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Abstract

Purpose An emerging topic in diffusion magnetic resonance is imaging blood micro-circulation alongside wa-
ter diffusion using the intravoxel incoherent motion (IVIM) model. Recently, a combined IVIM diffusion tensor
imaging (IVIM-DTI) model was proposed, which accounts for both anisotropic pseudo-diffusion due to blood micro-
circulation and anisotropic diffusion due to tissue micro-structures. In this article, we propose a robust IVIM-DTI
approach for simultaneous diffusion and pseudo-diffusion tensor imaging.

Methods Conventional IVIM estimation methods can be broadly divided into two-step (diffusion and pseudo-
diffusion estimated separately) and one-step (diffusion and pseudo-diffusion estimated simultaneously) methods.
Here, both methods were applied on the IVIM-DTI model. An improved one-step method based on damped Gauss-
Newton algorithm and a Gaussian prior for the model parameters was also introduced. The sensitivities of these
methods to different parameter initializations were tested with realistic in silico simulations and experimental in vivo

data.

Results The one-step damped Gauss-Newton method with a Gaussian prior was less sensitive to noise and the
choice of initial parameters and delivered more accurate estimates of IVIM-DTI parameters compared to the other
methods.

Conclusion One-step estimation using damped Gauss-Newton and a Gaussian prior is a robust method for simul-
taneous diffusion and pseudo-diffusion tensor imaging using IVIM-DTI model.
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Introduction

Diffusion magnetic resonance imaging (dMRI) is a technique that allows mapping of water molecules’ movement
due to diffusion in biological tissues, in vivo and non-invasively. Water diffusion in biological tissue is constrained by
its micro-architecture [33]. Hence, with proper modelling techniques, dMRI is capable of capturing several micro-
structural features and information related to the tissue constituents. There exists several modelling techniques in the
literature capable of capturing such information [7, 71, 72], of which the diffusion tensor imaging (DTI) is the most
commonly used. In DTI, water diffusion within a voxel is represented with a rank-2 tensor [10]. Although simplistic,
this model was shown to be extremely useful for providing meaningful bio-markers such as mean diffusivity (MD)
and fractional anisotropy (FA), that are widely used as measures of micro-structural tissue changes [31]. DTI is also
useful for the analysis of neuronal fiber pathways and their visualization (tractography) [11].

Perfusion MRI (pMRI), typically performed separately [67], consists of characterising blood flow in tissues us-
ing techniques such as bolus tracking [15] and arterial spin labeling [69]. The characterisation of blood flow helps
in detecting changes in capillary micro-architecture, blood micro-circulation, and blood-tissue exchanges, which are
useful for early detection of several disorders [14] including vascular cognitive impairment [34].

The intra-voxel incoherent motion (IVIM) technique, originally proposed by Le Bihan et al. [12] captures both
diffusion and perfusion phenomena using dMRI. To do so, it utilizes a bi-exponential model to describe signal atten-
uation in dMRI with a relatively fast pseudo-diffusion component (due to blood diffusion and flow) and a relatively
slow tissue diffusion component as

S = S 0 ( f exp(−b D∗) + (1 − f ) exp(−b D)), (1)

where S is the vector of echo magnitudes of the diffusion weighted signals within a voxel due to the vector of b-
values, b. The b-value summarizes the attenuating effect of the gradient magnetic field and the diffusion sequence.
Here S 0 is the echo magnitude of the diffusion non-weighted signal within a voxel. The diffusion coefficient D and
pseudo-diffusion coefficient D∗ in Eq (1) are scalar quantities. Information related to perfusion can be obtained using
the vascular volume fraction (also known as the perfusion fraction), f , and pseudo-diffusion coefficient, D∗ [13]. The
IVIM model has been used mainly in abdominal imaging including the liver [47, 6, 55], kidney [73], and the pancreas
[42]. IVIM studies of the prostate [56], breast [63] and heart [1], are also available. Very recently, IVIM imaging of
the human brain has gained importance. Hu et al. reported IVIM parameter changes in brain tumors [29]. Federau et

al. reported IVIM parameter changes in the brain in reaction to hyper-capnia and hyper-oxygenation [22], in response
to cardiac cycle [21], stroke [25], and in brain tumors [23].

For estimating the IVIM parameters, the dMRI signal can be averaged over a region of interest (ROI) [42]. ROI
averaging increases the signal-to-noise ratio (SNR), effectively yielding more reliable IVIM parameter estimates.
However, voxel-wise information reflecting tissue heterogeneity is lost in this procedure. Also, a skilled radiologist
or a medical doctor is required to choose a suitable ROI by visual inspection. There are however several methods that
generate 2D/3D voxel-wise maps of IVIM parameters [9]. These can be grouped under two main categories:

1. Two-step method (TSM): In this approach, a first step assumes that the dMRI signal at high b-values (b ≫
1/D∗) is dominated by diffusion. Using this assumption, Eq. (1) reduces to

Sb−high ≈ S 0 (1 − f ) exp(−b D), (2)

where Sb−high is the dMRI signal at high b-values. The diffusion coefficient D and amplitude S 0 (1 − f ) are then
estimated from Eq. (2). In a second step, D∗ is estimated (typically constraining D) using all b-values and the IVIM
model (1). The vascular volume fraction f is either estimated in the first step using the fitted S 0 (1 − f ) value and
experimentally obtained S 0 value [43], or it is estimated in the second step alongside D∗ [47]. TSM estimates are
typically computed using non-linear least squares (NLLS) methods [47, 21, 23]. It has been reported that TSM is
sensitive to the choice of cut-off b-value, which in turn depends on the unknown D∗ values [70].
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2. One-step method (OSM): In this approach all IVIM parameters, ( f ,D,D∗) are simultaneously estimated using
Eq. (1) [6, 9, 55, 26]. OSM estimates are computed either using NLLS methods [6, 9], Markov chain Monte Carlo
(MCMC) methods [55], or using wild bootstrap and fusion moves [26]. OSM estimation of IVIM parameters is ill-
conditioned [55], and hence suffers from poor reproducibility of the results [6]. It has been demonstrated earlier that
using priors for the model parameters yields more stable and accurate IVIM parameter estimates [49, 26].

A comparison of TSM and OSM approaches in estimating IVIM parameters is presented in [9, 18]. Although the
IVIM model (1) is capable of capturing differences in signal attenuation due to blood micro-circulation and micro-
structural water diffusion, it fails to capture the anisotropy of blood vessels and tissue micro-structures, whose esti-
mation can be valuable in early detection of several brain disorders, such as dementia [8], schizophrenia and bipolar
disorder [19], which progress with vascular and structural remodelling of the tissues. This anisotropy can be measured
as differences in signal attenuation due to direction dependent magnetic field gradients [1].

The study of anisotropy effects observed with the IVIM model was first reported by Callot et al. [16]. In this work,
direction dependent IVIM parameters ( f ,D∗,D) were estimated with the TSM. Karampinos et al. [37] proposed a
modification to IVIM, based on a statistical model of the capillary arrangements and assuming partially coherent
laminar flow. Although this model incorporates anisotropy effects due to pseudo-diffusion, anisotropic diffusion pa-
rameters related to tissue micro-structures were not estimated. Moreover, it has been recently reported that estimation
of such higher-order metrics could be more vulnerable to experimental design and noise compared to standard ten-
sor metrics (such as FA and MD) [30]. Recently a combined intravoxel incoherent motion diffusion tensor imaging
(IVIM-DTI) methodology was proposed, where a combination of the bi-exponential behavior of IVIM and DTI-like
tensor representation of the vascular signal was used [1]. In this model both pseudo-diffusion and diffusion were mod-
elled as tensor quantities as opposed to isotropic scalar coefficients as in the IVIM model (1). Since pseudo-diffusion is
related to perfusion [13], estimating the pseudo-diffusion and diffusion tensors allow simultaneous imaging of perfu-
sion and diffusion tensor imaging. Using IVIM-DTI, various physiologically relevant parameters obtained separately
using DTI and IVIM techniques can be obtained simultaneously. In addition, visualisation of pseudo-diffusion will
help in vivo mapping of the vascular orientations and architectures with dMRI, which has not been possible before.
A recent IVIM-DTI study based on TSM estimation of kidney medulla and cortex regions was presented in [54].
Given that TSM and OSM methods are either sensitive to cut-off b-values [70] or initial values [6], there is the need
to explore better estimation methods for IVIM-DTI.

In this article we perform simultaneous pseudo-diffusion and diffusion tensor imaging using TSM and OSM meth-
ods by extending them to IVIM-DTI parameter estimation. We test the sensitivity of these methods using in silico

simulations and in vivo brain imaging data. The TSM and OSM were carried out using the Lavenberg-Marquardt
(LM) algorithm as implemented in MATLAB (R2016a, Mathworks, Natick, MA) since it was the most commonly
used method in previous IVIM studies [21, 23, 6, 9]. We also tested OSM with a modified NLLS method based on
damped Gauss-Newton (DGN), and with the inclusion of a prior for the model parameters [53]. Damped Gauss-
Newton method had earlier demonstrated better convergence compared to LM and robustness with respect to initial
starting parameters for a non-linear ill-posed imaging problem in [62].

Methods

Model description

In this section we describe the methodology used for generating the dMRI data and fitting of the IVIM-DTI model,
described by [1, 9]

S = S 0 ( f exp(−b ĝTD∗ ĝ) + (1 − f ) exp(−b ĝTD ĝ)), (3)

where ĝ is the unit direction vector along which the magnetic field gradient is applied, D is the diffusion tensor and
D∗ is the pseudo-diffusion tensor. The diffusion-weighted dMRI data, Y is thus modeled as

Y = S(X) + e, (4)
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where X = (S 0, f ,D∗,D) is the vector of unknown IVIM-DTI parameters and e is the measurement noise. To enforce
positive definiteness on D∗ and D, we parameterized them as [40],

D∗ ≡ D∗(U) = UTU, with U =
[

U1 U4 U6

0 U2 U5

0 0 U3

]

,

D ≡ D(V) = VTV, with V =
[

V1 V4 V6

0 V2 V5

0 0 V3

]

,

(5)

where Ui, i = 1, . . . , 6, and Vi, i = 1, . . . , 6, are the Cholesky components of D∗ and D, respectively. It has been earlier
shown that adopting such representation for DTI leads to slightly higher accuracy for estimating MD and FA of D
in low signal to noise ratio (SNR < 5) and high anisotropic (FA > 0.9) regions [39]. Using this representation, the
unknown X is given by

X = (S 0, f ,U1, . . . ,U6,V1, . . . ,V6)T.

Estimation

We considered four estimation approaches. The first two approaches were extensions of the conventional TSM
and OSM to IVIM-DTI. The third approach is a proposed OSM based on DGN method. The fourth approach is also
a proposed OSM DGN method incorporating a prior for the model parameters.

1. TSM: LM estimation of X1 = (S 0 (1 − f ),V1, . . . ,V6)T using

X̂1 = arg min
X1

∥Yb−high − Sb−high(X1)∥2, (6)

where Yb−high is the dMRI signal with b ≥ bcut−off and Sb−high(X1) = S 0(1− f ) exp(−bĝTDĝ) (see Eq. (2)). Then,
f is calculated using estimated S 0(1 − f ) value and measured S 0 value. Next, estimated x̂ = ( f ,V1, . . . ,V6)T is
constrained and X2 = (U1, . . . ,U6)T is estimated using LM as

X̂2 = arg min
X2

∥Y − S(X2, x̂)∥2. (7)

The LM estimation using TSM, Eqs. (6)-(7) were performed iteratively for each image pixel using MATLAB
function “lsqcurvefit”. The LM algorithm performs an iterative minimization of the objective function as

X̂i+1 = X̂i + [JT
i Ji + λiI]

−1[JT
i {Y − S(X̂i)}],

where Ji = ∂S(X̂i)/∂X̂i is the Jacobian matrix of the function S(X) evaluated at the ith iteration, I is the identity
matrix and λi is a scalar. When λi is small the minimization is equivalent to a Gauss-Newton algorithm, for
large λi the minimization tends towards the steepest-descent algorithm [66]. If a step is successful (gives a
lower function value), the algorithm sets λi+1 = λi/10, else it is set as λi+1 = λi × 10. In our simulations, the
maximum number of iterations was specified as 10 and the other iteration stopping criteria such as the tolerance
of step size, size of the gradient and the residuals were left to their default value (10−6).

2. OSM: LM estimation of X, solving
X̂ = arg min

X
∥Y − S(X)∥2. (8)

The LM estimation using OSM, Eq. (8) were also performed iteratively for each image pixel using MATLAB
function “lsqcurvefit”. The maximum number of iterations and stopping criteria were specified same as that for
TSM estimation.

3. OSM-DGN1: DGN estimation of X using Eq. (8). OSM-DGN1 estimation was performed iteratively for each
image pixel using a damped Gauss-Newton algorithm as,

X̂i+1 = X̂i + si[J
T
i Ji]

−1[JT
i {Y − S(X̂i)}].
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The damped Gauss-Newton algorithm utilizes an inexact line search algorithm for estimating si [62, 53]. It
was shown in [62] that the DGN algorithm displayed better convergence and robustness for various choices of
initializations than LM for a ill-posed problem. The maximum number of iterations and stopping criteria for
DGN iterations were specified same as the previous methods.

4. OSM-DGN2: DGN estimation of X, solving

X̂ = arg min
X
∥Y − S(X)∥2 + F (X). (9)

where F (X) is the regularization functional, constructed based on the prior information of the model parameters
[74, 51, 46]. In this work we chose F (X) = λ∥LX(X − X∗)∥

2. Here X∗ is the prior mean, LX
TLX = Γ

−1
X , and

ΓX = diag(σ2
S 0
, . . . ,σ2

V6
) is a diagonal (Covariance) matrix of the variances of X. We note that the estimate (9)

can be interpreted in the Bayesian inversion framework as the maximum a posteriori estimate from a posterior
density model, which is based on the observation model (4) and a Gaussian prior for the model parameters
[35, 55]. The prior was constructed based on the reported values of IVIM parameters and the std’s were chosen
to allow for sufficient variations for detecting different pathological conditions. See Table 1 for the means and
variances in our prior. DGN estimation of (9) was performed iteratively for each pixel as,

X̂i+1 = X̂i + si[J
T
i Ji + λ Γ

−1
X ]−1[JT

i {Y − S(X̂i)} − λ Γ
−1
X {X̂i − X∗}].

The regularization parameter was manually chosen as λ = 10−2 × trace(JT
i Ji)/trace(Γ−1

X ). For systematic ap-
proaches of the regularization parameter selection see [20, 50]. The maximum number of iterations and stopping
criteria for DGN iterations were specified same as the previous methods.

We initialized the parameters such that tensors D∗, D are isotropic [54]

X0 = (S 0,meas, finit,
√

MD(D∗)init,
√

MD(D∗)init,
√

MD(D∗)init, 0, 0, 0,
√

MD(D)init,
√

MD(D)init,
√

MD(D)init, 0, 0, 0), (10)

where X0 are the initial IVIM-DTI parameters, S 0,meas is the measured noisy S 0 value. The parameters finit,
MD(D∗)init, MD(D)init are the initial values of f and mean diffusivities of D∗ , D respectively. To test the
estimates with different initial parameter values, we quantify the distance between initial and target values by
the ratio

Xinit =
finit

ftarget
=

MD(D∗)init

MD(D∗)target
=

MD(D)init

MD(D)target
. (11)

Synthetic data generation

We have synthetically generated dMRI signals from capillary flow and tissue diffusion for two different configu-
rations. These were later used to evaluate the different estimation methods.

Configuration 1

The purpose of the first configuration is to test the estimation methods with known ground-truth IVIM-DTI pa-
rameters. The D∗ equivalent of flow has a known analytical expression in a system of identically oriented tubes
(mimicking vessels) with Gaussian distributed velocites [1]. In the first simulation configuration shown in Fig. 1 (a),
we considered such a system with velocities, v ∼ N(0.86 mm/s, 0.34 mm/s) along x-axis undergoing “plug” flow [2].
The vascular dMRI signal, Yvascu was generated as [1]

Yvascu =
∥

∥

∥

∥

∫

exp(−iγm · v) exp(−bDblood) dv
∥

∥

∥

∥

(12)
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where γ is the Gyromagnetic ratio, m is a vector along the gradient direction (see [2]), v is a vector of velocity
with magnitude v and Dblood = 3×10−3mm2/s is the intrinsic diffusivity of blood. We assumed 20% of the extra-
vascular diffusivity was due to a system of tubes (mimicking axons) with intrinsic diffusivity D∥ = 0.0017mm2/s [72],
orientation n̂ = (cos 300, sin 300, 0)T and the rest 80% was due to isotropic diffusion Diso=8×10−4mm2/s due to the
extra-cellular matrix. The extra-vascular dMRI signal Ydiff was generated as

Ydiff = exp(−bĝT(0.2D∥n̂
Tn̂ + 0.8DisoI)ĝ). (13)

The measurement vector, Y was generated as

Y = S 0 ( f Yvascu + (1 − f ) Ydiff) + e. (14)

where f was chosen as 0.12, S 0 as 1 and e was the added Rician noise [27]. A set of 500 realizations of Y with
their corresponding S 0 data having SNR ranging from 5 to 50 were computed using (14). Stejskal-Tanner pulses
with duration δ = 1.9ms, separation ∆ = 2ms and 11 b-values (b = 0, 50, 150, 250, 350, 450, 550, 650, 750, 850,
1150 s/mm2) with 12 b0 images and 60 non-co-linear gradient directions for other shells were used to generate the data.

Configuration 2

In the second simulation configuration, we constructed a realistic in silico tissue model in a 1mm×1mm×2mm
domain as shown in Fig. 5. The domain used a Gaussian Markov random field model [44] for the map of S 0 (Fig. 5
(a)), two vascular trees mimicking arterioles and venules and a capillary network connecting them (Fig. 5 (b)), and a
distribution of cylinders modeling axons (Fig. 5 (c)).

For generating the capillary network, we used a modified spanning tree algorithm (MSTM) presented in [65]. For
generating the arteriole and venule trees, we used the VascuSynth software [28]. To compute the vascular dMRI signal
(12), the flow velocity, vi j connecting node i to j of a vessel segment was calculated from the volumetric flow rate
Qi j as vi j = Qi j/πr

2
i j, where ri j is the radius of the segment. The Qi j’s and ri j’s of the vascular trees were obtained

using VascuSynth by specifying a smoothly varying oxygen demand map. The parameters used in VascuSynth are
mentioned in supplementary table S1 . For calculating Qi j’s in the capillary network, we used Poiseuille’s equation
and pressure conservation [65]. The simulated velocities are displayed in Fig. 5 (b).

The simulated axon orientations, as shown in Fig. 5 (c), were drawn using the Watson distribution and a spatially
smoothly varying degree of dispersion [72]. The intrinsic diffusion coefficients, d∥’s in simulated axons were drawn
from a Gaussian distribution, d∥ ∼ N(0.0017mm2/s, 0.0008 mm2/s). The axon lengths were drawn from a Gaussian
distribution with mean 10−4m and s.t.d. 10−5m. The voxel size was specified as 0.2mm×1mm×0.2mm. The dMRI
signal were calculated using Eq (14). The S 0 data had SNR equal to 50. The target S 0, f maps and measures of D are
shown in Fig. 6 (a). There is no available method (analytical or numerical) to calculate the D∗ equivalent of the current
flow configurations and hence not shown in Fig. 6 (a). Although configuration 2 is more realistic than configuration
1, sensitivity analysis of TSM, OSM, OSM-DGN1 and OSM-DGN2 in estimating D∗ can not be performed using this
configuration, since the target D∗ is unknown.

In vivo data

A diffusion weighted data set of a healthy volunteer was acquired using a 3T Siemens MAGNETOM PrismaFit

system. An EPI/spin echo (SE) diffusion weighted pulse sequence was used with a 128 × 128 acquisition matrix
which resulted in an isotropic voxel size of 2.5mm. The number of slices was 20. The echo time (TE) was set to 75ms
and the pulse repetition time (TR) to 2700ms. The acquisition time was approximately 30 minutes. The diffusion
weighted gradient settings that were used consisted of 11 b-values (b = 0, 50, 150, 250, 350, 450, 550, 650, 750,
850, 1150 s/mm2) with 12 b0 images and 60 non-co-linear magnetic field gradient directions for the others. The first
step in the post-processing pipe-line was the denoising of the dMRI data by exploiting its inherent redundancy using
random matrix theory [68]. Next, Gibbs ringing correction based on local interpolation in k-space was applied [38].
The “Topup” [4] and “Eddy” [5] tools in FSL were used to correct for susceptibility, eddy current, and subject motion
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distortions.

Results

In this section we present the estimates obtained using TSM, OSM, OSM-DGN1 and OSM-DGN2 using the
in-silico phantoms and in-vivo data. Residual error,

R = ∥Y − S(X)∥2, (15)

along with percentage (relative) errors in estimated f , percentage errors in standard tensor measures (MD and FA) of
D∗, D and the orientation errors of D∗, D. The orientation errors were measured as angles of the major eigenvectors
of the estimated tensors to the target tensor orientations [32].

Evaluation of f , D∗, D estimates and residual using configuration 1

It has been previously observed that IVIM TSM estimates are sensitive to the choice of cut-off b-values [70]. To
test the sensitivity of IVIM-DTI TSM estimation to cutoff b-values the residual error, R, was calculated for a series of
values. Fig. 1 (b) shows that R is nearly constant after b = 500 mm2/s, which was chosen as the cutoff b-value.

It is known that OSM estimation is sensitive to the choice of initial-values [55]. Hence, the performances of the
estimation methods were evaluated for varying parameter initialization using the generated synthetic data. The results
are shown in Figs. 2, 3. Errors in MD(D∗) appear highest in TSM (p<10−20 for errors of MD(D∗) between TSM and
other estimates at Xinit = 2.5). OSM showed the most sensitivity to initial values (p<10−18 for errors of f , and D∗

measures between OSM and other methods at Xinit = 3). DGN methods displayed lower sensitivity to inital values
(p<0.02 for f between OSM-DGN1/OSM-DGN2 and TSM/OSM errors at Xinit = 3). OSM-DGN2 displayed lower
errors compared to OSM-DGN1 (p<10−15 for errors of f and D∗,D measures between OSM-DGN1 and OSM-DGN2
at Xinit = 2.5).

We display the convergence of OSM, OSM-DGN1 and OSM-DGN2 estimates with iteration number, Niter in Fig.
4. It can be seen that OSM-DGN1 and OSM-DGN2 estimates converge faster compared to OSM.

Evaluation of f , D estimates and residual using configuration 2

The target IVIM-DTI parameter maps of simulated domain, displayed in Fig. 5, are shown in Fig. 6 (a). The
estimated parameter maps using the different methods are shown in Fig. 6 (b)-(d). The initial value of X was chosen
as finit = 0.02, MD(D∗)init = 0.005mm2/s, MD(D)init = 0.0005mm2/s, which corresponded roughly to the mean target
values. Given that the initial values were close to target values, only a few pixels of OSM estimated parameter maps
showed deviations from the target parameter maps. Residual R and percentage errors in f , MD(D) and FA(D) are
shown in Fig. 7 . OSM-DGN2 presents the smallest error dispersion for all the parameters.

Evaluation of residual using in vivo data

The TSM, OSM, OSM-DGN1 and OSM-DGN2 methods were applied to the in vivo brain dMRI data as shown
in Fig. 8 and supplementary figure S3. X was initialized as finit = 0.2, MD(D∗)init = 0.003mm2/s, MD(D)init =

0.0006mm2/s by fitting the average dMRI signal over all pixels with the IVIM model (1). TSM, OSM, OSM-DGN1
and OSM-DGN2 estimates of f , and measures of D∗, D are shown in Fig 8 (a)-(d). The data residuals in the image and
their histograms are also shown. We added a row of conventional DTI measures estimated using software TORTOISE
version 2.5.1 [58] in Fig. 8 (d). The estimated D∗ and D using OSM-DGN2 were used to generate tensor maps with
software ExploreDTI version 4.8.6 [41], shown in Fig. 9.

Discussion
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The aim of this study was to explore methods to estimate IVIM-DTI parameters allowing simultaneous pseudo-
diffusion and diffusion tensor imaging, and subsequently, finding a robust estimation method. Previously known IVIM
approaches were applied to IVIM-DTI estimation. The influence of initial parameters and convergence of the meth-
ods was also studied using simulated data. In our simulations (and in vivo experiment), we employed a wide range of
b-values (0→1150 s/mm2) and gradient directions since IVIM-DTI estimation requires a larger data set (due to larger
number of model parameters) compared to standard IVIM/DTI. The first simulated dataset had low SNR (SNR 5→50
for S 0 data) as in typical clinical scanners [59], and known target IVIM-DTI parameters. The second dataset had high
SNR (SNR = 50 for S 0 data, comparable to high tesla MRI scanners [59]) with more realistic geometry and partially
known target IVIM-DTI parameters. It is known that measurement noise can cause errors in the tensor estimates
leading to non positive-definite tensors, particularly in regions of high anisotropy such as the corpus callosum and the
corticospinal tract [39]. Hence, we enforced positive-definite constraints on D∗ and D.

In Fig. 2 we show the errors in conventional TSM estimates [54] for configuration 1, with different choices of
initial values. It can be seen that MD(D) appears slightly better estimated using TSM compared to OSM and OSM-
DGN1. This is because OSM estimation is ill-conditioned and is more affected by measurement noise compared to
D estimation in TSM. However, the errors in MD(D∗) appear significantly higher in TSM (p<10−20 at Xinit = 2.5)
indicating D∗ is most negetively affected in TSM. The TSM estimates with a realistic phantom, Fig. 6 (b), 7 again
display higher estimation errors (statistically significant in all measures) compared to other methods. In the context of
disease detection and treatment, changes in IVIM parameters ( f , D∗ equivalent to MD(D∗), D equivalent to MD(D))
have been reported for several diseases in [60, 45, 25], and, recently in breast cancer treatment [17]. Figs. 2, 6, 7
shows how utilising TSM would lead to high estimation errors and could make estimation of such parameter changes
unfeasible in clinical settings where low SNR data is available.

In this work, we extended the conventional LM estimation of IVIM parameters to one-step IVIM-DTI parameter
estimation. It can be seen in Fig. 2, 3, that OSM show relatively lower errors than TSM for D∗ measures around
Xinit = 1, however it deteriorates fast with higer/lower initializations and low SNR data compared to other methods
(p<10−18 at Xinit = 3). This sensitivity to initialization and noise is due to the ill-conditioned nature of the OSM
problem [55].

A new OSM based on weighted NLLS estimation of IVIM-DTI parameters was also proposed and tested. The
method was based on the damped Gauss-Newton (DGN) method with a line search [62, 53]. Fig. 3 (a)-(h) demon-
strates that the proposed DGN methods, particularly OSM-DGN2, displays lower sensitivity to initial values compared
to LM based TSM and OSM methods. In Fig. 3 OSM-DGN2 show more accurate estimates (with low SNR and incor-
rect initialization) compared to OSM-DGN1 (p<10−15 at Xinit = 2.5). This is because the regularizer F (X) stabilises
the ill-conditioned problem, (8) by introducing prior information about the model parameters, resulting in more stable
and accurate OSM estimates [35]. Fig. 4 shows that DGN converges with fewer iterations and estimates parameters
more accurately than LM. This is expected, since in the neighborhood of the solution, the LM scalar λi is progressively
smaller in each iteration and it is equivalent to a regular GN iteration [66]. DGN converges with fewer iterations since
every update explicitly optimizes the step-length, instead of taking a constant as in regular GN iterations. The dMRI
signal is affected by additive Gaussian noise in the real and imaginary parts, which results in a signal amplitude with
Rician noise. Rician noise is characterized by a skew distribution with non-zero positive mean. Hence, the assumption
of zero-mean Gaussian distribution in the NLLS estimation leads to a data misfit as observed in Fig. 4.

All four estimation methods were applied to real dMRI data. Fig. 8 (a) shows that MD(D), FA(D) reflect known
micro-structural features for such brain regions from previously published DTI studies [3]. However, f and measures
of D∗ and D in Figs. 8 (b, c, d) display different characteristics compared to TSM maps in Fig. 8 (a). The higher
residual errors in TSM estimates compared to other estimates in Fig. 8 along with poorly estimated f and D∗ measures
in Figs. 2, 7 suggest that the physical assumption of pure diffusion contribution at high b-values could lead to slightly
higher than actual estimated values of D, and subsequently erroneous f and D∗ estimates. Such assumptions are not
present in OSM. Nevertheless, the OSM methods displays high sensitivity to noise and initial values [24, 21]. The
very low MD(D∗), MD(D) and high f seen in frontal white matter in Figs. 8 (b, c), seen also in simulated low SNR
data in Figs. 2, 3, is possibly due to wrong fitting due to ill-conditioning and low SNR in these regions [59]. The low
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pseudo-diffusion contribution ( f ≈ 0.1) is partially masked by the noise and in the absence of prior conditioning, the
data fits the bi-tensor model to the diffusion signal alone, leading to lower than usual MD(D∗) and MD(D) values. As
seen in Fig. 2, OSM-DGN2 is more robust to noisy data due to prior conditioning of the problem and the f , MD(D∗)
and D maps in Fig. 8 (d) match previously reported brain IVIM maps [21, 24]. In most configurations, dMRI signal
rapidly changes with flow (or perfusion) variations [2, 37, 1]. This is possibly why the estimated measures of D∗ from
simulations (Fig. 5) and in vivo data (Fig. 8) are grainy/non-smooth compared to D. The high residuals near the
CSF boundaries and in deep gray matter are due to partial volume effects due to CSF and perivascular spaces which
shows relatively higher signal intensities [61]. The computational times, tCPUs of these estimates were tCPU = 207s for
TSM, tCPU = 1259s for OSM, tCPU = 1531s for OSM-DGN1 and tCPU = 1748s for OSM-DGN2 for the entire slice.
The additional computational cost incurred by the line search in DGN represents around a 40% increase. This could
be acceptable compared with the advantage in the accuracy of DGN over LM. These results confirms the previous
comparison study of LM and DGN on a ill-posed problem in [62] and on the use of prior densities in IVIM estimation
[49, 26].

Fig. 9 displays the alignment of D∗ and D. One of the striking features of this image is the similarity of the
alignments of D∗ and D. Pseudo diffusion is directly related to perfusion [13], hence, MD(D∗) and alignment resem-
bles mean perfusivity and perfusion tensor alignments reported in recent arterial spin labelling based PTI brain study
[57]. The alignment of the D∗ in the white matter is also in agreement to previously reported white matter vascular
tract studies [52] and white matter IVIM studies [36]. The simulation results in Fig. 2 (c)-(d), which demonstrate
the capability of OSM-DGN2 in efficiently estimating D∗ and D orientations, along with the aforementioned studies
[52, 36, 57], suggest that Fig. 9 is indeed a map of capillary micro-architecture orientations. This is the first time such
a map of the human brain has been shown using dMRI.

In this work, we only compared NLLS approaches. MCMC methods were reported to demonstrate higher pre-
cision and accuracy compared to NLLS in IVIM studies in [9, 55]. Although TSM and OSM estimation could be
extended to MCMC-based methods, in high-dimensional problems such as IVIM-DTI, MCMC methods are compu-
tationally intensive and unsuitable for fast online estimation in clinical settings. Also, to our knowledge, most popular
DTI softwares are based on NLLS estimation [64]. Hence, existing NLLS DTI codes could be easily modified for
IVIM-DTI using the proposed OSM-DGN2 approach.

One-step joint estimation of pseudo-diffusion and diffusion tensors using IVIM-DTI has not been previously car-
ried out. In this work, we introduce the IVIM-DTI OSM and test it with simulations and one in vivo dMRI study.
We also suggest a modification to the OSM using DGN and a Gaussian prior for the model parameters. We also
give evidence, for the first time, that brain pseudo-diffusion aligns to brain diffusion tensors. Pseudo-diffusion tensor
alignments has never been reported using dMRI before. The MATLAB DGN codes used in this article are available
for download at [48].

The results indicate that pseudo-diffusion tensor can be efficiently estimated along with the diffusion tensor using
OSM-DGN2. Popularly used single exponential (DTI) models, which capture only micro-structural information, fail
to capture information regarding blood micro-circulation. Estimating pseudo-diffusion helps capture blood micro-
circulation [13], which is vital for the early diagnosis of several disorders such as vascular cognitive impairment [34].
Hence, both D∗ and D will provide more information about disorders such as dementia than D alone. One draw-
back of IVIM-DTI is the requirement of high dimensional data (more b-values and gradient directions) as compared
to DTI/IVIM. Future work will address the evaluation of the proposed technique to early differential diagnosis of
dementia. In particular, we will seek to associate different stages of degeneration in the vascular and axonal micro-
architecture with the relative values and orientation of the diffusion and pseudo-diffusion tensors.

Conclusions

The OSM-DGN2 show better tolerance to initial values compared to conventionally used Lavenberg-Marquardt
algorithm and is capable of estimating pseudo-diffusion and diffusion tensors with less than twenty percent errors in
the tensor measures, and less than ten degree errors in the tensor orientations in low SNR dMRI data. Based on our
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work, we propose a one-step method based on damped Gauss-Newton and Gaussian prior for the model parameters
(OSM-DGN2) for simultaneous diffusion and pseudo-diffusion magnetic resonance imaging using a IVIM-DTI model
and dMRI techniques.
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Figure 1: (a) Configuration 1 of simulated data: the red lines represents vessels oriented along x-axis and the blue lines represents axons oriented
300 to the x-axis on the xy-plane. (b) Dependence of residual error, R, Eq. (15) of TSM estimates with cut-off b-value, bcut−off .

Figure 2: Dependence on initialisation on TSM and OSM estimates. Plots of (a) R, (b) percentage errors in f , (c) error in angles (in degrees) of
estimated D∗ and (d) D, percentage errors in (e) MD of D∗, MD(D∗), (f) FA of D∗, FA(D∗), (g) MD of D, MD(D), (h) FA of D, FA(D) plotted
against Xinit, Eq.(11). In all the plots, the thick lines represent the mean of the estimated values from the 500 noisy samples of Y and the shaded
region represents the standard deviation. Here Xinit varies from 0.2 to 3.5.
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Figure 3: Dependence on initialisation on OSM-DGN1 and OSM-DGN2 estimates. Plots of (a) R, (b) percentage errors in f , (c) error in angles (in
degrees) of estimated D∗ and (d) D, percentage errors in (e) MD of D∗, MD(D∗), (f) FA of D∗, FA(D∗), (g) MD of D, MD(D), (h) FA of D, FA(D)
plotted against Xinit, Eq.(11). In all the plots, the thick lines represent the mean of the estimated values from the 500 noisy samples of Y and the
shaded region represents the standard deviation. Here Xinit varies from 0.2 to 3.5.

Figure 4: Convergence and uncertainties of OSM, OSM-DGN1 and OSM-DGN2 estimates of (a) S 0, (b) f , (c) U1 and (d) V1 with iteration number,
Ninter. The mean and standard deviations of the estimates obtained with 500 noisy samples of data Y are shown. The initial value, Xinit was 2.5.
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Figure 5: Configuration 2 of simulated data. The images are displayed along x-z plane of the three-dimensional (1mm×1mm×2mm) domain. (a)
Simulated S 0 map using a Gaussian Markov random field model. (b) Synthetic vascular network of arterioles, venules and capillaries using the
VascuSynth software and modified spanning tree algorithm (MSTM). (c) Distribution of cylinders representing axons. The axon orientations were
drawn using the Watson distribution.

Figure 6: Reconstructions of IVIM-DTI parameters using Configuration 2, Fig. 5. The S 0, f , MD(D∗), FA(D∗), MD(D∗), FA(D∗) maps of the (a)
Target, (b) TSM, (c) OSM, (d) OSM-DGN1, (e) OSM-DGN2 estimates are shown. Note that MD(D∗), FA(D∗) of the target are unknown.
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Figure 7: Reconstructions of IVIM-DTI parameters using Configuration 2, Fig. 5. The residual R, percentage errors in estimates of f , MD(D),
FA(D) for the four methods are shown along with the p-values (obtained by applying the student’s t-test between the different methods) represented

with star symbols (∗). Here we represent the p-values as: ∗ for p< 10−2, ∗∗ for p< 10−5 and ∗ ∗ ∗ for p< 10−10.
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Figure 8: Estimates with in vivo brain dMRI data. (a) TSM estimates, (b) OSM estimates, (c) OSM-DGN1 estimates, (d) OSM-DGN2 estimates,
(e) Conventional DTI estimates. From left: Vascular volume fraction f , MD and FA of pseudo diffusion tensor D∗, MD and FA of diffusion tensor
D, and map of residual error R.
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Figure 9: Maps of RGB-encoded alignments of estimated D∗ and D using OSM-DGN2, plotted with ExploreDTI.

18


