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ABSTRACT 
Lean premixed swirl stabilized combustion is one of the most successful technologies for NOx 

reduction in gas turbines. The creation of inherent coherent structures such as recirculation zones is 

one of the main advantages of these flow-stabilised systems since these zones create regions of low 

velocity that allow heat transfer improvement between reactants and products while increasing 

residence time for unburned species. However, these effects can also affect the stability of the flame 

under lean conditions, with various instabilities that can appear during the combustion stage such as 

flashback, blowoff, autoignition, etc. These processes are even more complex when new alternative 

fuels are being used for power generation applications. Synthesis gases (syngas) are some of the most 

concerning out of the available range of fuels as their heating values, flame speeds, ignition energies, 

etc. are highly dependent on the combination of species that comprise them. Since new gas turbines 

need to deal with these new blends for fuel flexibility and current lean premixed swirled stabilized 

systems seem to be the most cost effective-technical option to keep NOx down, gas turbine designers 

need more information on how to properly design their equipment to achieve stable flames with low 

NOx whilst avoiding instabilities.  

Therefore, this paper presents a study using numerical and experimental analyses to provide guidance 

on the use of CH4/H2/CO blends in tangential swirl burners. Methane content was decreased from 50% 

to 10% (volume) with the remaining amount being split equally between carbon monoxide and 

hydrogen. Ambient temperature conditions were assessed using a swirl number close to 1.0. Particle 

Image Velocity was used to experimentally validate numerical predictions and determine features of 

the coherent structures affecting the flame close to the nozzle. Modelling was carried out employing 

the k-ω SST turbulence model, providing more information about the impact of these structures and 

the flame turbulent nature close to blowoff limits.  The study emphasizes the analysis of various 

nozzles with different angles and how these geometrical changes at the outlet of the swirl chamber 

affect the onset of blowoff. Recommendations on the use of RANS CFD modelling are provided on the 

basis of blend composition.   

Keywords: Hydrogen, Carbon-monoxide, Syngas, Swirl, Blowoff.  

INTRODUCTION 
Fuel independence has been a major driver for the development of combustion systems during the 

last few decades, with the aim of finding technologies capable of achieving high fuel flexibility for 
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power generation. Swirl combustion has been widely used for this purpose as it provides high flame 

stability with relatively low emissions consequence of the creation of coherent structures such as the 

central recirculation zone (CRZ). The CRZ recirculates heat and active chemical species to the root of 

the flame, allowing flame stabilization in regions of relatively low velocity where the flow and the 

turbulent flame velocity are matched [1]. These flows can generate other vortical structures capable 

of producing benefits such as improved mixing, or cause detrimental effects by coupling with natural 

acoustic modes to give high levels of pressure fluctuation [2-5]. However, it has been recognised over 

the years that geometrical changes and the nature of the flow regime are critical parameters for the 

development, evolution and establishment of these structures, with studies and practical applications 

that demonstrate the changes in these regimes with slight variations of the system augmenting the 

complexity of the interactions that occur between flame and flow structures [5-9].  

As new technologies develop, swirling flows are being deployed for the stabilization of more advanced 

fuels, amongst them Synthesis gas (syngas) products of gasification processes which contain highly 

hydrogenated blends with a combination of other species such as CO or CO2. The use of syngas as a 

fuel source can potentially reduce CO2, NOx and other pollutants [10] providing high flexibility in 

current gas turbines, especially those incorporated in systems known as Integrated Gasification 

Combined Cycles (IGCC) [11-12]. Therefore, the importance of the study of these fuel blends rests on 

the development of new gasification systems which employ biomass, waste or coal-based feedstock 

in order to reduce fossil fuel dependency while producing gaseous streams of enough calorific value 

to be used for power generation. Analyses of these new blends and their impact during the 

combustion process are crucial to designers working on this area, as many of these impacts are still 

unknown. Moreover, there is also a considerable need for validation studies that provide confidence 

on simulation tools, thus ensuring the most effective and less time-cost consuming methods are used 

for the design of these systems.   

Previous studies [7, 13] have demonstrated that high hydrogen concentration considerably alters the 

combustion characteristics, thus changing the swirl number with its inherent effects on the size, shape 

and recirculated mass flowrate in the CRZ [7, 13]. The addition of CO2 in the fuel blend can also lead 

to changes in viscosity, density and radiative heat transfer, thus changing the flow [13]. Experimental 

studies on emissions performance of syngas using different methods have been previously 

investigated by several researchers. Ge et al [14] investigated the combustion performance of non-

premixed swirl syngas combustion, in particular the difference in emissions between H2-lean and H2-

rich syngases with water dilution. Results showed that the level of NOx and CO emissions was constant 

for the range of syngases tested at low H2O dilution. Joo et al [15] investigated H2-rich combustion 

with enrichment of CH4 using swirling partially premixed conditions, showing the reduction of NOx 

and flame temperature with the increase of CH4. Zhang et al [16] conducted a study of syngas flames 

using a premixed opposed-jet flame. The key finding showed that CO2 dilution has more profound 

effects on flame propagation and extinction rate than N2.  

Syngases keep capturing the attention of researchers; not only to achieve fuel flexibility but also to 

mitigate unwanted emissions. The volume ratio of H2/CO in most syngas mixtures typically exceeds 

0.25, where chemical kinetic and reaction mechanisms of hydrogen play a dominant role in syngas 

combustion. Hence, syngas generally exhibits large burning rates with small autoignition time [17]. 

Moreover, CO-rich syngases show different characteristic to H2-rich blends. Low concentration of H 

atoms in the former affects fast oxidation pathways of CO, resulting in unstable combustion and high 

CO emissions that are not well understood [18]. Regarding hydrogen related phenomena, Azimov et 

al. [19] used biomass/coke derived syngas in a dual-fuel engine. The use of higher H2 concentrations 

resulted in reduced CO and HC emissions but an increase in NOx, as temperatures in the combustion 



 

chamber augmented. Similar trends of high NOx emissions for H2-rich syngas were validated by Lee et 

al. [20] in a 60 kW industrial gas turbine using pure syngas without diluent. NOx emissions increased 

as the heat input increased. Higher CO was produced with lower combustion efficiency when the gas 

turbine was operated at low load. Nevertheless, Ouimette et al. [21] found different NOx trends under 

partially premixed combustion using similar syngases with H2/CO ratios between 0.8 and 1.3. Watson 

et al. [22] also demonstrated that NO formation paths for syngases are mainly caused by thermal 

mechanisms, although N2O and NNH routes have a considerable influence at lean equivalence ratios.    

The variability in composition and heating value in different syngases represents a considerable 

challenge towards their use in practical combustion system, especially for systems that operate close 

to blowoff. Experiments conducted by Lieuwen et al [23] showed that small addition of hydrogen to 

methane blends can enhance the resistance to blowoff as a consequence of the high reactivity of H2. 

Moreover, these fundamental studies demonstrated that the extinction strain rate of methane flames 

doubled with the addition of 10% (vol) H2. Similarly, CO/CH4 flames showed a variance in their 

extinction strain rate [23]. Strakey et al [24] studied the effects of hydrogen addition on flame 

extinction in a lean-premixed swirl-stabilized combustor operating on natural gas and air. They 

observed that increasing the hydrogen concentration in the fuel reduced the equivalence ratio before 

blowoff from 0.46 to 0.30. Schefer et al [25] conducted experiments on combustion characteristics of 

a premixed, swirl-stabilized flame to determine the effects of enriching methane with hydrogen under 

fuel-lean conditions. Hydrogen addition resulted in a significant change in the flame structure, 

indicated by a shorter and more robust flame. Li et. al. [26] studied the effects of diluents on blowoff 

trends using swirling premixed syngas flames. Results showed the impact of N2 and the higher 

propensity of blowoff to occur at higher nitrogen ratios, with the inert gas dominating the behaviour 

of the flame at low hydrogen content.  Sayad et al.  [27] investigated the effect of swirl, showing that 

blowoff is significantly affected by these parameters. This was also documented by Garcia-Armingol 

and Ballester [28]. However, the studies have not shown any clear correlation between blowoff 

processes and the changes in geometrical parameters at the outlet of the swirl chamber;parameters 

that will affect the evolution of coherent structures in the combustion zone.  

With some caveats noted by Shanbhogue et al [29], there is general agreement that the blowoff 

process is controlled by a competition between the fluid mechanical and chemical kinetic processes, 

which can subsequently be defined in terms of a Damköhler number. Current theories are based on a 

flamelet based description causing local extinction by excessive flame stretch [30-31]. However, 

limited work has been done on the impacts of other structures such as the Precessing Vortex Core 

(PVC) and its interaction with the flame to increase/decrease the propensity of blowoff effects. As it 

is well-documented, the structure can considerably increase the turbulence level close to the outlet 

of the nozzle, thus increasing stretch that can potentially initiate the propagation of blowoff [32-33].   

Therefore, this paper presents experimental and numerical analyses to determine the impact of 

different nozzles when using various syngases on the propagation of the blowoff phenomena, linking 

the change in outlet geometry to the size and impact of recirculation zones, i.e. CRZ and PVC, to 

blowoff. Experimental results were obtained using Phase Locked PIV, while numerical calculations 

were done using the k-ω SST model with ANSYS Fluent. Recommendations and further work for the 

design of outlet nozzles based on the hydrogen content of the syngas blend are provided at the end 

of the study. The novelty of the study is found on the effect of the nozzle on blowoff trends with 

recommendations to use RANS CFD modelling only with certain fuel blends. 

SETUP 
A generic swirl burner constructed from stainless steel was used to perform the experimental trials at 

atmospheric conditions (1bar, 293K). A schematic of the generic burner is presented in Figure 1. A 



 

single tangential inlet (a) feeds the premixed air and fuel to a swirl chamber (c). Gas is distributed to 

a tangential swirler (d). Swirling unburned reactants then reach the main combustion zone via a steel 

sleeve (e) before combustion takes place. A central diffusion fuel injector (not used in these tests) 

extends centrally through the combustor body (b).  Air and fuel were fed using OMEGA variable area 

flow meters, and Coriolis meters were used to determine the flowrates with 0.5% accuracy.   

A geometrical Swirl number (Sg) of 1.05 was used. Different nozzle chamfers, α, of 30°, 45°, and 60° 

were employed, Figure 2. Wall thickness was kept constant to ensure that swirl at the outlet would be 

the same. Unconfined and confined conditions were assessed. Confinement was attained via a quartz 

tube with an area expansion ratio of 8.47, and burner nozzles with internal diameters of D = 0.028 m. 

An L/D ratio, L being the nozzle length, was kept at 1.00 for all the nozzles. 

 
Figure 1. Schematic of the generic burner 

 

Figure 2.  Angular nozzle and geometrical swirl respectively. 

Experiments were conducted using a range of CH4, H2 and CO blends, Table 1. First experiments were 
run at different equivalence ratios to determine stability trends. Then, experiments were carried out 
at the same power output, Table 2, to correlate the impact of blend compositions using numerical and 
experimental analyses. These flowrates allowed Re between 10,900 to 14,000 (i.e. based on the outlet 
diameter, D). Further experiments were performed using Low Power (LP = 2.50 kW), Medium Power 
(MP = 6.45 kW) and High Power (HP = 10.45 kW) conditions to determine any relation between 
nozzles, gases and power loads. 

Table 1. Gas compositions 

Gas number Gas compositions LHV [MJ/kg] 

Syngas 1 10% CH4 + 45%H2 + 45%CO 63.53 

Syngas 2 20% CH4 + 40%H2 + 40%CO 62.08 

Syngas 3 30% CH4 + 35%H2 + 35%CO 60.52 

Syngas 4 50% CH4 + 25%H2 + 25%CO 57.51 
 

Table 2. Experimental and CFD conditions, 6.45 kW. 

Gas No Ṁ fuel [g/s] Ṁ Air [g/s] α° Total [g/s] Ф 

Syn1 0.101 1.41 30° 1.51 0.425 

Syn1 0.101 1.40 45° 1.50 0.428 

Syn1 0.101 1.38 60° 1.48 0.453 



 

Syn2 0.104 1.55 30° 1.66 0.485 

Syn2 0.104 1.55 45° 1.65 0.486 

Syn2 0.104 1.48 60° 1.59 0.508 

Syn3 0.107 1.63 30° 1.73 0.563 

Syn3 0.107 1.67 45° 1.78 0.548 

Syn3 0.107 1.65 60° 1.75 0.557 

Syn4 0.113 1.83 30° 1.95 0.689 

Syn4 0.113 1.79 45° 1.90 0.707 

Syn4 0.113 1.83 60° 1.94 0.692 

 

EXPERIMENTAL TECHNIQUE 
A Phase Locked Particle Image Velocimetry system was employed to characterize the flow field 

experimentally, Figure 3. Strong Precessing Vortex Cores (PVC), Figures 4 and 5, and associated 

structures were found. Their frequencies were characterised via a PCB Piezotronics 378B02 condenser 

microphone located 0.01 m upstream from the burner outlet which tracked the frequency changes of 

the High Momentum Flow Region (HMFR) formed by the precessing shearing flow. The microphone 

condenser signal was redirected to a signal conditioner with low and high band pass to recognise 

frequencies above 10 Hz and up to 2,500 Hz. The reconditioned signals were redirected to trigger a 

BNC Model 500 Pulse Generator, whose TTL signal was sent to a Dantec Stereo PIV system for 

triggering purposes. The PIV system consists of a dual cavity Nd: YAG Litron Laser of 532 nm capable 

of operating at 5 Hz. A 1mm thick sheet was produced using Dantec Dynamics laser sheet optics 

(9080X0651). A Hi Sense MkII Camera model C8484-52-05CP was employed in combination with a 

60mm Nikon lense, allowing a field of view of ~75x75 mm with a resolution of 5.35 pixels per mm and 

a depth of view of 1.5 mm.  

Calibration was performed using a physical grid provided by the manufacturer. The inlet air was 

seeded with aluminum oxide by a seeder positioned 1.0m upstream of the burner inlet. A frame-to-

frame adaptive correlation technique was employed for post-processing the data, using a minimum 

interrogation area of 32x32 pixels and a maximum of 64x64. 500 pairs of frames were used to create 

average velocity maps. 

Results are reported in terms of Inlet Tangential Velocity at which the premixed reactants ingress into 

the swirl chamber. This value has previously proved a good correlation between the flow behaviour 

and the onset of various structures and instabilities [34].  

 
Figure 3. Schematic setup of the entire system. Axial-radial and radial-tangential planes were 

obtained.  



 

 
Figure 4. Flow characteristics exactly at the outlet of the burner a) Radial-tangential velocity 

contours; b) Phase-averaged vectors; c) Instantaneous velocity vectors.  Re~14,000 and α=45°. PVC 

(red) encircled. Velocity in [m/s]. 

 
Figure 5. Fast Fourier Transform frequency analysis at ~10,900 Re. PVC/HMFR peak depends on Re.   

NUMERICAL TECHNIQUE  

Inlet conditions were set at 1 bar and 300 K. Various solvers were investigated with preliminary tests 

being run with pure methane at flowrates between 1.51 and 1.94 g/s.  After an experimental 

comparison was carried out, it was concluded that the best agreement was observed using the κ-ω 

SST model [35]. To obtain the specific dissipation rate ω, and turbulence kinetic energy k, the following 

transport equations are applied: 
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Gk represents the generation of turbulence kinetic energy due to mean velocity gradients. Gw 

represents the generation of ω. Γk  and Γω represent the effective diffusivity of k and ω, respectively. 

Yk and Yω  represent the dissipation of k and ω due to turbulence. Dω  represents the cross-diffusion 

term. Sk and Sω  are user-defined source terms [36].  

Simulations were performed using all syngases in Table 2 under fully premixed conditions with ANSYS 

FLUENT 14.5. The pre-processor used to construct the model grid was ICEM 14.5.7. Three meshes 



 

were examined in order to perform a mesh independency analysis, Table 3. After carrying out the 

analyses, it was decided to use a medium size mesh that consists of ~796,878 nodes and 796,878 

elements, and that provided mesh-independent results when compared to the high size mesh. The 

mesh was designed with a structured grid creating a higher node density in areas where the flow was 

expected to change considerably, i.e. close to the nozzle, Figure 6. A Courant number <0.55 was 

obtained for this particular mesh. The PRESTO discretization scheme was used for pressure, with the 

SIMPLE scheme for pressure-velocity coupling using a convergence criterion set at 10-4. Non-slip wall 

boundary conditions were defined using adiabatic conditions at 1 bar inlet pressure and inlet 

temperatures of 300K for a Steady-state analysis.    

 

Table 3. Various mesh densities for independency analysis. 

Mesh Density Number of Elements 

High 2,275,788 

Medium 796,878 

Low 289,124 

 

 
Figure 6. Mesh Distribution and boundary layer. 

Results and Discussion 
Figure 7 shows a comparison of Lean BlowOff (LBO) limits obtained using different syngases and 

various nozzles.  There is a clear effect in terms of the increase of blowoff resistance at higher 

hydrogen concentrations, with Syngas-1 being the blend with less susceptibility to this instability and 

a larger operability range. This was expected as documented elsewhere [24]. However, a less expected 

trend was the change in behaviour caused by the nozzle angle. It can be seen that some data follow 

linear trends, especially with the experiments using the 45˚nozzle and Syngas-1. As hydrogen is 

decreased, the trend becomes less linear, with Syngas-4 showing measurements far from the main 

trend line.  Moreover, as the angle is decreased/increased from the 45˚ case, the results become more 

chaotic, implying a breakdown in the controlling phenomena due to a process linked to the 

propagation of non-linear phenomena. 

From the results, it is clear that Syngas-1 shows a similar trend under all unconfined conditions. 

Furthermore, there is a similar behaviour for the confined cases using Syngas-1, with the same LBO 

equivalence ratios at the same tangential velocities. Conversely, the increase in methane has 

completely shifted the blowoff limits using different geometries, especially under unconfined 

conditions, Figure 7. Since the Damköhler number is the same for these cases, it is clear that another 

phenomenon exists close to the nozzle that affects the blowoff propagation.   



 

It has been theorised that the phenomenon is caused by the change in shape of the CRZ, which in 

conjunction with the shearing flow, feeds another structure named the Precessing Vortex Breakdown 

(PVC) [32]. The strength and turbulence generated by this PVC will depend on the shape of the CRZ 

and its contact with the shearing flow. Therefore, changes in the geometrical conditions of the system 

will alter the PVC and its impacts on the flow. However, results suggest that although the structure 

will change using different nozzles, their impact will be negligible using more reactive fuels such as 

highly hydrogenated blends. As the hydrogen content is reduced, the impact of this (and other 

structures) will be greater on the flame, consequently leading to earlier blowoff. 

 
Figure 7. Comparison of blowoff limits using unconfined and confined conditions with various 

syngases and nozzle geometries. 

Further tests were carried out using the same blends but with 3 different power outputs. The LBO 

limits for all cases, Figure 8, show the effects of the nozzle angle using all blends with a special 

emphasis on the changes produced when using Syngas-4. It is believed that the shift in LBO limits 

between cases at low hydrogen concentration is a consequence of the interaction of the CRZ-PVC with 

the flame.  This interaction has been previously studied elsewhere [2, 32], showing a considerable 

increase in turbulence where both structures collide.  



 

 

Figure 8. Comparison of the effect of outlet nozzle angle on LBO equivalence ratio for all syngases at 
LP, MP and LP. Trends are added to visualize the change. A) Unconfined case; B) Confined 

conditions.  

 

Figure 9. Experimental PIV CRZ boundary contours for each blend and nozzle angle. Axial velocity. 
Units in [m/s]. 

 



 

PIV velocity contours were obtained to determine the changes of the CRZ using all different blends 

and nozzles under unconfined conditions, Figure 9. The CRZ boundaries were defined in a velocity 

range of -1.40 to 0.170 m/s, with a streamline post-processing showing the existence of the 

recirculation zone, Figure 10.  

 

Figure 10. Left) Streamlines showing the presence of recirculation across the flow. Right) Negative 

velocity regions in the flow showing the boundaries of the CRZ.  

It is clear that the CRZ distortion occurs for all cases in Table 1 using the three nozzles. Therefore, a 

change in the interaction between PVC and CRZ would be expected. As follows, this interaction is 

theorised as a consequence of the lack of visual access to the outlet of the nozzle, a problem related 

to the high reflection of the laser at this position.  

The use of more hydrogen, i.e. Syngas-1, shows how the faster reactivity of the molecule shortens the 

CRZ with a slight change in the features of the structure. On the other hand, the reduction of hydrogen 

creates a wider variety of CRZs, with the most notorious case being Syngas-4. For instance, the use of 

a 30˚ nozzle shows wider structures. Therefore, a bigger CRZ would be expected to have less contact 

with the flame through its entire profile, i.e. with the flame only being in contact with the bottom of 

the CRZ. As the nozzle angle is increased to 45˚, the redirection of the shearing flow reduces the size 

of the CRZ but increases the interaction between the CRZ-PVC simultaneously. Further increase of the 

angle to 60˚ reduces, even more, the width of the structure, pushing the CRZ and the shearing flow 

closer to increase turbulence and the impacts of the PVC towards the flame, augmenting the 

propensity of blowoff. This is confirmed from the unconfined flame trends, Figure 7.  

It is also noticeable from the results that for the use of Syngas-4 under confinement the best option 

would be to use a nozzle with an angle of 60˚. Compared to the other geometries, this nozzle shows 

measurements that are more stable and closer to the trend line. It is known that under confined 

conditions, outside air neither flushes the flame nor reduces its temperature. As previously stated, the 

60˚ case should produce a stronger CRZ-PVC interaction with the likelihood of greater stretching 

caused by the shearing flow. However, since the flame is confined and well preserved, this greater 

stretching and structural interaction seem to enhance the flame, likely a consequence of the better 

distribution of species caused by the PVC and flame elongation. This was a concept previously 

proposed by O’Doherty et al. [37-38].    

Figure 11 shows a merge of both PIV velocity maps and u’-v’ turbulence intensity. The purpose of 

these contours was to provide an estimate of the percentage of turbulence outside the CRZ. Although 

it is recognised that total turbulence cannot be obtained through this methodology since w’ cannot 



 

be resolved, it was acknowledged that some insights of the turbulence parameters could be depicted 

via 2D PIV, thus being of indicative nature for correlation with CFD.  

It is clear that the location of the CRZ defines the boundaries where turbulence increases, another  

indication of the interaction between flow and structures. There is a considerable contrast of the 

shape and size of the CRZ when using the four syngases and the three different nozzles. The maps 

revealed the increase in turbulence intensity surrounding the CRZ opposite to the position of the 

microphone (PVC), Figure 11. This phenomenon is related to the interaction between the low 

momentum flow and its interaction with the CRZ. On the other hand, the highest peak of turbulence 

is located where the PVC is measured, appearing at the bottom, a region that has been previously 

defined where the PVC-CRZ collide at their highest strength [27], thus suggesting a clash that stirs up 

the flow field. 

 

Figure 11. Turbulent intensity matched with CRZ boundary (shaded) using a scale of turbulent 

intensity of 0-10% and axial velocity ranging from -1.40 to 0.170 m/s.  



 

Analyses were performed using the PIV results, Figure 12. The progressive reduction of hydrogen 

increases the strength of the recirculation zone, whilst reducing the velocity of the shearing flow. This 

is also observed from the point at which the curves cross the abscissas axis, indicating that the CRZ 

reduces its width whilst the shearing flow is getting stronger with a hydrogen increase, as expected. 

Radial velocities are also affected as a consequence of the increase of reactivity, Figure 13. This also 

affects the relationship between shearing flows and formation of the CRZ. 

 

 
Figure 12.  Axial velocity at y/D 0.107. A) Syngases 1 and 2; B) Syngases 3 and 4. 

 
Figure 13. Radial velocity at y/D = 0.107. A) Syngases 1 and 2; B) Syngases 3 and 4. 

Experimental results have demonstrated that the shape and strength of the CRZ can drastically change 

depending on the alterations imposed in both fuel composition and flow. CFD analyses using the SST-

k-ω model were carried out to observe the change in the size of the CRZ under confinement. 

Simulations were calibrated by using pure methane, Figure 14. It is recognized that the CFD under-

predicts the location of the shearing flow. However, further comparison between experimental results 

and CFD predictions for the CRZ size demonstrate that good correlation was achieved between both 

techniques. A standard deviation of ~0.51m/s was observed opposite to the measuring point and 

central area, with a spike of ~3.96m/s next to the microphone. This shows consistency with previous 

test performed somewhere else [32], with the region close to the PVC producing the greatest 

deviations.   

However, the correlation between experiments and simulations is only clear when comparing the size 

of the CRZ, negative and positive velocities, which show relative errors of 3.07%, 3.06% and 4.12%, 

respectively.  When comparing the results of the regions outside of the shearing flow there is no 

correlation, with a staggering 530.16% difference between experiments and numerical results.    

 



 

 

Figure 14. Correlation between CFD and experimental simulations using pure methane. 0.107D from 
nozzle outlet. The experimental standard deviation was relatively constant, at ~0.5m/s. However, 

there is poor correlation outside of the shearing flow (encircled region).  

Results are presented in Figure 15 and Table 5. It is evident that there is no significant difference 

between experimental results and CFD calculations in most cases. Worst predictions were obtained 

using the 30˚ nozzle and the slowest Syngas-4, and the 60˚ nozzle with the fastest Syngas-1. This lack 

of accuracy seems to be linked to 3-Dimensional large structures such as the PVC that are not 

accurately predicted by this model and the lack of resolution for fast reaction phenomena, 

respectively.   

Therefore, predictions using confinement were carried out to simulate more representative 

conditions to those used in industry. Table 6 shows numerical results with confinement, illustrating 

length and width of the CRZ with each gas and all nozzles. The effect of confinement has an extremely 

important effect upon the CRZ, thus its interaction with the PVC. As discussed by Syred [1] 

confinement can dramatically alter the size and shape of the CRZ and external recirculation zones 

formed as the swirl burner flow expands. Figure 16 shows the numerical results for the CRZ, which 

denote the change in length and diameter of the structure. It is clear that acute elongation is produced 

by the confinement, likely a consequence of lower pressure decay.  It was found that the angle of 60° 

produces larger CRZs with the narrowest profiles, as expected. 

A           B 

Figure 15. (A) Experimental and (B) CFD simulations for CRZ, respectively.  



 

Table 5. Experiments, numerical simulations and difference [%] between both studies. Greatest 

discrepancies highlighted.  

        
                            
 
 
 
  

 

 

 

 

 

 

 

 

 

Table 6.Numerical simulations under confinement.  

 30° 45° 60° 

 Width  length Width  length Width  length 

SYN1 1.85D 4.70D 1.90D 4.30D 1.40D 9.60D 

SYN2 1.80D 5.20D 1.85D 4.60D 1.80D 4.70D 

SYN3 1.90D 5.40D 1.90D 7.20D 1.80D 5.20D 

SYN4 1.90D 5.80D 1.90D 4.60D 1.70D 4.00D 

 

 
Figure 16. CFD results of CRZ contours of all blends and nozzles using confinement. 

Gas 30° 45° 60° 

Experimental 

  Width  length Width  length Width  length 

SYN1 1.35D 1.92D 0.97D 1.73D 1.01D 1.43D 

SYN2 1.50D 2.44D 1.28D 2.07D 1.13D 2.41D 

SYN3 1.54D 1.95D 1.43D 2.86D 1.24D 2.41D 

SYN4 2.11D 3.12D 1.43D 2.22D 1.24D 3.16D 

Numerical 

SYN1 1.33D 2.00D 0.90D 1.94D 1.13D 1.80D 

SYN2 1.47D 2.34D 1.27D 2.07D 1.20D 2.41D 

SYN3 1.33D 1.74D 1.33D 2.67D 1.13D 2.41D 

SYN4 1.60D 2.67D 1.34D 2.27D 1.14D 2.63D 

Difference between Experimental and Model [%] 

SYN1 1.48 4.17 7.20 12.1 11.80 25.8 

SYN2 2.00 4.09 0.78 0.00 6.19 0.00 

SYN3 13.60 10.70 6.90 6.60 8.87 0.00 

SYN4 24.00 14.00 6.20 2.20 8.00 16.00 



 

 
Figure 17. CFD comparison of CRZ between unconfined and confined cases. 

Furthermore, a comparison between cases, Figure 17, shows that most of the CRZs using confined 

conditions and 45˚- 60˚ nozzles have similar features. This could be another reason for the better 

behaviour of these nozzle using these alternative fuels, as observed in figure 7.    

Final results were obtained using CFD to account for the chemical time scale in 3-D swirling flows. 

Increasing the mole fraction of hydrogen in the mixture produces faster chemical reactions, Figure 18, 

and shorter turbulent time scales due to the higher thermal diffusivity of hydrogen and laminar flame 

speed, as expected. However, two interesting phenomena occur using a) Syngas-3 and nozzle 45˚, and 

b) Syngas-4 with a 30˚ nozzle, respectively. For the first case, the lowest chemical time scale is 

produced using 35% CO and an angle with moderate shear. This simulation showed a good 

experimental-numerical correlation, Table 5. Although Syngas-3 has a large concentration of 

hydrogen, the high CO content seems to be slowing down the reaction to a point of allowing the 

enlargement of the CRZ. Although the impacts of the PVC to this configuration would be considerable 

with the 45˚ angled nozzle, the high reactivity would also limit the response of the flame to the CRZ-

PVC interaction, as previously stated. Therefore, these assertions lead to a Da phenomenon, where H2 

is inhibited by CO and CH4. Thus, it is at this point of 35% CO that the injection of the latter can control 

the reaction speed when using 35% H2 while avoiding the detrimental effects of the CRZ-PVC 

interaction.  On the other hand, the case with Syngas-4 using a 30˚ nozzle has been previously depicted 

as a condition where the CRZ-PVC interaction would invoke its highest impacts. However, as observed 

in Table 5, assertions for this blend would need to be correlated with more advanced models. 

 
Figure 18. Chemical time scale vs the percentage of hydrogen in the mixture. 



 

Recommendations 

These results suggest the use of a greater nozzle angle, i.e. 60˚, under confined, industrially relevant 

conditions when using a low hydrogen concentration blend in order to promote the elongation of the 

flame and greater interaction between species and CRZ-PVC. If highly hydrogenated blends are going 

to be used, a 30˚ nozzle angle should be used in order to reduce impingement to the nozzle walls, as 

the nozzle angle will have small effects on the blowoff propensity. Finally, with a concentration of 35% 

or lower, hydrogen is slowed down considerably using a similar concentration of CO in a methane-

based blend, thus hydrogen concentrations need to be above this limit to ensure greater blowoff 

resistance, likely as a consequence of negligible effect product of the PVC-CRZ interaction.  

RANS SST k-ω simulations do not provide good correlation for conditions with high shearing stretch 

and high reactivity (i.e. α=60˚ and high H2), and low reactivity with low shearing stretch (i.e. α=30˚ and 

low H2), as the model does not depict the high reactivity of the flame while missing the adequate 

resolution of structures such as the Precessing Vortex Core. Thus, the model is recommended for 

design purposes as long as blends and flow conditions are different to those previously mentioned.   

It is also recommended that further studies using LDA are conducted to demonstrate the interaction 

between structures at the outlet, avoiding the high reflection that PIV produces close to the burner 

outlet. This will provide further experimental details of the PVC-CRZ interaction.      

Conclusions 

Experiments and numerical simulations were conducted in a premixed swirl burner under unconfined 

and confined conditions to determine the impacts of outlet geometrical constraints using various 

syngas mixtures on the propensity of blowoff. The conclusions obtained are: 

 The use of highly hydrogenated blends does not show any critical difference between cases, 
and blowoff is very similar between conditions, demonstrating that blowoff is not affected by 
any geometrical change at the outlet using these blends.  

 The use of blends with low hydrogen concentration show considerable change in their blowoff 
behaviour under unconfined conditions as a consequence of the interaction of structures with 
the flame that is not only being affected by these structures but also by air entrainment from 
the surroundings, thus showing low resistance to the instability through the effects of the CRZ-
PVC interaction. 

 Confinement avoids air entrainment from the surroundings, thus reducing flame heat losses. 
As a consequence, the flame can withstand the CRZ-PVC interaction, which improves the 
stability of the flame as a consequence of better mixing and greater elongation.  

 CFD results show that a 30˚ nozzle angle will produce considerably wider flames, while the 45˚ 
and 60˚ geometries will produce CRZs of similar sizes.  

 It is recommended that under confined conditions a 60˚ nozzle is used to promote better 
flame and more stable blowoff conditions. Similarly, if highly hydrogenated blends are going 
to be used, a 30˚ nozzle angle should be used to reduce impingement to the nozzle walls, as 
the nozzle angle will have small effects on the blowoff propagation. 

 A 35% or lower hydrogen content blend with the same amount of carbon monoxide in a 
methane-based blend seems to produce slower reactions, thus increasing the propensity of 
blowoff. Thus, hydrogen needs to be kept higher than this value to ensure greater blowoff 
resistance under swirling conditions.  

 RANS SST k-ω can be used for conditions that do not present excessive shearing stretch or 
high reactivity.   
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