOXG1 was evident 

in cultures treated with IWR1 from D0 (Figure 4:5). Thus, for further analysis, D0 

addition was used and samples were analysed at D16.  

 

Figure 4:4 Monitoring telencephalon induction on monolayer based protocol. Monolayer differentiation 
of 34D6 iPSC was performed as in figure 4.3.1. Samples were analysed at D8 and D16. Fold change 
expression levels of (A) PAX6, (B) SLUG (C) FOXG1 at D8 and D16 analysed by QRT-PCR. Data 
represented as mean ± S.E.M, N=3, experiment replicates set in parallel. ** P < 0.01 

 

Figure 4:5 Effect of time point addition of IWR1 on FOXG1. Monolayer differentiation of H9 ESC was 
performed as in figure 4.3.1. IWR1 was added at either D0 or D8. Samples were analysed at D16. Fold 
change over untreated (no IWR1) was plotted. Data represented as mean ± S.E.M, N=2, experiment 
replicates set in parallel. 

U n t re a te d 0 8

0

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

8 0 0 0 0

1 0 0 0 0 0
   F O X G 1 a t  d a y 1 6

                  D a y  o f  s ta r t  o f  IW R

F
o

ld
 c

h
a

n
g

e

8 1 6

0

1

2

3
S L U G

D a y  o f d i f fe re n t ia t io n

R
e

la
ti

v
e

 E
x

p
re

s
s

io
n

8 1 6

0

1 0

2 0

3 0

4 0

5 0

6 0
P A X 6

D a y  o f d i f fe re n t ia t io n

R
e

la
ti

v
e

 E
x

p
re

s
s

io
n

8 1 6

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0
F O X G 1

D a y  o f d i f fe re n t ia t io n

R
e

la
ti

v
e

 E
x

p
re

s
s

io
n

           
**   

A B C 



Chapter 4 

-138- 
 

4.4.4 QRT-PCR characterization of WNT inhibitors mediated telencephalon 

induction and specification 

To investigate further whether the D0 addition of WNT inhibitors enhances 

the telencephalon induction and specification, IWR1 or KY02111 was added at 

concentrations ranging from 0 to 10µM. The cultures were analysed at D16 for the 

expression of FOXG1, PAX6, GSX2 and DLX2 (see appendix table 4.4 for ΔCq). Fold 

change over ‘0’ treatment was plotted. Note that the dose-response experiments were 

performed only twice, ie, N=2. To avoid giving any misleading P values while 

interpreting data, no statistical tests were performed. The experiments were repeated 

with the best dose of both IWR1 and KY02111 and was further analysed by high-

through put QRT-PCR for N=3, discussed later. 

There was a marked increase in FOXG1 expression in a dose-dependent 

manner by the IWR1 or KY02111 treatment (Figure 4:6. A). The high concentrations 

of IWR1 1µM (1690.1+70.3) and 10µM (1832.2+26.5) yielded a similar expression 

level which was markedly higher than the level seen at low concentrations of 0.1µM 

(14.3+8.4) or ‘0’ control (1.0+0.8). KY02111 at 10µM (1830.4+538.3) showed the 

highest expression level. At 1µM (890.8+262.6) the expression level was lower than 

that seen at 10µM but higher than that seen at 0.1µM (15.3+ 9.5) or ‘0’ treatment.  

The expression of PAX6 was downregulated upon IWR1 or KY02111 

treatment (Figure 4:6.B). IWR1 at 1µM (0.4+0.1) and 10µM (0.4+0.1) yielded a 

similar expression level that was lower than that seen at 0.1µM (0.8+0.3) or ‘0’ control 

(1.0+0.2). KY02111 at 10µM (0.4+0.2) and 1µM (0.5+0.1) showed an expression level 

lower than 0.1µM (0.8+ 0.2) or ‘0’ treatment.  

Concomitantly, the expression of GSX2 was upregulated by IWR1 or 

KY02111 treatment in a dose dependent manner (Figure 4:6.C). IWR1 at 1µM 

(414.5+110.7) and 10µM (399.0+5.5) yielded higher expression levels than that seen at 

0.1µM (1.3+ 1.3) or ‘0’ untreated control (1.0+0.4). KY02111 at 10µM (223.5+ 83.8) 

and 1µM (122.2+26.9) showed higher expression levels than that seen at 0.1µM 

(5.4+4.8) or ‘0’ treatment. Similarly, IWR1 or KY02111 dose-dependently 

upregulated DLX2 expression (Figure 4:6.D). IWR1 at 1µM (145.8+57.2) and 10µM 

(72.5+18.2) yielded higher expression level than that observed at 0.1µM (0.4+0.1) or 

‘0’ treatment (1.0+0.0). Among KY02111 treatment group, 10µM (91.8+26.9) yielded 

the highest expression levels than 1µM (9.7+4.7), 0.1µM (1.3+ 1.3) or ‘0’ control.  
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Figure 4:6 Effect of WNT inhibitors on telencephalon induction and specification. IWR1 and KY02111 
dose-dependent fold change expression of A) FOXG1, B)PAX6, C)GSX2 and D)DLX2. Data represented 
as mean ± S.E.M, N= 2, experiment replicates 

 

4.4.5 Immunocytochemistry characterization of WNT inhibitor mediated 

telencephalon induction and specification 

To characterize telencephalon induction and specification at the protein 

level, immunocytochemistry analysis was performed. D16 cultures generated in the 

presence of IWR1, KY02111 or ‘0’ control treatment (0.1% DMSO) were re-plated 

onto matrigel coated cover slips and fixed on the same day. Cultures were then 

immuno-stained for FOXG1, PAX6, GSX2 and NKX2.1. The immunofluorescence 

signal was quantified and represented as percentage of DAPI positive cells. 

FOXG1 expression was localized to the nucleus (Figure 4:7). The 

proportion of FOXG1 immuno-positive cells was higher following WNT inhibition 

when compared to control. A dose-dependent effect of IWR1 and KY02111 on 

FOXG1 induction was observed. Control (5.0+3.7%), 0.1µM IWR (1.8+1.2%) and 

0.1µM KY02111 (1.5+0.2%) yielded negligible expression. There was a higher 

induction at 1.0µM IWR1 (92.0+3.9%). KY02111 at 1µM (35.2+10.0%) and 10µM 

(75.5+5.8%) also gave a higher yield than control treatment  

Further, telencephalon D/V specification was assessed in control as well as 

IWR1-1µM and KY02111-10µM treated cultures that gave the highest FOXG1 yield. 

The control cultures showed almost uniform PAX6 signal intensity whereas a gradient 

in intensity was observed in cultures treated with IWR1 or KY02111 (Figure 4:8). 
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Both high and low intensity signals were combined to quantify the total PAX6%. The 

number of PAX6+ cells was decreased by IWR1 (77.4+2.8%) and KY02111 treatment 

(74.5+2.0%) when compared with control (90.5+1.1%) (Figure 4:8.E). Interestingly, 

the nuclear PAX6 intensity was also decreased by IWR1 (0.4+0.0) and KY02111 

(0.3+0.1) compared with the signal detected in control (1) (Figure 4:8.F). Similar to 

PAX6 expression, GSX2 expression intensity induced by the WNT inhibitors was seen 

as a gradient, with cultures containing high intensity and low intensity GSX2-positive 

cells as well as clear GSX2-negative cells (Figure 4:9). Both high intensity and low 

intensity signals were combined to quantify the total percentage of GSX2+ cells. Please 

note that whilst quantifying PAX6 and GSX signals using cell profiler software, the 

stringent threshold intensity applied to eliminate any background may have excluded 

some low intensity positive cells. The proportion of GSX2 cells in IWR1 (69.2+2.5%) 

or KY02111 (49.2+1.5%) treated cultures was higher than in control treatment (0%) 

(Figure 4:9.E). The proportion of NKX2.1 immunopositive cells in IWR1 (7.3+1.1%) 

or KY02111 (8.2+0.8%) treated cultures higher than that in control (0%) (Figure 4:10). 
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Figure 4:7 Fluorescent immunocytochemistry analysis of FOXG1 in D16 monolayer cultures. D16 
progenitors were generated in the absence or in the presence of WNT inhibitors on matrigel coated 
plates. Cultures were re-plated onto matrigel coated coverslips and fixed on the same day. Cells were 
immunostained for FOXG1 (red) and counter stained for DAPI nuclear stain (blue). Representative 
images are given- A1-F1) DAPI stained cells, A2-F2) FOXG1 stained cells A3-F3) DAPI/FOXG1 
merge, generated in the presence of A1-A3) no treatment, B1-B3) IWR1 at 0.1µM, C1-C3) IWR1 at 
1.0µM, D1-D3) KY02111 at 0.1µM, E1-E3) KY02111 at 1.0µM and E1-E3) KY02111 at 10.0µM. 
Scale bar for all images in bottom right image= 100µm. Multiple fields/coverslips were imaged. Graphs 
represent D) the total amount of DAPI-positive nuclei counted for each treatment and E) proportion of 
FOXG1 as % of DAPI nuclei. Data represented as mean ± S.E.M, N=2, experiment replicates set in 
parallel   
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Figure 4:8 Fluorescent immunocytochemistry analysis of PAX6 in D16 monolayer cultures. D16 
progenitors were generated in the absence or in the presence of WNT inhibitors on matrigel coated plates. 
Cultures were re-plated onto matrigel coated coverslips and fixed on the same day. Cells were 
immunostained for PAX6 (green) and counter stained for DAPI nuclear stain (blue). Representative 
images are given- A1-C1) DAPI stained cells, A2-C2) PAX6 stained cells and A3-C3) DAPI/PAX6 
merge, generated in the presence of  A1-A3) no treatment, B1-B3) IWR1 at 1.0µM and C1-C3) KY02111 
at 10.0µM. Scale bar for all images in bottom right image= 100µm. Multiple fields/coverslips were 
imaged. Graphs represent D) the total  amount of DAPI-positive nuclei counted for each treatment. E) 
Proportion of PAX6 as % of DAPI nuclei. F) PAX6 intensity of positive cells, normalized to intensity in 
control culture. Data represented as mean ± S.E.M, N=2, experiment replicates set in parallel 
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Figure 4:9 Fluorescent immunocytochemistry analysis of GSX2 in D16 monolayer cultures. D16 
progenitors were generated in the absence or in the presence of WNT inhibitors on matrigel coated 
plates. Cultures were re-plated onto matrigel coated coverslips and fixed on the same day. Cells were 
immunostained for GSX2 (red) and counter stained for DAPI nuclear stain (blue). Representative 
images are given- A1-C1) DAPI stained cells, A2-C2) GSX2 stained cells and A3-C3) DAPI/GSX2 
merge, generated in the presence of A1-A3) no treatment, B1-B3) IWR1 at 1.0µM and C1-C3) 
KY02111 at 10.0µM. Yellow arrow points towards clear negative cells and white arrow points towards 
high intensity cells. Scale bar for all images in bottom right image= 100µm. Multiple fields/coverslips 
were imaged. Graphs represent D) the total amount of DAPI-positive nuclei counted for each treatment 
and E) proportion of GSX2 as % of DAPI nuclei. Data represented as mean ± S.E.M, N=2, experiment 
replicates set in parallel 
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Figure 4:10 Fluorescent immunocytochemistry analysis of NKX2.1 in D16 monolayer cultures. D16 
progenitors were generated in the absence or in the presence of WNT inhibitors on matrigel coated 
plates. Cultures were re-plated onto matrigel coated coverslips and fixed on the same day. Cells were 
immunostained for NKX2.1 (red) and counter stained for DAPI nuclear stain (blue). Representative 
images are given- A1-C1) DAPI stained cells, A2-C2) NKX2.1 stained cells and A3-C3) DAPI/NKX2.1 
merge, generated in the presence of A1-A3) no treatment, B1-B3) IWR1 at 1.0µM and C1-C3) 
KY02111at 10.0µM. Scale bar for all images in bottom right image= 100µm. Multiple fields/coverslips 
were imaged.Graphs represent D) the total amount of DAPI-positive nuclei counted for each treatment 
and E) proportion of NKX2.1 as % of DAPI nuclei. Data represented as mean ± S.E.M, N=2, 
experiment replicates set in parallel 
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4.4.6 High- through put QRT-PCR characterization of IWR1 or KY02111 

mediated telencephalon differentiation  

For a detailed characterization of progenitor identity, samples treated with 

IWR1 at 1µM or KY02111 at 10µM and control were subjected to high through put 

QRT-PCR analysis. As outlined in Figure 4:1, this assay permitted the analysis of 

different markers of neuroectoderm, A-P axis, telencephalon, pallium, subpallium, 

LGE, MGE, CGE, neurons and glia as well as reference genes. For the assay analysis, 

ΔCq >12 for both treatment groups and control was taken as low or negligible 

expression and is not shown here. The low ΔCq indicates high gene expression. This 

assay analysis software assigns a ΔCq = 14.5 as a cut off value for no expression. The 

fold change in gene expression was plotted as the ratio of normalized gene expression 

of IWR1 or KY02111 treated samples to control (see appendix table 4.5 for ΔCq of all 

makers analysed). 

4.4.6.1 Neuroectodermal markers 

Neuroectodermal markers SOX2, SOX1 and NES (NESTIN) were analysed. 

Analysis of SOX2 expression showed no significant difference between untreated 

control (1.0+0.2) and IWR1 treated (1.9+0.4) or KY02111 treated (1.0+0.1) cultures 

(F2,6=0.9, p=n.s) (Figure 4:11.A). Analysis of SOX1 expression showed no significant 

difference between untreated control (1.0+0.1) and IWR1 treated (2.8+1.4) or 

KY02111 treated (1.9+0.5) cultures (F2,6=0.3, p=n.s) (Figure 4:11.B). Analysis of NES 

expression showed no significant difference between untreated control (1.0+0.1) and 

IWR1 treated (1.0+ 0.1) or KY02111 treated (0.8+ 0.1) cultures (F2,6=0.9, p=n.s) 

(Figure 4:11.C).  

 

Figure 4:11 Effect of WNT inhibitors on neuroectodermal markers- Fold change expression of A) SOX2 
B) SOX1 and C) NES. Data represented as mean ± S.E.M, of 3 different experiments 
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4.4.6.2 Anterior neural tube markers 

The expression of markers of anterior neural tube- FOXG1, SIX3, OTX2 

and LMX1B was analysed. Analysis of FOXG1 showed significant increase in 

expression by IWR1 (459.0+95.0) or KY02111 treatment (142.1+20.5) compared to 

control (1.0+0.5) and there was no significant difference between IWR1 and KY02111 

treatments (F2,6=27.5, p=0.001) (Figure 4:12.A). Similarly, analysis of SIX3 showed 

significant increase by IWR1 (10.7+2.5) or KY02111 treatment (9.6+0.6) compared to 

control (1.0+0.7) and there was no significant difference between IWR1 and KY02111 

treatments (F2,6=12.7, p=0.007) (Figure 4:12.B). Analysis of OTX2 showed no 

significant difference between untreated control (1.0+ 0.2) and IWR1 treated (1.0+0.1) 

or KY02111 treated (1.9+1.6) cultures (F2,6=0.20, p=n.s) (Figure 4:12.C). Analysis of 

LMX1A showed significant decrease upon IWR1 (0.0+ 0.0) or KY02111 (0.0+ 0.0) 

treatment compared to control (1.0+ 0.2) and there was no difference between IWR1 

or KY02111 treatments (F2,5=18.4, p=0.003) (Figure 4:12.D).  

 

Figure 4:12 Effect of WNT inhibitors on anterior markers. Fold change expression of A) FOXG1, B) 
SIX3, C) OTX2 and D) LMX1B. Data represented as mean ± S.E.M, of 3 different experiments. **p 
<0.01 ANOVA, Dunnett’s multiple comparisons test 
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4.4.6.3 Pallial markers 

The expression of PAX6, EMX2 and TBR1 was analysed. PAX6 expression 

was not significantly different between control (1.0+0.2) and IWR1 (0.6+0.1) or 

KY02111 treated (0.6+0.4) cultures (F2,6=1.0, p=n.s) (Figure 4:13 A). Analysis of 

EMX2 showed no significant difference in the expression levels between control 

(1.0+0.7) and IWR1 (6.2+1.5) and KY02111 (2.3+1.7) treatments (F2,6=1.4, p=n.s) 

(Figure 4:13.B). Analysis of TBR1 showed significant increase in expression by IWR1 

(32.2+5.1) or KY02111 (19.8+2.3) treatments compared to control (1.0+0.4) and there 

was no difference between IWR1 and KY02111 treatments (F2,6=35.3, p=0.000) 

(Figure 4:13.C).  

 

Figure 4:13 Effect of WNT inhibitors on pallial markers. Fold change expression of A) PAX6, B) EMX2 
and C) TBR1. Data represented as mean ± S.E.M of 3 different experiments. **p <0.01, ***p <0.001 
ANOVA, Dunnett’s multiple comparisons test 

4.4.6.4 Sub-pallial markers 

The expression of GSX2, GSX1, DLX2, DLX1, DLX5, and ASCL1 was 

analysed. Analysis of GSX2 showed significant increase in expression by IWR1 

(2232.8+438.0) or KY02111 treatment (418.3+157.3) compared to control (1.0+0.2) 

and there was also a significant difference between IWR1 and KY02111 treatments 

(F2,6=126.0, P<0.0001) (Figure 4:14.A). Analysis of GSX1 showed no significant 

difference in the expression levels by IWR1 (1.6+0.4) or KY02111 (0.7+0.1) 

treatments compared to control (1.0+0.0) (F2,6=3.5, p=n.s) (Figure 4:14.B). Analysis of 

ASCL1 showed no significant difference in the expression levels by IWR1 (2.9+1.3) or 

KY02111 treatment (1.5+1.0) compared to control (1.0+0.12) (F2,6=0.7, p=n.s) (Figure 

4:14.C). Analysis of DLX2 showed significant increase in expression by IWR1 

(418.5+57.3) or KY02111 treatment (53.4+24.1) compared to control (1.0+0.2) and 

there was also a significant difference between IWR1 and KY02111 treatments 
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(F2,6=42.1, p=0.000) (Figure 4:14.D). Analysis of DLX1 showed significant increase in 

expression by IWR1 (167.6+ 59.2) or KY02111 treatment (121.3+79.4) compared to 

control (1.0+0.2) and there was no significant difference between IWR1 and KY02111 

treatments (F2,6=28.1,p=0.001) (Figure 4:14.E). Analysis of DLX5 showed significant 

increase in expression by IWR1 (1110.8+166.56) or KY02111 treatment (161.0+41.5) 

compared to control (1.0+0.2) and there was also a significant difference between 

IWR1 and KY02111 treatments (F2,4=328.5, p <0.0001) (Figure 4:14.F).  

 

Figure 4:14 Effect of WNT inhibitors on subpallial markers. Fold change expression of A) GSX2, B) 
GSX1, C) ASCL1 D) DLX2, E) DLX1 and E) DLX5. Data represented as mean ± S.E.M, of 3 different 
experiments. * denotes significance control vs treatments and # denotes significance IWR1 vs KY02111 
. #p< 0.05, **p <0.01, ***p <0.001, ****p< 0.0001 ANOVA, Dunnett’s multiple comparisons test 

4.4.6.5 LGE markers 

The expression of MEIS2, SP8, ISL1, FOXP1, EBF1 and IKZF2 was 

analysed. Analysis of MEIS2 showed significant increase in the expression levels by 

IWR1 (7.8+0.8) compared to KY02111 treatment (2.0+0.4) or control (1.0+ 0.2) 

(F2,6=32.7, p=0.000) (Figure 4:15 A). Analysis of SP8 showed no significant 

difference in the expression levels by IWR1 (1.9+0.1) or KY02111 (2.0+0.6) treatment 

compared to control (1.0+0.1) (F2,6=2.83, p=n.s) (Figure 4:15.B). Similar to MEIS2 

expression, analysis of ISL1 showed significant increase in the expression levels by 
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IWR1 (13.1+4.8) compared to KY02111 treatment (1.9+0.9) or control (1.0+0.1) 

(F2,6=26.3, p=0.005) (Figure 4:15.C). Analysis of FOXP1 showed no significant 

difference in the expression levels by IWR1 (1.0+0.3) or KY02111 (0.9+0.1) treatment 

compared to control (1.0+0.1) (F2,6 =0.74, p=n.s) (Figure 4:15.D). Analysis of EBF1 

showed no significant difference in the expression levels by IWR1 (1.8+0.5) or 

KY02111 (1.3+ 0.3) treatment compared to control (1.0+0.1) (F2,6=0.9, p=n.s) (Figure 

4:15.E). 

 

Figure 4:15 Effect of WNT inhibitors on subpallial markers. Fold change expression of A) MEIS2, B) 
SP8, C) ISL1, D) FOXP1,and E) EBF1 Data represented as mean ± S.E.M, of 3 different experiments * 
denotes significance control vs treatments and # denotes significance IWR1 vs KY02111.##/**p <0.01, 
***p <0.001 ANOVA, Dunnett’s multiple comparisons test 

4.4.6.6 MGE markers 

The expression of NKX2.1, LHX6 and NKX6.2 was analysed. Analysis of 

NKX2.1 showed significant increase in expression by IWR1 (215.2+127.1) or 

KY02111 treatment (84.1+43.7) compared to control (1.0+0.2) and there was no 

significant difference between IWR1 and KY02111 treatments (F2,4=25.3, p=0.005) 

(Figure 4:16.A). Analysis of LHX6 showed significant increase in the expression levels 

by IWR1 (167.6+12.3) compared to KY02111 treatment (10.0+7.1) or control 
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(1.0+0.2) (F2,6=18.7, p=0.004) (Figure 4:16.B). Analysis of NKX6.2 showed significant 

increase in the expression levels by IWR1 (10.8+ 5.8) and KY02111 treatment 

(20.7+7.1) compared to control (1.0+0.2) and there was no significant difference 

between IWR1 and KY02111 treatments (F2,6=14.4, p=0.008) (Figure 4:16.C).  

  

Figure 4:16 Effect of WNT inhibitors on MGE markers Fold change expression of A)NKX2.1 B) LHX6 

and C) NKX6.2. Data represented as mean ± S.E.M, of 3 different experiments. * denotes significance 
control vs treatments and # denotes significance IWR1 vs KY02111 .# p<0.05, **p <0.01 ANOVA, 
Dunnett’s multiple comparisons test 

4.4.6.7 Neuronal markers 

The expression of NCAM1, CDH2 (N-CADHERIN), TUBB3, MAP2 and 

DCX was analysed. Analysis of NCAM1 expression showed no significant difference 

between untreated control (1.0+0.1) and IWR1 treated (2.0+ 0.3) or KY02111 treated 

(1.4+0.5) cultures (F2,6=2.3, p=n.s) (Figure 4:17.A). Analysis of CDH2 expression 

showed no difference between control (1.0+0.0) and IWR1 treated (0.8+0.1) cultures, 

but significant decrease by KY02111 treatment (0.5+0.1) (F2,6=16.3, p=0.004) (Figure 

4:17.B). Analysis of TUBB3 showed significant increase in the expression levels by 

IWR1 (3.7+ 0.7) and KY02111 treatment (1.9+0.1) compared to control (1.0+0.2) and 

there was also a significant difference between IWR1 and KY02111 treatments 

(F2,6=19.2, p=0.003) (Figure 4:17.C). Analysis of MAP2 showed significant decrease 

in the expression levels by KY02111 treatment (0.5+0.1) compared to IWR1 (1.2+0.3) 

and control (1.0+ 0.1) (F2,6=5.2, p=0.05) (Figure 4:17.D). Analysis of DCX showed 

significant increase in the expression levels by IWR1 (12.5+3.0) compared to 

KY02111 (0.8+ 0.2) treatment or control (1.0+0.2) (F2,5=35.4, p=0.001) (Figure 

4:17.E). 
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Figure 4:17 Effect of WNT inhibitors on neuronal markers. Fold change expression of A) NCAM1, B) 
CDH2, C) TUBB3, D) MAP2 and E) DCX. Data represented as mean ± S.E.M of 3 different 
experiments. * denotes significance control vs treatments and # denotes significance IWR1 vs 
KY02111.#/* p<0.05, **p <0.01 ANOVA, Dunnett’s multiple comparisons test 

4.5 Discussion  

The effect of WNT antagonism on telencephalon specification of hPSCs 

was studied in this chapter. Initially, WNT inhibitor IWR1 was employed to analyse its 

effect on the inhibition of the WNT pathway transcriptional target LEF1, induced by 

exogenous WNT3a or endogenous WNT signalling. This demonstrated a dose 

dependent effect. Next, the dual-SMADi EB protocol described in the previous chapter 

was adapted to a monolayer culture and used to analyse the effect of small molecule 

WNT inhibitors- IWR1 and KY02111 on telencephalon induction and specification. 

4.5.1  Effect of WNT inhibitors on telencephalon induction 

The main result of this study was the demonstration that inhibition of WNT 

signalling efficiently induced telencephalon markers. During hPSC neural 

differentiation using stromal co-culture, a serum free method or dual-SMAD 

inhibition, the default identity acquired has been described as anterior neural fate 

(Pankratz et al. 2007; Elkabetz et al. 2008; Chambers et al. 2009; Li et al. 2009;Delli 

Carri et al. 2013). In this study, the feeder-free monolayer dual-SMADi neural 
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induction cultures in the absence of WNT inhibitors generated < 5% FOXG1+ cells. 

The inhibition of WNT signalling in combination with dual-SMADi promoted the 

induction of FOXG1 in the majority of the cells by D16 of differentiation. Addition of 

IWR1 from both D0 and D8 upregulated FOXG1 expression. High fold induction 

resulted from D0 addition. Next, IWR1 and KY02111 D0 addition dose-response 

experiments were performed. The cell responses to both IWR1 and KY02111 was 

found to be dose dependent. Of the dose range 0.1 to 10µM tested, at least 1µM of 

IWR1 or KY02111 was needed for FOXG1 mRNA induction. Cultures treated with 

IWR1 at 1µM yielded ~ 90% FOXG1+ cells. Cultures treated with KY02111 at 1µM 

and 10µM yielded ~35% and ~76% FOXG1+ cells respectively, suggesting that IWR1 

is more potent than KY02111 at low dose. These data complemented findings in 

animal models where inhibition of WNT signalling has been shown to be required for 

inducing anterior neural structures (Belo et al. 1997; Glinka et al. 1997; Glinka et al. 

1998; Kimura et al. 2000; Mukhopadhyay et al. 2001; Houart et al. 2002; Barco 

Barrantes et al. 2003; Kemp et al. 2005). The results here demonstrated that not the 

absence of WNT agonists, but the active inhibition of endogenous WNT-signalling, 

induced the telencephalon identity. Inhibition of WNT signalling by DKK1 at 100-

500ng/ml has been previously reported to enhance hPSC telencephalon specification. 

In the presence of DKK1, D35 neurogenic EB cultures yielded ~ 34% FOXG1+  cells 

(Watanabe et al. 2007) and D10-D15 monolayer cultures yielded ~ 58-64% FOXG1+  

cells  (DelliCarri et al. 2013; Nicoleau et al. 2013). The high yield of FOXG1 70- 90% 

obtained here, through KY02111 or IWR1 mediated monolayer differentiation makes 

it an attractive model over DKK1 mediated hPSC differentiation. A similar small 

molecule based study was published during the period of my research utilizing XAV-

939, another TNKS inhibitor (Huang et al. 2009). XAV-939 was also able to replace 

DKK1 and dose-dependently induced the expression of FOXG1. At 1µM, XAV-939 

yielded ~85% FOXG1+ cells (Nicoleau et al. 2013).  

Further analysis of mRNA expression of cultures treated with IWR1 at 

1µM and KY02111 at 10µM was carried out. WNT inhibition influenced the 

expression of anterior neural tube markers SIX3, OTX2 and LMX1B. Both IWR1 and 

KY02111 upregulated the expression of SIX3. However, had no effect on OTX2, a 

maker that is initially expressed in the anterior neuroectoderm and is later restricted to 

the diencephalon and mesencephalon (Larsen et al. 2010; Onorati et al. 2014). 

Interestingly, addition of IWR1 or KY02111 downregulated LMX1B, a marker 
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expressed posterior to the diencephalon. Thus, demonstrating that WNT antagonism 

during hPSC dual-SMADi neural induction specifically enhanced the telencephalon 

identity. Recently, IWR1 at 10µM treatment during mESC differentiation was reported 

to enhance Foxg1 and Six3 and downregulate midbrain markers (Bertacchi et al. 

2015). Both IWR1 or KY02111 treatment had no effect on neuroectodermal markers 

SOX2, SOX1 and NESTIN. This was in line with observations seen with WNT inhibitor 

XAV-939 + SHH mediated hPSC differentiation (Nicoleau et al. 2013). XAV-939 

treatment dose dependently increased the expression of SIX3 and showed no effect on 

SOX2, NESTIN and OTX2 as well as downregulated LMX1A (Nicoleau et al. 2013). 

4.5.2  Effect of WNT inhibitors on telencephalon D/V specification   

The study demonstrated that inhibition of WNT signalling coaxed hPSC 

neuroectodem specification towards a ventral telencephalon fate. Previous hPSC 

differentiation studies have reported that under chemically defined conditions without 

exogenous morphogens, FOXG1+ cells predominantly adopted dorsal telencephalon 

progenitor identity, which upon terminal differentiation generated cortical neurons 

(Watanabe et al. 2007; Li et al. 2009; Shi et al. 2012; Lupo et al. 2013). This was 

attributed to the endogenous WNT/β-catenin signalling; the expression of WNT 

proteins and frizzled proteins was detected during hPSC and mESC in vitro neural 

differentiation (Li et al. 2009; Bertacchi et al. 2015). This was consistent with the in 

vivo role of this pathway during pallial development (Gunhaga et al. 2003; Backman et 

al. 2005). In my study, analysis of PAX6 showed that, at the transcript level both 

IWR1 and KY02111 treatment showed a similar trend, with decrease in the expression 

levels upon increasing the concentration. However, this result was not statistically 

significant. At the protein level, the control cultures yielded ~90% PAX6+/FOXG1- 

progenitors. The proportion of PAX6+ cells was decreased by IWR1-1µM and 

KY02111-10 µM which yielded 76% and 74% respectively. Interestingly, there was 

also a decreased PAX6 signal intensity. Previously, it had been demonstrated that 

exposure to WNT antagonist soluble Frz8 blocked the generation of Pax6+ cells in chick 

embryo explants (Gunhaga et al. 2003). Similarly, DKK1 treatment decreased 

Pax6+cells during serum free EB method of mESC differentiation (Watanabe et al. 

2005). Conversely, treatment with WNT proteins during an appropriate temporal 

window during hPSC and mESC differentiation enhanced dorsal telencephalon 

markers expression (Li et al. 2009; Watanabe et al. 2005). In the presence of SHH 
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signalling, DKK or XAV-939 treatment dose dependently was shown to decrease the 

PAX6 amount and nuclear intensity during hPSC differentiation (Nicoleau et al. 

2013). The change in PAX6 expression seen in my study indicated that inhibition of 

endogenous WNT signalling may supress its expression. However, the upregulation of 

EMX2 and TBR1, by IWR1-1µM or KY02111-10 µM treatment suggested the 

initiation of cortical neurogenesis in the culture. The proportions of EMX2+ or TBR1+ 

or TBR2+ immunoreactive cells were not assessed in my study. This would have 

revealed the yield of cortical progenitors/neurons in the culture. PAX6 is an early 

neuroectoderm marker, which is later restricted to dorsal telencephalon (cortex). 

During cortical neurogenesis, radial glia cells located in the VZ asymmetrically divide 

to form neuron and intermediate progenitor that translocate to SVZ. In the SVZ, they 

symmetrically divide to form either progenitors or post-mitotic neurons. The transition 

from radial glia to intermediate progenitors located in SVZ that produce only neurons 

was associated with downregulation of Pax6 and upregulation of Tbr2. The subsequent 

transition to post mitotic neurons was marked by upregulation of Tb1 and 

downregulation of Tbr2 (Englund et al. 2005). Furthermore, IWR1 or KY02111 

upregulated early neurogenesis in the progenitors as seen by increased TUBB3 and 

DCX, markers of immature neurons. WNT signalling gradient activity determined the 

cell identity during cortical development. Initiation of neurogenesis was dependent on 

gradual weakening of WNT signalling (Machon et al. 2007). Thus, WNT inhibition by 

IWR1 and KY02111 treatment may have initiated cortical neurogenesis in some 

telencephalon progenitors. Recently it was reported during mESC differentiation that 

synergistic action of IWR1 and Dorsomorphin upregulated the time specific expression 

of Emx2 and Tbr1 in Pax6+/Foxg1+ cells. Furthermore, global gene expression profile 

comparison of these progenitors to isocortex and ventral telencephalon, revealed a 

dorsal telencephalon identity (Bertacchi et al. 2015). Previous studies reported that 

during hPSC differentiation, WNT inhibitors did not abrogate dorsal telencephalon 

markers in the absence of ventralizing SHH signalling in neural progenitors (Li et al. 

2009; Watanabe et al. 2005; Nicoleau et al. 2013). This suggested that default cortical 

specification of hPSC and mESC derived telencephalon progenitors could take place 

even when Wnt/β-catenin was inactive. In the presence of exogenous SHH signalling, 

WNT inhibition strongly sensitized hPSC derived telencephalon progenitors to ventral 

telencephalic fate (Watanabe et al. 2007; Li et al. 2009; Zhang et al. 2010; Delli Carri 

et al. 2013; Nicoleau et al. 2013).  
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Concomitantly, IWR1 and KY02111 treatment substantially increased the 

ventral transcripts GSX2 and DLX2, in a dose dependent manner. At the protein level, 

IWR1-1µM and KY02111-10 µM induced 69% and 49% GSX2+ cells respectively. 

The cultures also contained 7-8% NKX2.1+ cells. Furthermore, a ventral identity was 

revealed by high-throughput QRT-PCR as seen by upregulation of DLX1, DLX5, ISL1, 

LGE marker MEIS2 and MGE markers- NKX2.1, NKX6.2 and LHX6. A similar data on 

the ventralizing activity of WNT inhibition by XAV-939 has been reported in which, 

XAV-939 treatment did not alter the expression of EMX1, but dose dependently 

increased GSX2 and NKX2.1 (Nicoleau et al. 2013). However, XAV-939 alone yielded 

only 30% GSX2+ and 5% NKX2.1+ cells, whereas in combination with SHH resulted 

in 60% GSX2+ and 80% NKX2.1+cells (Nicoleau et al. 2013). Activation of 

endogenous SHH signalling, although weakly has been reported during hPSC frizzled8 

mediated anterior neuroectoderm differentiation (Lupo et al. 2013). The ventral 

markers GLI1 and NKX2.1 were upregulated whereas EMX1 was not detectable in 

these cultures. Previous studies have shown that the inhibition of HH pathway 

prevented NKX2.1 but did not activate EMX1 and TBR2 suggesting that suppression of 

endogenous SHH activity did not enhance dorsal markers (Lupo et al. 2013; Nicoleau 

et al. 2013). As mentioned above, activation of WNT signalling was shown to 

upregulate PAX6, EMX1 and GLI3 and decrease Nkx2.1+  and Gsx2+ cells among 

Foxg1+ cells (Li et al. 2009; Watanabe et al. 2005).  

Collectively, previous hPSC differentiation studies indicated that activation 

of WNT signalling promoted dorsal telencephalon markers and decreased ventral 

markers (Li et al. 2009). The endogenous WNT signalling via upregulation of 

truncated GLI3 (which is a repressor of SHH signalling) contributed to the default 

dorsal identity (Li et al. 2009). Treatment with DKK1 had little effect on repression of 

PAX6 or induction of NKX2.1, but significantly decreased GLI3 (Li et al. 2009). 

WNT inhibitors did not abrogate dorsal markers in the absence of SHH (Li et al. 2009; 

Nicoleau et al. 2013) and promoted ventral telencephalon identity in the presence of 

SHH (Watanabe et al. 2007; Li et al. 2009; Zhang et al. 2010; Delli Carri et al. 2013; 

Nicoleau et al. 2013). This was partially through downregulation of truncated GLI3 

and upregulation of full length GLI3 (Li et al. 2009). Thus, WNT and SHH signalling 

through GLI3 regulated hPSC D/V telencephalon specification. The role of GLI3 and 

SHH in D/V specification was in line with the observations is mice. Absence of GLI3 

in Gli3
-/-

 mutants caused loss of dorsal markers and expansion of ventral markers and 
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absence of SHH in Shh
-/- mutants greatly diminished the expression of ventral markers 

(Rallu et al. 2002). Interestingly, Gli3
-/-

/Shh
-/- double mutants showed normal D/V 

patterning suggesting that ventral repression of GLI3 by SHH and conversely dorsal 

repression of SHH by GLI3 (Rallu et al. 2002). In addition, this study also supported 

the idea of SHH-independent pathways in telencephalon D/V patterning. In my study 

WNT inhibition by IWR1 or KY02111 in combination with BMP inhibition by 

LDN193189 efficiently directed hPSC differentiation towards an intermediate 

telencephalon -like fate. The IWR1 protocol developed here was used by Straccia et al. 

(2015) for hPSCs differentiation. Time point high-throughput array and comparison to 

WGE and adult striatum samples revealed that D16 DLX1+ samples were similar to 7-

9 weeks WGE than striatum. By D28 samples were close to adult striatum (Straccia et 

al. 2015). My study for the first time thus possibly demonstrated SHH-independent 

LGE-like specification of hPSCs.  It would be interesting to analyse in detail the 

precise role of BMP inhibition in this process.  (In the next chapter in this thesis, I 

studied the effect of SHH signalling in combination with WNT and BMP inhibition).  

In conclusion, dual-SMADi induced PAX6+ neuroectoderm cells. On this 

ground, inhibition of canonical WNT signaling by IWR1 or KY02111 dose 

dependently induced a FOXG1+ telencephalon fate. In the absence of any ventralizing 

signals, WNT inhibition by IWR1 and KY02111 decreased PAX6 expression and 

increased sub-pallial markers as well as neuronal makers. IWR1 seemed to be more 

potent that KY02111 at 1µM. The study demonstrated a novel SHH-independent 

method for hPSC in vitro differentiation towards a sub-pallial fate.  
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5 Investigation of effect of HH and Activin 

signalling on hPSC ventral 

telencephalon specification 

5.1  Aim 

To analyse the effect of a) HH signalling, utilizing the small molecule 

SHH agonists - Purmorphamine and SAG and b) Activin signalling on hPSC ventral 

telencephalon specification  

5.2 Background  

During telencephalon development, Shh is expressed initially expressed 

by the prechordal plate, at E9 in the ventral telencephalon (which becomes 

subdivided into LGE, MGE and CGE) and by E12.5 in MGE MZ (Shimamura et al. 

1995; Stamataki et al. 2005; Yu et al. 2009). Analysis of Shh mutants demonstrated 

that early ablation of Hh signalling between E8.5 and E10 resulted in loss of ventral 

telencephalon patterning with failure to specify cell types originating from ventral 

GEs (Chiang et al. 1996; Fuccillo et al. 2004). In contrast, later Shh ablation between 

E10 and E12 maintained grossly normal telencephalon patterning, although a deficit 

in the production of oligodendrocytes and MGE derived cortical interneurons was 

seen (Machold et al. 2003; Xu et al. 2005). Recombinant SHH induced Nkx2.1 

expression in rat E9.5 explants, but not in E11.5 explants. Instead there was 

repression of dorsal markers Emx1 and Tbr1 and induction of Dlx2,Isl1/2 and Ikaros 

expression indicative of LGE/striatal identity (Kohtz et al. 1998). Ectopic activation 

of Shh signalling in E8.5-E10.5 mouse telencephalon resulted in induction of Gsx2 

and Dlx2 throughout neocortex with concomitant repression of dorsal markers (Rallu 

et al. 2002). In zebrafish ventral telencephalon, inhibition of HH signalling by 

cyclopamine suppressed dlx2 and nkx2.1 at neural plate stage (bud/2ss) and there was 

no effect when cyclopamine was provided at later 8ss stage (Danesin et al. 2009). 

Collectively, the developmental studies have demonstrated a temporal requirement of 

SHH for the subregional specification within ventral telencephalon.  

During hPSC differentiation, SHH alone or in combination with WNT 

inhibitors has been reported to promote ventral telencephalon specification in a 
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temporal and dose-dependent manner. An early exposure to high concentration of 

SHH from day 9 of stromal-mediated neural induction or from day 1 of SB+Noggin 

dual-SMADi neural induction, induced FOXA2+ floor plate fate and repressed 

FOXG1+ telencephalon fate via repression of the WNT inhibitor DKK1 (Fasano et 

al. 2010). Late SHH exposure from day 7 or 12 had no effect on FOXG1 or OTX2 

but induced ventralization (Fasano et al. 2010; Ma et al. 2012). Addition of SHH 

from day 12 to 26 during hPSC monolayer differentiation and from day 3 to 12 

during mESC EB-based differentiation (compared with from day 5 or 6 addition) 

dose-dependently induced ventral markers at the expense of dorsal markers (Danjo et 

al. 2011; Ma et al. 2012). The highest doses of SHH (30nM or 500-1000ng/ml) 

induced NKX2.1+ MGE identity, moderate dose (10nM or 200ng/ml) induced 

MEIS2, MASH1 and GSX2 indicative of LGE identity and there was concomitant 

dose-dependent reduction of PAX6 (Danjo et al. 2011; Ma et al. 2012). Exposure of 

these LGE-like progenitors (generated using 10nM SHH) to 30nM Shh from day 9 to 

12 inhibited LGE identity and induced MGE and CGE identity (Danjo et al. 2011). 

Similarly, in the presence of WNT inhibitors (and dual-SMADi or stromal or EB 

based neural induction), addition of SHH from day 4 or 10, did not alter FOXG1 but 

dose-dependently upregulated GSX2, DLX2, ASCL1 and NKX2.1 (Watanabe et al. 

2007; Aubry et al. 2008; Li et al. 2009; DelliCarri et al. 2013; Nicoleau et al. 2013). 

Conflicting results have been reported on the timing of SHH pathway activation for 

induction of MGE, employing dual-SMADi and WNT inhibition. During hPSC-

derived NKX2.1:GFP+ cells differentiation , early SHH exposure (days 2-18) 

repressed FOXG1, further late phase exposure (6-18, 10-18) did not alter FOXG1, 

but enhanced OLIG2, the late phase 10-18 exposure resulted in the highest yield as 

well as induced NKX6.2 (both are markers of MGE-derived cortical interneurons) 

(Maroof et al. 2013). However, an early SHH activation alone from day 0 or in 

combination with FGF signalling has been reported to highly induce MGE fate, 

judged by the expression of NKX2.1, OLIG2, DLX2 and FOXG1 (Nicholas et al. 

2014; Kim et al. 2014). SHH signalling in conjunction with FGF signalling has been 

shown to modulate MGE vs CGE fate specification (Danjo et al. 2011; Kim et al. 

2014).  

Activin A (referred to as Activin) is a member of TGF-β family. Activin 

subunits, receptors and its effector protein Smad2 are expressed in the developing 
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LGE (Feijen et al. 1994; Maira et al. 2010). Smad proteins have been shown to co-

express and physically interact with Dlx transcription factors and plays a role in 

telencephalic GABAergic neuron development (Maira et al. 2010). During mESC 

and hPSC differentiation, Activin was shown to act independently of SHH signalling 

and induced ventralization, specifically CGE or LGE identity (Cambray et al. 2012; 

Arber et al. 2015). Dual-SMADi neural induction followed by an early exposure to 

Activin from day 9 to 18 induced LGE identity whereas a late exposure from day 20 

to 27 induced CGE identity (Cambray et al. 2012; Arber et al. 2015). In their studies, 

during the early time window, SHH dose-dependently induced NKX2.1, GSX2, DLX2 

and LHX8 (a marker of MGE derived interneurons) whereas Activin treatment (at 

25ng/ml) led to the upregulation of pan-ventral markers as well as LGE specific 

markers FOXP2, NOLZ1 and CTIP2 (Arber et al. 2015). During the late exposure 

window, Activin enhanced progenitor differentiation and induced CGE- derived 

GABAergic Calretinin+ (~75%) interneurons that migrate to the cortex (Cambray et 

al. 2012). Activin was found to mediate its patterning effects by inhibiting Hh 

signalling in a Gli3 dependent manner as well as by enhancing the pro-neurogenic 

retinoic acid signalling (Cambray et al. 2012). Furthermore, it was suggested that 

Activin mediated CGE fate specification might involve Fgf15, a direct target of 

Activin pathway in ESCs (Cambray et al. 2012). 

 In this chapter, I investigated the effect of SHH signalling by known 

small molecule agonists Purmorphamine and SAG. Purmorphamine binds and 

activates SMO and upregulates Hh pathway down-stream members Gli1 and Patched 

(Sinha and Chen 2006). SAG also acts by binding to SMO but inhibits Hh signalling 

at higher concentrations above 1µM (Chen et al. 2002). In parallel, Activin at 

20ng/ml was employed. At the time of this study, Arber et al. 2015 was not 

published. The experiments were set up based on the manuscipt provided and 

personal communincations.  

5.3 Experimental design 

The effect of Purmorphamine, SAG or Activin on telencephalon ventral 

patterning was analysed in combination with BMP and WNT signalling inhibition. 

Telencephalic progenitors from 2 cell lines- H9 (ESC) and 34D6 (iPSC) were 

generated using monolayer based culture dual-SMADi+ IWR1 described in Figure 
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5.1. Modulation of the HH or Activin pathway was achieved during D8 to D16 of 

differentiation by the addition of Purmorphamine (at 0.1, 0.5 and 1µM) or SAG (at 

0.001, 0.01 and 0.1µM) or Activin at 20ng/ml. At D16, the cultures were analysed by 

QRT-PCR and/or immuncocytochemistry for D/V markers described previously in 

this thesis- PAX6, GSX2, DLX2, DLX5 and NKX2.1. The characterization of 

mRNA expression in detail was performed by high-throughput QRT-PCR array.  

Figure 5:1 Cell culture regime for hPSC telencephalon induction and ventral specification. hPSCs 
were grown in mTeSR1 on matrigel coated plates. On D0, mTeSR1 was replaced with neural 
induction medium containing dual-SMAD inhibitors and WNT inhibitor IWR1 for the time window 
shown above. Cultures were re-plated at 1:2 ratio on D4 and again on D8 and maintained till D16 on 
matrigel coated plates. Activin or SHH agonists Purmorphamine or SAG were added to cultures from 
D8 to D16. B) Markers analysed by QRT PCR and/or ICC on D16.  

5.4  Results 

5.4.1  Modulation of HH signalling by Purmorphamine and SAG during 

hPSC differentiation. 

Initially, the modulation of HH signalling by Purmorphamine and SAG 

was analysed by measuring the expression levels of SHH targets- PATCHED1 and 

GLI1. The experiments were performed in 2 experiment replicates and no statistical 

analysis were performed (see appendix table 5.1 for ΔCq). Fold change over ‘0’ 

treatment control was plotted. There was a marked increase in PATCHED1 by 

Purmorphamine and SAG treatment in a dose-dependent manner (Figure 5.2.A). 

hPSC on mTeSR 

-D2                            D0                       D4                              D8                                       D16      

     Telencephalon induction and ventral specification 

SB431542 10µM 
 

LDN193189 1 µM                          LDN193189  0.25µM  

+ IWR1 1µM  

P1 P 2 

B.  D16 markers analysed by QRT-PCR and/or ICC 
1. SHH targets –PATCHED1, GLI1 

2. Telencephalon D/V specification- PAX6, GSX2, DLX2, DLX5 and NKX2.1 
3. Further detailed gene expression by high-through put array 

A 

+  Purmorphamine (0.1 to 1µM)  or  
 SAG (0.001 to 0.1µM) or 

Activin (20ng/ml) 
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Purmorphamine at 0.1, 0.5 and 1µM treatment yielded fold change of 2.4+0.6, 

8.7+2.3 and 18.5+5.7 respectively when compared to IWR1 control cultures 

(1.0+0.7). SAG at 0.001, 0.01 and 0.1µM treatment yielded fold change of 0.7+0.0, 

1.0+0.3 and 6.1+2.3 respectively. Similarly, GLI1 expression was upregulated by 

Purmorphamine and SAG treatment in a dose-dependent manner (Figure 5.2B). 

Purmorphamine at 0.1, 0.5 and 1µM treatment yielded fold change of 0.6+0.1, 

2.10+2.1 and 42.0+0.0 respectively when compared to control (1.0+0.0). At least 

0.1µM of SAG was required to upregulate GLI1 expression, which gave fold change 

of 12.1+3.3 over IWR-1 control.  

Figure 5:2 Modulation of HH activity by Purmorphamine and SAG in H9 day 16 neural progenitors- 
Neural progenitors were treated with either Purmorphamine (PM) (0.1 to 1µM) or SAG (0.001 to 
0.1µM) from D8 to D16. Dose-dependent induction of A) PATCHED1 and B) GLI1 by 
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Purmorphamine and SAG analysed by QRT-PCR. Data represented as mean ± S.E.M, N= 
2.experiment replicates set in parallel 

 

5.4.2 QRT-PCR characterization of Purmorphamine or SAG mediated 

ventral telencephalon specification 

To investigate whether the addition of SHH agonists enhances ventral 

telencephalon specification, D16 cultures were analysed for the expression of ventral 

markers GSX2, DLX2, DLX5 and NKX2.1 (see appendix table 5.2 for ΔCq). Fold 

change over ‘0’ treatment was plotted. Note that the dose response experiments were 

performed only twice, ie, N=2 and no statistical tests were performed. The 

experiments was further analysed by high-through put QRT-PCR array for N=3, 

discussed later.  

There was a marked decrease in GSX2 expression in a dose-dependent 

manner by the Purmorphamine or SAG treatment (Figure 5.3.A). Compared with 

control (1.0+0.2), Purmorphamine at 0.1µM showed a similar expression (0.9+0.2), 

at 0.5µM caused a decrease (0.2+0.0) and at 1µM markedly reduced the expression 

level (0.1+0.0). SAG at 0.001µM (0.9+0.2) and 0.01µM (0.7+0.2) showed an 

expression level comparable to control and at 0.1µM resulted in reduced expression 

(0.3+0.0). DLX2 expression showed a similar trend (Figure 5.3.B). Purmorphamine 

at 0.1µM (0.9+0.2) gave an expression level similar to control (1.0+0.0) and the high 

concentrations of 0.5µM (0.2+0.0) and 1µM (0.2+0.6) yielded low expression levels. 

SAG at 0.001µM (0.9+0.2) gave an expression level of similar to control, at 0.01µM 

resulted in a smaller reduction (0.7+0.1) and at 0.1µM, gave the lowest expression 

level (0.2+0.1). Similar to GSX2 and DLX2 expression, DLX5 expression was also 

found to be downregulated in a dose-dependent manner (Figure 5.3.C). Compared 

with control (1.0+0.0), Purmorphamine at 0.1µM (0.6+0.2) showed a decreased 

expression level and at 0.5 µM (0.0+0.00 and 1µM (0.1+0.0) caused a marked 

reduction. SAG at 0.001µM (1.0+0.0) gave an expression level similar to control, at 

0.01µM resulted in a reduction (0.3+0.1) and at 0.1µM further reduced the 

expression level (0.0+0.0). The expression of NKX2.1 was upregulated by 

Purmorphamine or SAG treatment in a dose-dependent manner (Figure 5.3 D). 

Compared with control (1.0+0.2), Purmorphamine at 0.1µM showed a similar 

expression level (1.5+0.1), at 0.5µM caused a smaller increase (9.7+4.2) and at 1µM 

yielded the highest expression level (774.6+82.5). SAG at 0.001 (1.8+0.1) and 



Chapter 5 

-165- 

0.01µM (1.3+0.0) showed an expression level similar to control and at 0.1µM 

resulted in an increase (24.0+13.2).  
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Figure 5:3 Effect of Purmorphamine and SAG on ventral telencephalon markers analysed by QRT-
PCR during H9 differentiation. Purmorphamine (PM) and SAG dose-dependent downregulation of A) 
GSX2, B) DLX2 and C) DLX5 and up-regulation of D) NKX2.1 . Data represented as mean ± S.E.M, 
N= 2.experiment replicates set in parallel 

 

5.4.3 Immunocytochemistry characterization of Purmorphamine or 

Activin mediated ventral telencephalon specification of H9 ESCs and 

34D6 iPSCs  

To characterize ventral telencephalon specification at the protein level, 

immunocytochemistry analysis was performed. D16 cultures generated in the 
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(at 20ng/ml in 34D6 only) or ‘0’ control treatment were re-plated onto matrigel 

coated cover slips and fixed on the same day. Cultures were immuno-stained for 

PAX6, GSX2 and NKX2.1.The immunofluorescence signal was quantified and 

represented as percentage of DAPI positive cells.  

PAX6 and NKX2.1 expression were localized to the nucleus. 

Purmorphamine treatment dose-dependently reduced the proportion of PAX6 and 

increased the proportion of NKX2.1 immunoreactive cells in H9s (Figure 5.4). IWR1 

alone (66.7%), IWR1+0.1μM Purmorphamine (69.1%) and IWR1+0.5μM 

Purmorphamine (59.8%) treatments showed a similar percentage of PAX6+ cells and 

the proportion was reduced by IWR1+1.0μM Purmorphamine (27.0%) treatment. 

IWR1 (5.9%) and IWR1+0.1μM Purmorphamine (6.2%) treatments showed a similar 

number of NKX2.1+ cells. The proportion of NKX2.1+ cells was slightly increased 

by IWR1+0.5μM Purmorphamine (15.4%) treatment and highly increased by 

IWR1+1.0μM Purmorphamine (70.0%). Interestingly, 34D6 cultures showed low 

number of PAX6+ (3.2-7.0%) under all the conditions (Figure 5.5). The proportion of 

NKX2.1+ in IWR1 (9.1+0.1%) cultures were slightly increased by IWR1+0.5μM 

Purmorphamine (21.0+3.6%) treatment and highly increased by IWR1+1.0μM 

Purmorphamine (45.2+ 1.0%) IWR1+Activin cultures showed negligible amount of 

PAX6+ or NKX2.1+ cells.  

GSX2 expression was localized to the nucleus. During H9 differentiation, 

IWR1 (66.6+2.8%), IWR1+0.1μM Purmorphamine (69.9+1.7%) and IWR1+0.5μM 

Purmorphamine (68.5+7.1%) treatments showed a similar proportion of GSX2 

immunoreactive cells. The number of GSX2+was reduced by IWR1+1.0μM 

Purmorphamine (43.7+0.8%) treatment (Figure 5:6). During 34D6 differentiation 

GSX2/CTIP2 double immunostaining was performed. IWR1 (60.1+0.5%) and 

IWR1+0.5μM Purmorphamine (50.9+8.0%) showed a comparable proportion of 

GSX2+ cells. The number of GSX2+was reduced by IWR1+1.0μM Purmorphamine 

(24.0+1.1%) treatment. GSX2 immunoreactive cells were reduced in IWR1+Activin 

cultures 31.5+1.7%) and there was concomitant induction of CTIP2 (53.4%) (Figure 

5.7). There was no co-location of GSX2 and CTIP2.  
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Figure 5:4 Fluorescent immunocytochemistry analysis of PAX6 and NKX2.1 in H9 D16 monolayer 
cultures. D16 progenitors generated in the absence or presence of Purmorphamine (IP) on matrigel 
coated plates were re-plated as single cell onto matrigel coated coverslips and fixed on the same day. 
Cells were double-immunostained for PAX6 (green), NKX2.1 (red) and counter stained for DAPI 
nuclear stain (blue). Representative images are given- A1-C1) DAPI stained cells, A2-C2) 
PAX6/NKX2.1 stained cells and A3-C3) DAPI/ PAX6/NKX2.1 merge, generated in the presence of 
A1-A3) no Purmorphamine B1-B3) Purmorphamine at 0.1µM, C1-C3) Purmorphamine at 0.5µM and 
D1-D3) Purmorphamine at 1.0µM. Scale bar for all images in bottom right image= 100µm. Multiple 
fields/coverslips were imaged. Graphs represent E) the total  amount of DAPI-positive nuclei counted 
for each treatment and F) proportion of PAX6 and NKX2.1 as % of DAPI nuclei. Data represented as 
mean, N=1, experiment replicates 
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Figure 5:5 Fluorescent immunocytochemistry analysis of PAX6 and NKX2.1 in 34D6 D16 monolayer 
cultures. D16 progenitors generated in the absence or presence of Purmorphamine (IP) or Activin (IA)  on 
matrigel coated plates were re-plated as single cell onto matrigel coated coverslips and fixed on the same 
day. Cells were double-immunostained for PAX6 (green), NKX2.1 (red) and counter stained for DAPI 
nuclear stain (blue). Representative images are given-A1-C1) DAPI stained cells, A2-C2) PAX6/NKX2.1 
stained cells and A3-C3) DAPI/PAX6/NKX2.1 merge, generated in the presence of A1-A3) no 
Purmorphamine B1-B3) Purmorphamine at 0.5µM, C1-C3) Purmorphamine at 1µM and D1-D3) Activin at 
20ng/ml. Scale bar for all images in bottom right image=100µm. Multiple fields/coverslips were imaged. 
Graphs represent E) the total amount of DAPI-positive nuclei counted for each treatment and F) proportion 
of PAX6 and NKX2.1 as % of DAPI nuclei. Data represented as mean+S.E.M, N=2, experiment replicates 
set in parallel 
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Figure 5:6 Fluorescent immunocytochemistry analysis of GSX2 in H9 D16 monolayer cultures. D16 
progenitors generated in the absence or presence of Purmorphamine (IP) on matrigel coated plates 
were re-plated as single cell onto matrigel coated coverslips and fixed on the same day. Cells were 
double-immunostained for GSX2 (red) and counter stained for DAPI nuclear stain (blue). 
Representative images are given- A1-C1) DAPI stained cells, A2-C2) GSX2stained cells and A3-C3) 
DAPI/ GSX2 merge, generated in the presence of A1-A3) no Purmorphamine B1-B3) Purmorphamine 
at 0.1µM, C1-C3) Purmorphamine at 0.5µM and D1-D3) Purmorphamine at 1.0µM. Scale bar for all 
images in bottom right image= 100µm. Multiple fields/coverslips were imaged. Graphs represent E) 
the total amount of DAPI-positive nuclei counted for each treatment and F) proportion of GSX2 as % 
of DAPI nuclei. Data represented as mean, as mean+S.E.M, N=2, experiment replicates set in parallel 

  

DAPI                                                    GSX2                                         DAPI/ GSX2     

A1 

B1 

C1 

A2 

B2 

C2 

A3 

B3 

C3 

D1 D2 D3 

   
   

 I
W

R
1-

+
P

1 
   

   
   

   
IW

R
1+

P
0.

5 
   

   
   

   
   

   
 I

W
R

1+
P

0.
1 

   
   

   
   

   
   

  I
W

R
1 

IW R IP 0 .1 IP 0 .5 IP 1

0

2 0

4 0

6 0

8 0

1 0 0
G S X 2 %  (H 9 )

  
%

 o
f 

to
ta

l 
c

e
ll

s

E F 

IW R IP 0 .1 IP 0 .5 IP 1

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

T o ta l c e lls  c o u n te d

 D
A

P
I+

 n
u

c
le

i



Chapter 5 

-171- 

Figure 5:7 Fluorescent immunocytochemistry analysis of GSX2 and CTIP2 in 34D6 D16 monolayer 
cultures. D16 progenitors generated in the absence or presence of Purmorphamine (IP) or Activin (IA) 
on matrigel coated plates were re-plated as single cell onto matrigel coated coverslips and fixed on the 
same day. Cells were double-immunostained for CTIP2 (green), GSX2 (red) and counter stained for 
DAPI nuclear stain (blue). Representative images are given- A1-C1) DAPI stained cells, A2-C2) 
GSX2/CTIP 2stained cells and A3-C3) DAPI/CTIP2/GSX2 merge, generated in the presence of A1-
A3) no Purmorphamine B1-B3) Purmorphamine at 0.5µM, C1-C3) Purmorphamine at 1.0µM and D1-
D3) Activin at 20ng/ml. Scale bar for all images in bottom right image= 100µm. Multiple 
fields/coverslips were imaged. Graphs represent E) the total amount of DAPI-positive nuclei counted 
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for each treatment and F) proportion of GSX2and CTIP2 as % of DAPI nuclei. Data represented as 
mean+S.E.M, N=2, experiment replicates set in parallel. N=1 for CTIP2 

5.4.4 High-through put QRT-PCR characterization of Purmorphamine or 

Activin mediated ventral telencephalon specification of H9 ESC and 

34D6 iPSCs  

For a detailed characterization, D16 samples were subjected to high-

through put QRT-PCR analysis. H9 samples included cultures treated with 0.5µM or 

1µM Purmorphamine or 20ng/ml Activin and control. 34D6 samples included 

cultures treated with 0.3µM or 1µM Purmorphamine and control.  As explained in 

the previous chapter, high-throughput array permitted the analysis of a number of 

different markers of neuroectoderm, A-P axis, telencephalon, pallium, subpallium, 

LGE, MGE, CGE, neurons and glia as well as reference genes. See appendix table 

5.3. for ΔCq values For the analysis, ΔCq >12 for both treatment groups and control 

was taken as low or negligible expression and was not shown here. The fold change 

in gene expression was plotted as the ratio of normalized gene expression of 

treatment samples to control. One way ANOVA with Dunnett’s multiple test was 

used to determine the statistical significance. (Notes- (1) Both Purmorphamine and 

Activin data was shown on the same graph. However, Activin treatment being N=2 

was excluded from the statistical analysis. (2) The analysis software automatically 

assigned a high Cq value for no signal, resulting in a high ΔCq value for the gene of 

interest. If two out of the 3 samples showed similar ΔCq values, this automatically 

assigned value was excluded in this analysis shown here).  

5.4.4.1 Analysis of neuroectodermal markers 

Neuroectodermal markers SOX2, SOX1 and NES were analysed  

H9 differentiation- Analysis of SOX2 expression showed no significant 

difference between untreated control (1.0+0.2) and 0.5µM (1.9+0.8) or 1µM treated 

(2.5+0.7) cultures (F2,6=1.4, p=n.s). Activin treatment (1.1+0.1) yielded an 

expression level similar to that of control (Figure 5:8.A). Analysis of SOX1 

expression showed no significant difference between untreated control (1.0+0.2) and 

0.5µM (0.5+0.1) or 1µM treated (0.4+0.0.1) cultures (F2,6=4.4, p=n.s). Expression 

level in Activin treatment (1.3+0.0) was comparable to control (Figure 5:8.B). 

Analysis of NES expression showed no significant difference between untreated 

control (1.0+0.1) and 0.5µM (1.3+0.4) or 1µM treated (0.8+0.20 cultures (F2,6=0.6, 
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p=n.s) Expression levels in Activin treatment (1.16+0.20) was comparable to control 

(Figure 5:8.C).  

34D6 differentiation- Analysis of SOX2 expression showed no significant 

difference between untreated control (1.0+0.5) and 0.3µM (1.0+0.5) or 1µM treated 

(1.7+0.7) cultures (F2,6=0.3, p=n.s) (Figure 5:8 D). Analysis of SOX1 expression 

showed a decreased expression level by 0.3µM (0.4+0.1) or 1µM treatment (0.3+0.2) 

that was not significantly different from untreated control (1.0+0.0) (F2,6=1.9, p=n.s) 

(Figure 5:8.E). Analysis of NES expression showed no significant difference between 

untreated control (1.0+0.4) and 0.3µM (1.2+0.2) or 1µM treatment (1.3+0.4) 

(F2,6=2.9, p=n.s) (Figure 5:8.F). 
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Figure 5:8 Effect of Purmorphamine or Activin treatment on neuroectodermal markers at D16- Fold 
change expression of SOX2, SOX1 and NES in A-C) H9 ESC-derived and D-F) 34D6 iPSC-derived D16 
progenitors. Data represented as mean ± S.E.M, N=3 except for I+A (IWR1+Activin) N=2. (N= 
experiment replicates, independent experiments for H9 and experiments set in parallel for 34D6) 
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5.4.4.2 Analysis of anterior or floor plate markers 

The expression of markers of anterior FOXG1, SIX3 and OTX2 and floor 

plate marker FOXA2 was analysed.  

H9 differentiation- Analysis of FOXG1 showed no significant difference 

in the expression levels by 0.5µM (1.1+0.0) or 1.0µM Purmorphamine treatment 

(0.7+0.3) compared to control (1.0+0.2) (F2,6=0.3, p=n.s). Activin treatment 

maintained a comparable expression level (1.1+0.1) (Figure 5:9 A). Analysis of SIX3 

showed no significant difference by 0.5µM (1.1+0.0) or 1.0µM Purmorphamine 

treatment (0.7+0.2) compared to control (1.0+0.2) (F2,6=1.8, p=n.s) Activin treatment 

resulted in a comparable expression level (1.0+0.4) (Figure 5:9 B). OTX2 showed no 

significant difference between untreated control (1.0+0.2) and 0.5µM treated 

(0.9+0.1) or 1.0µM Purmorphamine treated (1.6+0.7) cultures (F2,6=0.1, p=n.s). 

Activin (0.2+0.0) treatment seemed to have decreased the expression level (Figure 

5:9 C). Analysis of FOXA2 showed induction only in 1.0µM Purmorphamine treated 

cultures (31.2+11.1), compared with untreated control (1.0+0.3) or 0.5µM treated 

(0.9+0.5) (Figure 5:9.D). No statistical analysis was performed as in both control and 

Purmorphamine 0.5µM treatment, no transcript was detected and the automatically 

assigned value was used for the fold change calculation. No transcript was detected 

in Activin treatment.  

34D6 differentiation- Analysis of FOXG1 showed no significant 

difference in the expression levels by 0.3µM (0.8+0.3) or 1.0µM Purmorphamine 

treatment (1.2+0.5) compared to control (1.0+0.5) (F2,6=0.1, p=n.s) (Figure 5:9.E). 

Analysis of SIX3 showed no significant difference by 0.3µM (0.6+0.1) or 1.0µM 

treatment (0.5+0.0) compared to control (1.0+0.2) (F2,6=0.7, p=n.s) (Figure 5:9.F). 

Analysis of OTX2 showed no significant difference between untreated control 

(1.0+0.5) and 0.3µM treated (0.8+0.3) or 1.0µM treated (0.8+0.4) cultures (F2,6=0.0, 

p=n.s) (Figure 5:9.G). Analysis of FOXA2 showed induction only in 1.0µM treated 

cultures (56.2+0.0), compared with untreated control (1.0+0.2) or 0.5µM treated 

(0.8+0.2) (Figure 5:9.H). No statistical analysis was performed as in both control and 

Purmorphamine 0.3µM treatment, no transcript was detected and the automatically 

assigned value was used for the fold change calculation.  
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Figure 5:9 Effect of Purmorphamine or Activin treatment on anterior or floor plate markers at D16- Fold change expression of 
FOXG1, SIX3 , OTX2 and FOXA2 in A-D) H9 ESC-derived and E-H) 34D6 iPSC-derived D16 progenitors. Data represented as 
mean ± S.E.M, N=3 except for I+A (IWR1+Activin) N=2. (N= experiment replicates, independent experiments for H9 and 
experiments set in parallel for 34D6) 
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5.4.4.3 Analysis of dorsal markers 

The expression of PAX6, EMX2, TBR2, TBR1 and GLI3 was analysed. 

H9 differentiation- PAX6 expression did not differ by 0.5µM (1.5+0.3) 

treatment, but was significantly decreased by 1µM (0.3+0.0) treatment when compared 

with control (1.0+0.1) (F2,6=24.8, p=0.006). Activin treatment resulted in marked 

reduction (0.1+0.0) (Figure 5:10 A). Analysis of EMX2 showed no significant 

difference in the expression between control (1.0+0.2) and 0.5µM (1.1+0.6) or 1.0µM 

(0.6+0.3) treatments (F2,6=0.7, p=n.s). Activin treatment decreased EMX2 expression 

(0.3+0.2) (Figure 5:10 .B). Analysis of TBR2 showed no significant difference in the 

expression levels between control (1.0+0.6) and 0.5µM (1.2+0.0) or 1.0µM (0.5+0.2) 

treatments (F2,6=0.7, p=n.s), whereas Activin treatment effectively  decreased its 

expression (0.0+0.0) (Figure 5:10.C). TBR1 expression was not significantly different 

by 0.5µM treatment (0.4+0.1) but significantly decreased by 1µM (0.2+0.1) treatment 

when compared with control (1.0+0.3) (F2,6=4.9, p=0.05). TBR1 expression was found 

to be decreased by Activin treatment (0.1+0.1) (Figure 5:10 D). GLI3 expression was 

not significantly different by 0.5µM treatment (0.6+0.2) but significantly decreased by 

1µM (0.3+0.1) treatment when compared with control (1.0+0.1) (F2,6=10.4, p=0.01). 

GLI3 expression was found to be decreased by Activin treatment (0.3+0.2) (Figure 

5:10.E). 

34D6 differentiation- PAX6 expression did not alter significantly at 0.3µM 

(0.4+0.2), but was significantly decreased by 1µM (0.0+0.0) treatment when compared 

to control (1.0+0.4) (F2,6=16.1, p=0.004) (Figure 5:10.F). Analysis of EMX2 showed 

no significant difference in the expression levels between control (1.0+0.0) and 0.3µM 

(0.4+0.2), but a significant decrease at 1.0µM (0.0+ 0.0) (F2,6=10.4, p=0.01) (Figure 

5:10.G). TBR2 expression was not significantly different at 0.3µM (0.4+0.4) or 1.0µM 

(0.2+0.2) treatments when compared with control (1.0+0.3) (F2,6=1.8, p=n.s).(Figure 

5:10.H). TBR1 expression was significant decreased by 0.3µM (0.1+0.1) or 1.0µM 

(0.0+0.0) treatments compared to control (1.0+0.3) (F2,6=13.0, p=0.006) (Figure 

5:10.I). GLI3 expression was  no significantly different at 0.3µM (0.4+0.1) or 1.0µM 

(0.3+0.2) treatments compared to control (1.0+0.3) (F2,6=2.8, p=n.s) (Figure 5:10.J).
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Figure 5:10 Effect of Purmorphamine or Activin treatment on pallial markers at D16- Fold change expression of PAX6, EMX2, TBR2, TBR1 and 
GLI3 in A-E) H9 ESC- derived and F-J) 34D6 iPSC-derived D16 progenitors. Data represented as mean ± S.E.M, N=3 except for I+A 
(IWR1+Activin) N=2. (N= experiment replicates, independent experiments for H9 and experiments set in parallel for 34D6) 
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5.4.4.4 Analysis of ventral markers 

The expression of GSX2, GSX1, DLX2, DLX1, DLX5, ASCL1 and NKX2.1 

was analysed.  

H9 differentiation- Analysis of GSX2 showed significant decrease in the 

expression levels by 1µM (0.1+0.0) compared to 0.5µM treatment (0.4+0.1) or control 

(1.0+0.2) and there was no significant difference between 0.5µM and control 

(F2,6=27.8, p=0.0009). Activin treatment (0.7+0.2) yielded an expression level 

comparable to control (Figure 5:11.A). Analysis of GSX1 showed no significant 

difference in the expression levels by 0.5µM (1.5+1.4) or 1µM (1.3+0.3) treatments 

compared to control (1.0+0.3) (F2,6=1.0, p=n.s). The expression level in Activin was 

comparable to control (Figure 5:11.B). Analysis of DLX2 showed significant decrease 

in the expression levels by 0.5µM (0.2+ 0.0) or 1µM treatment (0.1+0.0) compared to 

control (1.0+0.1) (F2,5 =14.7, p =0.005). Activin treatment led to increased expression 

(3.6+0.5) (Figure 5:11.C). Analysis of DLX1 showed no significant difference in the 

expression levels by 0.5µM (0.5+0.1) or 1µM treatment (0.4+0.3) compared to control 

(1.0+0.4) (F2,6=0.5, p=n.s). An increased expression was resulted by Activin treatment 

(3.9+0.0) (Figure 5:11.D). Analysis of DLX5 showed significant decrease in 

expression by 0.5µM (0.1+0.1) or 1µM treatment (0.1+0.0) compared to control 

(1.0+0.2) (F2,5=8.3, p =0.04). Activin treatment seemed to have resulted in an increase 

(2.1+0.0) (Figure 5:11.E). Analysis of ASCL1 showed no significant difference in the 

expression levels by 0.5µM (0.6+0.2) or 1µM treatment (1.0+0.4) compared to control 

(1.0+0.5) (F2,6=0.4, p=n.s), whereas Activin treatment (2.5+0.1) upregulated the 

expression (Figure 5:11F).  

34D6 differentiation- Analysis of GSX2 showed no significant difference 

in the expression levels by 0.3µM (0.6+0.3) treatment and a lower but not statistically 

significant decrease by 1µM treatment (0.4+0.0) compared to control (1.0+0.5) 

(F2,6=0.4,p=n.s) (Figure 5:11.G). Analysis of GSX1 showed no significant difference in 

the expression levels by 0.3µM (1.3+0.3) or 1µM (2.3+0.8) treatments compared to 

control (1.0+0.2) (F2,6=1.6, p=n.s) (Figure 5:11.H). Analysis of DLX2 showed no 

significant difference in the expression levels by 0.3µM (0.4+0.2) or 1µM treatment 

(0.6+0.3) compared to control (1.0 +0.4) (F2,6=0.2, p=n.s) (Figure 5:11.I). Analysis of 

DLX1 showed no significant difference in the expression levels by 0.3µM (0.5+0.2) or 

1µM treatment (0.4+0.2) compared to control (1.0+0.5) (F2,6=0.5, p=n.s) (Figure 
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5:11J). Analysis of DLX5 showed no significant difference in expression by 0.3µM 

(0.4+0.1) or 1µM treatment (0.4+0.2) compared to control (1.0+0.3) (F2,6=0.3, p=n.s) 

(Figure 5:11.K). Analysis of ASCL1 showed no significant difference in the expression 

levels by 0.3µM (0.8+0.2) or 1µM treatment (0.9+0.5) compared to control (1.0+0.5) 

(F 2,6=0.2, p=n.s) (Figure 5:11.L). 
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Figure 5:11 Effect of Purmorphamine or Activin treatment on pallial markers at D16- Fold change expression of GSX2, GSX1, DLX2, DLX1, DLX5 and ASCL1 in A-F) H9 ESC- 
derived and G-L) 34D6 iPSC-derived D16 progenitors. Data represented as mean ± S.E.M, N=3 except for I+A (IWR1+Activin) N=2. (N= experiment replicates, independent 
experiments for H9 and experiments set in parallel for 34D6) 
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5.4.4.5 Analysis of LGE markers 

The expression of MEIS2, SP8, ISL1, FOXP1 and EBF1 was analysed. 

H9 differentiation- Analysis of MEIS2 showed significant decrease in the 

expression levels by 0.5µM (0.4+0.1) or 1µM treatment (0.3+0.0) compared to control 

(1.0+0.1) (F2,6=25.4, p=0.001). Activin treatment (2.5+0.8) yielded increased 

expression level (Figure 5:12.A). Analysis of SP8 showed no significant difference in 

the expression levels by 0.5µM (1.1+0.2) or 1µM (0.7+0.2) treatment compared to 

control (1.0+0.1) (F2,6=1.2, p=n.s). A decrease in the expression was seen by Activin 

treatment (0.3+0.1) (Figure 5:12.B). Similar to MEIS2 expression, analysis of ISL1 

showed a significant decrease in the expression level by 0.5µM (0.1+0.0) or 1µM 

treatment (0.1+0.0) compared with control (1.0+0.4) (F2,4=23.6, p=0.006). Activin 

treatment (3.6+1.3) resulted in increased expression (Figure 5:12.C). Analysis of 

FOXP1 showed no significant difference in the expression levels by 0.5µM (1.0+0.1) 

or 1µM treatment (0.8+0.1) compared to control (1.0+0.3) (F2,6=1.4, p=n.s). An 

increased expression level was seen in Activin treatment (2.2+0.3) (Figure 5:12.D). 

Analysis of EBF1 showed no significant difference in the expression levels by 0.5µM 

(0.9+0.6) or 1µM treatment (0.8+0.5) compared to control (1.0+0.3) (F2,6=0.9, p=n.s). 

Activin treatment (15.2+6.8) led to increased expression (Figure 5:12.E).  

34D6 differentiation- Analysis of MEIS2 showed low, but not statistically 

significant difference in the expression level by 0.3µM (0.5+0.1) or 1µM treatment 

(0.3+0.1) compared to control (1.0+0.1) (F2,6=0.7, p=n.s) (Figure 5:12.F). Analysis of 

SP8 showed no significant difference in the expression levels by 0.3µM (0.5+0.1) or 

1µM (0.7+0.4) treatment compared to control (1.0+0.2) (F2,6=1.2, p=n.s) (Figure 

5:12.G). Analysis of ISL1 showed no significant difference in the expression levels 

0.3µM (0.4+0.1) or 1µM treatment (0.5+0.1) compared to control (1.0+0.2) (F2,6=0.4, 

p=n.s) (Figure 5:12H). Analysis of FOXP1 showed no significant difference in the 

expression levels by 0.3µM (0.8+0.2) or 1µM treatment (0.5+0.0) compared to control 

(1.0+0.0) (F2,6=0.4, p=n.s) (Figure 5:12I). Analysis of EBF1 showed a low but not 

statistically significant expression by 0.3µM (0.2+0.1) treatment and significantly 

lower expression by 1µM treatment (0.1+0.0) compared with control (1.0+0.5) (F2,6= 

7.2,p=0.03)(Figure 5:12.J). 
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Figure 5:12 Effect of Purmorphamine or Activin treatment on pallial markers at D16- Fold change expression of MESI2, SP8, ISL1, FOXP1 and EBF1 in A-E) 
H9 ESC- derived and F-J) 34D6 iPSC-derived D16 progenitors. Data represented as mean ± S.E.M, N=3 except for I+A (IWR1+Activin) N=2. (N= experiment 
replicates, independent experiments for H9 and experiments set in parallel for 34D6 
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5.4.4.6 Analysis of striatal neuronal markers 

The expression of NOLZ1, GPR6, TAC1, NPY and SST notably 

upregulated by Activin treatment is shown here.  Purmorphamine treatment and 

control yielded either very low level or no detectable transcripts. Hence only H9 data is 

shown here (Figure 5:13). No statistical analysis was performed.  

Analysis of NOLZ1 showed a comparable level expression by 0.5µM 

(1.8+1.2) or 1µM (3.1+1.3) Purmorphamine or control (1.0+0.1) treatment, whereas 

Activin (30.2+12.0) treatment showed elevated expression (Figure 5:13.A). There was 

no detectable level expression of GPR6 transcript in 0.5µM or 1µM Purmorphamine 

treatment.Activin (72.9+11.9) treatment yielded high level expression, when compared 

with control (1.0+0.5) (Figure 5:13.B). Analysis of TAC1 showed a similar level 

expression by 0.5µM (0.9+0.0) and reduced expression by 1µM (0.2+0.1) 

Purmorphamine treatment when compared with control (1.0+0.4), whereas Activin 

(76.2+22.4) treatment yielded higher expression (Figure 5:13.C). There was no 

detectable level expression of NPY transcript in 0.5µM or 1µM Purmorphamine 

treatment and Activin treatment (456.1+141.9) induced higher level expression, when 

compared with control (1.0+0.1) (Figure 5:13 D). Analysis of SST showed increased 

expression by 0.5µM (5.5+0.1) or 1µM (5.1+0.4) Purmorphamine treatment when 

compared with control (1.0+0.2). Activin (56.3+17.9) treatment showed higher 

expression (Figure 5:13.E).  
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Figure 5:13 Effect of Purmorphamine or Activin treatment on pallial markers at D16- Fold change expression of A)NOLZ1, B)GPR6, C)TAC1, D)NPY and E)SST in H9 ESC- 
derived D16 progenitors. Data represented as mean ± S.E.M, N=3 except for I+A (IWR1+Activin) N=2. (N= experiment replicates, independent experiments for H9 
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5.4.4.7 Analysis of MGE markers 

The expression of GLI, NKX2.1, NKX6.2 and LHX6 was analysed. 

H9 differentiation- Analysis of GLI1 showed significant increase in the 

expression levels by 0.5µM (35.6+12.2) or 1µM treatment (111.3+12.9) compared to 

control (1.0+0.3) (F2,6=31.8, p=0.006). An increased expression was seen by Activin 

treatment (22.7+8.3) (Figure 5:14 A). Analysis of NKX6.2 showed significant increase 

in the expression levels by 0.5µM (9.0+2.7) and 1µM treatment (12.8+0.2) compared 

to control (1.0+0.5) (F2,6=15.7, p=0.007) (Figure 5:14 B). Activin treatment (17.1+0.0) 

also led to increased expression level. Out of the 3 replicates analysed, 2 sets of 

Purmorphamine treatments did not generate any signals for LHX6. Data for the 

remaining experiment was plotted. There was an upregulation of LHX6 by 0.5µM 

(4.7+0.0) and 1µM (3.1+0.0) treatment, compared with control (1.0+0.1) (Figure 5:14 

C). Analysis of NKX2.1 showed significant increase in expression by 1µM treatment 

(30.8+6.8) compared to control (1.0+0.8) and there was no significant difference 

between 0.5µM treatment (0.7+0.4) and control (F2,6=6.2, p=0.03). Activin treatment 

(5.6+3.3) caused an increase in the expression (Figure 5:14.D). 

34D6 differentiation- Analysis of GLI1 showed increased, but not 

statistically different expression by 0.3µM (1.9+0.2) or 1µM treatment (5.2+2.2) 

compared to control (1.0+0.4) (F2,6=1.2, p=n.s) (Figure 5:14.E). Analysis of NKX6.2 

showed comparable expression between control (1.0+0.2) and by 0.3µM (0.5+0.4) and 

an increased but not statistically significant different expression by 1µM treatment 

(2.2+0.2) (F2,6=2.1, p=n.s)  (Figure 5:14.F). Analysis of LHX6 showed significant 

increase in the expression by 0.3µM (11.0+1.5) or 1µM treatment (7.8+0.7) compared 

to control (1.0+0.2) (F2,6=8.8, p=0.02) (Figure 5:14G). Analysis of NKX2.1 showed 

significant increase in expression by 1µM treatment (8.0+0.7) compared to control 

(1.0+0.5) and there was no significant difference between 0.3µM treatment (2.4+1.1) 

and control (F2,6=4.7, p=0.05) (Figure 5:14.H). 
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Figure 5:14 Effect of Purmorphamine or Activin treatment on pallial markers at D16- Fold change expression of GLI1, NKX6.2, LHX6 and NKX2.1 
in A-D) H9 ESC- derived and E-H) 34D6 iPSC-derived D16 progenitors. Data represented as mean ± S.E.M, N=3 except for I+A (IWR-
1+Activin(N= experiment replicates, independent experiments for H9 and experiments set in parallel for 34D6).  Graph C-shown for N=1 
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5.4.4.8 Analysis of neuronal/glial markers 

The expression of TUBB3, MAP2, DCX and OLIG2 was 

analysed. One way ANOVA and Dunnett’s multiple comparsion test was 

performed to determine the statistical significance. 

H9 differentiation- Analysis of TUBB3 showed no significant 

difference in the expression levels by 0.5µM (0.7+0.2) or 1µM treatment 

(0.5+0.0) compared to control (1.0+0.2) (F2,6=3.5, p=n.s). Activin treatment 

resulted in an increase in the expression (2.5+0.3) (Figure 5:15.A). Analysis 

of MAP2 showed no significant difference in the expression levels by 

0.5µM (0.5+0.1) or 1µM (0.5+0.1) treatment or control (1.0+0.2) 

(F2,6=3.0,p=n.s). Activin treatment did not greatly alter the expression level 

(1.8+0.8) (Figure 5:15.B). Analysis of DCX showed no significant 

difference in the expression levels by 0.5µM (0.8+0.3) or 1µM (1.3+0.6) 

treatment or control (1.0+0.2) (F2,6=0.3, p=0.001). Activin treatment 

resulted in an increased expression (3.3+0.3) (Figure 5:15.C). Analysis of 

OLIG2 showed no significant difference in the expression by 0.5µM 

(2.7+1.4), but resulted in a significant increase by 1µM (7.7+3.5) treatment, 

when compared with control (1.0+0.0) (F2,5=5.6, p=0.05). An increased 

expression was seen in Activin treated culture (4.4+1.4) (Figure 5:15.D). 

34D6 differentiation- Analysis of TUBB3 showed no significant 

difference in the expression levels by 0.3µM (0.8+0.1) or 1µM treatment 

(0.7+0.0) compared to control (1.0+0.2) (F2,6=0.3, p =n.s) (Figure 5:15.E). 

Analysis of MAP2 showed no significant difference in the expression levels 

by 0.3µM (0.9+0.3) or 1µM (0.6+0.1) treatment compared to control 

(1.0+0.3) (F2,6=0.1, p=n.s) (Figure 5:15.F). Analysis of DCX showed no 

significant difference in the expression levels by 0.3µM (1.2+0.5) or 1µM 

(1.2+0.5) treatment or control (1.0+0.2) (F2,6=0.28, p=n.s) (Figure 5:15.G). 

Analysis of OLIG2 showed an increase in the expression by 1µM (4.7+0.8) 

compared to 0.3µM (2.2+0.2) or control (1.0+0.4) (F2,5=5.6, p= 0.05) 

(Figure 5:15.H).  
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Figure 5:15 Effect of Purmorphamine or Activin treatment on neuronal and glial markers at D16- Fold change expression of TUBB3, MAP2, DCX and OLIG2 in A-D) H9 ESC- 
derived and E-H) 34D6 iPSC-derived D16 progenitors. Data represented as mean ± S.E.M, N=3 except for I+A (IWR-1+Activin) N=2. (N= experiment replicates, independent 
staggered experiments for H9 and experiments set in parallel for 34D6) 
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5.5 Discussion 

The effect of SHH signalling and Activin signalling on ventral 

telencephalon fate specification of hPSCs was studied in this chapter. During 

monolayer dual-SMADi+ WNT inhibition (SB431542+ LDN193189+IWR1) 16 

days differentiation protocol, SHH agonists or Activin treatment was started at D8. 

Initially, known SHH agonists Purmorphamine and SAG were employed during H9 

differentiation to analyse their effect on the activation of SHH pathway 

transcriptional targets PATCHED1 and GLI1. Both Purmorphamine and SAG 

demonstrated a dose-dependent effect. Following this, the differentiation was 

characterized in detail. Activin at 20ng/ml was employed in parallel from D8 to D16 

to analyse its effect on neural patterning. The culture conditions in terms of 

integration of developmental pathways differed from Cambray et al. (2012) and 

Arber et al. (2015) in that in this study, Activin was employed in combination with 

both BMP and WNT inhibition.  

5.5.1 Effect of SHH agonists or activin on dorsal and ventral markers 

The main result of this study was that under the culture conditions used 

and the time point analysed, high SHH pathway activation partially inhibited pan-

ventral and some LGE markers but potentially induced MGE interneuron transcripts, 

whereas, Activin signalling appeared to specifically enhance LGE markers and 

striatal transcripts. Furthermore, both SHH signalling and activin signalling 

downregulated dorsal transcripts (Note- Preliminary data on Activin treatment from 

2 experiments was shown. Experiments were not replicated again and hence the 

statistical significance was not determined. Also, note that mRNA expression was 

analysed in H9 ESC line and the protein expression was analysed in 34D6 iPSC 

line).  

The role of SHH signalling in ventral telencephalon patterning via 

repression of GLI3R is well established (Rallu et al. 2002; Corbin et al. 2003; Li et 

al. 2009). In agreement with this, supplementation of recombinant SHH alone or in 

combination with WNT inhibitor has been reported to induce LGE or MGE identity 

at the expense of dorsal fate during mESC and hPSC differentiation (Aubry et al. 

2008; Danjo et al. 2011; Ma et al. 2012; Li et al. 2009; 1.Delli Carri et al. 2013; 

Nicoleau et al. 2013). In these studies, SHH dose-dependently upregulated ventral 

markers GSX2, DLX2, ASCL1, MESI2 and NKX2.1 and downregulated dorsal 
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markers PAX6, EMX2, EMX1 and TBR2. A similar patterning was also achieved by 

Purmorphamine treatment at 0.65µM (Ma et al. 2012). The preliminary data (N=2) 

on the effect of SHH pathway activation during H9 differentiation in my study was 

surprising. Both Purmorphamine and SAG dose-dependently down-regulated pan-

ventral markers GSX2, DLX2, DLX5. There was a dose-dependent upregulation of 

NKX2.1, in line with other studies. Only the high dose of Purmorphamine at 1µM 

induced NKX2.1. Protein level characterization of Purmorphamine dose-response by 

immunocytochemistry for PAX6, NKX2.1 and GSX2 on H9 (N=1) and 34D6 lines 

(N=2) showed some differences. PAX6low/GSX2+/NKX2.1+ cell fate in both lines 

indicated acquisition of ventral identity by the highest dose of Purmorphamine. 

Down regulation of GSX2 expression indicated a partial inhibition rather than a 

complete blockade of expression by high SHH activation. High-throughput QRT-

PCR analysis of H9 and 34D6 samples (N=3 for both) showed significant reduction 

of PAX6, TBR1 and GLI3 in H9s and PAX6, TBR1 and EMX2 in 34D6s by 1µM 

Purmorphamine. Despite the different level of statistical significance obtained in the 

two cell lines, this observation was in line with the reports on negative regulation of 

dorsal markers by recombinant SHH during hPSC differentiation  (Aubry et al. 2008; 

Danjo et al. 2011; Ma et al. 2012; Li et al. 2009; Delli Carri et al. 2013; Nicoleau et 

al. 2013). Analysis of pan-ventral markers confirmed H9 preliminary QRT-PCR and 

immunocytochemistry data and demonstrated significant downregulation of GSX2, 

DLX2, DLX1 and DLX5 by 1µM treatment. At 0.5µM, there was reduction of DLX2 

and DLX5. 34D6 differentiation although not statistically significant showed a 

similar trend as in H9, as seen by the low transcript levels in Purmorphamine 

treatment groups compared to control. This might suggest an inhibition of these 

transcripts by Purmorphamine. It might also be possible that activation of SHH 

signalling during D8-D16 temporal window, did not modulate the expression of 

these genes. This observation contrasted the above mentioned studies where 

supplementation of recombinant SHH was found to enhance ventral markers at the 

expense of dorsal markers (Aubry et al. 2008; Danjo et al. 2011; Ma et al. 2012; Li 

et al. 2009; Delli Carri et al. 2013; Nicoleau et al. 2013). The significant down 

regulation of LGE markers MEIS2 and ISL1 by 0.5 µM and 1µM Purmorphamine 

treatment in H9s and the reduced but not statistically significant expression of these 

transcripts in 34D6s suggested inhibition of LGE identity. The concomitant 

upregulation of MGE makers GLI, NKX2.1, NKX6.2, LHX6 and OLIG2 in both cell 
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lines indicated that SHH pathway activation during D8-D16 temporal window in this 

study, enhanced MGE fate. A similar effect of SHH pathway activation on inhibition 

of LGE fate and induction of MGE fate has been reported in mESC differentiation 

(Danjo et al. 2011). In their study, early Shh treatment at 10nM from D3 enhanced 

Gsx2 but continued Shh treatment from D9 with higher concentration of 30nM Shh 

or 100nM SAG inhibited Gsx2, LGE/striatal markers Nolz1, Ctip2 and induced 

Nkx2.1 and Lhx6 (Danjo et al. 2011). The control treatment in my study highly 

induced GSX2 (as well as other ventral markers as seen in the previous chapter and 

as reported in Straccia et al. (2015)). At this context of ventral patterning and 

regional specification, high SHH activation by Purmorphamine at 0.5-1µM may have 

enhanced the ventral most, ie, MGE fate specification. During hPSC differentiation, 

(using combined and temporal integration of dual-SMADi+ WNT inhibition) SAG 

addition (from D0) was found to induce MGE derived interneurons (Kim et al. 

2014). SAG at 10nM and 100nM induced similar level ISL1 and at 100nM highly 

induced NKX2.1 indicating that high SHH activation induced MGE fate at the 

expense of LGE fate.  

One plausible explanation for inhibition of LGE character, comes from 

the role played by NKX2.1 and SHH signalling in interneuron specification (Xu et 

al. 2010). Nkx2.1 which is induced by SHH act in a temporal manner. Nkx2.1 first 

induced around E9.5 in the mouse was required for MGE formation; Nkx2.1 null 

mutants showed severely reduced MGE (Sussel et al. 1999; Corbin et al. 2003). Shh 

via Gli3 repression established initial D/V patterning between E9-E12.5 (Rallu et al. 

2002; Chiang et al. 1996; Fuccillo et al. 2004) and maintained Nkx2.1 expression by 

Gli-3 independent mechanism until E14 into neurogenesis (Xu et al. 2005; Gulacsi 

and Anderson 2006). Retroviral mediated activation of Shh at E8.5-E10.5 resulted in 

induction of Nkx2.1 in LGE and Gsx2 and Dlx2 throughout neocortex (Rallu et al. 

2002). From E9.5-12.5 Nkx2.1 was required for mainly MGE fate specification and 

for repressing LGE/CGE identity. Loss of Nkx2.1 in conditional knock outs at E9.5-

10.5 showed MGE conversion to LGE and at E12.5 showed conversion to CGE 

(Sussel et al. 1999; Butt et al. 2008). In support of this, Nkx2.1 was found to positively 

regulate MGE cortical interneuron markers Lhx6, Lhx7 and Shh and repress LGE and 

CGE markers (Elias et al. 2008). Shh signalling confers cortical interneuron identity in 

ventral progenitors (Xu et al. 2005; Xu et al. 2010). The cortical interneurons 

predominantly arise from MGE and CGE. Nkx2.1+ and Nkx6.2+ MGE progenitors 
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give rise to Somatostatin (SS) or Parvalbumin (PV) positive early interneurons, 

which contribute to about 65% of total cortical interneurons and Gsx2+ CGE 

progenitors give to Calretinin positive bipolar late interneurons (Xu et al. 2010). 

During interneuron specification, down regulation of SHH signalling was found to 

convent some MGE progenitors into CGE fate whereas, high concentration of SHH 

signalling prevented this re-specification of MGE progenitors by repressing Gsx2 

and maintaining Nkx2.1, which function to specify PV and SS fate (Xu et al. 2010). 

FGF signalling has also been implicated in this process. During interneuron 

specification of mESCs and hPSCs, high SHH activation along with supplementation 

of FGF8 significantly enhanced MGE fate at the expense of CGE fate whereas 

supplementation of FGF15/19 enhanced CGE fate (Danjo et al. 2011; Kim et al. 

2014). In mice development, repression of Gsx2 do not affect Nkx2.1 mediated MGE 

induction and specification. Gsx2 functions to establish LGE/CGE identity by 

positively regulating genes such as Dlx1 Dlx2 and Ascl1 while repressing of dorsal 

fate via cross-repression of Pax6 (Szucsik et al. 1997; Corbin et al. 2000; Yun et al. 

2001). Gsx2-/-  mutants and Gsx2;Dlx1/2 compound mutants showed aberrant 

LGE/CGE development, while MGE was preserved including the expression of 

Nkx2.1, Nkx6.2, Olig2 and Lhx6 (Sussel et al. 1999; Long et al. 2009; Wang et al. 

2013). The control culture conditions of this study, yielded ventral or an intermediate 

telencephalic like progenitors as shown in the previous chapter. Under this condition, 

high SHH activation by Purmorphamine is likely to have favoured MGE 

neurogenesis and partially repressed LGE/CGE identity. The expression of markers 

such as DLX2, DLX5, MEIS2, FOXP1, ISL1, NKX6.2 and LHX6 is to be 

determined at the protein level to quantify the LGE vs MGE fate acquired by these 

D16 progenitors. (In the next chapter, terminal differentiation of these progenitors 

was carried out and was analysed for striatal phenotype). It is also to be determined 

whether pushing SHH activation temporal window forward and including low 

concentration of Purmorphamine would influence LGE vs MGE fate specification. 

The preliminary data on Activin treatment in H9 showed downregulation 

of dorsal markers PAX6, EMX2, TBR2 and TBR1 and upregulation of ventral markers 

DLX2, DLX1, DLX5 and ASCL1. This was in line with the observations in Cambray 

et al. (2012) and Arber et al.(2015). The increased expression of LGE specific 

transcripts- MEIS2, ISL1, FOXP1 and EBF1- and striatal markers-NOLZ1, GPR6, 

TAC1, NPY and SST- suggested that Activin treatment induced LGE progenitors 
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maturation towards striatal phenotype. Interestingly, Activin treatment also appeared 

to have increased MGE interneuron markers GLI1, NKX6.2 and LHX6. This was in 

contrast to what was reported in Cambray et al. (2012) and Arber et al.(2015), where 

Activin treatment via GLI3 inhibited SHH signalling and in turn inhibited GLI1, 

NKX2.1 and LHX6. The discrepancy can be attributed to culture conditions and 

remnant endogenous SHH signalling, however, until further experimental repeats are 

carried out, no conclusion can be drawn. Also, the expression of these markers at the 

protein level is to be determined. Analysis of PAX6, NKX2.1, GSX2 and CTIP in 

34D6 D16 progenitors showed negligible amount of PAX6 and NKX2.1. The 

cultures contained ~32% GSX2+ and ~54% CTIP2+ cells. The proportion of GSX2+ 

cells were lower compared to IWR1 treatment (~60%) and there was no co-

localization of these markers. Mutually exclusive expression of GSX2 and CTIP2 

has been reported in in human foetal striatal samples (Onorati et al. 2014). Thus the 

preliminary data in both H9 and 34D6 showed that Activin treatment induced 

LGE/striatal fate in agreement with previous studies.  

5.5.2 Effect of SHH agonists or Activin on neuroectodermal, anterior and 

neuronal markers 

Purmorphamine doses or Activin treatment did not alter anterior markers 

FOXG1, SIX3 and OTX2, indicating that D8 addition in this study did not influence 

telencephalon induction. Early addition of SHH has been reported to repress FOXG1 

and induced floor plate maker FOXA2 (Fasano et al. 2010). Interestingly, DKK1 

inhibited FOXA2 and induced FOXG1 (Fasano et al. 2010). The highest dose of 

Purmorphamine appeared to have induced FOXA2, however, there low levels of 

transcript (ΔCq= 7.68 in H9 and 8.20 in 34D6) compared to high levels of FOXG1 

(ΔCq= ~1 in both H9 and 34D6). Purmorphamine or Activin treatment did not alter 

neuroectodermal markers SOX2, SOX1 and NES. During hPSC differentiation, 

exogenous SHH has been shown to promote NESTIN expression whereas Activin or 

cyclopamine inhibited its expression and promoted β-tubulin (Cambray et al. 2012). 

Puromorphamine treatment did not alter the expression of neuronal markers TUBB3, 

MAP2 and DCX. However, Activin treatment appeared to have resulted in 

upregulation indicating that Activin promoted differentiation of progenitors. This 

was in agreement with the previous study (Cambray et al. 2012).  
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In summary, at the context of both BMP and WNT pathway inhibition, 

activation of SHH signalling by Purmorphamine treatment in a dose-dependent 

manner, appeared to inhibit pan-ventral and LGE markers but enhanced MGE 

interneuron markers, whereas Activin treatment specifically enhanced LGE/striatal 

neuronal markers.  

5.6 Limitations of the methods in the chapter 

The QRT-PCR data was as plotted as fold change ie, ratio of normalized 

gene expression of treatments to control. When comparing the level of expression of 

different transcripts, the ΔCq values have to be taken into account. Also, this method 

accounts for the total cell population and needs to be performed in conjunction with 

immunocytochemistry quantification to obtain the overall level of expression of 

markers. Protein level analysis could also be performed by flow cytometry, however, 

could be problematic, as it requires high number of cells and optimization. 
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6 Characterization of in vitro neuronal 

differentiation: Looking for striatal markers 

6.1 Aim 

To analyse the striatal specification of hPSC derived telencephalon 

progenitors upon terminal differentiation   

6.2 Background  

The significance and quality of small molecule-mediated telencephalon 

progenitor specification of hPSCs, relies on the strength of this commitment during 

terminal neuronal differentiation. Various studies have shown that hPSC-derived 

LGE-like progenitors patterned with DKK1+SHH or SHH alone produced 

GABAergic DARPP32+ MSNs upon in vitro and in vivo neuronal differentiation 

(Aubry et al. 2008; Li et al. 2009; Zhang et al. 2010; Ma et al. 2012; Delli Carri et 

al. 2013; Nicoleau et al. 2013). The yield of DARPP-32+ neurons upon 45-80 days of 

in vitro neuronal differentiation in medium containing BDNF, VPA and cAMP 

varied between 10-18%. These cultures also contained varied proportions of neuronal 

markers such as β-tubulin III, MAP2, Synaptophysin and striatal markers such as 

FOXP1, FOXP2, CTIP2, GABA, GAD67, Calbindin and DRD2 (Aubry et al. 2008; 

Li et al. 2009; Zhang et al. 2010; Ma et al. 2012; Delli Carri et al. 2013; Nicoleau et 

al. 2013). Activin patterned progenitors were reported to yield between 20-50% 

DARPP32 (varied between cell lines) and the cultures contained varied proportions 

of above mentioned striatal markers (Arber et al. 2015). Please refer to Table 1 in 

chapter 1 for details of the differentiation protocols.  

6.3 Experimental design 

Neural progenitors were generated as described in the previous chapters 

under five different conditions- L, LI, LIP0.5, LIP1.0 and LIA as shown in Figure 

6:1. On D16, the neural progenitors were re-plated onto PDL/matrigel coated 

coverslip and differentiated for 3 weeks in a defined media developed in our lab (was 

being formulated at the time of this study and now published Telezhkin et al. (2016). 

The protocol involved sequential use of two media –SCM1 and SCM2, containing 

BDNF, Ascorbic acid and small molecules to promote neurogenesis, synaptogenesis 
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and further neuronal maturation. Rapid synchronized neuronal differentiation was 

achieved in 21 days, by small molecules that mediated the manipulation of signalling 

pathways, specifically cell cycle exit, inhibition of Notch pathway activation and 

activation of  GABA, CREB and WNT signalling pathway (Telezhkin et al. 2016). 

The transition from neural progenitors to neurons was achieved by promoting the cell 

cycle exit and inhibiting Notch, by combined use of N-[N-(3,5-Difluorophenacetyl)-

L-alanyl]-S-phenylglycine t-butyl ester (DAPT) (a Notch signalling inhibitor 

targeting γ-secretase, as well as delays G1/S phase) and PD 0332991 (a cyclin 

dependent kinase 4/6 inhibitor that arrests the cell cycle at G1) (Telezhkin et al. 

2016). The neuronal maturation was enhanced by inducing and maintaining CREB-

phosphorylation and ERK-phosphorylation by addition of BDNF, forskolin (agonist 

of CREB pathway, adenylate cyclase activator), GABA (300µM) and by raising 

extracellular Ca2+ (1.8mM) (Telezhkin et al. 2016). GABA receptor stimulation 

leading to Ca2+ dependent ERK and CREB phosphorylation regulates neurogenic 

gene expression. Inclusion of CHIR99021 (presynaptic antagonists of GSK3β) 

further enhanced the neuronal excitability (Telezhkin et al. 2016).  

The original experimental plan included differentiation of both H9 and 

34D6 cell lines in parallel. However, H9s was discarded at the progenitor stage due 

to contamination issues. The 34D6 line was differentiated in N=2, different 

experiments set in parallel. The D16 progenitors differentiated for 3 weeks in 

SCM1/2 were analysed by immunocytochemistry for makers of a) striatal phenotype- 

DARPP32, CTIP2, ISL1, GABA and Calbindin (striatum matrix marker), b) post 

mitotic neuron- MAP2 and c) Synaptogenesis- Synaptophysin and PSD95. Samples 

were also collected for analysis by high-throughput QRT-PCR, however the 

experiments being N=2 needed additional replicates which could not be set up within 

the timeline. As the interest of the lab was to replicate the protocols in HD-iPSC 

lines by other members of the research group, these samples remained un-analysed. 

Based on the gene expression profile in mouse striatum development, 

most of the hPSC differentiation studies have reported DARPP32 and 

DARPP32/CTIP2 co-expression as the definitive markers of MSNs (Aubry et al. 

2008; Li et al. 2009; Zhang et al. 2010; Ma et al. 2012; 1.Delli Carri et al. 2013; 

Nicoleau et al. 2013). Delli Carri et al. (2013) and Onorati et al. (2014) (which were 

in manuscript forms at the time of my study and was discussed in the consortium) 
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reported that at 8-11 weeks of human development, striatal neurons were marked by 

the co-expression of EBF1, ISL1, FOXP1, FOXP2, CTIP2, DARPP32 and GABA in 

LGE MZ. At 20 weeks, ISL1 expression was also restricted to a few cells and did not 

co-express CTIP2, FOXP1 or FOXP2 (Onorati et al. 2014). CTIP2+ cells co-

expressed FOXP1, FOXP2 and DARPP-32. At this stage, DARPP32 was also seen 

in neocortex however co-localization with CTIP2 was rarely seen and lacked 

GABAergic identity (Onorati et al. 2014). Thus in my study, CTIP2/DARPP32 co-

localization and GABA expression was analysed for MSN fate commitment. 

Antibodies against FOXP1, EBF1, NOLZ1, D2 dopamine receptor (DRD2) and 

Choline acetyl transferase (ChAT) were also tried, however looked non-specific and 

were excluded. FOXP1 antibody gave inconsistent staining. The other antibodies 

gave either no signals or intense background staining and needed further 

optimization.  
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6.4 Results  

6.4.1 Analysis of striatal differentiation  

Striatal neuronal differentiation was analysed by measuring the 

expression of DARPP32, CTIP2, ISL1, GABA and Calbindin and post mitotic 

neuronal marker MAP2. 

Double immunostaining for DARPP32 and CTIP2 showed their co-

localised expression. DARPP32 was localized to cell bodies and CTIP2 was 

*Week 1- SCM1 (contained PD0332991, DAPT, BDNF, 
CHIR99021,Forskolin, GABA, CaCl2 and Ascorbic acid) 
*Week2 and 3- SCM2 (contained PD0332991, BDNF, CHIR99021, 
CaCl2 and Ascorbic acid) 

hPSC on  
mTeSR 

-D2                D0       D4                  D8                  D16                                                D37        

     Telencephalon induction  
and specification 

+ IWR-1  1µM  

P1 P 2 

B.  D37 markers analysed by ICC 
1. Striatal phenotype– DARPP32, CTIP2, ISL1,  

GABA and Calbindin 
2. Post mitotic neuron- MAP2 
3. Synaptogenesis- PSD95 and Synaptophysin 

A 

+  Purmorphamine 
(0.5 and 1µM) 

  or   
Activin  (20ng/ml)  

    Neuronal differentiation 
in  SCM1/2*  

P3 

SB431542  10µM 

+ LDN193189 1µM     0.25 µM  SCM1/2 (Treatment-1. ‘ L’)  

SCM1/2 (Treatment-2. ‘ LI’)  

SCM1/2 (Treatment-3. ‘LI+P0.5’ 
Treatment-4. ‘LI+P1.0’)  

SCM1/2 (Treatment-5. ‘LI+A’)  

Figure 6:1 A) Cell culture regime. Neural progenitors were generated on matrigel coated 
plates under the 5 conditions till D16- Treatment 1- L:dual-SMADi, Treatment 2- LI: dual-
SMADi+ IWR1, Treatment 3 and 4 -LI+P0.5 or P1.0: dual-SMADi+ IWR1+ Purmorphamine 
0.5 or 1µM and Treatment 5- LIA; dual-SMADi+ IWR1+ Activin. Cultures were re-plated at 
1:2 ratios on D4 and again on D8 and maintained until D16. On D16, cultures were re-plated 
at 50K cells onto PDL/matrigel coated coverslips in SCM1/2 media (refer materials and 
methods for detailed recipe) and differentiated for 3 weeks, ie, till D37. B) On D37, cultures 
were fixed and analysed for markers of striatum, neurons and synaptogenesis  
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localized to nucleus (Figure 6:2). There was no expression in ‘L’ treated cultures. LI 

treated progenitors generated 59.6+4.7% CTIP2 and 16.3+0.4% DARPP32. LIP0.5 

treated progenitors had lower proportions of both CTIP2+ (31.0+2.1%) and 

DARPP32+ cells (0.6+0.1%). Similarly, LIP1.0 treated progenitors generated low 

proportion of both CTIP2+ (23.4+0.8%) and DARPP32+ cells (0.4+0.0%). LIA 

treated progenitors gave 60.2+0.4% CTIP2+ and 29.7+0.6% DARPP32+. Both LI and 

LIA treated cultures showed co-localization expression of CTIP2 and DARPP32 in 

majority of the cells. However, in some DARPP32+cells, the intensity of CTIP2 

staining was found to be reduced (Figure 6:3) 

Double immunostaining of ISL1 and MAP2 showed their co-expression. 

ISL1 was localized to the nucleus and MAP2 was localized to the soma and axons 

(Figure 6:4) Under SCM1/2 conditions, the majority of cells, >92% were MAP2+, 

regardless of their different patterning conditions. The proportion of ISL1+ cells in L, 

LI, LIP0.5, and LIP1.0 treated cultures was found to be 7.2+0.9%, 85.1+ 0.9%, 

85.00+2.4% and 88.7+1.6% respectively. The intensity of ISL1 staining was found to 

be lower in some of the cells in LIA group and it yielded 60.0+2.5% ISL1+ cells.  

Calbindin expression was localized to cell bodies and axons (Figure 6:5). 

The proportion of Calbindin+ cells in treatment group L, LI, LIP1 and LIA treated 

cultures was found to be 4.2+1.6%, 10.8+1.4%, 6.1+0.6% and 3.6+0.2%, 

respectively. 

GABA expression was localized to cell bodies and axons (Figure 6:6). 

Two fields- field 1 and field 2 per treatment shown for LI, LIP and LIA represented 

low and high cell density areas of the coverslips, respectively. Quantification of the 

staining was difficult due to the filamentous nature of staining in high cell density 

fields.  
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Figure 6:2 Fluorescent immunocytochemistry analysis of CTIP2 and DARPP32 on 34D6-iPSC 
derived neurons on D37. D16 progenitors generated under different conditions-L, LI, LIP0.5, 
LIP1 and LIA were differentiated in SCM1/2 for 3 weeks on PDL/matrigel coated coverslips. 
On D37, cells were double-immunostained for CTIP2 (green), DARPP32 (red) and counter 
stained for DAPI nuclear stain (blue). Representative images are given- A1-E1) CTIP2 stained 
cells, A2-E2) DARPP32 stained cells, A3-E3) CTIP2/DARPP32 merge and A4-E3) 
DAPI/CTIP2/DARPP32 merge. Scale bar for all images in bottom right image= 100µm. Graphs 
represent F) the total  amount of DAPI-positive nuclei counted for each treatment and G) 
proportion of CTIP2 and DARPP32 positive cells as % of DAPI nuclei. Data represented as 
mean, N=2, experiments set in parallel 
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Figure 6:3 Confocal images of fluorescent immunostaining showing weaker CTIP2 expression in some DARPP32 positive neurons. D16 progenitors patterned 
under conditions- LI and LIA were differentiated in SCM1/2 for 3 weeks on PDL/matrigel coated coverslips. On D37, cells were double-immunostained for 
CTIP2 (green), DARPP32 (red) and counter stained for DAPI nuclear stain (blue). Representative images are given- A1-B1) CTIP2 stained cells, A2-B2) 
DARPP32 stained cells, A3-B3) DARPP32/CTIP2 merge and A4-B4) DAPI/DARPP32/CTIP2. White arrows point to weaker CTIP2 expression 
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Figure 6:4 Fluorescent immunocytochemistry analysis of MAP2 and ISL1 on 34D6-iPSC 
derived neurons on D37. D16 progenitors generated under different conditions-L, LI, LIP0.5, 
LIP1 and LIA were differentiated in SCM1/2 for 3 weeks on PDL/matrigel coated coverslips. 
On D37, cells were double-immunostained for MAP2 (green), ISL1 (red) and counter stained 
for DAPI nuclear stain (blue). Representative images are given- A1-E1) DAPI/MAP2 stained 
cells, A2-E2) ISL1 stained cells and A3-E3) DAPI/MAP2/ISL1 merge. Scale bar for all images 
in bottom right image= 100µm.Graphs represent F) the total  amount of DAPI-positive nuclei 
counted for each treatment and G) proportion of MAP2 and ISL1 positive cells as % of DAPI 
nuclei. Data represented as mean, N=2, experiments set in parallel 
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Figure 6:5 Fluorescent immunocytochemistry analysis of Calbindin on 34D6-iPSC derived neurons on 
D37. D16 progenitors generated under different conditions-L, LI, LIP1 and LIA were differentiated in 
SCM1/2 for 3 weeks on PDL/matrigel coated coverslips. On D37, cells were immunostained for  
Calbindin (red) and counter stained for DAPI nuclear stain (blue). Representative images are given- A1-
D1) DAPI stained cells, A2-D2) Calbindin stained cells and A3-D3) DAPI/Calbindin merge. Scale bar 
for all images in bottom right image= 100µm. Graphs represent E) the total  amount of DAPI-positive 
nuclei counted for each treatment and F) proportion of Calbindin positive cells as % of DAPI nuclei. 
Data represented as mean, N=2, experiments set  in parallel. 
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Figure 6:6 Fluorescent immunocytochemistry analysis of GABA on 34D6-iPSC derived neurons on 
D37. D16 progenitors generated under different conditions-L, LI, LIP1 and LIA were differentiated in 
SCM1/2 for 3 weeks on PDL/matrigel coated coverslips. On D37, cells were immunostained for GABA 
(red) and counter stained for DAPI nuclear stain (blue). Representative images are given- A1-G1) DAPI 
stained cells, A2-G2) GABA stained cells and A3-G3) DAPI/GABA merge. Scale bar for all images in 
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bottom right image= 100µm. Filed 1 represents low cell density areas and field 2 represents high cell 
density areas 

6.4.2 Analysis of pre and post synaptic markers 

Synaptogenesis was analysed by double immunostaining for the pre-

synaptic marker Synaptophysin and post-synaptic marker PSD95. Synaptophysin was 

localized to axons and PSD95 was localized to cell bodies and axons (Figure 6:7). 

Under SCM1/2 conditions, all the treatment groups expressed both markers and there 

was also their co-registration indicative of pre and post synaptic terminals. This was 

further confirmed by confocal microscopy (Figure 6:8).  
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Figure 6:7 Fluorescent immunocytochemistry analysis of Synaptophysin and PSD65 on 34D6-
iPSC derived neurons on D37. D16 progenitors generated under different conditions were 
differentiated in SCM1/2 for 3 weeks on PDL/matrigel coated coverslips. On D37, cells were 
double-immunostained for PSD95 (red), Synaptophysin (green) and counter stained for DAPI 
nuclear stain (blue). Representative images are given- A1-D1) DAPI/PSD95stained cells, A2-D2) 
Synaptophysin stained cells and A3-D3) DAPI/ Synaptophysin/PSD95merge. Scale bar for all 
images in bottom right image= 50µm. 
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Figure 6:8 Confocal images of fluorescent immunostaining showing co-registration of 
Synaptophysin and PSD65 on 34D6-iPSC derived neurons. D16 progenitors generated 
under different conditions A) L, B) LIP1 and C) LIA were differentiated in SCM1/2 for 3 
weeks on PDL/matrigel coated coverslips. On D37, cells were double-immunostained for 
PSD95 (red), Synaptophysin (green).Scale = 5µm. 
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6.5 Discussion 

In this chapter, D16 progenitors generated under different patterning cues, 

as described in the previous chapters and as outlined in figure 6.1, were analysed for 

neuronal yield and striatal differentiation, following in vitro culture in SCM1/2 for 3 

weeks. The analysis of striatal differentiation by immunocytochemistry was limited to 

the markers- CTIP2, DARPP32, ISL1, Calbindin and GABA against which successful 

antibodies were available. Neuronal yield and maturation was analysed by measuring 

the expression of MAP2, Synaptophysin and PSD95.  

6.5.1  Effect of D16 treatments on generation of DARPP32+/CTIP2+ neurons 

The results here confirmed the analyses performed on D16 neural 

progenitors that indicated LI and LIA treatments as optimal for the production of LGE-

like cells. ‘L’ treated cultures yielded 0%CTIP2/0%DARPP32+ neurons. LI and LIA 

treated cultures generated 59% CTIP2+/16% DARPP32+ and 60% CTIP2+/30% 

DARPP32+ neurons, respectively. This indicated that D16 progenitor specification by 

WNT inhibition enhanced the generation of DARPP32+ MSN like phenotype and in 

combination with Activin pathway activation further enhanced their production. 

LIP0.5 and LIP1.0 treated cultures showed 31% CTIP2/0.64% DARPP32 and 23% 

CTIP2/0.41% DARPP32, indicating that WNT inhibition in combination with high 

SHH pathway activation (in the specific temporal window used in this study) inhibited 

the generation of MSN-like phenotype.   

LGE like progenitor specification by application of SHH alone or in 

combination with WNT inhibitors followed by in vitro differentiation for 45-80 days, 

has been reported to generate 10-18% DARPP32+ neurons (Aubry et al. 2008; Li et al. 

2009; Zhang et al. 2010; Ma et al. 2012; 1.Delli Carri et al. 2013; Nicoleau et al. 

2013). Generation of DARPP32+ neurons (27%) has also been reported from PA6 

stromal induced neurogenic embryoid bodies in the absence of any morphogens(Jeon 

et al. 2012). Here, under defined culture conditions, LI patterned progenitors generated 

a comparable percentage of DARPP32+ neurons in a short period- just 3 weeks after 

plating down D16 progenitors ie, on D37. In agreement with other studies (Li et al. 

2009; Ma et al. 2012; Delli Carri et al. 2013; Nicoleau et al. 2013), there was 

DARPP32/ CTIP2 co-localisation. There was also a high percentage (60%) of CTIP2+ 

cells compared to 14-31% reported by Li et al. (2009) and Delli Carri et al. (2013). 
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Interestingly, some of the DARPP32+ neurons showed decreased CTIP2 intensity, 

suggesting potential downregulation of CTIP2 upon striatal neuronal maturation. 

mRNA expression profiling of 7-9 weeks human foetal WGE, cortex and adult 

striatum by Straccia et al. (2015) reported lower CTIP2 expression in adult striatal 

samples compared to foetal cortex and WGE samples. DARPP32 expression displayed 

the opposite trend, high in adult striatum and low in foetal cortex and WGE. Thus, 

Straccia et al. (2015) hypothesized that CTIP2/DARPP32 co-localization may be a 

marker of human foetal MSNs, but not the adult striatum. Temporal mRNA expression 

profiling of hPSC differentiation using the LI condition (protocol shared in the CHDI 

consortium) identified a ventral progenitor like phase at D8-D16 and progression 

towards adult striatal fate at D16-D28, thus the decreased CTIP2 intensity observed in 

some DARPP32+ neurons may indicate striatal maturation. Similarly, LIA patterned 

progenitors also showed CTIP2/DARPP32 co-localization and decreased CTIP2 

intensity in some DARPP32+ neurons. The higher proportion of DARPP32+ (30%) 

obtained was comparable to what was reported (20-50%, varied between cell lines) by 

Arber et al. (2015). In their study, Activin treatment was shown to induce LGE 

identity by upregulating CTIP2 and the ALK5 inhibitor SB431542 supressed Activin-

induced CTIP2 generation. In chapter 5 preliminary experiments, Activin treatment 

was observed to induce ~53% CTIP2+ cells by D16 and at D37 here, a comparable 

level (60%) was seen. LI only treatment at D16 showed no CTIP2 and at D37 showed 

59% CTIP2+. Thus, both LI and LIA mediated patterning favoured the generation of 

CTIP2+ cells. Activin treatment may have accelerated the striatal neuronal maturation 

of CTIP2+cells as there was no further increase of its expression. In chapter 5, Activin 

treatment was also observed to result in upregulation of other striatal neuronal makers.  

mRNA expression and protein level analysis of other striatal markers as well as 

cortical makers remain to be performed on these LI and LIA treated cultures to identify 

and quantify the different neural progenitors/neuronal types. Based on the data 

obtained here, both LI and LIA treatments were being replicated for detailed analysis, 

in other hPSC lines including HD-iPSCs by other members of the lab at the time of 

completion of lab work of this thesis. In chapter 5, the results suggested that activation 

of SHH signalling by Purmorphamine led to potential downregulation of some LGE 

markers (not consistent with all markers) and upregulation of MGE markers. The 

reduced proportion of CTIP2 and markedly low amount of DARPP32 in LIP0.5 and 

LIP1.0 treated cultures further supported this notion of LGE inhibition by SHH 
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pathway activation. DKK1+SHH mediated ventral patterning using 200ng/ml of SHH 

concentration, has been reported to result in down regulation CTIP2 and induction of 

NKX2.1 at D28 (Nicoleau et al. 2013).  

6.5.2 Effect of D16 treatments on generation of ISL1+ neurons 

Interestingly, a comparable percentage of ISL1+ neurons (~85%) were seen 

in LI, LIP0.5 and LIP patterned progenitors and LIA-patterned progenitors generated 

slightly reduced proportion (60%). L-treated progenitors showed 7% ISL1+ cells. In 

mice, LGE expression of Isl1 has been shown to be essential for the development of 

striatal neurons of striatonigral pathway (Ehrman et al. 2013). Isl1 shows a spatial and 

temporal expression pattern during striatum development (Wang and Liu 2001). In rat, 

Isl1 protein was first detected around E13 LGE and was expressed in all striatal 

precursors at E15. During the early phase of differentiation, at E18 striatum, Isl1 was 

co-expressed with Map2. As differentiation progressed at E20, P0 and by P7, Isl1 was 

downregulated and persisted in some cells that co-expressed ChAT, indicating 

cholinergic interneuron specification. Isl1 expression was sustained throughout 

development in cholinergic cells. Non-cholinergic precursors that lost Isl1 expression, 

expressed Darpp32 (Wang and Liu 2001). Isl1 expression was also detected in rat at 

E13 and E15 MGE and E18 MGE derived globus pallidus cells (Wang and Liu 2001). 

Isl1 co-expression with Nkx2.1 and Lhx7/8 has been implicated in MGE derived 

striatal cholinergic interneuron as well as basal forebrain cholinergic projection neuron 

specification (Fragkouli et al. 2009;Cho et al. 2014). In human development, ISL1 

expressed at 8-11weeks in all striatal precursors/neurons was restricted to a few cells 

by week 20 (Onorati et al. 2014). Consistent with the in vivo data, Delli Carri et al. 

(2013) reported that during DKK1+SHH mediated hPSC striatal specification, ISL1 

mRNA expression peaked at D45 and decreased thereafter. Concomitantly, the 

expression of DARPP32 gradually increased from D45 and persisted throughout the 

differentiation (Delli Carri et al. 2013). Here in my study, at D37, the co-expression of 

ISL1 with MAP2 under all the patterning conditions confirmed the post mitotic 

neuronal specification. LIA which gave the highest DARPP32 (30%) yield showed a 

reduction in ISL1+ (60%) cells, compared to LI (16%DARPP32+/85%ISL+). The high 

proportion of ISL1+ cells indicated striatal-like fate specification by LI and LIA 

treatments. The high proportion of DARPP32+ neurons in LIA treated cultures 

suggested a transition towards a mature striatal phenotype. However, further 
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experimental replicates and analysis of other striatal makers are required to support 

this data. A high proportion of ISL1 was also seen in LIP0.5 and LIP1.0 treated 

cultures. Whether this corresponds to a LGE or MGE fate needs to be determined by 

analysing the co-expression of MGE markers such as NKX2.1. In chapter 5, compared 

to LI, Purmorphamine treatment (LIP conditions) was observed to result in 

downregulation of ISL1 mRNA in H9 ESC D16 progenitors and a similar but not 

statistically significant trend was observed in 34D6 iPSC progenitors indicating 

prevention of upregulation of ISL1 by SHH pathway activation. However, there was 

induction of the MGE marker NKX2.1 at the protein level (21-45%) and GLI1, 

NKX2.1, NKX6.2 and LHX6 at the mRNA level. SHH (1000mg/ml) or Purmorphamine 

(1.5µM) mediated MGE induction and specification to basal forebrain cholinergic 

neurons has been reported in mESC and hPSCs (Yue et al. 2015; Hu et al. 2016). 

These forebrain cholinergic neurons co-expressed ISL1, NKX2.1, OLIG2 and ChAT 

(Yue et al. 2015; Hu et al. 2016). The combinatorial activity of Isl1, Lhx6 and Lhx7 

has been reported to mediate MGE progenitors specification towards cholinergic or 

GABAergic striatal interneuron fate specification (Fragkouli et al. 2009) MGE 

progenitors No conclusion was drawn on the LIP0.5, LIP1 induced cell fate at D37 

here, however, downregulation of CTIP2, and DARPP32 as mentioned above 

suggested potential inhibition of striatal identity. High-throughput QRT-PCR and 

immunocytochemistry analysis for MGE derived neuronal markers remain to be 

analysed in these cultures to determine cell identity.  

6.5.3 Effect of D16 treatments on generation of GABA, Calbindin, 

Synaptopyhsin and PSD95  

All the cultures, regardless of the different D16 patterning treatments 

showed GABA expression and Synaptophysin/PSD95 co-expression indicative of 

GABAergic neuronal development and synaptogenesis. GABAergic identity of LI 

patterned progenitors differentiated with SCM1/2 media is now published by 

Telezhkin et al. (2016).  

Calbindin-28K, (a calcium binding protein expressed in striatum matrix 

MSNs as well as in human forebrain cholinergic neurons (Onorati et al. 2014; Straccia 

et al. 2015; Geula et al. 1993)) positive neurons were present in all culture conditions. 

L and LIA treatment showed a comparable level (4%), LIP1 had slightly higher 

proportion (6%) and LI gave the highest yield (11%). Further experimental replicates 
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are needed to confirm the proportions obtained and determine the statistical 

significance of the different treatments. In 20 week-human fetal striatum, CTIP2+ cells 

displayed GABAergic identity and Calbindin co-expression (Onorati et al. 2014). 

During DKK1+SHH mediated or Activin mediated hPSC striatal specification, and a 

proportion of CTIP2+ cels showed Calbindin co-expression (DelliCarri et al. 2013; 

Arber et al. 2015). The Calbindin expression seen in my study, need to be analysed by 

double immunostaining for LGE and MGE markers to determine their striatal vs 

cholinergic neuronal identity.  

 In conclusion, SCM1/2 culture conditions promoted efficient neuronal 

differentiation with GABAergic identity and synaptogenesis as indicated by uniform 

expression of MAP2, Synaptophysin/ PSD95 and GABA in all the cultures. LI and 

LIA treatments appeared to be optimal for the production of CTIP2+/DARPP32+ MSN-

like phenotype, whereas LIP treatments resulted in the downregulation of these 

markers. Reduced intensity of CTIP2 in some DARPP32+ neurons potentially indicated 

striatal neuronal maturation. LIA gave the highest yield of DARPP32+ neurons. LI, 

LIA and LIP treatments also enhanced production of ISL1+/MAP2+ neurons, however, 

ISL1 immunocytochemistry needs to be analysed in conjunction with further markers 

to confirm the LGE vs MGE identity. Compared to the other protocols in the literature, 

the study here, showed the generation of DARPP32+ neurons in a short period under 

chemically defined conditions.  
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7 General Discussion 

The neural development begins with the induction of neuroectoderm, 

which in turn gives rise to the neural tube. The neural tube under the influence of 

instructive signals delineates the anterior -posterior axis and dorso-ventral axis of the 

CNS.  In this thesis, hPSCs were used as a model system to investigate the role of 

signalling pathways in the neuroectoderm formation, telencephalon development and 

subsequent regional specification towards a LGE-like fate. At this context, the role of 

BMP antagonism, WNT antagonism, SHH signalling and Activin pathway was 

investigated using small molecule agonists or antagonists of the pathways. The thesis 

aimed at developing chemically defined culture conditions for the optimized 

production of cell types that are of direct relevance in HD. The aspiration is that it 

offers a powerful platform not only for understanding human LGE/striatal 

development but also for in vitro HD modelling using hPSCs harbouring mutant HTT 

allele. It may simultaneously permit the identification of target for drug screening as 

well as provide a renewable cell source for cell-based therapies.  

7.1  Summary of the results 

The current methods for  in vitro MSN generation includes neural 

induction using stromal co-culture, embryoid body culture or dual SMAD/BMP 

inhibition, followed by specification of LGE-like fate using a combination of WNT 

inhibition and SHH pathway or Activin-A signalling activation (more recent) and 

finally maturation towards MSNs. A similar paradigm was applied in this thesis using 

small molecules agonists or antagonists instead of the expensive recombinant proteins 

as in the other protocols. In chapter 3, in agreement with the other models, dual-

SMADi BMP inhibition by Dorsomorphin, LDN193189 and DMH1 in combination 

with SB431542, together called dual-SMADi, was shown to efficiently induce 

neuroectoderm markers expression. In chapter 4, dual-SMADi in combination with 

WNT signalling inhibition by IWR1 and KY02111 from D0 to D16, was found to 

promote both telencephalic induction and ventral patterning of precursors in a dose-

dependent manner. This is the first report of demonstrating the role of WNT 

antagonism in hPSC telencephalon induction and specification towards a ventral 

telencephalic fate without the use of any ventralizing molecule. IWR1 at 1µM 

appeared to be more potent than KY at 1 or 10µM. IWR1 was used for further 
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experiments (referred to as LI). In chapter 5, dual-SMADi combined with IWR1 

mediated WNT inhibition and activation of SHH signalling by Purmorphamine 

(referred to as LIP) (and SAG, excluded after the preliminary experiments) from D8 to 

D16, appeared to downregulate or prevent the upregulation pan-ventral and some LGE 

markers and promoted MGE markers. Whereas, Activin treatment at 20ng/ml from D8 

to D16 (preliminary experiments) appeared to specifically enhance LGE/striatal 

transcripts. In chapter 6, D16 progenitors were plated for terminal differentiation in 

SCM1/2 media for 3 weeks. Protein level analysis by immucocytochemistry at D37, 

revealed LI and LIA treatments optimal for the production of DARPP32+/CTIP2+ cells 

indicative of MSN-like striatal phenotype, LIA treatment was more effective than LI. 

LIP treatments appeared to inhibit the generation of DARPP32+/CTIP2+ cells.  

7.2 Small molecules-mediated directed differentiation of hPSCs 

Driving the differentiation of hPSCs towards MSN-like phenotype 

requires the manipulation and timely integration of the developmental signals at the 

precise level. Many studies have attempted to mimic these developmental cues by 

applying the expensive recombinant proteins (Watanabe et al. 2007; Aubry et al. 

2008; Li et al. 2009; N. Zhang et al. 2010; Ma et al. 2012; The HD iPSC Consortium 

2012; DelliCarri et al. 2013).  

 Despite considerable progress, increasing the efficiency of hPSC 

differentiation towards MSN fate remains challenging. Moreover, the high cost of 

recombinant proteins and the use of serum often with batch-to-batch inconsistencies in 

these protocols are major limitations for culture scale-up. In order to develop a 

reproducible, efficient and cost effective model system to investigate the 

developmental mechanisms that govern striatal-like commitment, this thesis (lab work 

done in 2010-2014 period) attempted to drive hPSC differentiation by the application 

of inexpensive synthetic known small molecules agonists or antagonists. By varying 

the dose or duration of small molecule exposure, the developmental pathways could 

be modulated in vitro  

7.2.1 BMP antagonism promoted PAX6+ neuroectoderm fate specification  

The three main approaches for neural induction in hPSC striatal 

differentiation protocols are stromal co-culture, embryoid body (EB) culture or dual 

SMAD/BMP inhibition. MS5 or PA6 mouse stromal cell-derived inducing activity 
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(SCID) method has the drawback of relying on unidentified factors and the protocol 

overall takes about 3 weeks in vitro (Aubry et al. 2008; Jeon et al. 2012). hPSC EB 

culture in neutralizing medium under serum (N. Zhang et al. 2010) or serum-free 

condition with N2 supplement (Joannides et al. 2007; Pankratz et al. 2007; Ma et al. 

2012) are cost effective as it does not include growth factors, however, the 

heterogeneous culture limits the efficiency of neural induction. Integration of 

developmental cues further refined the culture conditions. Inhibition of Activin/Nodal 

signalling by SB431542 under defined condition (Smith et al. 2008) or inhibition of 

BMP signalling by Noggin under serum (Pera et al. 2004) or serum-free embryoid 

body culture (Itsykson et al. 2005) or MS5 co-culture (Lee et al. 2007; Chambers et 

al. 2009) was shown to promote neural induction. The synergistic action of 

SB431542/Noggin (termed dual-SMADi) under defined conditions, demonstrated by 

Chambers et al. (2009) is advantageous over other culture methods in that it highly 

enhanced neural induction whilst suppressing the pluipoteny and hPSC differentiation 

towards the other lineages. In chapter 3, dual-SMADi was applied to H9ESC 

embryoid body culture and the effect of small molecule antagonists of BMP signalling  

Dorsomorphin, LDN193189 and DMH1 was investigated in combination with 

SB431542. The strength of the experimental design in this chapter was that all the 3 

small molecules as well as Noggin treatment was compared in parallel. The results 

demonstrated that the inhibition of BMP signalling promoted the induction of 

definitive neuroectoderm marker PAX6 (X. Zhang et al. 2010) at both mRNA and 

protein level (about 70%) when compared with basal media or SB431542 alone 

treatment. The effect of Noggin and small molecules was comparable. However, the 

experiments did not reveal an optimal dose for PAX6 induction. At D8, all the doses 

0.25,0.5 and 1µM tested equally induced PAX6 mRNA expression. Kim et al. (2010) 

and Morizane et al. (2011) compared the effect of Noggin or Dorsomorphin, both in 

combination with SB431542 in an EB based culture. Dose response experiments 

revealed Dorsomorphin at 2 or 5µM showing a comparable effect to 300 or 1000ng/ml 

Noggin (Kim et al. 2010; Morizane et al. 2011). Surmacz et al. (2012) reported high 

PAX6 induction (~90%) by LDN193189 at 1µM as compared to Dorsomorphin at 

5µM and Noggin at 50ng/ml , all in combination with SB431542 in a monolayer 

culture system. Further a dose-response curve revealed PAX6 induction by 

LDN193189 with EC50=4.84nm. Chambers et al. (2012) reported the application of 

LDN193189 at 0.1µM thus replacing Noggin (500ng/ml) in dual-SMADi strategy. 
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Neely et al. (2012) reported a comparable effect of DMH1 at 0.5µM and Noggin 

500ng/ml on PAX6 induction in monolayer based dual-SMADi protocol. Kim et al. 

(2010) and Morizane et al. (2011) also reported Dorsomorphin dose dependent effect 

on SOX1 and NESTIN. Neely et al. (2012) reported DMH1 dose dependent effect on 

SOX1, but not on PAX6. Thus optimal dose of small molecules are crucial for 

expression of genes involved in neuronal lineage specification. The various studies 

discussed here show the rapid progress in the field of small molecule-mediated 

differentiation. Collectively, these studies and my study demonstrate that the small 

molecule BMP inhibitors can replace Noggin. There are discrepancies in the reported 

effective dose of Dorsomorphin and LDN193189 and it may be attributed to the many 

variable factors of culture conditions including the cell lines used. However the 

studies highlighted that LDN193189 is potent than Dorsomorphin or DMH1 at low 

dose. Recent hPSC striatal differentiation protocols reported dual-SMADi neural 

induction using LDN193189 at 0.1µM (Nicoleau et al. 2013) and in combination with 

0.2µM Dorsomorphin (Arber et al. 2015). Although a dose dependent effect was not 

seen on PAX6 in my study at the small molecules doses tested, the study clearly 

demonstrated that BMP inhibition was critical for PAX6 induction at mRNA and 

protein level. The effect of basal media, SB431542 alone treatment or in combination 

with Noggin or small molecules on the down regulation of OCT4 and maintenance of 

SOX2 was comparable, indicating that basal culture conditions used here favoured 

neural differentiation.  The flaw of the experimental design was that a wide dose range 

below and above IC50 values of BMP inhibition by small molecules was not included. 

This would have determined an effective small molecule and an optimal dose for 

neural induction and would minimize the possibility of any off target effects.  

Although seemingly efficient, the dual-SMADi EB cultures were 

heterogeneous and contained small percentage of neural crest and epidermis cells. 

Moreover, EB cultures gave low yield of progenitors. Dual-SMADi using SB431542 

and LDN193189 was adapted to a monolayer culture with subtle difference in the 

exposure time of SB431542 and both dose and exposure time of LDN193189. This 

protocol was validated by other members in the lab and was used in the rest of the 

thesis.  



Chapter 7: General Discussion 

-218- 
 

7.2.2 WNT antagonism promoted FOXG1+ telencephalic progenitor 

induction and ventral fate specification 

In the absence of any exogenous signals, the default identity of 

neuroectodermal cells derived using stromal co-culture or serum free EB method or 

dual-SMADi has been reported to be FOXG1+ PAX6+anterior dorsal fate (Pankratz et 

al. 2007; Elkabetz et al. 2008; Chambers et al. 2009; Li et al. 2009; Neely et al. 2012; 

DelliCarri et al. 2013). Various studies have employed WNT inhibitor DKK1 

(500ng/ml) to further enhance FOXG1+ commitment (Watanabe et al. 2007; Li et al. 

2009; N. Zhang et al. 2010; DelliCarri et al. 2013). In chapter 4, the role of WNT 

antagonism was analysed during H9 differentiation. The D16 monolayer dual-SMADi 

(SB431542/LDN193189) cultures yielded >90%PAX6+/<5%FOXG1+ cells indicative 

of neuroectoderm identity. Maroof et al. (2013) also reported a similar observation 

using SB431542/LDN193189. Addition of WNT inhibitors IWR1 and KY02111 to 

dual-SMADi culture from D0 highly induced FOXG1. IWR1 and KY02111 dose-

response effect was observed; IWR1 at 1µM and KY02111 at 10µM yielded 90% and 

70% FOXG1+ cells respectively. This indicated that IWR-1 was more potent than 

KY02111. This yield was higher than previously reported DKK1-mediated EB (34%) 

(Watanabe et al. 2007) or monolayer based differentiation (58-64%) (DelliCarri et al. 

2013; Nicoleau et al. 2013). Nicoleau et al. (2013) and Maroof et al. (2013) compared 

the effect of DKK1 and another small molecule XAV939 (that inhibits WNT pathway 

in a similar manner to IWR-1) and reported high efficiently FOXG1 induction (85%) 

by XAV939. IWR1 or KY939 treatments in my study and XAV939 treatment 

reported in Nicoleau et al. (2013) showed no effect on neuroectoderm markers SOX2, 

NESTIN and anterior marker OTX2 suggesting that WNT antagonism combined with 

dual-SMADi specifically enhanced FOXG1 identity. Further analysis of dorsal and 

ventral telencephalon markers showed that IWR1 or KY02111 treatments resulted in a 

smaller decrease in percentage of PAX6+ cells and lower intensity of PAX6 signal. 

Previous studies reported that in the absence of ventralizing molecule such as SHH, 

WNT inhibitors did not abrogate dorsal markers (Li et al. 2009; Nicoleau et al. 2013). 

XAV939 in combination with SHH (50ng/ml) (Nicoleau et al. 2013) and DKK1 in 

combination with SHH (Li et al. 2009) had an inhibitory effect on PAX6. Detailed 

analysis by high-throughput QRT-PCR revealed that IWR1 and KY02111 treatment 

enhanced ventral fate specification as evidenced by the induction of GSX2, DLX2, 

DLX5, DLX1, MEIS2, ISL1, NKX2.1, LHX6 and NKX6.2 There was also induction of 
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post mitotic dorsal maker TBR1 and neuronal markers TUBB3 and DCX. Temporal 

analysis of gene expression during dual-SMADi+IWR-1 mediated hPSC 

differentiation and comparison to human WGE and adult striatum samples by Straccia 

et al. (2015) revealed a ventral fate specification phase at D8-D16 followed by 

acquisition of WGE identity that was progressing towards adult striatal fate by D16-

D28. Thus, my study clearly demonstrated that WNT antagonism enhanced ventral 

telencephalic fate specification. This is the first report of hPSC ventral fate 

specification achieved without use of any ventralizing molecules. Nicoleau et al. 

(2013) also highlighted the requirement of WNT antagonism in ventral fate 

specification, however in their study the ventralizing property of XAV9393 was 

reduced in the absence of SHH. In my study the effect of WNT inhibitors was 

analysed in combination with continued BMP inhibition till D16, whereas Nicoleau et 

al. (2013) analysed the effect of XAV939 alone or in combination with SHH, after the 

withdrawal of BMP inhibitor from the cultures. Despite the difference in the culture 

conditions, both studies demonstrated that small molecule-mediated WNT antagonism 

promoted telencephalon induction and regional specification towards a ventral fate. 

My study presents a cost effective and robust protocol for hPSC LGE-like 

specification without needing the expensive SHH protein in the culture system.  

7.2.3 SHH and Activin signalling enhanced MGE-like and LGE-like fate 

specification respectively   

In chapter 5, the role of SHH signalling by small molecules 

Purmorphamine and SAG as well as Activin signalling was analysed at the context of 

concurrent BMP and WNT inhibition (SB431542/LDN193189+IWR1). SHH alone or 

in combination with DKK1 in an appropriate temporal window during hPSC 

differentiation has been reported to achieve LGE or MGE specification in SHH dose-

dependent manner (Ma et al. 2012; Watanabe et al. 2007; Aubry et al. 2008; Li et al. 

2009; DelliCarri et al. 2013; Nicoleau et al. 2013). Following a pilot study (N=2) with 

Purmorphamine at 0.1, 0.5 and 1µM, the highest doses 0.5 and 1µM that upregulated 

SHH targets PATCHED1 and GLI1 was used for further differentiation experiments. 

Detailed analysis by high-throughput QRT-PCR revealed that Purmorphamine 

treatment (at 0.5 and 1µM in H9 ESC and 0.3 and 1µM in 34D6 iPSC) during D8-D16 

temporal window did not alter anterior markers FOXG1, SIX3 and OTX2. In line with 

other studies, there was Purmorphamine dose-dependent down regulation of dorsal 
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transcripts PAX6, TBR1 and GLI3 and upregulation of MGE specific transcripts GLI1, 

NKX2.1, NKX6.2 and LHX6. However, pan-ventral and LGE specific markers GSX2, 

DLX2, DLX5, ISL1 and MEIS2 were down regulated in H9 cells. 34D6 cells showed a 

similar but not statistically significant trend, which may indicate either prevention of 

upregulation of these transcripts or no modulation of these transcripts by SHH 

pathway activation during D8-D16 temporal window. H9 cells exposed to Activin 

instead of Purmorphamine during the same temporal window, showed upregulation of 

a number of LGE and striatal specific transcripts. This showed during D8-D16 

window, the progenitors were responsive to developmental signals and that cell 

responses to Activin signalling and SHH signalling were different.  

Results of Purmorphamine treatment was initially surprising as SHH 

signalling has been shown to mediate ventral patterning by antagonising GLI3 which 

mediates the dorsal patterning (Rallu et al. 2002; Li et al. 2009). Most of the hPSC 

neural differentiation protocols report a default cortical identity of progenitors 

(Pankratz et al. 2007; Elkabetz et al. 2008; Chambers et al. 2009; Li et al. 2009; 

Neely et al. 2012; DelliCarri et al. 2013). A graded ventralizing effect by SHH 

application has been reported; the highest dose upregulated MGE markers and an 

optimal dose which enhanced pan-ventral markers GSX2, DLX2, but not NKX2.1 

qualified for generation of DARPP32+ MSN-like neurons (Li et al. 2009; Ma et al. 

2012; Nicoleau et al. 2013). At this optimal SHH dose, additional WNT inhibition by 

DKK1 or XAV939 (in a dose-dependent manner) strongly enhanced the ventralization 

(Li et al. 2009; Nicoleau et al. 2013). Thus, it can be suggested that SHH rather acts 

by suppressing the default cortical specification than directly mediating striatal 

specification. Further support of this notion came from the study by Arber et al. 

(2015); Activin treatment in combination with increasing dose of SHH upregulated 

MGE markers but did not increase Activin-induced LGE markers. At context of 

ventralization achieved by WNT inhibition in my study, activation of SHH pathway 

appeared to have directly enhanced MGE fate at the expense of LGE fate. A similar 

observation i.e., induction of MGE fate at the expense of LGE/CGE fate has been 

reported during SHH or SAG- mediated mESC (Danjo et al. 2011) and hPSC (Kim et 

al. 2014) specification towards MGE derived cortical interneurons. Both SHH dose 

and temporal window of exposure played a role in this process (Nicholas et al. 2014; 

Kim et al. 2014).  
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The Activin-induced gene expression patterns were distinct from those 

induced by Purmorphamine. Arber et al. (2015), reported an increase in the number of 

GSX2+ and CTIP2+cells upon Activin treatment during hPSC differentiation. In 

contrast, in my study, there was a smaller decrease in GSX2+ cells by Activin 

treatment (LIA) in 34D6 iPSC line compared to control (LI). During H9 ESC 

differentiation, Activin treatment did not appear to alter GSX2 transcript but 

preferentially upregulated DLX transcripts, GABAergic neuronal transcripts NPY and 

SST, LGE transcripts FOXP1 and NOLZ1 as well as MSN marker TAC1. This 

suggested that Activin treatment at the context of both BMP and WNT inhibition  in 

my study potentially induced a LGE-like or GABAergic neuronal maturation. Support 

for this notion comes from the study by Maira et al. (2010) in which TGF-β family 

proteins through interactions with Dlx genes were shown to regulate telencephalic 

GABAergic neuron development. It would be of interest to analyse if small molecules 

can replace the function of Activin in our culture system. IDE1 and IDE2 are two 

small molecules that have been shown to phenocopy the function of Activin during 

hPSC endoderm differentiation (Borowiak et al. 2009).  

7.2.4  Patterning effects persist when terminally differentiated into 

neurons 

In vitro differentiation of D16 progenitors in SCM1/2 media which has 

been shown to achieve synchronized neural differentiation (Telezhkin et al. 2016) 

revealed the strength of D16 telencephalic commitment and regional commitment. 

Both LI and LIA showed DARPP32+/CTIP2+ neurons whilst LIP conditions 

downregulated the expression of these markers. The comparable proportion of ISL1+ 

cells suggested acquisition of ventral fate by LI, LIA and LIP patterning. The data 

shown is limited and further experiment replicates and analysis of further LGE and 

MGE are needed to confirm the phenotype achieved. However, compared to all the 

other protocol utilizing DKK1+SHH, in my study, LGE like fate specification and 

generation of DARPP32+ method was achieved in a shortest time. The highly positive 

GABA, MAP2 and Synaptophysin/PSD95 on D37 neurons regardless of the 

patterning conditions revealed their GABAergic post mitotic identity and initiation of 

synaptogenesis in the culture.  
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7.3  Future work and scope of the project 

The hPSCs provide a unique model system for investigating the role of 

developmental pathways. Following neural induction, the progenitors in this study 

showed distinct cell response to WNT inhibition, SHH pathway activation and Activin 

pathway activation. Although LI and LIA conditions enhanced LGE-like fate, the 

yield of DARPP32+ neurons was still low. Future work is needed to identify the 

developmental mechanisms that drive LGE-like progenitor differentiation towards 

MSNs. Although DARPP32 is used as gold standard, further markers of striatal 

neurons need to be analysed.  

The scope of this project is in the application of protocols for in vitro 

disease modelling of HD-iPSC lines. The various hPSC striatal-like specification 

studies report promising results from in vivo engraftment in HD animal models to 

exploit the potential for cell transplantation applications. The increasing number of 

studies utilizing small molecules in hPSC differentiation protocols shows the rapid 

advancement in this field. Small molecules with the desired biological effect could 

overcome cell-based drug screening hurdles.  
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Treatment (µM) ΔCq +SEM 

ID1 

ΔCq +SEM 

ID3 

ΔCq +SEM 

PAX6 

ΔCq +SEM 

SLUG 

ΔCq +SEM 

OCT4 

Undifferentiated hESC    13.21 + 0.68 12.84 + 0.59 3.16 + 0.13 

Untreated 

(Vehicle) 
0.1% 

Ethanol 

5.73 2.73 8.08 + 0.17 5.97  + 0.14 9.74 + 1.18 

SB431542  6.14 2.59 6.32+ 0.21 7.76 + 0.31 13.85 + 0.24 

SB431542+ Noggin  6.68 4.17 5.10 + 0.12 7.41 + 0.37 14.07 + 0.34 
 

SB431542+DM 
0.25 8.16 5.34 5.20+ 0.13 7.75+ 0.16 12.28 + 1.56 

0.5 8.25 4.53 4.68 + 0.08 7.48 + 0.14 13.22 + 1.29 

1 7.90 4.46 4.67 + 0.16 7.90 + 0.18 13.08 + 0.78 
 

SB431542+LDN193189  
0.25 11.00 6.30 4.60 + 0.12 8.49 + 0.03 11.82 + 2.38 

0.5 11.41 6.31 4.58 + 0.15 8.47 + 0.20 13.53 + 1.03 

1 10.88 5.82 4.70 + 0.31 8.08 + 0.58 12.07 + 0.07 
 

SB431542+DMH-1 
0.25 9.22 5.24 4.60 + 0.29 8.28 + 0.22 11.42 + 0.00 

0.5 9.56 5.03 4.38 + 0.10 7.98 + 0.03 11.14 + 0.00 

1 10.32 5.01 4.60 + 0.29 8.30 + 0.40 10.79 + 0.00 

Table 3.1 ΔCq values of markers analysed in Chapter 3 figure 3.3 to 3.5 
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Treatment (µM) ΔCq +SEM 
LEF1 

 
WNT3a 
(on D12) 

 

0 7.32 

25 7.20 

50 7.08 

100 6.87 
200 6.75 

 
WNT3a 

+ IWR µM 
(on D12) 

0 6.46+ 0.11 

0.001 7.01+ 0.25 

0.1 6.64+ 0.08 

1 7.18+ 0.11 

10 7.25+ 0.16 

IWR µM 
(on D16) 

0 (0.1%DMSO) 5.69 + 0.23 

0.001 5.81+ 0.09 

0.1 6.81+ 0.21 

1 6.68+ 0.10 

Markers ΔCq +SEM 

D8 

ΔCq +SEM 

D16 

PAX6 4.70+ 0.38 4.64+ 0.43 

SLUG 9.02+ 0.37 10.64+ 0.71 

FOXG1 4.89+ 0.38 1.42+ 0.33 

 ΔCq +SEM 

Untreated 

ΔCq +SEM 

IWR from D0 

ΔCq +SEM 

IWR from D8 

FOXG1 10. 25+ 0.73 -6.27+ 0.06 -2.87+ 0.34 

Table 4.2 ΔCq values of markers in figure 4.4.  

Table 4.1 ΔCq values of LEF1in figure 4.1 and 4.2.  

Table 4.3 ΔCq values of FOXG1 in figure 4.5.  
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Treatment 

(µM) 

ΔCq +SEM 

FOXG1 

ΔCq +SEM 

PAX6 

ΔCq +SEM 

GSX2 

ΔCq +SEM 

DLX2 

 

IWR 

 

0 12.97+ 1.52 2.13+ 0.22 14.57+ 0.57 14.38+ 0.06 

0.1 8.75+ 0.96 2.43+ 0.46 16.76+ 3.64 15.73+ 0.06 

1 1.56+ 0.06 3.49+ 0.38 5.81+ 0.40 7.32+ 0.60 

10 1.45+ 0.45 3.67+ 0.48 5.80 + 0.02 8.25 + 0.37 

 

KY 

0.1 8.70+ 1.04 2.40+ 0.34 13.23+ 2.13 13.66 + 0.97 

1 2.55+ 0.44 3.03 + 0.13 7.56+ 0.32 11.29+ 0.75 

10 0.78+ 0.31 3.68+ 0.83 7.76+ 0.57 7.94+ 0.43 

Gene ΔCq +SEM 

Untreated 

ΔCq +SEM 

IWR 

ΔCq +SEM 

KY 

In Figure 

SOX2 3.65 + 0.28 2.70 + 0.25 3.54 + 0.08 4.11 

SOX1 9.92 + 0.17 7.95 + 0.36 9.13 + 0.49 

NES (NESTIN) 2.37 + 0.08 2.43 + 0.17 2.80 + 0.15 

FOXG1  10.25 + 0.73 1.22 + 0.34 2.86 + 0.21 4.12 

SIX3 8.82 + 1.13 3.98 + 0.32 4.07 + 0.10 

OTX2 4.17+ 0.29 4.17 + 0.21 4.35 + 1.32 

LMX1B 6.89 + 1.16 11.75 + 0.35 13.03 + 0.50 

PAX6 4.93 + 0.20 5.56 + 0.16 6.71 + 1.56 4.13 

EMX2 8.75 + 1.03 5.42 + 0.31 6.45+ 2.22 

TBR1 9.9 + 0.56 4.27 + 0.46 5.80 + 0.44 

GSX2 14.45 + 0.21 3.35 + 0.29 6.07 + 0.82 4.14 

GSX1 9.05 + 0.00 8.43 + 0.36 9.68 + 0.31 

DLX1 14.45 + 0.21 6.48 + 0.80 8.23 + 1.30 

DLX2 14.45 + 0.21 6.41 + 0.69 9.07 + 0.82 

DLX5 14.45 + 0.21 4.32 + 0.22 7.16 + 0.38 

ASCL1 8.14 + 0.31 6.97 + 0.86 8.50 + 1.28 

MEIS2 4.75 + 0.31 1.73 + 0.16 3.72 + 0.32 4.15 

SP8 5.67 + 0.16 4.72 + 0.11 4.83 + 0.50 

ISL1 9.92 + 0.13 6.35+ 0.56 9.83 + 1.37 

FOXP1 6.79+ 0.21 6.91 + 0.45 6.96 + 0.26 

EBF1 9.86 + 0.16 9.12 + 0.44 9.53 + 0.31 

NCAM1 4.85+ 0.13 3.86 + 0.25 4.61 + 0.52 4.16 

CDH2 0.21 + 0.06 0.53 + 0.16 1.23+ 0.15 

DCX 7.15 + 0.33 3.51 + 0.35 6.11 + 1.48 

TUBB3 2.65 + 0.23 0.77 + 0.27 1.72 + 0.10 

MAP2 2.84 + 0.16 2.61 + 0.41 4.01 + 0.37 

Table 4.4 ΔCq values of markers in figure 4.5.  

Table 4.5 ΔCq values of markers analysed by High-through put QRT-PCR.  
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Treatment (µM) ΔCq +SEM 
PATCHED1 

ΔCq +SEM 
GLI1 

Control (IWR1) 0 13.61+ 1.35 11.81+ 0.00 
IWR1+ 

Purmorphamine 
0.1 11.86+ 0.34 11.99+ 0.29 

0.5 9.99 + 0.42 6.80 + 0.15 

1 8.91 + 0.46 5.79 + 0.00 

IWR-1+ SAG 
0.001 13.48 + 0.07 14.00 + 0.11 

0.01 13.06+ 0.43 13.11+ 0.05 

0.1 10.57+ 0.58 7.65 + 0.40 

Treatment (µM) ΔCq +SEM 
GSX2 

ΔCq +SEM 
DLX2 

ΔCq +SEM 
DLX5 

ΔCq +SEM 
NKX2.1 

Control (IWR1) 0 5.16+ 0.31 5.24+ 0.03 5.51+ 1.03 15.79+ 0.36 
IWR1+ 

Purmorph-
amine 

0.1 5.60+ 0.14 5.40 + 0.29 7.33 + 0.42 15.16 + 0.06 

0.5 7.25 + 0.15 8.01 + 0.40 11.93 + 0.50 12.61 + 0.66 

1 9.86 + 0.41 7.54 + 0.47 9.49 + 0.39 6.15 + 0.15 

IWR1+ SAG 

0.001 5.28 + 0.24 5.03 + 0.70 6.54 + 0.02 14.89 + 0.25 

0.01 5.70+ 0.41 5.86+ 0.31 8.19+ 0.63 15.34+ 0.00 

0.1 7.13+ 0.15 8.07 + 0.92 11.85 + 0.69 11.42 + 0.89 

Table 5.1 ΔCq values of SHH targets in figure 5.2 

Table 5.2 ΔCq values of vental markers in figure 5.3 
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 H9 34D6 

 Control 

(IWR1) 

IWR1+ 

Purmorphamine 

IWR1+ 

Activin 

Control 

(IWR1) 

IWR1+Purmorphamine 

 0 0.5µM 1 µM 20ng/ml 0 0.3 µM 1 µM 

SOX2 2.70 + 0.25 2.05 + 0.68 1.49 + 0.51 2.23 + 0.22 1.48 + 0.88 1.48 + 0.86 0.70 + 0.96 
SOX1 7.95+ 0.36 8.95 + 0.24 9.08 + 0.19 7.56 + 0.00 9.35 + 0.05 10.82 + 0.47 11.23 + 0.75 
NES 2.43+ 0.17 2.22 + 0.44 2.71 + 0.26 2.22 + 0.25 1.85 + 0.56 1.39 + 0.27 1.42 + 0.51 
FOXG1 1.22 + 0.34 1.02 + 0.05 1.92 + 0.63 1.07 + 0.19 0.56 + 0.87 0.77 + 0.66 0.29 + 0.96 
SIX3 3.98+ 0.32 3.79 + 0.05 4.56 + 0.41 4.11 + 0.57 3.62 + 0.31 4.34 + 0.18 3.80 + 0.71 
OTX2 4.17+ 0.21 4.41 + 0.23 3.87 + 0.80 6.26 + 0.12 3.41 + 0.75 3.58 + 0.61 3.30 + 0.99 
LMX1B 11.79+ 0.35 11.12+ 0.32 11.79+ 0.22 11.08+ 1.82 10.26+ 0.54 12.66+ 1.44 11.45+ 1.38 
FOXA2 12.72+ 0.63 

(Undetermined) 
13.31+ 0.89 

(Undetermined) 
7.68+ 0.56 Undetermined 14.10+ 0.37 14.37+ 0.29 8.20+ 0.00 

PAX6 5.56 + 0.16 4.97 + 0.29 7.20 + 0.09 8.80 + 0.04 5.80 + 0.55 7.25 + 0.76 12.87 + 1.30 
GLI3 1.70 + 0.13 2.15 + 0.52 3.42 + 0.35 3.53 + 0.75 2.48 + 0.42 3.68 + 0.43 4.43 + 0.81 
EMX2 5.42+ 0.31 5.70 + 1.00 6.54 + 0.81 7.55 + 0.93 7.34 + 0.05 8.93 + 0.80 12.93 + 1.25 
TBR2 5.50+ 1.03 4.76 + 0.00 6.51 + 0.90 11.08 + 1.82 8.80 + 0.42 11.47 + 1.67 11.58 + 1.03 
TBR1 4.27+ 0.46 5.69+ 0.47 6.86+ 0.78 7.51+ 1.09 5.81+ 0.51 8.96+ 0.81 14.09+ 0.53 
GSX2 3.35 + 0.29 4.60 + 0.21 6.99 + 0.49 3.79 + 0.36 3.47 + 0.59 4.30 + 0.72 4.81 + 0.04 
GSX1 8.43+ 0.36 10.51+ 2.26 8.06 + 0.27 7.90 + 0.00 6.79 + 0.29 6.38 + 0.28 5.70 + 0.57 
DLX2 5.73+ 0.20 8.31 + 0.11 9.59 + 0.33 3.89 + 0.18 4.59 + 0.70 6.15 + 0.72 5.56 + 0.93 
DLX1 4.27+ 0.46 5.69+ 0.47 6.86+ 0.78 7.51+ 1.09 4.58+ 0.72 6.32+ 0.75 6.40+ 1.02 
DLX5 4.32+ 0.22 7.97+ 0.76 8.09+ 0.74 4.10+ 0.72 3.79+ 1.12 5.21+ 0.25 5.43+ 1.04 
ASCL1 6.97+ 0.86 7.73+ 0.70 6.89+ 0.73 5.22 + 0.06 5.32 + 0.77 5.51 + 0.49 5.49 + 1.08 
MEIS2 1.73 + 0.16 3.04 + 0.19 3.47 + 0.19 0.51 + 0.47 1.97 + 0.21 3.16 + 0.39 3.67 + 0.04 
SP8 4.72 + 0.11 4.68+ 0.38 5.39 + 0.23 6.42 + 0.33 4.56 + 0.31 5.49 + 0.33 5.59 + 0.85 

Table 5.3 ΔCq values of markers analysed by high-through put QRT-PCR 
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ISL1 6.35+ 0.56 10.40 + 0.75 10.50 + 0.43 4.48  + 0.53 6.13 + 0.25 7.32 + 0.19 7.34 + 0.50 
FOXP1 6.91 + 0.45 6.78+ 0.10 7.15+ 0.29 5.68+ 0.20 7.16+ 0.02 7.57+ 0.37 8.24+ 0.01 
EBF1 9.12 + 0.44 9.89+ 1.35 9.89+ 0.91 5.33+ 0.72 8.64+ 0.83 11.09+ 0.47 13.11+ 1.09 
NOLZ1 8.87 + 0.22 8.80 + 1.33 6.70 + 1.40 4.12 + 0.62    
GPR6 9.22 + 0.80 Undetermined Undetermined 2.72 + 0.00    
TAC1 6.30+ 0.70 7.48 + 0.00 10.61 + 0.97 1.15+ 0.44    
NPY 12.72 + 0.63 Undetermined Undetermined 3.37+ 0.47    
SST 10.98 + 0.00 8.52+ 0.03 8.63+ 0.13 5.28+ 0.49    
GLI1 11.23+ 2.21 10.40+ 1.14 4.60+ 0.40 8.85 + 0.00 4.57+ 0.87 3.22+ 0.72 1.11+ 0.15 
NKX2.1 7.03+ 0.11 4.8 + 0.00 5.38 + 0.00 5.34  + 0.41 9.22 + 0.26 5.76 + 0.19 6.24 + 0.12 
NKX6.2 11.38+ 0.74 7.91+ 1.32 7.30 + 0.60 6.89 + 0.00 8.02 + 0.43 11.04 + 1.89 6.85 + 0.14 
LHX6 12.72 + 0.63 7.48 + 0.88 5.71 + 0.67 8.15 + 0.57 10.16 + 0.78 9.04 + 0.13 7.82 + 0.70 
TUBB3 0.77 + 0.27 1.22+ 0.28 1.63 + 0.08 -0.60 + 0.20 0.34 + 0.29 0.62 + 0.21 0.81 + 0.04 
MAP2 2.61+ 0.40 3.55+ 0.26 3.44 + 0.19 1.91 + 0.69 2.65 + 0.43 2.94 + 0.51 3.38 + 0.37 
DCX 3.51+ 0.35 3.99 + 0.49 3.43 + 0.79 1.71 + 0.11 2.25 + 0.88 2.91 + 0.72 3.14 + 0.98 
OLIG2 11.53+ 1.68 7.27 + 0.73 6.78 + 1.28 6.29  + 0.50 7.47 + 0.50 6.63 + 0.48 5.09 + 0.25 


