
 ORCA – Online Research @ Cardiff

This is a n  Op e n  Acces s  doc u m e n t  dow nloa d e d  fro m  ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/10 2 0 8 0/

This  is t h e  a u t ho r’s ve r sion  of a  wo rk  t h a t  w as  s u b mi t t e d  to  / a c c e p t e d  for

p u blica tion.

Cit a tion  for  final p u blish e d  ve r sion:

Qin,  Jian,  Liu, Ying a n d  Grosve nor, Roge r  2 0 1 7.  A fra m e wo rk  of e n e r gy cons u m p tion

m o d elling  for  a d di tive  m a n ufac t u rin g  u sing  In t e r n e t  of Things.  P roc e dia  CIRP

Confe r e n c e  on  M a n ufac t u rin g  Sys t e m  6 3  , p p .  3 0 7-3 1 2.  1 0.1 01 6/j.p rocir.201 7.02.03 6

P u blish e r s  p a g e:  h t t p s://doi.or g/10.1 01 6/j.p rocir.201 7.0 2.03 6  

Ple a s e  no t e:  

Ch a n g e s  m a d e  a s  a  r e s ul t  of p u blishing  p roc e s s e s  s uc h  a s  copy-e di ting,  for m a t ting

a n d  p a g e  n u m b e r s  m ay  no t  b e  r eflec t e d  in t his  ve r sion.  For  t h e  d efini tive  ve r sion  of

t his  p u blica tion,  ple a s e  r efe r  to  t h e  p u blish e d  sou rc e .  You a r e  a dvis e d  to  cons ul t  t h e

p u blish e r’s ve r sion  if you  wis h  to  ci t e  t his  p a p er.

This  ve r sion  is b eing  m a d e  av ailabl e  in a cco r d a nc e  wi th  p u blish e r  policies.  S e e  

h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s  for

p u blica tions  m a d e  av ailabl e  in  ORCA a r e  r e t ain e d  by t h e  copyrigh t  hold e r s .



                             Elsevier Editorial System(tm) for Procedia 

CIRP 

                                  Manuscript Draft 

 

 

Manuscript Number: PROCIR-D-16-01285R1 

 

Title: A Framework of Energy Consumption Modelling for Additive 

Manufacturing using Internet of Things  

 

Article Type: SI: 50th CMS 

 

Section/Category: SI: 50th CMS 

 

Corresponding Author: Mr. Jian Qin,  

 

Corresponding Author's Institution: Cardiff University 

 

First Author: Jian Qin 

 

Order of Authors: Jian Qin; Ying Liu, Ph.D; Roger Grosvenor, Ph.D 

 

 

 

 

 

 



 

Available online at www.sciencedirect.com 

ScienceDirect 

Procedia PROCIR-D-16-01285 
  

     www.elsevier.com/locate/procedia 

   

 

2212-8271 © 2017 The Authors. Published by Elsevier B.V. 

Peer-review under responsibility of the scientific committee of The 50th CIRP Conference on Manufacturing Systems. 

The 50th CIRP Conference on Manufacturing Systems 

A Framework of Energy Consumption Modelling                              

for Additive Manufacturing using Internet of Things 

 Jian Qin
a
*, Ying Liu

a
 and Roger Grosvenor

a
   

a Schoo of Engineering, Cardiff University, Newport Road, Cardiff, CF24 3AA, UK 

* Corresponding author. Tel: +44(0) 7729038730; E-mail address: Qinj2@cardiff.ac.uk 

Abstract 

The topic of ‘Industry 4.0’ has become increasingly popular in manufacturing and academia since it was first published. Under this trending 

topic, researchers and manufacturing companies have pointed out many related capabilities required by current manufacturing systems, such as 

automation, interoperability, consciousness, and intelligence. Additive manufacturing (AM) is one of the most popular applications of Industry 

4.0. Although AM systems tend to become increasingly automated, the issue of energy consumption still attracts attention, even in the Industry 

4.0 era, and is related to many processing factors depending on different types of AM system. Therefore, defining the energy consumption 

behaviour and discovering more efficient usage methods in AM processes is established as being one of the most important research targets. In 

this paper, an Internet of Things (IoT) framework is designed for understanding and reducing the energy consumption of AM processes. A huge 

number and variety of real-time raw data are collected from the manufacturing system; this data is analysed by data analytical technologies, 

combining the material attributes parameter and design information. It is uploaded to the cloud where more data will be integrated for 

discovering the energy consumption knowledge of AM systems. In addition, a case study is also presented in this paper, which the typical AM 

system is focused on the target system (EOS P700). The raw data is collected and analysed from this process. Then, based on the IoT 

framework, a novel energy consumption analysis proposal is proposed for this system specifically. 

 

© 2017 The Authors. Published by Elsevier B.V. 

Peer-review under responsibility of the scientific committee of The 50th CIRP Conference on Manufacturing Systems. 
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1. Introduction  

Nowadays, Industry 4.0 is not only a research and 

development slogan but is also an industrial and academic 

activities. Many industrial companies and research 

organizations have begun working on this far-sighted topic 

including various aspects [1; 2]. With more and more related 

publication of technologies, principles, and concepts, the 

achievement criteria of Industry 4.0 has become much clearer 

and more specific. A qualified Industry 4.0 manufacturing 

system needs necessary capabilities, like interoperability and 

consciousness. To achieve these capabilities, data is 

considered as being vitally important. It is the connecting 

media of the integration between different manufacturing 

objects and activities. Enabling technologies are included in 

manufacturing such as; the Internet of Things (IoT), Data 

Mining (DM), and Big Data (BD) [3]. With the development 

of digital manufacturing, the current manufacturing is settled 

in the big data environment. It is summarized as the great 

volume, various modalities, high velocity, and huge value data 

environment [4]. This big data is generated by both production 

processing and other manufacturing events such as product 

design, production planning, energy supply, marketing, and 

customers’ reviews [5]. In an industry 4.0 factory, the data is 

collected and tabulated, and valuable information can be 

extracted and used to improve processes.  

Although Industry 4.0 manufacturing is integrated, 

automated, predictive, and intelligent it has to be sustainable 

and renewable [6]. At present, industrial production activities 

use about 35% of the entire global electricity supply, which 

produces approximately 20% of total carbon emissions. In the 

last 20 years, there has been an increase of more than 50% in 

greenhouse gas emission is released by the top five 

manufacturing countries. The manufacturing sustainability has 
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never escaped industry’s attention, and is also an 

indispensable research topic in the age of Industry 4.0. It is 

known that the energy efficiency of production process is 

normally below 30% [7]. Therefore, much industrial research 

has been paying close attention to energy consumption and its 

environmental and financial impact. Highly efficient energy 

usage can not only reduce production costs, and expand profit 

margins, but also solve associated environmental and social 

problems. In most manufacturing systems, energy 

consumption is part of essential standards to measure the 

benefits [8]. Additionally, during the past two decades, 

additive manufacturing (AM) machines are increasingly being 

employed, due to their digitalization, automation, flexibility, 

and customization, which are also becoming a popular 

production system in the modern industry. Comparing with 

the traditional manufacturing processing, the AM processing 

is a low energy efficiency system with a high production 

yield, especially selective laser sintering (SLS) and selective 

laser melting (SLM) [9]. The energy consumption of AM 

processing is influenced by many factors, and according to the 

Life Cycle Analysis (LCA) of SLS processing the energy 

consumption is the most important factor affecting 

environmental impact [10]. Reducing energy consumption of 

AM process is one of the necessary research targets for the 

manufacturing sustainability in the age of Industry 4.0. 

This paper tries to solve the industrial sustainability 

problems in the Industry 4.0 era, specifically, working out the 

energy consumption problem of AM processes by using IoT 

technology. In this research, current AM energy consumption 

analysis models and optimization methods will be discussed 

and refined in section 2. Section 3 presents an integrated IoT 

framework for AM energy consumption analysis including 

various layers and components. This method follows the 

Service Oriented Architecture (SOA) approach. It assists 

people in understanding the energy consumption behaviour, to 

predict the trends in energy usage and guides people to use 

energy efficiently. Section 4 deliveries a case study of the SLS 

system (EOS P700). The raw data is collected from process 

parameters and the data log files. After analysis of the 

correlation between the process environment and energy 

consumption, a particular IoT proposal of energy consumption 

will be proposed at the end of this section. Section 5 discusses 

the main function and future work of this research. 

2. Literature review of AM processes energy consumption 

Additive manufacturing processing is known as a complex 

system because of complicated material parameters, highly 

automated levels, and various types of processing 

technologies. Different processing technologies show different 

energy consumption performances. Table 1 shows the energy 

consumption comparison of three additive manufacturing 

technologies including SLS, SLM, and electron beam melting 

(EBM) in experimental measurement [11; 12; 13].  

From these experimental measurements, it is clear that the 

energy consumption has a large range. Even when testing on 

the same machine and with the same material, the results show 

a large variation in every experiment. That means the energy 

consumption of AM processing is challenging to analyse and 

optimise. Many researchers have shown that energy 

consumption of AM processing is caused by many different 

components and impacted by numerous attributes. 

Table 1. Energy consumption comparison between different AM processes. 

AM 

Technology 

Energy 

consumption 

rate 

Experiment 

material  

Experiment 

machine 

EBM [11] 61.20 to 

176.67 MJ/kg 

Ti-6Al-4V Arcam A1 

SLM [12] 96.82to 139.50 

MJ/kg 

SAE 316L MMT SLM250 /         

EOSINT P760 

SLS [13] 52.20 to 

129.73 MJ/kg 

Polyamide HiQ+HS / EOSINT 

P390 

Fig.1 displays a schematic layout of the SLS process which 

is one of the most important and commercial AM processes 

currently in use. In Fig.1, it is seen that the system consists of 

many different types of power usage [10; 13].  There are 

several energy consumers in each power usage, which are also 

demonstrated in Fig.1. The heating system, consisting of 

frame heating, platform heating, and process chamber heating, 

is responsible for the major of energy consumed in this 

process. In addition, the laser units, scanner, and laser cooling 

system are three main power components in the laser system, 

with the laser cooling system consuming the most of energy in 

this subsystem. The main energy usages of the build platform 

system are driving the motors. Feed and recycle system 

includes the material and inert gas feed and recycle process. 

There are controllers, electrical elements, and sensors 

supporting the system controlling and monitoring functions in 

such an SLS system, which are also a main part of energy 

consumers [12].  

Laser System
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Powder spreading roller 
motor, Powder bed motor etc.

Build platform 

System

Heating System

Frame heating, Platform 
heating, Process chamber 
heating, etc.

Material feed & recycle, inert 
gas support & recycle, etc.

PC controller, sensors, etc.

Miscellaneous

Laser units, 
Scanner,  Laser 
cooling etc.

Fig. 1. Main power drains of SLS process adopted from [14]. 

However, it does not mean these factors related to this 

system are the only impact elements. Built on the 

understanding of system and manufacturing experiments, a lot 

of research indicates relationships between energy 

consumption and various processing attributes of AM 

processes. Table 2 presents the processing, design, material 

attributes relating to the energy consumption of AM 

processing in literature. 

In their works, models are built for predicting energy 

consumption in AM processes. However, the impact is varied 
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because there are many correlations. It is hard to identify all 

related attributes of AM process energy consumption from 

current research. Therefore, energy consumption in AM 

processes is known as a complicated model to analyse [14]. 

More data collected from the process, design, material, 

environment, and any related activities, and factors the more 

accurate an energy consumption model can be built. 

Nowadays, the manufacturing is facing the next industrial 

revolution, it can collect greater amounts of data from the 

entire manufacturing system [15]. With this valuable data, the 

behaviour of energy consumption in AM processes is 

predictable. The efficient energy use decision can be made by 

intelligent systems. In the next section, an IoT framework for 

energy consumption is going to be presented for AM 

processes. 

Table 2. Energy consumption related attributes in literature.  

Literature Processing attributes Design attributes Material 

attributes 

Sreenivasan 

and Bourell 

[13] 

Scan speed, laser 

power rate, build 

platform size 

Nil Material 

density 

Paul and 

Anand [9] 

Layer thickness, laser 

beam radius, scan 

speed, laser power 

Part orientation Absorptivity 

powder 

Watson and 

Taminger [16] 

Feedstock & 

recycling transported 

distance, build 

platform size 

Volume of 

deposited 

material 

Nil 

Telenko and 

Speeperad [17] 

Nil Z-height Material 

density 

Baumers      et 

al. [11] 

Processing 

procedures, build time 

Part geometry, 

Z-height, 

capacity 

utilization 

Nil 

3. An Internet of Things framework of energy 

consumption for additive manufacturing system  

In the age of Industry 4.0, interoperability is one of the 

most important and essential capabilities and design 

principles. To achieve the integrated function, the IoT 

technology has become one of the best solutions, generate 

horizontal integration, end-to-end digital integration, and 

vertical integration in manufacturing systems [5]. In this 

interoperable manufacturing environment, an AM system is 

also integrated. The production design, operators, and 

materials statement are integrated with AM machine to 

generate a new processing model. In this model, plenty of 

data is collected, where information and knowledge can be 

discovered. In addition, it is known that the life-cycle 

management and energy sustainability management are two 

basic business services in Industry 4.0, and this integration not 

only focuses on the improvement of manufacturing 

production but also engages in the industrial enterprise 

management [18; 6]. Therefore, the Service Oriented 

Architecture (SOA) approach is the main design principle for 

this AM energy consumption analysis modeling. Based on 

this design principle an IoT framework is designed which is 

shown in Fig.2 [19].  

In this framework, there are four layers, which are: the 

Process execution layer, the Data integration layer, the 

Information and Knowledge generation layer, and the 

Application performance layer. These four layers are linked 

together closely, and each layer consists of several 

components.   

Virtual PlatformVirtual Platform

Data integration layerData integration layer

Local data integration sectionLocal data integration section
Cloud data integration sectionCloud data integration section

Information and  Knowledge generation layerInformation and  Knowledge generation layer

Physical PlatformPhysical Platform

Process execution layerProcess execution layer

Interactive PlatformInteractive Platform

Application performance layerApplication performance layer

operator orientated applicationsoperator orientated applications Enterprise orientated applicationsEnterprise orientated applicationsprocess orientated applicationsprocess orientated applications

Local database

Related data

Cloud database Social data

Data statistic Data mining

Selected data

Machine learning MapReduceDeep learning

Selected data

Identify 

components

AM processMaterials Sensors Controller
Designers

Operator

Working 

environment

Interface

Feedback 

control

Decision 

make

Energy usage 

behaviour

Life-cycle 

analysis
Usage predictDesign 

suggestion

Raw data

Information and knowledge

Fig.2. Internet of Things framework of energy consumption analysis 

3.1. Process execution layer 

The Process execution layer is known as the production 

status and processing environmental condition where the 

target AM system, materials, operators, products, and other 

environmental factors are included. In this layer, the AM 

system and other associated physical objects carry the most 

relevant data invisibly. With different sensors and 

components, these invisible data sets are extracted [20]. 

However, on this layer, the digital data sets are only created, 

which means they tend to be unreadable, being represented as 

massive and meaningless strings of numbers. The AM system 

is the main object of this research, as the majority of energy is 

consumed by it. Most current AM systems have embedded 

sensors in them obtaining various processing data collected 

during operation. Parts of the data can be related to the system 

energy consumption. In addition, some factors on this layer 

may be invisible because integrated sensors are not collecting 

information associated energy consumption [21]. The 

selection method is one of the main functions of the Data 

integration layer, which will be discussed later. 

3.2. Data integration layer 

Data integration layer is simply divided into two parts, the 

local integration section, and cloud integration section. In the 

local data integration section, the data generated from the 

Process execution layer is collected and stored in the local 
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database. It is known that only a part of the data is related to 

energy consumption, which means any other data collection 

would be a waste of resources within the scope of this 

research. Therefore, selecting the associated attributes data 

integrating with another data becomes necessary. Fig.3 shows 

related attributes data selection diagram. When a new attribute 

is considered to start on a new data set analysis, the example 

data set should be tested at first, by matching the example data 

with the total energy consumption. If the result shows a 

relationship, this attribute data will be marked as the related 

data. Otherwise, the example data set will be compared with 

other existing related attributes data. When the new example 

data set shows an association with existing related data. This 

additional data type is added to the database. Another part of 

this layer is the cloud integration section, where the local 

database uploads the related energy consumption data to the 

Cloud [22]. In the cloud, data from different machines, 

systems, and production processing are integrated. The Direct 

Attached Storage (DAS), Network Attached Storage (NAS), 

and distributed storage system are considered as the main 

storage solution models [4]. 

 

Collect  example data Collect  example data New AttributeNew Attribute

Compare with total energy consumptionCompare with total energy consumption

Related with 

total  energy consumption

Start to collect all this 

attribute data  and stored into 

database 

Start to collect all this 

attribute data  and stored into 

database 

Compare with other related attributesCompare with other related attributes

Related with 

other related attributes

Mark as no-related attributeMark as no-related attribute

Mark as a related attributeMark as a related attribute

NO

NO

YES

YES

Fig.3. Related attributes data selection 

3.3. Information and Knowledge generation layer 

Due to the different data resources, local database and the 

cloud, there are two types of information and knowledge 

generated from this layer. With local data resources, the 

relationship between system energy consumption and related 

attributes can be found. The energy usage behaviour is 

discovered depending on various situations. The trend line of 

energy consumption is also depicted, which delivers the 

energy usage prediction of the AM system. This information is 

integrated together with the generation of local processing 

knowledge. It can assist people in predicting energy usage of 

the system, and making the decisions. The application will be 

discussed later in the Application performance layer. With the 

data from the cloud, theoretically, information and knowledge 

are more diverse and accurate. In addition, the information 

and knowledge can be shared on the cloud which contributes 

to all people using the cloud. On this layer, various data 

analytics technologies are used. For local information and 

knowledge generation, data mining is the core technology; it is 

used to discover information and knowledge for future 

processes storage. Prior knowledge is working with some 

machine learning algorithms makes raw local data present its 

valuable potential. The cloud information and knowledge 

generation come under the big data environment. The main 

methods of big data analysis are bloom filter, hashing, index, 

trial and parallel computing, of which the MapReduce is one 

of the most popular parallel computing methods [23]. 

3.4. Application performance layer  

On the Application performance layer, the information, 

and knowledge, discovered from Information and Knowledge 

generation layer, are displayed as different implementations. 

The performance can be divided into three sections: the 

Process orientated applications, the Operator orientated 

applications, and the Enterprise orientated applications based 

on differently oriented objects. In the section of process 

orientated applications, AM processing receives the feedback 

controlling signals, which then changes the settings of the 

relevant parameters for reducing the energy consumption. 

These decisions change parameter are made by the IoT 

framework relying on the information and knowledge that 

analysed from the preceding layer. Operators are able to 

obtain the system energy consumption behaviour from the 

production energy recorded, and by predicting the future 

energy use. The information will be presented to them 

virtually and graphically; which can guide operators to utilize 

the system economically. In addition, they can also receive 

production design suggestion for improving the design. The 

enterprise manager is more interested in the system life-cycle 

analysis and energy sustainability analysis which can also be 

delivered to this layer.  

This IoT framework focuses on AM process energy 

consumption which creates a new method of energy 

consumption analysis in the age of Industry 4.0. This 

framework involves numerous related factors which integrate 

different attributes within the data and cloud-based database. 

Benefits from the data mining and big data analysis 

technology. Valuable information and knowledge about AM 

process energy consumption are generated and presented to 

people intelligently and some decisions are made by 

framework and control system automatically. This IoT 

framework is able to match Industry 4.0 required capabilities, 

which is regarded as an application of Industry 4.0 [3].  

4. Case study 

Recently, the SLS processing has become a mainstream 

AM processes, in which the powdered material is sintered by 

laser. EOS P700 is one of the popular ongoing SLS machines, 

which has a maximum build envelope size for 740* 400* 

590mm (x, y, and z). This machine consists of two 50W CO2 

lasers which sinter the material of PA2200 and PA3200GF.  

The PA2200 is the original polyamide-12 without any fillers, 

and the PA 3200GF contains 40% glass beads for enhancing 

stiffness. According to the discussion in section 2, this 

machine includes several main energy consumers built as 

different power parameters such as; the chamber heating built 

by four heaters on four sides (2*1.65kw and 2*0.8kw), four 
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heaters of frame heating (2*1.22kw and 2*630kw), platform 

heater (1*1.5kw), cooling system (1*1.3kw), and so on [24].  

In the production processing of this machine, some 

parameters are pre-set and monitored. Part of the data can be 

seen from the machine data log. Table 3a shows the process 

parameters setting for the EOS P700 system which normally 

is fixed for one production process. Table 3b shows part of 

the monitoring data log received from the machine sensors in 

real time. However, other data is generated by embedded 

sensors in this machine. This data can be viewed with the 

process software (EOS PSW 3.1), which is not collected in 

the data log [25].  

Table 3a.  EOS P700 process parameters setting. 

Process parameters Values  

Material PA2200 

Layer thickness  0.15 (mm) 

Scan spacing 0.3 (mm) 

Scan speed 3000 (mm/s) 

Laser power  2*50(W) 

Build bed heater power 5000 (W) 

Build bed heater power limitation  70 (%) 

Build bed temperature set point 176.5 (°C) 

Table 3b. Part of the process log file. 

Layer 

Number 

Platform 

temperature 

(°C) 

Heat 

power 

(W) 

Hold 

power 

(W) 

Last exposure 

duration (s) 

560 173.2 1420 700 34.2 

561 173.2 1440 700 34.2 

562 173.0 1445 720 34.2 

563 173.0 1470 725 34.7 

564 173.0 1420 725 34.5 

565 173.0 1445 720 35.0 

566  173.2 1410 710 35.2 

567 173.2 1425 720 35.4 

From table 3a and 3b, the varieties of data which is capable 

of being collected from EOS P700 are clear. Being Compared 

to Table 2, it is obvious that the collected data attributes from 

the EOS P700 data log files are less than the energy 

consumption related attributes in literature. Therefore, to 

analyse the energy consumption, in this case, various related 

attributes need to be collected. The Fig.3 shows correlations 

between the process environment and energy consumption. 

 

Fig. 3. Correlations between process environment and energy consumption. 

From Fig. 3, the undefined information shows attributes of 

data which have not been collected due to embedded sensor 

limitation. In the current state, it is hard to accurately analyse 

the energy consumption of this process. However, based on 

the IoT framework, a more completed energy consumption 

analysis proposal can be generated; following steps for the 

EOS P700 process; 

 Steps 1. Expand necessary hardware components. In 

this research, the energy monitoring component is the 

intuitive equipment. A communicable digital power meter 

is going to be used for monitoring the EOS P700 total 

energy consumption. Relying on the user manual, the 

supply voltage of this machine is 3*400V, and the 

maximum power is about 12kw [24]. The power meter is 

chosen due to these parameters. This equipment is 

understood to be one of the essential monitoring 

components for this research, it is not necessary to add the 

additional components for every power using system of the 

process. In addition, for combining the material data, the 

RFID system is another necessary component in this 

research, which includes tags and readers [26]. 

Considering this particular process with the IoT platform, 

there is plenty of data generated from the process 

execution layer. Currently, most of the data has not been 

applied to any functional analysis, and becomes a waste 

resource.   

 Step 2.  Integrate related data.  In this step, the collected 

data is selected by the related attributes selection method 

as mentioned in section 2. All monitoring data of EOS 

P700 is displayed on the EOS PSW 3.1 software, such as 

the hatching data, laser data, and so on. Only part of this 

data is printed in the data log, and valuable data has not 

been collected for analysis. All this data will be collected 

and stored in the local database which includes materials 

and order data, product design data, predefined process 

data, and real-time monitoring data. These selected data 

ranges will be uploaded to the cloud database, combining 

with public data and data from other SLS machines for 

later analysis.  

 Step 3. Discover research information. Energy 

consumption associated information is discovered from the 

integrated data in data analysis methods and algorithms. 

The selection of methods and algorithms is based on the 

features of the integrated data. In the case of EOS P700, 

for the basic data statistical analysis is applied as the pre-

investigation for finding out the data features. Then, data 

mining technology is used for local data analysis as the 

fundamental data analysis method, WEKA 3.8 is used as 

the main data mining software. Meanwhile, cloud 

computing technologies are applied for cloud data analysis 

on IBM Cloud.   

 Step 4. Delivery and presenting the results. Without a 

graphical or visual display, the results produced by data 

statistics analysis, data mining and cloud computing will 

rarely be used by operators or designers. Three displaying 

modes are applied in this case. Firstly, the energy 

consumption status, behaviour, and prediction information 

are displayed as real-time figures showing on the screen 

for the machine operators. The product design suggestions 
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which can reduce process energy consumption are 

presented to designers directly when they design similar 

products. Secondly, the machine life cycle information and 

energy consumption knowledge is sent to the system 

managers for improving enterprise cost and sustainability 

management. Finally, the defined energy reduction control 

signals are set as the input to processing control system. A 

selection of pre-defined algorithms will process the 

information to produce and optimise each build; the power 

reducing element will be the primary position in the 

algorithms.          

These four steps will apply the EOS P700 into the IoT 

platform, which not only obtains the energy consumption 

analysis of the process but also achieves the requirements of 

Industry 4.0.     

5. Discussion and closing remarks 

Using this IoT framework, energy consumption of AM 

process is going to be identified and predicted, which assists 

AM engineers, researchers and enterprise managers in solving 

the energy problem of the process. In the era of Industry 4.0, 

AM processes are necessary for the whole manufacturing 

production industry.  With the huge volume of production, 

energy consumption is an unavoidable issue for this process. 

It is an indispensable component of the power source 

reduction, environment protection, and process life cycle 

analysis. Current AM energy consumption analysis methods 

are reviewed in section 2. These methods, hardly obtain 

accurate results because the energy consumption problem is a 

multi-attribute convergence problem. The Industry 4.0 

solution is designed for solving this type of problem. This 

paper generates a service orientated IoT framework focusing 

on the energy consumption in the AM process for reducing 

the power usage during production. This IoT framework 

collects, integrates, and analyse data from the entire 

production environment, and the discovered information, 

knowledge, and analysed results are shown intelligently to 

different processing participants dependent upon their roles in 

the system; which is proposed as an Industry 4.0 solution. The 

EOS P700 is applied to the IoT framework as a case study for 

proving that the current AM processes lack sufficient energy 

consumption analysis. It means that much-related works need 

to be planned and finished in future. A feasible proposal, 

building the EOS P700 energy consumption IoT framework, 

outlines the method which will be done. Most results have not 

been received yet in this research, which the proposal will be 

acted following the plan. As the final target of this research, it 

is going to achieve the requirement of Industry 4.0 when the 

proposal is finished.  
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Abstract 

The topic of ‘Industry 4.0’ has become increasingly popular in manufacturing and academia since it was first published. Under this trending 

topic, researchers and manufacturing companies have pointed out many related capabilities required by current manufacturing systems, such as 

automation, interoperability, consciousness, and intelligence. Additive manufacturing (AM) is one of the most popular applications of Industry 

4.0. Although AM systems tend to become increasingly automated, the issue of energy consumption still attracts attention, even in the Industry 

4.0 era, and is related to many processing factors depending on different types of AM system. Therefore, defining the energy consumption 

behaviour and discovering more efficient usage methods in AM processes is established as being one of the most important research targets. In 

this paper, an Internet of Things (IoT) framework is designed for understanding and reducing the energy consumption of AM processes. A huge 

number and variety of real-time raw data are collected from the manufacturing system; this data is analysed by data analytical technologies, 

combining the material attributes parameter and design information. It is uploaded to the cloud where more data will be integrated for discovering 

the energy consumption knowledge of AM systems. In addition, a case study is also presented in this paper, which the typical AM system is 

focused on the target system (EOS P700). The raw data is collected and analysed from this process. Then, based on the IoT framework, a novel 

energy consumption analysis proposal is proposed for this system specifically. 

 

© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction  

Nowadays, Industry 4.0 is not only a research and 

development slogan but is also an industrial and academic 

activities. Many industrial companies and research 

organizations have begun working on this far-sighted topic 

including various aspects [1; 2]. With more and more related 

publication of technologies, principles, and concepts, the 

achievement criteria of Industry 4.0 has become much clearer 

and more specific. A qualified Industry 4.0 manufacturing 

system needs necessary capabilities, like interoperability and 

consciousness. To achieve these capabilities, data is considered 

as being vitally important. It is the connecting media of the 

integration between different manufacturing objects and 

activities. Enabling technologies are included in manufacturing 

such as; the Internet of Things (IoT), Data Mining (DM), and 

Big Data (BD) [3]. With the development of digital 

manufacturing, the current manufacturing is settled in the big 

data environment. It is summarized as the great volume, various 

modalities, high velocity, and huge value data environment [4]. 

This big data is generated by both production processing and 

other manufacturing events such as product design, production 

planning, energy supply, marketing, and customers’ reviews 
[5]. In an industry 4.0 factory, the data is collected and 

tabulated, and valuable information can be extracted and used 

to improve processes.  

Although Industry 4.0 manufacturing is integrated, 

automated, predictive, and intelligent it has to be sustainable 

and renewable [6]. At present, industrial production activities 

use about 35% of the entire global electricity supply, which 

produces approximately 20% of total carbon emissions. In the 

last 20 years, there has been an increase of more than 50% in 

greenhouse gas emission is released by the top five 

manufacturing countries. The manufacturing sustainability has 

*Manuscript in PDF
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never escaped industry’s attention, and is also an indispensable 

research topic in the age of Industry 4.0. It is known that the 

energy efficiency of production process is normally below 30% 

[7]. Therefore, much industrial research has been paying close 

attention to energy consumption and its environmental and 

financial impact. Highly efficient energy usage can not only 

reduce production costs, and expand profit margins, but also 

solve associated environmental and social problems. In most 

manufacturing systems, energy consumption is part of essential 

standards to measure the benefits [8]. Additionally, during the 

past two decades, additive manufacturing (AM) machines are 

increasingly being employed, due to their digitalization, 

automation, flexibility, and customization, which are also 

becoming a popular production system in the modern industry. 

Comparing with the traditional manufacturing processing, the 

AM processing is a low energy efficiency system with a high 

production yield, especially selective laser sintering (SLS) and 

selective laser melting (SLM) [9]. The energy consumption of 

AM processing is influenced by many factors, and according to 

the Life Cycle Analysis (LCA) of SLS processing the energy 

consumption is the most important factor affecting 

environmental impact [10]. Reducing energy consumption of 

AM process is one of the necessary research targets for the 

manufacturing sustainability in the age of Industry 4.0. 

This paper tries to solve the industrial sustainability 

problems in the Industry 4.0 era, specifically, working out the 

energy consumption problem of AM processes by using IoT 

technology. In this research, current AM energy consumption 

analysis models and optimization methods will be discussed 

and refined in section 2. Section 3 presents an integrated IoT 

framework for AM energy consumption analysis including 

various layers and components. This method follows the 

Service Oriented Architecture (SOA) approach. It assists 

people in understanding the energy consumption behaviour, to 

predict the trends in energy usage and guides people to use 

energy efficiently. Section 4 deliveries a case study of the SLS 

system (EOS P700). The raw data is collected from process 

parameters and the data log files. After analysis of the 

correlation between the process environment and energy 

consumption, a particular IoT proposal of energy consumption 

will be proposed at the end of this section. Section 5 discusses 

the main function and future work of this research. 

2. Literature review of AM processes energy consumption 

Additive manufacturing processing is known as a complex 

system because of complicated material parameters, highly 

automated levels, and various types of processing technologies. 

Different processing technologies show different energy 

consumption performances. Table 1 shows the energy 

consumption comparison of three additive manufacturing 

technologies including SLS, SLM, and electron beam melting 

(EBM) in experimental measurement [11; 12; 13].  

From these experimental measurements, it is clear that the 

energy consumption has a large range. Even when testing on 

the same machine and with the same material, the results show 

a large variation in every experiment. That means the energy 

consumption of AM processing is challenging to analyse and 

optimise. Many researchers have shown that energy 

consumption of AM processing is caused by many different 

components and impacted by numerous attributes. 

Table 1. Energy consumption comparison between different AM processes. 

AM 

Technology 

Energy 

consumption 

rate 

Experiment 

material  

Experiment 

machine 

EBM [11] 61.20 to 

176.67 MJ/kg 

Ti-6Al-4V Arcam A1 

SLM [12] 96.82to 139.50 

MJ/kg 

SAE 316L MMT SLM250 /         

EOSINT P760 

SLS [13] 52.20 to 

129.73 MJ/kg 

Polyamide HiQ+HS / EOSINT 

P390 

Fig.1 displays a schematic layout of the SLS process which 

is one of the most important and commercial AM processes 

currently in use. In Fig.1, it is seen that the system consists of 

many different types of power usage [10; 13].  There are several 

energy consumers in each power usage, which are also 

demonstrated in Fig.1. The heating system, consisting of frame 

heating, platform heating, and process chamber heating, is 

responsible for the major of energy consumed in this process. 

In addition, the laser units, scanner, and laser cooling system 

are three main power components in the laser system, with the 

laser cooling system consuming the most of energy in this 

subsystem. The main energy usages of the build platform 

system are driving the motors. Feed and recycle system 

includes the material and inert gas feed and recycle process. 

There are controllers, electrical elements, and sensors 

supporting the system controlling and monitoring functions in 

such an SLS system, which are also a main part of energy 

consumers [12].  

Laser System

F
eed

 &
 R

ecy
cle S

y
stem

 

Powder spreading roller 
motor, Powder bed motor etc.

Build platform 

System

Heating System

Frame heating, Platform 
heating, Process chamber 
heating, etc.

Material feed & recycle, inert 
gas support & recycle, etc.

PC controller, sensors, etc.

Miscellaneous

Laser units, 
Scanner,  Laser 
cooling etc.

Fig. 1. Main power drains of SLS process adopted from [14]. 

However, it does not mean these factors related to this 

system are the only impact elements. Built on the understanding 

of system and manufacturing experiments, a lot of research 

indicates relationships between energy consumption and 

various processing attributes of AM processes. Table 2 presents 

the processing, design, material attributes relating to the energy 

consumption of AM processing in literature. 

In their works, models are built for predicting energy 

consumption in AM processes. However, the impact is varied 

because there are many correlations. It is hard to identify all 
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related attributes of AM process energy consumption from 

current research. Therefore, energy consumption in AM 

processes is known as a complicated model to analyse [14]. 

More data collected from the process, design, material, 

environment, and any related activities, and factors the more 

accurate an energy consumption model can be built. Nowadays, 

the manufacturing is facing the next industrial revolution, it can 

collect greater amounts of data from the entire manufacturing 

system [15]. With this valuable data, the behaviour of energy 

consumption in AM processes is predictable. The efficient 

energy use decision can be made by intelligent systems. In the 

next section, an IoT framework for energy consumption is 

going to be presented for AM processes. 

Table 2. Energy consumption related attributes in literature.  

Literature Processing attributes Design attributes Material 

attributes 

Sreenivasan 

and Bourell 

[13] 

Scan speed, laser 

power rate, build 

platform size 

Nil Material 

density 

Paul and 

Anand [9] 

Layer thickness, laser 

beam radius, scan 

speed, laser power 

Part orientation Absorptivity 

powder 

Watson and 

Taminger [16] 

Feedstock & 

recycling transported 

distance, build 

platform size 

Volume of 

deposited 

material 

Nil 

Telenko and 

Speeperad [17] 

Nil Z-height Material 

density 

Baumers      et 

al. [11] 

Processing 

procedures, build time 

Part geometry, 

Z-height, 

capacity 

utilization 

Nil 

3. An Internet of Things framework of energy 

consumption for additive manufacturing system  

In the age of Industry 4.0, interoperability is one of the most 

important and essential capabilities and design principles. To 

achieve the integrated function, the IoT technology has become 

one of the best solutions, generate horizontal integration, end-

to-end digital integration, and vertical integration in 

manufacturing systems [5]. In this interoperable manufacturing 

environment, an AM system is also integrated. The production 

design, operators, and materials statement are integrated with 

AM machine to generate a new processing model. In this 

model, plenty of data is collected, where information and 

knowledge can be discovered. In addition, it is known that the 

life-cycle management and energy sustainability management 

are two basic business services in Industry 4.0, and this 

integration not only focuses on the improvement of 

manufacturing production but also engages in the industrial 

enterprise management [18; 6]. Therefore, the Service Oriented 

Architecture (SOA) approach is the main design principle for 

this AM energy consumption analysis modeling. Based on this 

design principle an IoT framework is designed which is shown 

in Fig.2 [19].  

In this framework, there are four layers, which are: the 

Process execution layer, the Data integration layer, the 

Information and Knowledge generation layer, and the 

Application performance layer. These four layers are linked 

together closely, and each layer consists of several 

components.   

Virtual PlatformVirtual Platform

Data integration layerData integration layer

Local data integration sectionLocal data integration section
Cloud data integration sectionCloud data integration section

Information and  Knowledge generation layerInformation and  Knowledge generation layer

Physical PlatformPhysical Platform

Process execution layerProcess execution layer

Interactive PlatformInteractive Platform

Application performance layerApplication performance layer

operator orientated applicationsoperator orientated applications Enterprise orientated applicationsEnterprise orientated applicationsprocess orientated applicationsprocess orientated applications

Local database

Related data

Cloud database Social data

Data statistic Data mining

Selected data

Machine learning MapReduceDeep learning

Selected data

Identify 

components

AM processMaterials Sensors Controller
Designers

Operator

Working 

environment

Interface

Feedback 

control

Decision 

make

Energy usage 

behaviour

Life-cycle 

analysis
Usage predictDesign 

suggestion

Raw data

Information and knowledge

Fig.2. Internet of Things framework of energy consumption analysis 

3.1. Process execution layer 

The Process execution layer is known as the production 

status and processing environmental condition where the target 

AM system, materials, operators, products, and other 

environmental factors are included. In this layer, the AM 

system and other associated physical objects carry the most 

relevant data invisibly. With different sensors and components, 

these invisible data sets are extracted [20]. However, on this 

layer, the digital data sets are only created, which means they 

tend to be unreadable, being represented as massive and 

meaningless strings of numbers. The AM system is the main 

object of this research, as the majority of energy is consumed 

by it. Most current AM systems have embedded sensors in 

them obtaining various processing data collected during 

operation. Parts of the data can be related to the system energy 

consumption. In addition, some factors on this layer may be 

invisible because integrated sensors are not collecting 

information associated energy consumption [21]. The selection 

method is one of the main functions of the Data integration 

layer, which will be discussed later. 

3.2. Data integration layer 

Data integration layer is simply divided into two parts, the 

local integration section, and cloud integration section. In the 

local data integration section, the data generated from the 

Process execution layer is collected and stored in the local 

database. It is known that only a part of the data is related to 

energy consumption, which means any other data collection 

would be a waste of resources within the scope of this research. 
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Therefore, selecting the associated attributes data integrating 

with another data becomes necessary. Fig.3 shows related 

attributes data selection diagram. When a new attribute is 

considered to start on a new data set analysis, the example data 

set should be tested at first, by matching the example data with 

the total energy consumption. If the result shows a relationship, 

this attribute data will be marked as the related data. Otherwise, 

the example data set will be compared with other existing 

related attributes data. When the new example data set shows 

an association with existing related data. This additional data 

type is added to the database. Another part of this layer is the 

cloud integration section, where the local database uploads the 

related energy consumption data to the Cloud [22]. In the cloud, 

data from different machines, systems, and production 

processing are integrated. The Direct Attached Storage (DAS), 

Network Attached Storage (NAS), and distributed storage 

system are considered as the main storage solution models [4]. 

 

Collect  example data Collect  example data New AttributeNew Attribute

Compare with total energy consumptionCompare with total energy consumption

Related with 

total  energy consumption

Start to collect all this 

attribute data  and stored into 

database 

Start to collect all this 

attribute data  and stored into 

database 

Compare with other related attributesCompare with other related attributes

Related with 

other related attributes

Mark as no-related attributeMark as no-related attribute

Mark as a related attributeMark as a related attribute

NO

NO

YES

YES

Fig.3. Related attributes data selection 

3.3. Information and Knowledge generation layer 

Due to the different data resources, local database and the 

cloud, there are two types of information and knowledge 

generated from this layer. With local data resources, the 

relationship between system energy consumption and related 

attributes can be found. The energy usage behaviour is 

discovered depending on various situations. The trend line of 

energy consumption is also depicted, which delivers the energy 

usage prediction of the AM system. This information is 

integrated together with the generation of local processing 

knowledge. It can assist people in predicting energy usage of 

the system, and making the decisions. The application will be 

discussed later in the Application performance layer. With the 

data from the cloud, theoretically, information and knowledge 

are more diverse and accurate. In addition, the information and 

knowledge can be shared on the cloud which contributes to all 

people using the cloud. On this layer, various data analytics 

technologies are used. For local information and knowledge 

generation, data mining is the core technology; it is used to 

discover information and knowledge for future processes 

storage. Prior knowledge is working with some machine 

learning algorithms makes raw local data present its valuable 

potential. The cloud information and knowledge generation 

come under the big data environment. The main methods of big 

data analysis are bloom filter, hashing, index, trial and parallel 

computing, of which the MapReduce is one of the most popular 

parallel computing methods [23]. 

3.4. Application performance layer  

On the Application performance layer, the information, and 

knowledge, discovered from Information and Knowledge 

generation layer, are displayed as different implementations. 

The performance can be divided into three sections: the Process 

orientated applications, the Operator orientated applications, 

and the Enterprise orientated applications based on differently 

oriented objects. In the section of process orientated 

applications, AM processing receives the feedback controlling 

signals, which then changes the settings of the relevant 

parameters for reducing the energy consumption. These 

decisions change parameter are made by the IoT framework 

relying on the information and knowledge that analysed from 

the preceding layer. Operators are able to obtain the system 

energy consumption behaviour from the production energy 

recorded, and by predicting the future energy use. The 

information will be presented to them virtually and graphically; 

which can guide operators to utilize the system economically. 

In addition, they can also receive production design suggestion 

for improving the design. The enterprise manager is more 

interested in the system life-cycle analysis and energy 

sustainability analysis which can also be delivered to this layer.  

This IoT framework focuses on AM process energy 

consumption which creates a new method of energy 

consumption analysis in the age of Industry 4.0. This 

framework involves numerous related factors which integrate 

different attributes within the data and cloud-based database. 

Benefits from the data mining and big data analysis technology. 

Valuable information and knowledge about AM process energy 

consumption are generated and presented to people 

intelligently and some decisions are made by framework and 

control system automatically. This IoT framework is able to 

match Industry 4.0 required capabilities, which is regarded as 

an application of Industry 4.0 [3].  

4. Case study 

Recently, the SLS processing has become a mainstream AM 

processes, in which the powdered material is sintered by laser. 

EOS P700 is one of the popular ongoing SLS machines, which 

has a maximum build envelope size for 740* 400* 590mm (x, 

y, and z). This machine consists of two 50W CO2 lasers which 

sinter the material of PA2200 and PA3200GF.  The PA2200 is 

the original polyamide-12 without any fillers, and the PA 

3200GF contains 40% glass beads for enhancing stiffness. 

According to the discussion in section 2, this machine includes 

several main energy consumers built as different power 

parameters such as; the chamber heating built by four heaters 

on four sides (2*1.65kw and 2*0.8kw), four heaters of frame 

heating (2*1.22kw and 2*630kw), platform heater (1*1.5kw), 

cooling system (1*1.3kw), and so on [24].  

In the production processing of this machine, some 

parameters are pre-set and monitored. Part of the data can be 
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seen from the machine data log. Table 3a shows the process 

parameters setting for the EOS P700 system which normally is 

fixed for one production process. Table 3b shows part of the 

monitoring data log received from the machine sensors in real 

time. However, other data is generated by embedded sensors in 

this machine. This data can be viewed with the process 

software (EOS PSW 3.1), which is not collected in the data log 

[25].  

Table 3a.  EOS P700 process parameters setting. 

Process parameters Values  

Material PA2200 

Layer thickness  0.15 (mm) 

Scan spacing 0.3 (mm) 

Scan speed 3000 (mm/s) 

Laser power  2*50(W) 

Build bed heater power 5000 (W) 

Build bed heater power limitation  70 (%) 

Build bed temperature set point 176.5 (°C) 

Table 3b. Part of the process log file. 

Layer 

Number 

Platform 

temperature 

(°C) 

Heat 

power 

(W) 

Hold 

power 

(W) 

Last exposure 

duration (s) 

560 173.2 1420 700 34.2 

561 173.2 1440 700 34.2 

562 173.0 1445 720 34.2 

563 173.0 1470 725 34.7 

564 173.0 1420 725 34.5 

565 173.0 1445 720 35.0 

566  173.2 1410 710 35.2 

567 173.2 1425 720 35.4 

From table 3a and 3b, the varieties of data which is capable 

of being collected from EOS P700 are clear. Being Compared 

to Table 2, it is obvious that the collected data attributes from 

the EOS P700 data log files are less than the energy 

consumption related attributes in literature. Therefore, to 

analyse the energy consumption, in this case, various related 

attributes need to be collected. The Fig.3 shows correlations 

between the process environment and energy consumption. 

 

Fig. 3. Correlations between process environment and energy consumption. 

From Fig. 3, the undefined information shows attributes of 

data which have not been collected due to embedded sensor 

limitation. In the current state, it is hard to accurately analyse 

the energy consumption of this process. However, based on the 

IoT framework, a more completed energy consumption 

analysis proposal can be generated; following steps for the EOS 

P700 process; 

 Steps 1. Expand necessary hardware components. In this 

research, the energy monitoring component is the intuitive 

equipment. A communicable digital power meter is going to 

be used for monitoring the EOS P700 total energy 

consumption. Relying on the user manual, the supply 

voltage of this machine is 3*400V, and the maximum power 

is about 12kw [24]. The power meter is chosen due to these 

parameters. This equipment is understood to be one of the 

essential monitoring components for this research, it is not 

necessary to add the additional components for every power 

using system of the process. In addition, for combining the 

material data, the RFID system is another necessary 

component in this research, which includes tags and readers 

[26]. Considering this particular process with the IoT 

platform, there is plenty of data generated from the process 

execution layer. Currently, most of the data has not been 

applied to any functional analysis, and becomes a waste 

resource.   

 Step 2.  Integrate related data.  In this step, the collected 

data is selected by the related attributes selection method as 

mentioned in section 2. All monitoring data of EOS P700 is 

displayed on the EOS PSW 3.1 software, such as the 

hatching data, laser data, and so on. Only part of this data is 

printed in the data log, and valuable data has not been 

collected for analysis. All this data will be collected and 

stored in the local database which includes materials and 

order data, product design data, predefined process data, and 

real-time monitoring data. These selected data ranges will 

be uploaded to the cloud database, combining with public 

data and data from other SLS machines for later analysis.  

 Step 3. Discover research information. Energy 

consumption associated information is discovered from the 

integrated data in data analysis methods and algorithms. The 

selection of methods and algorithms is based on the features 

of the integrated data. In the case of EOS P700, for the basic 

data statistical analysis is applied as the pre-investigation for 

finding out the data features. Then, data mining technology 

is used for local data analysis as the fundamental data 

analysis method, WEKA 3.8 is used as the main data mining 

software. Meanwhile, cloud computing technologies are 

applied for cloud data analysis on IBM Cloud.   

 Step 4. Delivery and presenting the results. Without a 

graphical or visual display, the results produced by data 

statistics analysis, data mining and cloud computing will 

rarely be used by operators or designers. Three displaying 

modes are applied in this case. Firstly, the energy 

consumption status, behaviour, and prediction information 

are displayed as real-time figures showing on the screen for 

the machine operators. The product design suggestions 

which can reduce process energy consumption are presented 

to designers directly when they design similar products. 

Secondly, the machine life cycle information and energy 

consumption knowledge is sent to the system managers for 

improving enterprise cost and sustainability management. 

Finally, the defined energy reduction control signals are set 

as the input to processing control system. A selection of pre-

defined algorithms will process the information to produce 
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and optimise each build; the power reducing element will be 

the primary position in the algorithms.          

These four steps will apply the EOS P700 into the IoT 

platform, which not only obtains the energy consumption 

analysis of the process but also achieves the requirements of 

Industry 4.0.     

5. Discussion and closing remarks 

Using this IoT framework, energy consumption of AM 

process is going to be identified and predicted, which assists 

AM engineers, researchers and enterprise managers in solving 

the energy problem of the process. In the era of Industry 4.0, 

AM processes are necessary for the whole manufacturing 

production industry.  With the huge volume of production, 

energy consumption is an unavoidable issue for this process. It 

is an indispensable component of the power source reduction, 

environment protection, and process life cycle analysis. 

Current AM energy consumption analysis methods are 

reviewed in section 2. These methods, hardly obtain accurate 

results because the energy consumption problem is a multi-

attribute convergence problem. The Industry 4.0 solution is 

designed for solving this type of problem. This paper generates 

a service orientated IoT framework focusing on the energy 

consumption in the AM process for reducing the power usage 

during production. This IoT framework collects, integrates, and 

analyse data from the entire production environment, and the 

discovered information, knowledge, and analysed results are 

shown intelligently to different processing participants 

dependent upon their roles in the system; which is proposed as 

an Industry 4.0 solution. The EOS P700 is applied to the IoT 

framework as a case study for proving that the current AM 

processes lack sufficient energy consumption analysis. It 

means that much-related works need to be planned and finished 

in future. A feasible proposal, building the EOS P700 energy 

consumption IoT framework, outlines the method which will 

be done. Most results have not been received yet in this 

research, which the proposal will be acted following the plan. 

As the final target of this research, it is going to achieve the 

requirement of Industry 4.0 when the proposal is finished.  
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