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ABSTRACT: Combination of mismatched materials in semiconductor nanowire
heterostructures offers a freedom of bandstructure engineering that is impossible
in standard planar epitaxy. Nevertheless, the presence of strain and structural
defects directly control the optoelectronic properties of these nanomaterials.
Understanding with atomic accuracy how mismatched heterostructures release or
accommodate strain, therefore, is highly desirable. By using atomic resolution
high angle annular dark field scanning transmission electron microscopy
combined with geometrical phase analyses and computer simulations, we are
able to establish the relaxation mechanisms (including both elastic and plastic
deformations) to release the mismatch strain in axial nanowire heterostructures. Formation of misfit dislocations, diffusion of
atomic species, polarity transfer, and induced structural transformations are studied with atomic resolution at the intermediate
ternary interfaces. Two nanowire heterostructure systems with promising applications (InAs/InSb and GaAs/GaSb) have been
selected as key examples.

KEYWORDS: Nanowire (NW), axial heterostructures, III−V, strain relaxation, atomic scale,
Cs-corrected scanning transmission electron microscopy

Due to their large aspect ratio, nanowires (NWs) are ideal
candidates for the combination of highly mismatched

materials preserving the crystal quality.1,2 As a consequence of
their morphology and free-standing nature, NWs can relieve the
mismatch strain laterally over a short distance from the
interface.3−5 Moreover, unlike other systems, NWs offer the
possibility of two different combination modes: radial
(combining materials around the growth axis) and axial
(combining the materials along the NW axis) to create the
heterostructures.6 The physical properties (e.g., electronic or
optoelectronic) of the system will be influenced by the
matching between the different combined materials: their
relative orientation, the polarity at both sides of the interface or
the presence of strain in the NWs.7 It is widely known that
strained materials show modified properties compared to the
pristine bulk ones.8 As elastic strain tunes the materials lattice
constants, its presence in semiconductor heterostructures will
change their electronic band alignments.9−12 This paves
alternative routes in bandgap engineering, through taking
advantage of the bandgap modulation under uniaxial stress that
allows the switching between different bandgap configura-
tions.13 Also playing with the strain in these materials, it is

possible to enhance the carrier mobilities to get a better
performance of the final devices,8 or to create pseudoheteros-
tructures by spatially confining the carriers within stressed
material regions.14,15 Nevertheless, strain could be released by
the formation of misfit dislocations, which should be
investigated to account for the plastic strain in these
heterostructures. Not only the presence of strain in the
materials but also the creation of misfit dislocations will
influence the materials properties in different ways.16 For
instance, the creation of interfacial misfit dislocations negatively
affect the performance of heterojunction tunnel diodes because
they create acceptor states in the bandgap, contributing to the
trap-assisted tunneling appearing when the device would be in
the off-state.17

III−As/III−Sb heterostructure NWs are of special interest
for their integration in advanced devices18 as high speed
electronics or long-wavelength optical devices,19 as well as
platform for the study of basic physical principles in condensed
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matter such as Majorana fermions.20,21 On one hand, III−Sb
compounds show the narrowest bandgap, the highest electron/
hole mobility (InSb/GaSb, respectively), the largest Lande ́ g-
factor22 among binary semiconductor compounds, and a strong
spin−orbit coupling. On the other hand, III−As compounds
exhibit outstanding electron transport and optical properties,
being used for high quality photonic devices (e.g., GaAs based
single photon emitters,23 room temperature lasers,24,25 InAs
based dual-band photodetectors or photovoltaic cells26). On
the basis of the combination of these binary compounds,
several authors have reported the feasibility of obtaining NW
heterostructures by cation or anion switching. However, the
growth of high quality crystal heterostructured NWs is
challenging, especially for cation switching synthesis processes,
using metal seed particles (mainly gold). Anion switching also
has potential drawbacks: it is known that the high solubility of
the group-V anions in the catalyst can result in kinking and
graded interfaces18 having detrimental implications for the later
use of the synthesized structures. This is especially true for Sb,
which is also a known surfactant, changing drastically the
energy balance at interfaces.
In the present paper, we report a detailed study of axial III−

As/III−Sb heterostructure NWs (III = In, Ga) through
aberration-corrected high angle annular dark field (HAADF)
scanning transmission electron microscopy (STEM). The
HAADF technique is a Z-contrast imaging method27−29 giving
the exact atomic positions with chemical information, providing
the requirements for a deep study of structural defects as
dislocations.30 The obtained data allows us to perform
geometric phase analyses (GPA),31 which is an accurate tool
to account for strain within the NWs,32 paying special attention
to the interfaces and possible defect formation.33 We compare
the experimental atomic resolution images and strain maps with
simulated models to fully understand the underlying mecha-
nism governing the strain release. Interestingly, we found
interfacial misfit dislocations as a mechanism to release the
mismatch strain in both systems, which will be evaluated in
detail. Although theoretical calculations predict the formation
of misfit dislocations for the highly mismatched materials here
presented (lattice constants and mismatches included in Tables
1 and 2),34−36 most of the experimental results published

neglect their presence.37−43 Nevertheless, there are few papers
evidencing misfit dislocations in heterostructured NWs (e.g.,
axial18,44,45 or radial46,47), but a rigorous characterization at the
atomic level is missing. In this paper, we show the InAs/InSb
and GaAs/GaSb materials matching in a NW and the
corresponding heterojunctions created through dislocated
interfaces, addressed with atomic resolution. The possible
formation of ternary compounds near the interfaces is also
analyzed and compared with previous results. Finally, 3D
atomic models for the strain relaxation mechanism are
presented.

InAs/InSb Synthesis. All nanowires have been grown by
molecular beam epitaxy (MBE) using a thermally dewetted
gold film as the source of the gold seed particles used to
nucleate growth via a generic vapor phase epitaxy growth
mechanism. The InAs/InSb nanowires were grown on an
InP(111)B substrate by gas-source MBE following a procedure
described in more detail previously.48

GaAs/GaSb Synthesis. The GaAs/GaSb nanowires were
grown on a GaAs(111)B substrate by solid-source MBE. The
stem was grown at 580 °C with a V/III ratio of 1.7, whereas the
GaSb segment was grown at 450 °C with a V/III ratio of 22.
The GaAs segment growth was terminated by switching the Ga
flux off. Then, the sample was cooled down before switching
the As4 flux off while switching the Sb2 flux on, prior to
reopening the Ga flux. Both samples were cooled down to
below 200 °C within a few minutes under vacuum conditions.
More details of the growth processes can be found in the
Supporting Information S1.

Transmission Electron Microscopy. The atomic reso-
lution HAADF-STEM images have been acquired on a probe
corrected FEI Titan 60−300 equipped with a high brightness
field emission gun (XFEG) and a CETCOR corrector from
CEOS to produce a probe size below 1 Å. The microscope was
operated at 300 kV, with a convergence angle of 25 mrad and
an inner collection angle of the detector of 58 mrad. Nanowires
have been mechanically removed from the substrates and
deposited on the STEM copper grid.49

3D Atomic Models and Image Simulations. All the 3D
atomic models here presented have been created with the
Rhodius software.50,51 More details on the modeling geometry
can be found at the Supporting Information S5. Once obtained
the models, the image simulations have been carried out by
using STEM CELL,52,53 which is a free package software. We
use a 300 keV electron beam with a convergence angle of 25
mrad, neglecting aberrations (defocus, astigmatism and higher
order aberrations are set to 0). The collection angle goes from
60 to 200 mrad. Animated movies of the GaAs/GaSb and
InAs/InSb nanowire heterostructures 3D Atomic Models
generated for the present work can be found at: www.icmab.
es/gaen/research/242

Geometric Phase Analysis. In order to map the
deformation present at the NWs, we have used geometric

Table 1. Crystallographic Structures and Lattice Parameters
of the Materials under Study

material crystal structure lattice parameters (Å)

InAs zincblende a = 6.0600
wurtzite a = 4.2851; c = 6.9975

GaAs zincblende a = 5.6535
wurtzite a = 3.9976; c = 6.5281

InSb zincblende a = 6.4800
GaSb zincblende a = 6.0959

Table 2. Theoretical and Experimental Relative Mismatches Referred to the (−11−1) Plane of the Heterosystems Studieda

(−11−1) mismatch misfit spacing (Å)

materials considered calculated experimental calculated experimental planes between misfits

InAs(ZB)/InSb 6.5% 52 14−15/15−16
InAs0.85Sb0.15(ZB)/InSb 5.5% ≈ 5.5% 64 ≈ 64 17/18
GaAs (ZB)/GaSb 7.8% ≈ 7.6% 46 ≈ 48 13/14

aThe first row is incomplete due to the lack of experimental data for the pure InAs/InSb interface.
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phase analyses (GPA), developed by Hytch.31 The GPA
algorithm requires the selection of one or more Bragg reflection
to be filtered and analyzed afterward. Here, we have employed a
cosine type mask around the g = (−11−1) in both
heterostructured systems. The radius of the mask has been
optimized in the different analyses.
In the following, we present the atomic resolution study of

the interface strain accommodation in two different III−As/
III−Sb NW heterostructures. We start by analyzing the InAs/
InSb heterointerface from the HAADF images and obtaining
the strain maps. Before analyzing the images, the data has been
treated through maximum entropy methods in order to account
for the effective probe size.30,54 After that, we create the 3D
atomic models required to compare simulated and experimental
data and discuss on the results. The second case presented is
the GaAs/GaSb NW system, which we have analyzed by
proceeding in the same way and compared to the previous one.
InAs/InSb. Axial InAs/InSb NW heterostructures are

created from the former growth of InAs NWs as template
stems for the further growth of InSb on their top. Notice that
both phases involved in this system, InAs and InSb, have a
theoretical relative mismatch of 6.5% (Table 2). The observed
broadening of the NW diameter at the InSb (see Figure 1 a)
has been attributed to a combination of compositional change
in the droplet particle promoting its volume expansion due to
uptake of In41,55 together with an apparent diameter change
due to the fact that the hexagons defining the cross section of

the two segments of the NWs are rotated one with respect to
the other by 30° around the growth direction. This latter
rotation effect is linked to a different faceting, {1−100} for InAs
and {110} for InSb, respectively.56 However, the analyzed
InAs/InSb sample in the present study preserves the faceting
orientation of the InAs stem in the upper InSb section, being
the InAs faceted by {1100} planes and the InSb by {110}, but
in any case showing the same type of diameter broadening after
the phase transition. Details on the NW morphology (intensity
profiles across both InAs and InSb sections along with the
surface plot display of one NW) and on the droplet−NW
interface (showing the perfect structure matching of both
phases, the AuIn2 droplet and the InSb NW upper region) can
be found in the Supporting Information S5.1 and S9. In the
case of the InAs/InSb heterostructure, whereas InAs crystallizes
in wurtzite (WZ) hexagonal structure57 and grows along the
[000−1] direction (As-polar), InSb shows zincblende (ZB)
cubic structure57 growing along the (1−11) plane, which is Sb-
polar, as shown in Figure 1c, d (more details about the polarity
assignment can be found at the Supporting Information S2.1).
It means that the anionic polarity (As or Sb) is preserved across
the interface. Although the phase transition from WZ to ZB
occurs all at once through a perfectly flat interface (without any
intermediate polytype or twinned phase), we observe that the
first 3−4 nm of the ZB structure are 5.5% compressed. In
Figure 1e, we show the dilatation map obtained by applying the
GPA algorithm to the (1−1−1) InSb plane. After this region,
going to the tip of the NW, the InSb lattice recovers its
characteristic parameter and becomes completely relaxed.
Paying attention to both, the GPA analyses and the atomic
resolution HAADF images we see that the relaxation takes
place partially through the formation of misfit dislocations to
release the strain induced by the initial compressed ZB region
(Figure 1e,f and Figure 2), as expected for radius above around
10 nm for this heterostructured system.58

A careful inspection at the compressed region it is needed to
understand the location of the misfit dislocations 3−4 nm apart
from the phase transition. Thus, we take advantage of the Z
dependence of the HAADF technique,27−29 performed with
atomic resolution,59,60 allowing the atomic identification by
simple intensity profile integration.61−64 We have already
mentioned that both, the InAs stem and the InSb upper section
of the NW grow along anionic polar directions, meaning that
the In is always below the cation in every dumbbell. Note that
this implies an intensity reversal when comparing the two
different dumbbell couples (In−As vs In−Sb), that is, the As
intensity is dimmer than the In one for the InAs dumbbell (ZIn
> ZAs, see Table 3), whereas the Sb is brighter than the In for
the InSb dumbbell (ZIn < ZSb, see Table 3). Interestingly, we
can clearly see that in the concerned compressed region the
intensity inversion is progressive, evidencing an Sb gradient
(more details can be found in the Supporting Information
Figure S3).
EDX measurements reported in ref 41 detected the presence

of an Sb gradient through the interface. However, due to the
interface abruptness and the poor spatial resolution of the
technique, the authors claimed that no Sb interdiffusion took
place. Our atomic resolution experiments support the reliability
of the previous EDX results, suggesting a clear Sb gradient
along few nanometers after the phase transition. From these
results, we can precisely observe that the sudden change from
WZ to ZB phases takes place immediately after the
introduction of Sb, resulting in a sharp interface (phase

Figure 1. (a) Low magnification HAADF image of a couple of InAs/
InSb NWs (the bright particle at the top is the droplet seed). Right
bottom inset shows a 3D model of the whole system. An animated
movie can be found at: www.icmab.es/gaen/research/242. (b) Atomic
resolution image of the heterointerface, green square in (a). (c,d)
Magnified detail of the InSb/InAs structure. In, As, and Sb positions
are indicated by green, red, and cyan circles overlapping the atomic
columns. (e) Dilatation map after applying GPA to the (−11−1) plane
of the ZB region displayed in temperature color (scale codes included
on the left side of the panel). Red arrows indicated the presence of
misfit dislocations. (f) Rotation map of the (−11−1) ZB plane,
showing symmetric rotation through the edges of the NW. Again, the
arrows point the location of the misfit dislocations. More details are in
the Supporting Information.

Nano Letters Letter

dx.doi.org/10.1021/nl503273j | Nano Lett. 2014, 14, 6614−66206616

www.icmab.es/gaen/research/242


transition interface). It is known that III−antimonides tend to
crystallize in pristine ZB phase, even in the case of ternary
compounds with small Sb quantities (i.e., GaAs1−xSbx,
InAs1−xSbx).

48,65,66 Thus, as the right composition for the
InSb growth is not reached yet (we have not consumed
completely the As previously introduced in the seed particle),
we initially obtain an InAs1−xSbx transition region, with smaller
cell constant than the pure InSb. On the basis of the measured
lattice parameter on the compressed region and assuming a
Vegard’s law behavior for the system, we have calculated the Sb
content to be around 15% in that area (Supporting Information
S2.1). Even though we could detect a slight radial InSb
overgrowth around the last planes of the InAs stem (see
Supporting Information Figure S7), as we focused on the lateral
edges of the NW, the observed structure when viewing the
center of the interface corresponds to the actual core of the
NW (supported by image simulations performed). This means
that the estimated Sb content is actually incorporated at the
InAs crystalline structure, promoting the observed lattice
parameter expansion. Similar observations have been reported
in ref 43, where the authors found a compressed ZB region
above the heterointerface in axial InAs/GaSb NWs due to the
formation of In0.5Ga0.5As at the interfacial region.
Modeling the system by taking into account the formation of

an axial segment with InAs0.85Sb0.15 composition before the
pure InSb section, we have obtained strain maps in good
agreement with the experimental ones. The results of the
simulations are displayed in Figure 2d−f. As already mentioned,
the Sb incorporation promotes the sudden phase transition
from WZ to ZB. From there, the Sb is gradually introduced into

the structure and after 3−4 nm showing InAs0.85Sb0.15 mean
composition, the system gets the right InSb stoichiometry
(more simulated systems can be found in the Supporting
Information Figure S4). The lattice mismatch between the
InAs0.85Sb0.15 and InSb is around −5.5%, inducing the
formation of misfit dislocations spaced 6.4 nm (see Figure 2
d and Table 2). In the central region of the interface, we can
find the expected misfit dislocations. However, closer to the
NW edges misfit dislocations do not show up (Figure 1e,f).
Instead, we observed a symmetric plane rotation, in the
attributed InAs0.85Sb0.15, reaching ±8° (Figure 1 f) from the
center of the NW to the edges (with opposite sign at both
visible edges). This plane rotation releases strain elastically,
being the rest of the NW relaxed. In this way, we atomically
show that both relaxation mechanisms may coexist at the same
interface: plastic deformation (misfit dislocations) at the central
part of the NW and elastic deformation (plane bending) strain
release near the edges.
It is worth mentioning that every analyzed NW (up to 8)

show misfit dislocations appearing few nanometers away from
the phase transition. The number of dislocations and the
spacing between them are strongly dependent on the diameter
of the heterostructure (see Supporting Information Figure S2)
and the amount of Sb initially incorporated, but the strain
release always occurs by a combination of plastic deformation at
the center of the interface and elastic deformation at the edges.

GaAs/GaSb. Another example combining arsenide and
antimonide compounds to create an anionic exchange interface
is found in axial GaAs/GaSb NWs, with a theoretical mismatch
of 7.8% (Table 2). As in the previous case, the growth starts by
creating the arsenide stems (GaAs) for the later growth of the
antimonide counterpart (GaSb) on their top. The GaAs stems
have pure WZ structure, as usual, growing along the [000−1]
direction (As-polar), whereas the GaSb grows with pristine ZB
structure along the [1−1−1] direction, being also anionic
polarized (Sb-polar). The phase transition from WZ to ZB

Figure 2. (a−c) Experimental data obtained at the InAs/InSb heterointerface. (a) Atomic resolution HAADF image showing two misfit dislocations.
(b,c) GPA dilatation and rotation maps, respectively, for the (−11−1) plane. (d−f) Simulated images and maps calculated accounting for an
intermediate InAs0.85Sb0.15 layer between the pure InAs WZ and the InSB ZB. (d) Simulated HAADF image. (e,f) Dilatation and rotation maps,
respectively, obtained by applying GPA to the (−11−1) ZB plane. All the simulated HAADF images have been calculated by means of STEM CELL
software52 and the 3D models used for the calculations have been created by Rhodius.50

Table 3. Atomic Number, Z, of the Constituents Forming
the Analyzed Structures

element As Ga In Sb
Z 33 31 49 51
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takes place before the chemical interface, meaning by this that
the last GaAs nanometers already have ZB structure, being the
(1−1−1) the growth plane. Details of the atomic arrangements
for the three crystallographic phases involved (GaAs WZ, GaAs
ZB, and GaSb ZB) are shown in Figure 3b−d, where the atomic
constituents are identified. Further details can be found in the
Supporting Information S2.2.

Contrary to the InAs/InSb system where the interface
between both materials was flat, in the present case, the
interfaces are bended. Kanungo et al. described a similar
curvature in the growth front.44 However, in their work, the
gold-free InAs stem was grown first inside a SiOx tube, then was

etched and annealed prior to a second growth giving rise to a
convex surface prior to the growth of the III−Sb segment. The
curved interface in our case could be the result of a drastic
change on the gold-containing alloy seed wetting configuration:
due to surface energy differences occurring during the switching
sequence or a change of its volume, eventually the particle wets
both sides of the GaAs stems, as inferred in other works.67,68

Truncation of the growth plane along the contact line between
the NW and the droplet has been observed in several
semiconductor NWs,69,70 allowing a deep characterization of
the growth dynamics.71 Wang et al.71 found that the
supersaturation of the droplets drove a fast 1D growth on the
truncated facets (belonging to the {113} and {120} family
planes) followed by a slower 2D growth on the main facets of
the NW. Falub et al.72 also reported the formation of {113}
truncation planes while growing Ge NWs on Si and related
their degree of development with the growth temperature. Our
spectroscopic measurements (shown in Supporting Informa-
tion, Figure S8), performed by means of electron energy loss
spectroscopy (EELS), evidence the lateral (radial) growth of
the GaSb around the last nanometers of the GaAs while
growing the axial system. Notice the truncation of the GaAs
growth front, which has been filled by the GaSb grown
afterward. Thus, the interface of the NW can be considered as a
core−shell interface (referred to its shape), where the core is
formed by the GaAs (ZB) stem (bordered by {113} truncation
planes) and the shell forms from the radial overgrowth of GaSb,
explaining the interface morphology (see the 3D model
included in Figure 3h and Supporting Information Figure S11).
When performing GPA in this system, we found the interface

full of almost periodic misfit dislocations, spaced about 4.8 nm
(averaged over 7 NWs) (see Figure 3e,f), perfectly visible in the
atomic resolution HAADF images (Figure 4 a). For a matter of
consistency, we have also created a 3D model of the NW
(Figure 3g and Supporting Information Figure S4) to obtain
the simulated images and strain maps, which are included in
Figure 4d−f. Comparing the lattice parameters at both sides of
the interface, we found that the GaSb material is 7.6% expanded

Figure 3. (a) Low magnification HAADF image of one analyzed
GaAs/GaSb NW. (b−d) Atomic resolution images of the three
different crystallographic phases contained in the NW. (e,f)
Dilatation/rotation maps calculated by means of GPA on the
(−11−1) plane. (g) 3D model of the GaAs/GaSb NW system, with
core−shell like interface. An animated movie of the 3D atomic model
can be found at: www.icmab.es/gaen/research/242.

Figure 4. (a−c) Experimental data obtained at the GaAs/GaSb heterointerface. (a) HAADF image showing two misfit dislocations 4.9 nm apart.
(b,c) Dilatation and rotation maps, respectively, obtained by performing GPA on the image in (a). (d−f) Simulated data on the GaAs/GaSb
interface. (d) HAADF simulated image. (e,f) Simulated dilatation and rotation map, respectively, obtained by performing GPA on the image in (d).
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in average compared to the GaAs ZB, in good agreement with
theoretical calculations (see Table 2). Going one step further, it
can be noted that the first 1.5 nm of the GaSb section are
slightly compressed yet (lattice dilatation around 7%). This
feature is pointed out by the dilatation discrepancies between
the experimental and simulated strain maps near the
heterointerface (Supporting Information Figure S4). However,
this detail goes unnoticed by direct observation of the color
maps and explains the small difference between the
experimental and simulated dilatation near the interface
(+7.6% and +7.8%, respectively). Thus, the relaxation of the
GaSb lattice takes place through the formation of almost
periodic misfit dislocations adapted to the convex shape of the
interface, as in the case of the planar growth.73,74 Regarding the
elastic strain component, we detect a small plane rotation
through the NW edges at the interfacial region where the NW
is wider, as shown in the rotation map included in Figure 3d.
Notice the absence of dislocations on the right side of the NW.
There, the strain release occurs elastically by a 3° rotation of
the analyzed planes. Contrary, on the left side of the NW the
mismatch strain is almost fully released by the formation of
dislocations, whereas the planes are bended only +1° in this
region (combining both elastic and plastic (misfits) strain
release).
Driven by the need of an atomic characterization of III−As/

III−Sb axial interfaces integrated in NWs, we have depicted the
strain release mechanisms for the InAs/InSb and GaAs/GaSb
NW systems. We have found that in both heterostructures, the
mismatch strain results in a combination of both plastic and
elastic deformations. On one hand, in the InAs/InSb NW case,
we have found an abrupt phase change from InAs WZ to InAs
ZB, promoted by the introduction of Sb along 3−4 nm (Sb-
gradient). This region is 5.5% compressed compared to the
pure InSb section, which is compensated by the creation of
misfit dislocations in the central area of the NW (plastic
deformation) and by an 8° plane rotation through the edges
(elastic deformation). After the interface, the NW is completely
relaxed. On the other hand, the GaAs/GaSb system shows a
core−shell interface due to GaSb overgrowth around the GaAs
stem. Thus, the shape of the interface is curved and full of
almost periodic dislocations, especially at the central part of the
NW. Once again, at the edges of the NW the strain release
occurs partially by the creation of misfits, contrary to what was
stated in most of the previous works found in literature, and
partially by plane bending. These results show with
unprecedented resolution the different mechanisms that may
combine for strain relaxation in a complex NW interface,
allowing a fully epitaxial growth of the heterostructures. The 3D
atomic models obtained can be extremely useful in order to
compute and understand the final physical performance of the
interfaces studied.
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