

ORCA - Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/102148/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Cotton, Laura J., Janssen, Arie W., Pearson, Paul N. and Van Driel, Rens 2017. Pteropoda (Mollusca, Gastropoda, Thecosomata) from the Eocene/Oligocene boundary interval of three cored boreholes in southern coastal Tanzania and their response to the global cooling event. Palaeontologia Electronica 20 (3), pp. 1-21.

Publishers page: http://palaeo-electronica.org/content/pdfs/733.pdf

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

1	This is an incomplete preprint of a paper in press with Palaeontologia Electronica and
2	should not be used or cited. It will be replaced by the published open access version in
3	due course
4	
5	
6	
7	Pteropoda (Mollusca, Gastropoda, Thecosomata) from the Eocene/Oligocene boundary
8	interval of three cored boreholes in southern coastal Tanzania and their response to the
9	global cooling event
10	
11	Key words: planktic Gastropoda, Altaspiratella, Heliconoides, Limacina, Bovicornu, new
12	species, geographical distribution, vertical ranges, Eocene-Oligocene transition (EOT)
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	

24	
24	
25	
26	
27	
28	
29	
30	Laura J. Cotton
31	Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; present
32	address: Florida Museum of Natural History, 1659 Museum Road, University of Florida,
33	Gainesville, FL 32611, U.S.A and Department of Geological Sciences, University of
34	Florida, 241 Williamson Hall, Gainesville, FL32611, U.S.A .; lcotton@flmnh.ufl.edu
35	
36	Arie W. Janssen (corresponding author)
37	Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands;
38	ariewjanssen@gmail.com
39	
40	Paul N. Pearson
41	Department of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place,
42	Cardiff. CF10 3AT, United Kingdom; PearsonP@cardiff.ac.uk
43	
44	Rens van Driel
45	Buys Ballotsingel 85A, 3112 JD, Schiedam, The Netherlands; rensvdriel@gmail.com
46	

ABSTRACT The Eocene - Oligocene Transition was a period of major climatic and oceanographic change, resulting in widespread biotic overturning. However, the record of many marine organisms remains patchy. Planktic Mollusca (Pteropoda) from three cored boreholes spanning the Eocene/Oligocene boundary (EOB) in southern coastal Tanzania are represented by eight species, three of which are introduced as new: Heliconoides nikkieae sp. nov., Limacina tanzaniaensis sp. nov. and Limacina timi sp. nov. Three of the other species can only be identified in open nomenclature. The two most commonly occurring species, H. nikkieae and L. timi, straddle the EOB without noticeable loss in abundance. Two species, Limacina robusta (Eames, 1952) and L. tanzaniaensis disappear before the EOB. The species Bovicornu aff. eocenense Meyer, 1886 disappears shortly after the EOB. Two species were only found in a single sample each, in the Eocene part of the succession. Response to changing environmental conditions seems to be demonstrated by two or three of the pteropod species only that become extinct before or shortly after the EOB.

Plain Language Summary A major cooling event took place between 33.5 and 34 Ma, known as the Eocene-Oligocene transition (EOT). The response of many marine micro-biota, such as foraminifera, has been well documented, however, records of other marine organisms, such as pteropods, are less well-known. Pteropods are planktic gastropods which spend their life in the water column, and are sensitive to changes in the ocean environment. Here we describe the assemblage and ranges of well-preserved pteropods though the EOT from three borehole records from Tanzania, an exceptionally understudied region. In total eight species were found in this material, three of which are new. The two most common species pass through the climatic event with no noticeable change in abundance. Three other species disappear during the transition, at a level similar to the planktic extinctions. The remaining species are too few to comment on. This demonstrates a likely response to the changing conditions, similar to some foraminiferal groups. Despite the small sample sizes, this study represents an important new record from an understudied region.

INTRODUCTION

94	The Eocene-Oligocene transition (EOT) was one of the most dramatic events of the
95	Cenozoic, associated with major climatic disruption and widespread biotic turnover in
96	both marine and terrestrial realms (see Coxall and Pearson, 2007 for review). High-
97	resolution studies of the marine response have been carried out using planktic and benthic
98	foraminifera, and nanno-fossils (e.g. Zachos et al., 1994; Molina et al., 1993; Diester-
99	Haass et al., 2001; Lui et al., 2004; Wade and Pearson, 2008; Cotton and Pearson, 2011;
100	Cotton et al., 2014). However, records of other marine groups are often patchy. Pteropods
101	are planktic gastropods and are increasingly being used in studies of recent ocean records
102	and climate change (Fabry, 1990; Wall-Palmer et al., 2012; Bednaršek and Ohman, 2015;
103	references therein). Their aragonitic shells are susceptible to dissolution, making them
104	excellent model organisms to study ocean acidification. However, palaeoecological data
105	for older pteropod records are relatively uncommon, yet may add important information
106	to the overall understanding of climatic impacts in the marine realm. Pteropods have a
107	well-documented fossil record, but many regions remain understudied, and early well-
108	preserved records are therefore exceptionally important (e.g., Janssen et al., 2016).
109	The Eocene-Oligocene Transition (EOT) is an extended period of global oceanographic
110	and climatic perturbation spanning between 33.5 - 34 Ma. The Eocene/Oligocene
111	Boundary (EOB) is defined by the last occurrence of the planktic foraminiferal family
112	Hantkeninidae at the Global Boundary Stratotype-Section and Point (GSSP) at
113	Massignano, near Ancona, on the Italian Adriatic coast (Premoli Silva and Jenkins, 1993)
114	which occurs at 33.7 Ma on the timescale of Cande and Kent (1995). However, an
115	unreliable magnetostratigraphy and stable-isotope stratigraphy (Bodiselitsch et al., 2004)

and lack of carbonate (macro)fossils (pers. observ. AWJ, August 1992) in the Massignano 116 section prevented global correlation with climatic events. The additional fact that the 117 occurrence of Hantkeninidae is mostly restricted to tropical and sub-tropical 118 119 environments also made long-distance correlations (e.g., to the North Sea Basin and in 120 particular to the Priabonian stratotype) problematic. Subsequent studies of Deep Sea Drilling Project Site 522, showed that the extinction preceded the most positive oxygen 121 122 isotopes of the EOT, representing the Early Oligocene Glacial Maximum (Zachos et al., 1994; Liu et al., 2004). More recently this has been further refined. 123 124 The Kilwa District in southern Tanzania contains an apparently complete succession 125 through the EOT, which was recovered by three Tanzanian Drilling Project boreholes (TDP 11, 12 and 17; Nicholas et al., 2006; Pearson et al., 2008). The dominant lithology 126 127 consists of hemipelagic clays interspersed with debris flow limestones (Nicholas et al. 2006). These clays contain exceptionally well preserved calcareous micro- and 128 nannofossils, including aragonitic preservation (Pearson et al., 2008; Wade and Pearson, 129 130 2008; Bown et al., 2008). This, coupled with the expanded nature of the sediments allowed for high resolution stratigraphy chemo-and biostratigraphy to be carried out and 131 132 precise correlation to global records. This placed, for the first time, the extinction of the Hantkeninidae between the two positive isotope shifts of the transition (Pearson et al., 133 2008; Wade and Pearson, 2008); the first of which is attributed to temperature change and 134 the second largely to ice-volume (Lear et al., 2008). In addition, the site contains many 135 other exceptionally well-preserved calcareous micro-fossils, including larger benthic 136 foraminifera (Cotton and Pearson, 2011), bryozoans (Martino et al., 2017), 137 dasycladaceae, ostracodes and molluscs, including pteropods (Cotton et al., in prep), 138

making Tanzania an exceptionally important site for the study of comparatively less ubiquitous fossils across the EOT. Studies of the molluscan record have shown that 140 overall numbers of mollusc shells increase across the boundary (Cotton et al., in prep), 141 142 however, this study mainly examined the benthic forms. Here we present a detailed record 143 of occurrences through the EOT interval and taxonomy of specifically the pteropod fauna from TDP 11, 12 and 17 (see Nicholas et al. 2006; Cotton and Pearson, 2011, for details on these boreholes). Though relatively few specimens were found due to the small sample size, the often excellent preservation and well-correlated nature of the record offers a unique insight into a region where no pteropod records were previously known.

139

144

145

146

147

148

149

Commented [LC1]: Not sure what these refs relate to AWJ: tried to make that a bit more clear

MATERIAL AND METHODS

150 The Tanzania Drilling Project (TDP) was initiated in 2002 (Pearson et al., 2004; Nicholas et al., 2006, 2007) after preliminary field observations beginning in 1998 151 152 (Pearson et al., 2001) on numerous outcrops between the towns of Kilwa and Lindi, 153 southern Tanzania, had demonstrated the presence of well-preserved microfossil assemblages of Cretaceous to Paleogene age. The TDP focused on generating litho- and 154 155 biostratigraphic, geochemical, micropalaeontological and palaeoclimatic records, and resulted in recovery of over 40 cored boreholes, covering Cretaceous (Aptian) to 156 157 Paleogene (Oligocene) sediments (Pearson et al., 2004, 2006; Nicholas et al., 2006; Jiminez-Berrucoso et al., 2010, 2012, 2015). These sediments are formally defined as the 158 Kilwa Group and were initially subdivided into four formations: The Nangurukuru, 159 Kivinje, Masoko and Pande formations (Nicholas et al., 2006), to which a fifth was 160 recently added, the Lindi formation (Jiminez-Berrucoso et al., 2015). The Pande 161

Formation contains an apparently conformable succession through the EOT and was 162 recovered in three boreholes drilled approximately along strike of each other (Figure 1): 163 164 TDP 11: South of Stakishari (Tanzania, Kilwa region), coordinates UTM 37L 560250 165 8983211; pteropod specimens are available from four samples TDP11.26.2, 64-74 cm, to 166 TDP11.33.2, 74-84 cm. 167 168 169 TDP 12: South of Stakishari (Tanzania, Kilwa region), coordinates UTM 37L 560222 8981309; pteropods are available from 16 samples TDP12.11.4, 20-26 cm, to TDP12.29.2, 170 171 20-30 cm. 172 173 TDP 17: Stakishari (Tanzania, Kilwa region), coordinates UTM 37L 560539 8984483; 174 pteropod specimens available from 36 samples 17.15.1, 50-63 cm, to 17.41.3, 0-15 cm.

Figure 1. Location and geological map of the Tanzanian Drilling Project

178

179

180

181

182

183

186

187

188

189

Eocene/Oligocene boundary sites (TDP 11, 12 and 17), additional Tanzanian Drilling Project sites in the area are also shown, modified from Nicholas *et al.* (2006). After Cotton and Pearson, (2011).

Based on micropalaeontological event correlations the three sections were given "composite depths" to enable direct comparison of results between the three sites (Pearson *et al.*, 2008).

These composite depths are specified in the distribution tables following the systematical part..

The meters added are, for TDP 17 cores 1-35: 0 m; for TDP17 cores 36-42: 12 m; for

TDP11 cores 1-28: 17 m, and for TDP11 cores 29-36: 20 m.

The Eocene Tanzanian shelf is thought to have been narrow, much like today, and the three

boreholes are estimated to be approximately 50 km from the palaeo-shoreline (Kent et al.,

190	1971; Nicholas et al., 2006, 2007). Based on the sedimentary facies and smaller benthic
191	foraminiferal assemblage the palaeo-depth is estimated to be approximately 300-500 m,
192	although it is possible it is deeper than this (Nicholas et al., 2006; 2007). The dominant
193	sediment is dark green-grey clay with < 10% CaCO _{3.}
194	The half-round core-samples of the hemi-pelagic clays, varying in length from 1.5 to 15 cm, $$
195	were washed through a 63 μ m sieve and the residues dried (Lear <i>et al.</i> , 2008; Pearson <i>et al.</i> ,
196	2008; Wade and Pearson, 2008). Pteropods were then picked using a paintbrush under a
197	binocular microscope.
198	The Kilwa Group is characterised by excellent preservation of its carbonate microfossils,
199	this extends to the pteropods, which is related to the high clay content and shallow
200	maximum burial depth (Pearson et al., 2001; Van Dongen et al., 2006; Bown et al.,
201	2008). However, the condition of pteropod specimens varies from perfect shell
202	preservation to shells filled with pyrite and specimens preserved as pyritic internal
203	moulds with partly or completely dissolved aragonitic shell material. Local dissolution
204	may be related to pyritisation. Some specimens are badly deteriorated and indeterminate.
205	Specimens are housed in the fossil holoplanktic mollusc collection of Naturalis
206	Biodiversity Center, Leiden (The Netherlands), registered with RGM-registration
207	numbers.
208	
209	Scanning electron microscopy
210	SEM micrographs were made by Renate Helwerda from uncoated specimens at $1.000~\mathrm{kv}$
211	with a Jeol Field emission scanning electron microscope type: JSM-7600F at Naturalis
212	Biodiversity Center, Leiden, The Netherlands.

213	
214	Micro - Computed Tomography
215	Micro-computed tomography (Micro-CT or X-ray microtomography) scanning of the
216	three holotypes (RGM 777415a, RGM 777428b and RGM 1007748b) was carried out by
217	Dirk van der Marel, of Naturalis Biodiversity Center in Leiden, the Netherlands, using a
218	Bruker SkyScan 1172 micro-CT scanner. 1601 projections of 3 -15 sec exposure were
219	collected with a 2000x1336 detector, using a source voltage of between 80 and 140 kV.
220	No filtration was used, and the scan provided a reconstructed dataset with 0.8 – 1.4 μm
221	voxels.
222	The pteropod shells were segmented in Avizo 9.0.0. and surface files exported as .wrl.
223	The files were subsequently edited in Meshlab 1.3.3. Laplacian smoothing was applied
224	and Quadric Edge collapse Decimation used, reducing the polygon count by
225	approximately a factor of 10. Files were saved as .ply and u3d for viewing as three
226	dimensional PDFs.
227	
228	SYSTEMATICS (AWJ)
229	Phylum MOLLUSCA Linnaeus, 1758
230	Class GASTROPODA Cuvier, 1795
231	Subclass HETEROBRANCHIA Burmeister, 1837
232	Superorder PTEROPODA Cuvier, 1804
233	Order THECOSOMATA de Blainville, 1824
234	Suborder EUTHECOSOMATA Meisenheimer, 1905

Superfamily LIMACINOIDEA Gray, 1847

235

Commented [LC2]: Do we need to remove this as suggested by the editors comments?

A WJ: No, that would be quite unusual.

236	Family LIMACINIDAE Gray, 1847
237	Genus ALTASPIRATELLA Korobkov, 1966 (= Plotophysops Curry, 1982)
238	
239	Type species "Limacina elongatoides" [sic] (Aldrich), by original designation of
240	Korobkov (1966, p. 74) = <i>Physa elongatoidea</i> Aldrich, 1887 = <i>Altaspiratella</i>
241	elongatoidea (Aldrich, 1887) (Eocene, early Ypresian, Wilcox Group, Hatchetigbee
242	Formation, Bashi Member; zone NP 10).
243	
244	
245	Altaspiratella bearnensis (Curry, 1982)
246	Figure 2.1-2
247	
248	*v 1982 Plotophysops bearnensis Curry, p. 40, pl. 1, figure 9a-c.
249	v. (1986) Spiratella tutelina Curr. – Merle, p. 43 (non Curry).
250	v. 1990b Altaspiratella bearnensis (Curry 1981) – Janssen, p. 68.
251	? 1992 Altaspiratella bearnensis (Curry) – Hodgkinson et al., p. 13, pl. 1, figures 1,
252	2.
253	. (1996) Altaspiratella bearnensis (Curry, 1981) – Kunz, p. 164, pl. 30, figures. 1-3.
254	v. 2010 Altaspiratella bearensis (Curry, 1982) - Cahuzac and Janssen, p. 24, pl. 2,
255	figures 1-4, pl. 3, figure 1.
256	v. 2013 Altaspiratella bearnensis - King et al., pp. 192, 193.

Figure 2. Altaspiratella bearnensis (Curry, 1982); RGM 777374. TDP 12.28.1, 66-76

260 cm; 1: apical view, 2: apertural view. Bar = $100 \mu m$.

261

262 *Material examined.* – TDP 12.28.1, 66-76 cm, depth 90.91-91.01 m below surface,

263 composite depth 148.91-149.01 m (Table 2); RGM 777374 (1 specimen, Fig. 2.1-2, H =

264 1.36, W = 0.80 mm).

265

267

268

269

266 Description. – Only available specimen with high conical shell, 1.7 times higher than

wide, and apical angle of $\it c$. 40° . Four and a half slightly convex and comparatively high

whorls, regularly increasing in diameter and separated by incised, oblique suture. Whorls

attach below periphery of preceding whorl. Specimen incomplete, last whorl missing, in

shell preservation, but filled with pyrite.

271272

Discussion. – Two closely resembling Altaspiratella species are currently known.

273 Altaspiratella elongatoidea (Aldrich, 1887) occurred during the earliest Eocene

274 (Ypresian, nannoplankton zones NP 9 and 10) of the USA (Hodgkinson et al., 1992;

Janssen et al., in review); A. bearnensis (Curry, 1982), introduced from the Ypresian

276	(zone NP 12/13) of SW France, is also known from the USA (with some doubt) in rocks
277	of middle Eocene, Lutetian age (zone NP 15). These two species differ only very slightly
278	in the proportions of their early whorls. Of A. elongatoidea no specimens preserving
279	apertural structures are known, so there might be differences in that respect as well.
280	In the single available specimen from Tanzania apertural structures are missing and its
281	apical whorls take a position in between the two known species mentioned above. This
282	could be an indication that these two taxa represent a single, long-ranging species.
283	However, as long as apertural structures cannot be compared it seems better to keep them
284	apart and the one available Tanzanian specimen is here considered, for the time being, to
285	be the youngest representative of the A. elongatoidea - A. bearnensis lineage. The
286	specimen extends the vertical range to the Priabonian (Zones P 16-17, NP 19-20;
287	Nicholas et al., 2006, figure 16).
288	
289	Genus HELICONOIDES d'Orbigny, 1835
290	
291	Type species Atlanta inflata d'Orbigny, 1834, by subsequent designation of
292	Herrmannsen (1846, p. 514) = <i>Heliconoides inflatus</i> (d'Orbigny, 1834) (Recent).
293	
294	Heliconoides nikkieae sp. nov.
295	Figures 3.1-5; 4
296	
297	Type material. – Holotype RGM 777415a (Fig. 3.1); paratypes1-2, RGM 777415b-c
298	(Figures 3.3, 3-5) from the type locality. Kilwa Group, Pande Formation (upper Eocene,

Priabonian), biozones P 18 and NP 21; paratype 3, RGM 777 381 (Fig. 3-4), from TDP

300 17.21.1, 9-20 cm, Kilwa Group, Pande Formation (early Oligocene, Rupelian), biozones

301 P18 and NP 21.

302

303

299

Figure 3. Heliconoides nikkieae sp. nov.; 1: Holotype, RGM 777415a, apertural view;

2: apertural view, specimen lost; 3: **paratype 1**, RGM 777415b, umbilical view; 4:

paratype 3, RGM 777 381, umbilical view; 5: paratype 2, RGM 777415c, apical view.

306 Figures 3-1, -2, -3 and -5 from the type locality, TDP 17.36.1, 10-25 cm; Figure 3-4 from

307 TDP 17.21.1, 9-20 cm. Bar = $100 \mu m$.

308

309 310

Figure 4. Heliconoides nikkieae sp. nov.; holotype, RGM 777415a, 3dPDF.

Additional specimens. – TDP 11 (2 specimens), 12 (1 specimen) and 17 (49 specimens, 312 some of which with a query because of poor preservation) (Tables 1-3). 313 314 Type locality. - Stakishari (Tanzania, Kilwa region), cored borehole TDP 17, sample 315 316 17.36.1, 10-25 cm, 104.00-104.10 m below surface, composite depth 116.00-116.10 m. 317 Etymology. - Named after Nikkie Elert, the author's second granddaughter. At age six she 318 is, in many respects, more up-grown than many grown-ups. Heliconoides gender 319 320 masculine (ICZN 1992, art. 30.1.4.4). 321 Diagnosis. – Very small limacinid of 2.5 whorls in low-conical spiral, about as high as 322 323 wide, with large aperture, apertural margin externally thickened and internally doubled in 324 some specimens (Figure 3-2), basal margin with denticle. Apertural margin preceded by about ten fine, margin parallel riblets. 325 326 Description. - Strikingly small limacinid of 2.5 whorls, height/width-ratio variable 327 between c. 1.19 (holotype H = 0.62, W = 0.52 mm, Figure 3-1) and 0.89 (e.g., H = 0.50, 328 W = 0.56 mm, Figure 3-2), with depressed, low conical spire and distinct, incised suture. 329 330 Shell surface smooth and shiny, growth lines invisible. Last whorl large, occupying almost entire shell height. Aperture relatively large, slightly higher than wide to almost 331 circular, occupying 4/5th of entire shell height. Apertural margin externally thickened by 332 narrow ridge, running all around margin, flexuous at base of shell, reaching umbilicus, 333 internally (Figure 3-2) in some specimens. Protruding denticle on basal part of margin 334

335	(Figures 3-3 and -4). Marginal thickening preceded by about ten fine, margin parallel	
336	orthocline riblets. Shell base regularly rounded, umbilicus very narrow, $c.\ 1/20\mathrm{th}$ of shell	
337	diameter.	
338		
339	Discussion. – In general shape the new species resembles somewhat the holotype of	
340	Limacina wechesensis Hodgkinson (1992, p. 21, pl. 5, figures 4-6) from the Lutetian of	
341	Texas, USA, but that species has one whorl more and reaches double the size of H .	
342	nikkieae, does not have the apertural structures of that species and its umbilicus is	
343	considerably wider.	
344	Size and apertural structures of the new species form a unique combination and cannot be	
345	compared to any limacinid currently known. The holotype was chosen from the sample	
346	with most specimens (13) of Priabonian age, but the species continues, in low numbers,	
347	well into the Rupelian part of the TDP 17 section.	
348		
349		
350	Genus LIMACINA Bosc, 1817	
351		
352	Type species. – Clio helicina Phipps, 1774 by monotypy = Limacina helicina (Phipps,	
353	1774) (Recent).	
354		
355	Limacina robusta (Eames, 1952)	
356	Figures 5, 6	
357	*1952 Aplexa robusta Eames, p. 152, pl. 6, figure 149.	

Type material. – Holotype (Figure 6) in the Natural History Museum, London, NHMUK BM 68457, presented by the Burma Oil Co. Ltd, March 1950; Eames (1952) furthermore recorded 19 paratypes from the type locality.

Figure 5. *Limacina robusta* (Eames, 195). TDP 17.37.1, 0-13 cm; RGM 777423b, apertural view. Bar = $100 \mu m$.

Type locality. – Rahki Nala (Pakistan, western Punjab), 255' above base, local zone 9.
 Lower Chocolate Clays; according to Afzal et al. (2009, p. 20) nowadays indicated as
 Rahki Nala (Pakistan, western Punjab), 255' above base, local zone 9. Lower Chocolate
 Clays; according to Afzal et al. (2009, p. 20) nowadays indicated as Kirthar Formation of
 late Lutetian - Priabonian age of late Lutetian - Priabonian age.

Figure 6. Limacina robusta (Eames, 1952), Holotype, Natural History Museum, London 374 BM 68457. Rahki Nala (Pakistan, western Punjab); Kirthar Formation, Lower Chocolate 375 Clays (late Lutetian – Priabonian); 1: apical, 2: apertural, 3: lateral view. Bar = $100 \mu m$. 376 377 Material examined. - TDP 11 (1 specimen), TDP 12 (1 specimen), TDP 17 (16 378 specimens, all from the Priabonian), see Tables 1-3 for specification. 379 380 Description. - Most available specimens are juveniles and most in pyritic internal mould 381 382 preservation. Largest and best preserved specimen (Fig. 5) higher than wide (H = 0.94, W = 0.72 mm) with four convex whorls rapidly increasing in diameter. Aperture large, oval, 383 occupying more than half shell height. Base of shell regularly rounded with narrow 384 385 umbilicus. 386 Discussion. - Most of the available specimens are poorly preserved and juvenile, but the 387 388 illustrated Tanzanian specimen (Fig. 5) has a shell height of 0.94 mm, whereas the holotype of *Limacina robusta* has a shell 389 390 height of 0.75 mm. Some of the smaller specimen have a somewhat wider apical angle than the illustrated specimen. In spite of these small differences the Tanzanian specimens 391 392 are thought to represent the same species as the Pakistanian L. robusta, which has a comparable age and was described from a pre-eastern-Paratethys locality under influence 393 of the Indian Ocean. 394 395 Initially the Tanzanian specimens were thought to represent Limacina conica (von Koenen, 1892, p. 994, pl. 62, figures 5-6), a species described from the "early Oligocene" 396

397	of two localities (Atzendorf, Unseburg) in the eastern part of Germany. However,
398	specimens from Atzendorf (NP 21 interval), made available by Arnold Müller (Leipzig,
399	Germany) differ in shape and reach far larger dimensions. Their apical angle is smaller,
400	the whorls are more convex and the aperture remains smaller than half shell height.
401	Several species described by Hodgkinson et al. (1992), from the Paleogene of the United
402	States also resemble the Tanzanian shells. Especially similar is <i>Limacina smithvillensis</i>
403	Hodgkinson (in Hodgkinson et al., 1992, p. 19, pl. 3, figure 16) from the Lutetian of
404	Texas. However, that species reaches a shell height of 1.5 mm, has less convex whorls, a
405	wider apical angle and its aperture occupies just half the shell height. Finally, that species
406	is considerably older (Lutetian, NP 15) than the Priabonian (NP 21) specimens from
407	Tanzania. At first glance also L. stenzeli Garvie (in Hodgkinson et al., 1992, p. 19, pl. 4,
408	figure 1) from the NP13-14 interval (Ypresian) of Texas is similar. However, that species
409	should be included in the genus <i>Heliconoides</i> , because of its reinforced apertural margin.
410	
411	Limacina tanzaniaensis sp. nov.
412	Figures 7.1-4; 8
413	
414	Type material. – Holotype (Fig. 7.1) RGM 777428b; paratype 1 (Fig. 7.2), RGM 777438;
415	paratypes 2 and 3 (Figures 7.3-4) RGM 777416b-c. Kilwa Group, Pande Formation
416	(Eocene, Priabonian, biozones P 18 and NP 21).

Figure 7. Limacina tanzaniaensis sp. nov. 1: Holotype, apertural view, RGM 777428b,

TDP 17.38.2, 22-29 cm; 2: paratype 1, apertural view, RGM 777438, TDP 17.36.2, 8095 cm; 3: paratype 2, umbilical view, RGM 777416b, TDP 17.36.1, 10-25cm; 4:

paratype 3, apical view, RGM 777416c, same data as 3. Bar = 100μ m.

Additional specimens. – Fourteen specimens from TDP 17 (Table 3), all from the

425 426

427

moulds.

428 *Type locality.* – Stakishari (Tanzania, Kilwa region), cored borehole TDP 17.38.2, 22-29

Priabonian part of the section. Most specimens poorly preserved as pyritic internal

429 cm, 111.12-111.19 m below surface = 123.12-123.19 m composite depth.

430

431 Diagnosis. – Spherical limacinid of almost four whorls, apex flattened. Last whorl

inflated, 95% of total shell height, aperture c. 75% of total shell height, margin simple,

433 base of shell umbilicate.

Figure 8. *Limacina tanzaniaensis* sp. nov.; **holotype**, apertural view, RGM 777428b,

437 3dPDF.

Description. – Limacinid of spherical shape, measurements of holotype H = 0.92, W = 1.00 mm, consisting of 3.75 moderately convex whorls with convex tangent. First two whorls flattened, last whorl very large, inflated, occupying 95% of total shell height. Aperture large, about 75% of total shell height, attaching on (holotype, Fig. 7.1) or slightly below (paratype 1, Fig. 7-2) periphery of penultimate whorl. Apertural margin simple, semicircular, inner margin and columella invisible as all specimens are in pyritic internal mould preservation. Base of shell regularly rounded, umbilicus present, 20-25% of shell diameter.

Discussion. – The available specimens demonstrate variability in height of the apex, in some the initial flattening continues to the third whorl, resulting in an only slightly raised apical shell part. There is some resemblance to the Ypresian species *Limacina heatherae* Hodgkinson in Hodgkinson et al. (1992, p. 17, pl. 2, figures 15-18). In that species, however, the whorls attach higher on the foregoing whorl, the aperture is narrower and its umbilicus smaller.

455	Limacina timi sp. nov.
456	Figures 9.1-4; 10
457	
458	Type material. – Holotype (Fig. 9-1), RGM 1007748b; paratype 1 (Fig. 9-2),
459	RGM777408a, from TDP 17.34.1, 0-7 cm, 98.90-98.97 m below surface and composite
460	depth; paratype 2 (Fig. 9-3), RGM 777408b, TDP 17.34.1, 0-7 cm; paratype 3 (Fig. 9-4),
461	RGM 777414m TDP 17.36.1, 0-5 cm. Kilwa Group, Pande Formation (Eocene,
462	Priabonian); planktic foraminefera zone P 16-17, calcareous nannoplankton zone NP 19-
463	20.
464	
465	
466	Figure 9. <i>Limacina timi</i> sp. nov.; 1: holotype , RGM 1007748b, TDP 12.27.1, 35-45 cm;
467	2: paratype 1 , RGM 777408aTDP 17.34.1, 0-7 cm; 3: paratype 2 , RGM 777408b, TDP
468	17.34.1, 0-7 cm; 4: paratype 3 , RGM 777414m TDP 17.36.1, 0-5 cm. Apertural views,
469	$bar = 100 \mu m.$
470	
471	Additional specimens. – Boreholes TDP 11, 12 and 17: 15 specimens (see Tables 1 and
472	3).

 $\label{eq:type-locality} Type\ locality. - South\ of\ Stakishari,\ Tanzania,\ Kilwa\ Region,\ cored\ borehole\ TDP\ 12,$ $coordinates\ UTM\ 37L\ 560222-8981309,\ sample\ TDP\ 12.27.1,\ 35-45\ cm=89.60-89.70\ m$ $below\ surface=147.60-147.70\ m\ composite\ depth.$

Figure 10. Limacina timi sp. nov.; holotype, RGM 1007748b, 3dPDF.

Etymology. – Named after Tim Janssen, the author's six year old second grandson. For him life is nonstop fun. Keep it that way, my friend!

Diagnosis. – Small limacinid of 3.75 whorls, slightly higher than wide. Whorls rounded angular in juveniles, more regularly rounded in adults. Aperture lunate, somewhat higher than half shell height. Base imperforate.

Description. – Holotype (H = 1.04, W = 1.00 mm) a small, regularly coiled, conical limacinid of 3.75 slightly convex whorls, separated by incised suture. Last whorl occupying 80% of shell height, slightly angular at periphery. Shell surface smooth, growth lines invisible. Aperture large, lunate, 65% of shell height, no apertural reinforcements present. Columellar side of aperture smooth, slightly concave internally,

straight externally. Base of shell regularly convex, umbilicus absent in holotype, 493 extremely small or absent in juveniles. Angularity of whorls more clearly developed in 494 juvenile specimens, resembling a rounded keel, but covered by following whorls 495 attaching at the place of angularity, almost disappeared in adults. Juvenile specimens 496 497 wider than high, in some of these the keel is rather strong and the apical angle wider (RGM 777425). 498 499 Discussion. - The angularity of especially juvenile specimens is not very clearly visible in 500 501 the SEM images given here in Figures 9.3-4, but under light microscope, with 502 illumination from left above it cannot be overlooked. Limacina timi resembles somewhat the Ypresian species L. gormani (Curry, 1982) 503 504 described from the Marnes de Gan Formation, of Gan, SW France (Curry, 1982; Cahuzac and Janssen, 2010). The same species or a closely related form was also described from 505 506 the Stone City and Cook Mountain formations (Lutetian/Bartonian) of Texas, USA (Hodgkinson et al., 1992, p. 19, pl. 3, figures 14-15) as Limacina pygmaea (non Lamarck, 507 1805), in which also the juvenile whorls are angular and the base imperforate. The adult 508 509 shell, however, reaches one and a half times the size of L. timi, has a different, more spherical shape and a distinctly wider apical angle. Subsutural crests (Cahuzac and 510 Janssen, 29010, pl. 11, figure 2) as seen in L. gormani are not present in L. timi. 511 Adult specimens of Limacina timi also resemble Heliconoides nemoris (Curry, 1965), 512 described from the Bartonian of the UK and also recorded from the Priabonian of Biarritz, 513 SW France by Curry (1982) and Cahuzac and Janssen (2010). That species belongs to the 514 genus Heliconoides because of its apertural reinforcements that are apparently absent in 515

L. timi, but also its apex is flattened and juvenile specimens have no angular periphery. 516 Limacina timi straddles the Eocene/Oligocene boundary. 517 518 519 Limacina sp. 1 520 Figures 11.1-2 521 522 Material examined. – Five specimens, all from the same sample TDP 17.37.1, 0-13 cm; 523 106.90-107.03 m below surface, 118.90-119.03 composite depth; RGM 777440a-c (Table 524 525 3). 526 Figure 11. Limacina sp. 1. 1: RGM 777440c, TDP 17.37.1, 0-13 cm, apical view; 2: 527 RGM 777440b, same data, apertural view. Bar = $100 \mu m$. 528 529 Description. - Low conical limacinid of 3.75 moderately convex whorls attaching on 530 531 periphery of foregoing whorls. Aperture semicircular, slightly more than half shell height, Base regularly rounded, umbilicus c. 1/6th of shell diameter. 532 533

Discussion. – Three of the available specimens are juveniles in poor preservation. In specimen RGM 777440b (Fig. 11.2) the first whorl is missing. The two more adult specimens show a striking resemblance with a limacinid illustrated by Lokno and Kumar (2008, figure 3-2) from the Upper Disang Formation (Bartonian - Priabonian) of the Phek District, south-central Nagaland (Assam - Arakan Basin), northeastern India, indicated by these authors as "Limacinidae type A". As these specimens were recorded from Indian Ocean Basin rocks of more or less similar age they could very well represent the same species as the Tanzanian ones. However, the material is insufficient for a reliable identification. Lokno and Kumar compared their specimens with "Limacina pygmaea", as illustrated by Hodgkinson et al. (1992, pl. 3, figures 14-15), correctly stating that that name "most certainly is incorrect", as Hodgkinson et al.'s species seems to be closely related to L gormani (Curry, 1982) (see above) and not to Limacina pygmaea.

547 Limacina sp. 2

548 Figures 12.1-4

Material examined. – One specimen from TDP 12 (Table 2); 4 poorly preserved and presumably juvenile specimens in pyritic internal mould preservation, from TDP 17 (Table 3).

Figure 12. *Limacina* sp. 2, RGM 777373, TDP 12.27.1, 35-45 cm; 1: apertural, 2: apical, 3: oblique apical, and 4: umbilical views. Bar = $100 \mu m$.

Description. – Limacinid of very low conical shape with almost flat, slightly raised or slightly concave apical plane. Width of illustrated specimen 1.20 mm, height 0.86 mm. Whorls 3.75, regularly increasing in diameter. Aperture semicircular, occupying c. 80% or more of total shell height, reaching to far beyond base of preceding whorl. Apertural structures absent or not preserved. The apparently present groove along the apertural margin, as vsible in Fig. 13.2-3, is considered to be caused by damage of the mould. Base perforated by umbilicus of 1/5th to 1/7th of shell diameter.

Discussion. – Several limacinids with an almost planorboid shell shape are known from the Eocene-Oligocene interval in Europe, Asia and the USA. Some of these are characterised by having a slightly concave apical plane, or, in other cases, by an irregular

569	development of early whorls. In the present specimens, however, the whorls are in a
570	regular spiral and the apical plane is a bit raised, with the first 1.5 whorls flattened (Fig.
571	12.3).
572	Very similar is a species from the early Oligocene of Japan, described as Limacina
573	karasawai Ando (2011, p. 248, figures 3.1-2. This species was said to have three quarters
574	of a whorl more than the Tanzanian specimen illustrated here, but we fail to see that from
575	Ando's photographs. Also closely similar is Limacina canadaensis Hodgkinson (in
576	Hodgkinson et al., 1992, p. 16, pl. 2, figures 4-6), but its last whorl seems to be relatively
577	lower. This species was collected from downhole contaminated cutting samples and could
578	be anything between early Eocene and early Oligocene. An occurrence of similar age
579	(earliest Oligocene) was described from the North Sea Basin and is also known from
580	contemporaneous rocks (base of Viborg Formation) in Jylland, Denmark, as <i>Limacina</i>
581	mariae Janssen (1989, p. 111, pl. 4, figures 2-5), but that species always has a concave
582	apical spiral, has a somewhat wider umbilicus and reaches to over 2 mm shell width.
583	Finally, as yet unpublished similar material is available from the Eocene - Oligocene
584	interval in the NE United States and from the eastern part of Germany.
585	A reliable interpretation of all these forms depends on a larger material for comparisons
586	and therefore the present specimens, apart from the illustrated specimen in poor
587	condition, are left in open nomenclature.
588	

Limacinidae indet.

591	Material examined. – One specimen from TDP 12.24.3, 0-10 cm; 10 specimens from
592	TDP 17 (see Table 3).
593	
594	DescriptionThese specimens are in internal pyritic mould preservation, more or less
595	strongly deteriorated and cannot be identified any further.
596	
597	
598	Superfamily CAVOLINIOIDEA Gray, 1850 (1815) [= Hyalinea Rafinesque, 1815]
599	Family CRESEIDAE Rampal, 1973
600	Genus BOVICORNU Meyer, 1886
601	
602	$\textit{Type species.} - \textit{Bovicornu eocenense} \; \text{Meyer, 1886, by monotypy (early Oligocene, USA)}.$
603	
604	Discussion Shortly after its introduction by Meyer (1886) the validity of the genus
605	Bovicornu was denied by Dall (1892, p. 302), who considered both species introduced in
606	that genus by Meyer (1886, 1887) to belong to the caecid (benthic) genus Meioceras
607	Carpenter, 1858. Dall's point of view was followed, with doubts, by Cossmann (1912, p.
608	154-155), but rejected by later authors (Collins, 1934, p. 212; van Winkle Palmer, 1947,
609	p. 464; Hodgkinson et al., 1992, p. 24). Indeed, in Meioceras the shell wall is
610	considerably thicker and its protoconch is utterly different, whereas in $Bovicornu$ the shell
611	is thin-walled and the larval parts agree with species of the pteropod genus Creseis. Zilch
612	(1959, p. 49) followed Collins and included <i>Bovicornu</i> with a query in the cavoliniid
613	pteropods, considering it a possible synonym of <i>Euchilotheca</i> Fischer, 1882, which is also

614	a creseid genus, but its type species, <i>E. succincta</i> (Defrance, 1828), shows only very faint
615	traces of spiralisation. We agree with Hodgkinson et al. that Bovicornu should be
616	considered an independent genus in Creseidae.
617	Bovicornu species demonstrate a certain resemblance with Hameconia edmundi Janssen,
618	2008, described from the late Oligocene (Chattian) of SW France. In that species the
619	bilaterally symmetrical shell has a curvature of c . 180° , but it is curved in one plain, not in
620	a spatial spiral. The curvature is dorso-ventral, as is clear by the presence of lateral
621	carinae. Its larval stage differs from <i>Bovicornu</i> in having separate protoconchs 1 and 2.
622	Janssen and Maxwell (in Janssen, 1995, p. 164), Janssen (2008, p. 160) and Cahuzac and
623	Janssen (2010, p. 111) included the genus <i>Hameconia</i> in the Sphaerocinidae family.
624	
625	
626	Bovicornu aff. eocenense Meyer, 1886
627	Figures 13.1-2
628	
629	cf 1886 Bovicornu eocenense Meyer, p. 79, pl. 3, figure 12 (not figure 2).
630	cf 1892 Meioceras eocenense (Meyer) – Dall, p. 302.
631	cf 1912 Bovicornu eocænense [sic] Meyer – Cossmann, p. 155.
632	cf 1934 Bovicornu eocenense Meyer – Collins, p. 212, pl.9, figure 3, pl. 13, figure 5.
633	cf 1959 Bovicornu eocenense O. Meyer – Zilch, p. 49, figure 164.
634	cf 1992 Bovicornu eocenense Meyer – Hodgkinson et al., p. 24, pl. 7, figures 9-10 (with
635	additional synonymy).
636	

Type material. – Holotype (H = 2.8, W = 0.7 mm) United States Natural Museum (Smithsonian Institution) nr. 644596.

Figure 13. *Bovicornu* aff. *eocenense* Meyger, 1886; 1. TDP 12.23.3, 89-96 cm; RGM 777370, apertural view; 2. TDP 17.36.1, 20-35 cm, RGM 1007784, basal view. Bar = 100

 μ m.

Type locality. – Red Bluff, USGS locality 5264, Mississippi, USA (Red Bluff Clay;

Oligocene, Rupelian, NP 21).

Material examined. – Only fragments were found, 2 from TDP 11, 9 from TDP 12 and 11

from TDP 17 (see Tables 1-3 for details).

Description. – Spatially spiralised tube with free volutions. Transverse section of tube circular, no surface ornamentation or growth lines visible. Only smaller fragments are available among which no complete aperture or protoconch. Diameter of tube doubles in

about half a volution.

Discussion. – Two species of the genus Bovicornu are currently known and both are 656 exclusively recorded from the USA. The older one of these, B. gracile Meyer, 1887 (p. 9, 657 pl. 2, figure 17), of the Moodys Branch Formation, Texas, has an age of Bartonian (NP 658 17). The other species, B. eocenense Meyer, 1886 (p. 79, pl. 3, figure 12), from the Red 659 660 Bluff Formation of Mississippi, USA occurred during the Priabonian and early Rupelian (NP19-21) (Hodgkinson et al., 1992, figure 3). In both species the shell is creseid, but 661 662 instead of being straight or slightly curved, as in Creseis species, the tube demonstrates clear twisting in a wide spatial spiral that was said to be stronger in B. gracile. 663 664 Hodgkinson et al. (1992), however, collected numerous specimens at both type localities 665 and noted that in many specimens of both species the twisting is stronger and that the species cannot be distinguished on the degree of twisting. There is, however, a clear 666 667 difference in protoconch morphology: an inflated bulb in B. eocenense and a more 668 cylindrical shape in B. gracile. The holotypes of both species were re-illustrated in 669 Hodgkinson et al. (1992, pl. 7, figures 9-10 and 11-12), reproduced herein as Figs 14.1-4. Although the few larger fragments from Tanzania seem to indicate a considerably 670 stronger spirally twisted shell than in either of the holotypes it is preferred to indicate the 671 672 Tanzanian species as related to the younger of the two American species and is indicated here as Bovicornu aff. eocenense. Once specimens preserving their protoconch become 673 674 available this position might be revised.

Figure 14. Holotypes of *Bovicornu eocenense* Meyer, 1886 (1, 2) and *B. gracile* Meyer, 1887 (3, 4). Shell height of 1 = 2.8 mm, of 2 = 2.7 mm; 2 and 4 are magnifications of 1 and 3, respectively. Photographs after Hodgkinson *et al.* (1992, pl. 7, figures 9-12).

RESULTS

Three of the limacinid species are described as new.

The number of specimens per species/per sample are specified in Tables 1-3. Vertical ranges of the species in the three Tanzanian sections are shown together in Figure 15. Eight pteropod species are recognised, seven of them belonging to the Limacinidae and one (*Bovicornu*) to the Creseidae. Three of the limacinids are represented by a single or very few specimens only. Three species could only be identified in open nomenclature.

697	section	erval (cı	e depth	e depth	Heliconoides nikk	robusta	imi	aff. eo
698	TDP Core	Depth inter	Subsurface	Composite	liconoi	Limacina 1	Limacina timi	Bovicornu aff.
699	E	Ğ	nS.	<u> </u>	Не	Lim	Lim	Bo
700	11.26.2	64.74	00.14	00.14	1			
700	11.26.2	64-74	82.14	98.14	1	-	-	-
701	11.32.1	33-40	89.63	109.63	-	1	-	-
702	11.32.3	64-72	91.94	111.94	1	-	1	-
703	11.33.2	74-84	94.04	114.04	-	-	-	2

Table 1. Distribution of pteropod species in core TDP 11.

707											
708			_		sis						nse
		ਿੰ	Subsurface depth (m)	Composite depth (m)	Altaspiratella bearnensis	Heliconoides nikkieae					Bovicornu aff. eocenense
709	ion	(cn	ţ	슢	ear	ikki	ıta			det.	ьос
	ect	val	deg	ф	a b	n s	snq	m	2	i.	Ħ.
710	TDP Core section	Depth interval (cm)	ıce	ite	tell	ide	Limacina robusta	Limacina timi	Limacina sp. 2	Limacinidae indet.	ша
	ပိ	h ir	urfi	sod	ira	ouc	zinc	zinc	ina	cini	orr.
711	DP	ept	sqn	om	ash	elic	ша	ma	пас	ma	vic
,	H	Ω	Ñ	O	Alt	Н	Li	Li	Lin	ï	Вс
712	12.11.4	20-26	38.20	96.20	-	-	-	1	-	-	-
713	12.12.1	23-31	38.23	96.23	-	1	-	-	-	-	-
714	12.14.1	47-48,5	44.47	102.47	-	-	-	-	-	-	2
715	12.14.1	51-53	44.51	102.51	_	-	-	-	-	_	1
716	12.14.1	56-58	44.56	102.56	_	-	_	_	_	_	1
717	12.14.3	23-31	46.23	104.23	_	-	-	-	-	_	1
718	12.18.3	65-76	58.65	116.65	_	_	_	1	_	_	-
719	12.19.1	22-34	59.22	117.22	_	_	_	1	_	_	_
720	12.21.1	37-48	65.37	123.37	_	_	_	1	_	_	_
721	12.23.3	89-96	73.89	131.89	_	_	_	-	_	_	1
721	12.23.3	0-10	76.30	134.30	=	_	-	-	-	1?	1
	12.24.3	54-62		134.30	-	•	-	1	-	1.	•
723			81.79		-	-	-	_	1	-	-
724	12.27.1	35-45	89,60	147,60	-	-	1	1	1	-	-
725	12.28.1	66-76	90.91	148.91	1	-	-	-	-	-	2
726	12.29.1	25-35	91.90	149.90	-	-	-	1	-	-	-
727	12.29.2	20-30	92.85	150.75	-	-	-	-	-	-	

Table 2. Distribution of pteropod species in core TDP 12.

731												
732												2)
733	u.	cm)	h (m)	h (m)	kieae	a	iaensis				, ;	Bovicornu aff. eocenense
734	e sectio	terval (ce dept	te dept	ides nik	robust	tanzan	timi	sp. 1	sp. 2	lae inde	u aff. e
735	TDP Core section	Depth interval (cm)	Subsurface depth (m)	Composite depth (m)	Heliconoides nikkieae	Limacina robusta	Limacina tanzaniaensis	Limacina timi	Limacina sp.	Limacina sp.	Limacinidae indet	ovicorn
736				0		Li	Li	Li	Li	Li	Ë	Be
737	17.15.1	50-63	47.95	47.95	2	-	-	-	-	-	-	-
738	17.17.2	0-14	54.45	54.45	2?	-	-	-	-	-	-	-
739	17.18.3	10-25	58.55	58.55	2	-	-	1	-	-	-	-
740	17.21.2	9-20	62.87	62.87	1	-	-	-	-	-	-	-
741	17.23.2	0-10	66.57	66.57	-	-	-	1?	-	-	-	-
742	17.23.3	0-13	67.54	67.5	2?	-	-	-	-	-	-	-
743	17.23.3	99-105	68.56	68.56	2	-	-	-	-	-	-	-
744	17.24.1	20-35	68.30	68.30	5	-	-	-	-	-	-	-
745	17.24.2	0-15	69.10	69.10	-	-		1	-	-	-	-
746	17.25.1	0-15	71,40	71.40	2	-	-	-	-	1	-	-
747	17.25.1	50-60	71.90	71.90	1	-	-	-	-	-	-	-
748	17.25.2	48-58	72.88	72.88	1	-	-	1	-	-	-	-
749	17.26.3	10-25	77.90	77.90	2	-	-	-	-	-	-	-
750	17.31.1	20-35	89.10	89.10	2?	-	-	-	-	-	-	-
751	17.31.2	0-15	89.90	89.90	1	-	-	-	-	-	-	-
752	17.31.3	0-15	90.90	90.90	3?	-	-	-	-	-	-	-
753	17.31.4	0-12	91.90	91.90	1?	-	-	-	-	-	-	-
754	17.32.1	10-25	92.00	92.00	2?	-	-	-	-	-	-	-
755	17.32.2	0-15	92.90	92.90	3	-	-	-	-	1	1?	1
756	17.32.4	14-20	95.04	95.04	1	-	-	-	-	-	-	1
757	17.33.1	3-18	95.93	95.93	1	-	-	-	-	-	-	2
758	17.33.3	0-15	97.90	97.90	3	-	-	1	-	-	-	1
759	17.34.1	0-7	98.90	98.90	4?		-	2	-	-	3?	1
760	17.34.2	91-99	100.81	100.81	-	-	-	-	-	-	-	2
761	17.36.1	0-5	103.90	115.90	1	-	-	1	-	2?	1?	2
762	17.36.1	5-13	103.95	115.95	-	-	1	-	-	-	-	-
763	17.36.1	10-25	104.00	116.00	11	_	7	_	_	_	_	3
764	17.36.2	52-59	105.42	117.42	-	1	-	-	-	-	3?	-
765	17.36.2	80-95	105.70	117.70	3+5?	2	1	2?	-	-	2?	_
766	17.37.1	0-13	106.90	118.90	-	6	-	-	5	_	-	_
767	17.37.1	32-47	107.22	119.22	_	1	-	-		_	_	_
768	17.38.1	25-35	110.15	122.15	_		5	1	_	_	_	_
769	17.38.2	22-29	111.12	123.12	-	1	2	-	-	_	-	_
770	`	62-70	113.52	123.52	_	-	-	1	_	_	_	_
771	17.41.1	8-18	119.48	131.48	_	_	1	2?	_	_	_	_
772	17.41.3	0-15	121.40	133.40	_	1	1	-	_	_	_	_
	17.11.3	0 10	121.70	155.70			_					

773

774

775 776

777 778

779

780

781

782

783

784

Figure 15. Range chart of pteropods, combined data of TDP 11, 12 and 17, calibrated to composite depths. Basic stratigraphical data mainly from Pearson et al. (2008, figure 16).

NP19-20

130

140

The stratigraphic ranges are remarkable. The two most commonly occurring species, Heliconoides nikkieae and Limacina timi (both introduced herein), and the less frequently represented Limacina sp. 2 occur in comparable numbers both below and above the EOB

and do not seem to be influenced by changing environmental conditions. Two other species, *Limacina robusta* and *L. tanzaniaensis*, on the contrary, disappear some 10 m below the EOB, at a level close to the extinction of the *Turborotalia cerroazulensis*-group of planktic foraminifera and the first oxygen isotope step (Step 1 of Pearson *et al.*, 2008, Lear *et al.*, 2008) although improved sampling could of course extend the ranges up to the EOB or beyond. One species, *Altaspiratella bearnensis*, was found as a single specimen only in one of the lowermost samples. Finally, a single species (*Bovicornu* aff. *eocenense*), is irregularly distributed in the Eocene part of the sections, but disappears in the basal 10 m of the Oligocene. No pteropods are found exclusively in the Oligocene part of the record.

DISCUSSION

The newly described taxa, as well as species recorded in open nomenclature, do not present clues that can be applied in long distance correlations. The present material from Tanzania furthermore originates from a very large area from which Paleogene pteropods have never been recorded previously. From the African continent only a late Eocene occurrence is known from Nigeria (Bende Ameki; Curry, 1965 and Naturalis collection) and some Eocene (Ypresian, Bartonian) material was collected from Egypt (Valley of the Kings) by the late Chris King (Naturalis Biodiversity Center collections, unpublished). The presence of *Altaspiratella bearnensis* is quite unexpected. That species is only known from the Aquitaine Basin in SW France (type locality, Ypresian) and from the southern USA (Ypresian and Lutetian). Its presence in the Tanzanian Priabonian is surprising. The

807 record, however, is based on a single incomplete specimen and better preserved material might prove that another species is involved. 808 The occurrence of Limacina robusta is interesting. That species was originally described 809 810 from Pakistan, a locality under the influence of the Indian Ocean, what is equally the case 811 for the Tanzanian material. If Limacina sp. 1 is indeed closely related to or even identical with "Limacinidae type A' as described by Lokho and Kumar (2008) from northern India 812 813 it similarly represents an interesting palaeogeographical occurrence on the Indian Ocean. The creseid species Bovicornu eocenense is to date exclusively known from the United 814 815 States and its vertical distribution includes the Priabonian and the Rupelian transition, which is consistent with its range in the Tanzanian material. However, the Tanzanian 816 material is poorly preserved and better specimens might lead to another specific 817 818 interpretation. When compared with previous isotope and microfossils from the Tanzanian material it 819 820 may be concluded that three pteropod species (Heliconoides nikkieae, Limacina timi and 821 Limacina sp. 2) do not show clear response following the drastic climatic cooling at the EOB, but two species (Limacina robusta and L. tanzaniaensis) seem to disappear close to 822 823 the cooling related step of the EOT, perhaps indicating a temperature sensitivity if a true disappearance. The last occurrence of these two taxa precedes that of the planktic 824 825 foraminiferal family Hantkeninidae and the extinction level of the larger benthic foraminifera (Pearson et al., 2008; Wade and Pearson, 2008; Cotton and Pearson, 2011). 826 However, it is similar to the last occurrence of the planktic foraminifera *Turborotalia* 827 (Pearson et al., 2008; Wade and Pearson, 2008). In addition, the nannofossil assemblage 828 has shown an increase in nutrient loving taxa close to the onset of the EOT (Dunkley 829

Commented [U3]: AWJ: previous isotope and microfossil data

830 Jones et al., 2008), suggesting nutrient increase in the water column as a potential 831 contributing factor. There are currently plans to re-core the EOB of Tanzania with wide diameter boreholes 832 (Pearson and Hudson, 2014). Much larger samples and denser sampling may shed further 833 834 light on the pteropod record across the EOB in the region. Commented [U4]: AWJ: Do we keep this statement or is it merely wishful thinking? 835 836 CONCLUSION 837 838 Here we have shown a small but important insight into pteropod fauna from both an 839 under-represented geological time and geographic region. Eight species were identified, Commented [U5]: AWJ: better 'recognised', as some remain in three of which were new. Two of the taxa show an apparent, at least, local extinction 840 841 close to the first major cooling step of the EOT whilst the others seem unaffected, or have too few occurrences to tell. The occurrences of several taxa, though not enough for long 842 843 distance correlation, are surprising with Altaspiratella bearnensis, and Limacina robusta Commented [U6]: AWJ: better leave this out, as we do some long-distance correlation with Limacina robusta Commented [U7]: No, Bovicornu aff, eocenense only previously known from Europe and the U.S.A., and from the U.S.A., respectively. 844 The occurrence of possible Bovicornu eocenense which is only previously known from 845 Commented [U8]: AWJ: No, Limacina robusta should be here Pakistan very tentatively suggests an Indo-Pacific connection. This therefore underlines 846 Commented [U9]: AWJ: not so 'tentatively'... I think that quite clear. Better leave it out. the need for increased studies of older pteropod occurrences, particularly in that may be 847 Commented [U10]: AWJ: I'd rather suggest to say Paleogene under-sampled but have good preservation potential, Furthermore it shows the importance Commented [U11]: AWJ: Here something seems to be missing. 848 What did you want to say here? of carrying out studies of less conventional micro-fossils on cores generally used for 849 foraminiferal or nannoplankton studies. (or something like that?) 850 851 852

853	ACKNOWLEDGEMENTS
854	The authors thank Yusuke Ando (Graduate School of Environmental Studies, Nagoya
855	University, Furo-cho, Chikusa-ku, Nagoya, Japan, for discussion on Paleogene pteropod
856	occurrences, and Arnold Müller (Institut für Geophysik und Geologie, Geologisch-
857	Palaeontologische Sammlung, Leipzig, Germany) for providing pteropod material for
858	comparisons. Renate Helwerda of Naturalis Biodiversity Center, Leiden, NL, was kind
859	enough to make the SEM images. Dirk van der Maarel of the same institute made the CT-
860	scannings. The Tanzanian Petroleum Development Corporation and COSTECH are
861	acknowledged for their support of the TDP. Two anonymous reviewers are thanked for
862	critically reading the manuscript and for their helpful comments.
863	
864	
865	REFERENCES
866	Afzal, J., Williams, M. and Aldridge, R.J. 2009. Revised stratigraphy of the lower
867	Cenozoic succession of the Greater Indus Basin in Pakistan. Journal of
868	Micropalaeontology 28: 7-23.
869	Aldrich, T.H. 1887. Notes on Tertiary fossils, with descriptions of new species. <i>The</i>
870	Journal of the Cincinnati Society of Natural History, 10(2):78-83.
871	Ando, Y. 2011. Oligocene pteropods (Gastropoda: Thecosomata) from the Kishima
872	Formation, Saga Prefecture, southwest Japan. Revista Mexicana de Ciencias
873	Geológicas 28(2): 245-253.

874	Bednaršek, N., Ohman, M. D., 2015. Changes in pteropod distributions and shell
875	dissolution across a frontal system in the California Current System. Marine
876	Ecology Progress Series, 523: 93–103. doi: 10.3354/meps11199
877	Blainville, [H.M.D.] de. 1824. Mollusques, Mollusca (Malacoz.). Dictionnaire des
878	Sciences naturelles, 32:1-392.
879	Bodiselitsch, B., Montanari, A., Koeberl, C. and Coccioni, R. 2004, Delayed climate
880	change in the late Eocene caused by multiple impacts: High-resolution
881	geochemical studies at Massignano, Italy. Earth and Planetary Science Letters
882	223: 283–302. doi: 10.1016/j.epsl.2004.04.028.
883	Bosc, [L.A.G.]. 1817. Limacine. Nouveau Dictionnaire d'Histoire naturelle, 18: 42.
884	Bown, P.R., Dunkley Jones, T., Lees, J.A., Randell, R.D., Mizzi, J.A., Pearson, P.N.,
885	Coxall, H.K., Young, J.R., Nicholas, C.J., Karega, A., Singano, J. and Wade, B.S.
886	2008. A Paleogene calcareous microfossil Konservat-Lagerstätte from the Kilwa
887	Group of coastal Tanzania. Geological Society of America Bulletin 120(1/2): 3–
888	12. doi: 10.1130/B26261.1
889	Burmeister, H. 1837. Handbuch der Naturgeschichte zum Gebrauch bei Vorlesungen;
890	zweite Abtheilung., Zoologie. T.C.F. Enslin, Berlin.
891	Cahuzac, B. and Janssen, A.W. 2010. Eocene to Miocene holoplanktonic Mollusca
892	(Gastropoda) of the Aquitaine Basin, southwest France. Scripta Geologica 141:1-
893	193.
894	Cande, S.C. and Kent, D.V. 1995. Revised calibration of the geomagnetic polarity
895	timescale for the late Cretaceous and Cenozoic: Journal of Geophysical Research
896	100(B4): 6093-6095.

897	Carpenter, P.P. 1858. First steps towards a monograph of the Cæcidæ, a family of
898	rostriferous Gasteropoda. Proceedings of the Zoological Society of London 26:
899	413-443.
900	Collins, R.L. 1934. A monograph of the American Tertiary pteropod mollusks. <i>Johns</i>
901	Hopkins University Studes in Geology 11: 137-234.
902	Cossmann, M. 1912. Essays de paléoconchologie comparée, 9. Paris (Cossmann and
903	Lamarre): 1-215.
904	Cotton, L.J. and Pearson, P.N. 2011. Extinction of larger benthic foraminifera at the
905	Eocene/Oligocene boundary. Palaeogeography, Palaeoclimatology,
906	Palaeoecology 311: 281–296.
907	Cotton, L.J., Arciszewski, J., Reich, S., Wesselingh, F. and Pearson, P.N. (in prep.).
908	Molluscan response across the Eocene – Oligocene Transition: Tanzania Drilling
909	Project sites 11, 12 and 17.
910	Coxall, H.K., Pearson, P.N., 2007. The Eocene-Oligocene transition. In Williams, M.,
911	Haywood, A.M., Gregory, F.J., Schmidt, D.N. (eds). Deep-time perspectives on
912	climate change: marrying the signal from computer models and biological proxies:
913	The Micropalaeontological Society, London, Special publication: 351–387.
914	Curry, D., 1965. The English Palaeogene pteropods. <i>Proceedings of the Malacological</i>
915	Society of London 36: 357-371.
916	Curry, D. 1982. Ptéropodes éocènes de la tuilerie de Gan (Pyrénées-Atlantiques) et de
917	quelques autres localités du SW de la France. Cahiers de Micropaléontologie 4
918	(1981): 35-44.

919	Cuvier, G. 1795. Second mémoire sur l'organisation et les rapports des animaux à sang
920	blanc, dans lequel on traite de la structure des mollusques et de leur division en
921	ordre, lu à la Société d'Histoire Naturelle de Paris, le 11 prairial an troisième [30
922	May 1795]. Magazin Encyclopédique, ou Journal des Sciences, des Lettres et des
923	Arts, 1:433-449.
924	Cuvier, G. 1804. Mémoire concernant l'animal de l'Hyale , un nouveau genre de
925	mollusques nus, intermédiaire entre l'Hyale et le Clio, et l'établissement d'un
926	nouvel ordre dans la classe des mollusques. Annales du Muséum national
927	d'Histoire Naturelle 4: 223-234.
928	Dall, W.H., 1892. Contributions to the Tertiary fauna of Florida, with especial reference
929	to the Miocene silex-beds of Tampa and the Pliocene beds of the Caloosehatchie
930	River, 2. Transactions of the Wagner Free Institute of Science of Philadelphia
931	3(2): 201-473.
932	Defrance, [J.L.M.] 1828. Vaginella. (Foss.). Dictionnaire des Sciences naturelles 56: 427.
933	Diester-Haass, L, Zahn, R., 2001. Paleoproductivity increase at the Eocene-Oligocene
934	climatic transition: ODP/DSDP Sites 763 and 592. Palaeogeography,
935	Palaeoclimatology, Palaeoecology. 172(1): 153-170.
936	Di Martino, E., Taylor, P., Cotton, L.J., and Pearson, P.N. 2017. First bryozoan fauna
937	from the Eocene/Oligocene transition in Tanzania. Journal of Systematic
938	Palaeontology. http://dx.doi.org/10.1080/14772019.2017.1284163
939	Dunkley Jones, T., Bown, P.R., Pearson, P.N., Wade, B.S., Coxall, H.K. and Lear, C.H.,
940	2008. Major shifts in calcareous phytoplankton assemblages through the

941	Eocene-Oligocene transition of Tanzania and their implications for low-latitude
942	primary production. Paleoceanography, 23(4).
943	Eames, F.E. 1952. A contribution to the study of the rocks in western Pakistan and
944	western India, C. The description of the Scaphopoda and Gastropoda from
945	standard sections in the Rakhi Nala and Zinda Pir areas of the western Punjab and
946	in the Kohat District. Philosophical Transactions of the Royal Society of London
947	(B)631(236): 1-168.
948	Fischer, P., 1880-1887. Manuel de conchyliologie et de paléontologie conchyliologique
949	ou histoire naturelle des mollusques vivants et fossiles suivi d'un appendice sur les
950	brachiopodes par D.P. Oehlert. Paris (Savy): 1-12, i-xxiv, 1-1369.
951	Gray, J.E. 1847. A list of the genera of recent Mollusca, their synonyms and types.
952	Proceedings of the Zoological Society of London, 15 (78):129-219.
953	Herrmannsen, A.N. 1846-1852. Indicis generum malacozoorum primordia. Nomina
954	subgenerum, generum, familiarum, tribuum, ordinum, classium: adjectis
955	auctoribus, temporibus, locis systematicis atque literariis, etymus, synonymis.
956	Praetermittuntur Cirripedia, Tunicatae et Rhizopoda, 1 (1846-1847), 2 (1847-
957	1849), supplement (1852). T. Fischer, Cassel.
958	Hodgkinson, K.A., Garvie, C.L. and Bé, A.W.H. 1992. Eocene euthecosomatous
959	Pteropoda (Gastropoda) of the Gulf and eastern Coasts of North America.
960	Bulletins of American Paleontology, 103(341):5-62.
961	Janssen, A.W. 1989. Some new pteropod species from the North Sea Basin Cainozoic
962	(Mollusca: Gastropoda, Euthecosomata). Mededelingrn vsn de Werkgrorpvoor Tertiaire
963	en Kwartaire Geologie 26: 91-133.

964	Janssen, A.W. 1990. Long distance correlation of Cainozoic deposits by means of planktonic
965	gastropods ("pteropods"); some examples of future possibilities. Tertiary Research,
966	11,65-72.
967	Janssen, A.W. 1995. Systematic revision of holoplanktonic Mollusca in the collections of the
968	"Dipartimento di Scienze della Terra" at Torino, Italy. Monografie Museo Regionale di
969	Scienze Naturali Torino 17: 1-233.
970	Janssen, A.W. 2008. Notes on the systematics, morphology and biostratigraphy of fossil
971	holoplanktonic Mollusca, 20. A new pteropod genus and species, Hameconia
972	edmundi gen. nov. spec. nov. (Mollusca, Gastropoda, Sphaerocinidae), from the Late
973	Oligocene of SW France. Basteria 72: 159-163.
974	Janssen, A.W., Sessa, J.A. and Thomas, E. Pteropoda (Mollusca, Gastropoda, Thecosomata) from
975	the Paleocene-Eocene Thermal Maximum (United States Atlantic Coastal Plain).
975 976	the Paleocene-Eocene Thermal Maximum (United States Atlantic Coastal Plain). Palaeontologia Electronica, 19.3.47A: 1-26. palaeo-electronica.org/content/2016/1662-
976	Palaeontologia Electronica, 19.3.47A: 1-26. palaeo-electronica.org/content/2016/1662-
976 977	Palaeontologia Electronica, 19.3.47A: 1-26. palaeo-electronica.org/content/2016/1662-pteropoda-from-the-usa-petm
976 977 978	Palaeontologia Electronica, 19.3.47A: 1-26. palaeo-electronica.org/content/2016/1662- pteropoda-from-the-usa-petm Jiménez Berrocoso, Á., MacLeod, K.G., Huber, B.T., Lees, J.A., Wendler, I., Bown, P.R.,
976 977 978 979	Palaeontologia Electronica, 19.3.47A: 1-26. palaeo-electronica.org/content/2016/1662-pteropoda-from-the-usa-petm Jiménez Berrocoso, Á., MacLeod, K.G., Huber, B.T., Lees, J.A., Wendler, I., Bown, P.R., Mweneinda, A.K., Londoño, C.I. and Singano, J.M. 2010. Lithostratigraphy,
976 977 978 979 980	Palaeontologia Electronica, 19.3.47A: 1-26. palaeo-electronica.org/content/2016/1662-pteropoda-from-the-usa-petm Jiménez Berrocoso, Á., MacLeod, K.G., Huber, B.T., Lees, J.A., Wendler, I., Bown, P.R., Mweneinda, A.K., Londoño, C.I. and Singano, J.M. 2010. Lithostratigraphy, biostratigraphy and chemostratigraphy of Upper Cretaceous sediments from
976 977 978 979 980 981	Palaeontologia Electronica, 19.3.47A: 1-26. palaeo-electronica.org/content/2016/1662-pteropoda-from-the-usa-petm Jiménez Berrocoso, Á., MacLeod, K.G., Huber, B.T., Lees, J.A., Wendler, I., Bown, P.R., Mweneinda, A.K., Londoño, C.I. and Singano, J.M. 2010. Lithostratigraphy, biostratigraphy and chemostratigraphy of Upper Cretaceous sediments from southern Tanzania: Tanzania drilling project sites 21–26. Journal of African Earth
976 977 978 979 980 981 982	Palaeontologia Electronica, 19.3.47A: 1-26. palaeo-electronica.org/content/2016/1662-pteropoda-from-the-usa-petm Jiménez Berrocoso, Á., MacLeod, K.G., Huber, B.T., Lees, J.A., Wendler, I., Bown, P.R., Mweneinda, A.K., Londoño, C.I. and Singano, J.M. 2010. Lithostratigraphy, biostratigraphy and chemostratigraphy of Upper Cretaceous sediments from southern Tanzania: Tanzania drilling project sites 21–26. Journal of African Earth Sciences 57 (2010) 47–69.
976 977 978 979 980 981 982 983	Palaeontologia Electronica, 19.3.47A: 1-26. palaeo-electronica.org/content/2016/1662-pteropoda-from-the-usa-petm Jiménez Berrocoso, Á., MacLeod, K.G., Huber, B.T., Lees, J.A., Wendler, I., Bown, P.R., Mweneinda, A.K., Londoño, C.I. and Singano, J.M. 2010. Lithostratigraphy, biostratigraphy and chemostratigraphy of Upper Cretaceous sediments from southern Tanzania: Tanzania drilling project sites 21–26. Journal of African Earth Sciences 57 (2010) 47–69. Jimènez Berrocoso, À., Huber, B.T., MacLeod, K.G., Petrizzo, M.R., Lees, J.A.,

987	Cretaceous and Paleogene sediments from southern Tanzania: Tanzania Drilling
988	Project Sites 27–35. Journal of African Earth Sciences 70: 36–57.
989	Jiménez Berrocoso, Á., Huber, B.T., MacLeod, K.G., Petrizzo, M.R., Lees, J.A.,
990	Wendler, I., Coxall, H., Mweneinda, A.K., Falzoni, A., Birch, H., Haynes, S.J.,
991	Bown, P.R., Robinson. S.A. and Singano, J.M. 2015. The Lindi Formation (upper
992	Albian-Coniacian) and Tanzania Drilling Project Sites 36-40 (Lower Cretaceous
993	to Paleogene): Lithostratigraphy, biostratigraphy and chemostratigraphy. $Journal$
994	of African Earth Sciences 101: 282–308.
995	King, C., Iakovleva, A., Steurbaut, E., Heilmann-Clausen, C. and Ward, D. 2013. The
996	Aktulagay section, west Kazakhstan: a key site for northern mid-latitude early
997	Eocene stratigraphy. Stratigraphy, 10:171–209.
998	Koenen, A. von, 1892. Das norddeutsche Unter-Oligocän und seine Mollusken-Fauna,
999	$4 (1).\ Risso idae-Littorini dae-Turbini dae-Halioti dae-Fissurelli dae-Calyptrae idae-Galyptrae idae-Galyptrae-Galyptrae idae-Galyptrae id$
1000	Patellidae; (2) Gastropoda Opisthobranchiata; (3)(1) Gastropoda Polyplacophora;
1001	(2) Scaphopoda; (3) Pteropoda; (4) Cephalopoda. Abhandlungen zur eologischen
1002	Specialkarte von Preussen und den Thüringischen Staaten 10(4): 819-1004, pls
1003	53-62.
1004	Korobkov, I.A. 1966. Krylonogie (Mollusca Pteropoda) paleogenovykh otlozhenij juga
1005	S.S.S.R. Voprosy Paleontologii 5:71-92. (In Russian)
1006	Kunz, A. 1996. Schalenmorphologische Merkmale der Ontogenesestadien ausgewählter
1007	Pteropoda (Gastropoda: Heterostropha). Hamburg, "Diplom-Arbeit im
1008	Studienfach Geologie-Paläontologie an der Universität Hamburg", Germany
1009	(unpublished).

1010	Lamarck, [J.B.P.A. de] 1805-1806. Mémoire sur les fossiles des environs de Paris,
1011	comprenant la détermination des espèces qui appartiennent aux animaux marins
1012	sans vertèbres, et dont la plupart sont figurées dans la collection des vélins du
1013	Muséum, 5. Annales du Muséum d'Histoire Naturelle de Paris 5: 28-36, 91-98,
1014	179-188, 237-245, 349-357.
1015	Lear, C.H., Bailey, T.R., Pearson, P.N., Coxall, H.K. and Rosentha, Y., 2008. Cooling and
1016	ice growth across the Eocene-Oligocene transition. Geology 36(3): 251–254. doi:
1017	10.1130/G24584A.1.
1018	Linnaeus, C. 1758. Systema naturae per regna tria naturae, secundum classes, ordines,
1019	genera, species, cum characteribus, differentiis, synonymis, locis, 1 (editio
1020	decima, reformata). Salvii, Holmiae.
1021	Liu, Z., Tou, S., Zhao, Q., Huang, W. 2004. Deep-water Earliest Oligocene Glacial
1021 1022	Liu, Z., Tou, S., Zhao, Q., Huang, W. 2004. Deep-water Earliest Oligocene Glacial Maximum (EOGM) in the South Atlantic. <i>Chinese Science Bulletin</i> 49: 2190–
1022	Maximum (EOGM) in the South Atlantic. Chinese Science Bulletin 49: 2190–
1022 1023	Maximum (EOGM) in the South Atlantic. <i>Chinese Science Bulletin</i> 49: 2190–2197.
1022 1023 1024	Maximum (EOGM) in the South Atlantic. <i>Chinese Science Bulletin</i> 49: 2190–2197. Lokho, K. and Kumar, K. 2008. Fossil pteropods (Thecosomata, holoplanktonic
1022 1023 1024 1025	Maximum (EOGM) in the South Atlantic. <i>Chinese Science Bulletin</i> 49: 2190–2197. Lokho, K. and Kumar, K. 2008. Fossil pteropods (Thecosomata, holoplanktonic Mollusca) from the Eocene of Assam–Arakan Basin, northeastern India. <i>Current</i>
1022 1023 1024 1025 1026	Maximum (EOGM) in the South Atlantic. <i>Chinese Science Bulletin</i> 49: 2190–2197. Lokho, K. and Kumar, K. 2008. Fossil pteropods (Thecosomata, holoplanktonic Mollusca) from the Eocene of Assam–Arakan Basin, northeastern India. <i>Current Science</i> 94(5): 647-652.
1022 1023 1024 1025 1026 1027	 Maximum (EOGM) in the South Atlantic. Chinese Science Bulletin 49: 2190–2197. Lokho, K. and Kumar, K. 2008. Fossil pteropods (Thecosomata, holoplanktonic Mollusca) from the Eocene of Assam–Arakan Basin, northeastern India. Current Science 94(5): 647-652. Meisenheimer, J. 1905. Pteropoda. Wissenschaftliche Ergebnisse der Deutschen Tiefsee-
1022 1023 1024 1025 1026 1027 1028	 Maximum (EOGM) in the South Atlantic. Chinese Science Bulletin 49: 2190–2197. Lokho, K. and Kumar, K. 2008. Fossil pteropods (Thecosomata, holoplanktonic Mollusca) from the Eocene of Assam–Arakan Basin, northeastern India. Current Science 94(5): 647-652. Meisenheimer, J. 1905. Pteropoda. Wissenschaftliche Ergebnisse der Deutschen Tiefsee-Expedition auf dem Dampfer "Valdivia" 1898-1899, 9(1):1-314.

1032	Meyer, O. 1886. Contribution to the Eocene paleontology of Alabama and Mississippi, 2.
1033	In: Smith, E.A. (ed.). Geology of Alabama. Geological Survey of Alabama,
1034	Bulletin 1: 61-85.
1035	Meyer, O. 1887. Beitrag zur Kenntnis der Fauna des Alttertiärs von Mississippi und
1036	Alabama. Bericht über die Senckenbergische Naturforchende Gesellschaft (1886):
1037	3-22.
1038	Nicholas, C.J., Pearson, P.N., Bown, P.N., Dunkley Jones, T., Huber, B.T., Karega, A.,
1039	Lees, J.A., McMillan, I.K., O'Halloran, A., Singano, J.M., Wade, B.S. 2006.
1040	Stratigraphy and sedimentology of the Upper Cretaceous to Paleogene Kilwa
1041	Group, southern coastal Tanzania. Journal of African Earth Sciences 45: 431–466.
1042	Orbigny A. d' 1834-1847. Voyage dans l'Amérique méridionale (le Brésil, la république
1043	orientale de l'Uruguay, la république Argentine, la Patagonie, la république du
1044	Chili, la république de Bolivia, la république du Pérou), exécuté pendant les
1045	années 1826, 1827, 1828, 1829, 1830, 1831, 1832 et 1833, 5. Bertrand, Paris;
1046	Levrault, Strasbourg: xliii + 758 pp. (publication dates of separate issues see
1047	Sherborn and Griffin, 1934). (In French)
1048	Pearson, P.N., Ditchfield, P.W., Singano, J., Harcourt-Brown, K.G., Nicholas, C.J.,
1049	Olsson, R.K., Shackleton, N.J. and Hall, M.A. 2001. Warm tropical sea surface
1050	temperatures in the Late Cretaceous and Eocene epochs. Nature 413: 481-487.
1051	Pearson, P.N., McMillan, I.K., Wade, B.S., Dunkley Jones, T., Coxall, H.K., Bown,
1052	P.R.& Lear, C.H. 2008. Extinction and environmental change across the Eocene-
1053	Oligocene. Geology 36(2): 179–182. doi: 10.1130/G24308A.1., 279–317

1054	Pearson, P.N., Nicholas, C.J., Singano, J.M., Bown, P.R., Coxall, H.K., van Dongen,
1055	B.E., Huber, B.T., Karega, A., Lees, J.A., Msaky, E., Pancost, R.D., Pearson, M.,
1056	Roberts, A.P., 2004. Paleogene and Cretaceous sediment cores from the Kilwa and
1057	Lindi areas of coastal Tanzania: Tanzania Drilling Project Sites 1–5. Journal of
1058	African Earth Sciences 39: 25–62.
1059	Pearson, P.N., Nicholas, C.J., Singano, J.M., Bown, P.R., Coxall, H.K., van Dongen,
1060	B.E., Huber, B.T., Karega, A., Lees, J.A., MacLeod, K., McMillan, I.K., Pancost,
1061	R.D., Pearson, M., Msaky, E., 2006. Further Paleogene and Cretaceous sediment
1062	cores from the Kilwa area of coastal Tanzania: Tanzania Drilling Project Sites 6-
1063	10. Journal of African Earth Sciences 45: 279–317.
1064	Pearson, P.N. and Wade, B. 2015. Systematic taxonomy of exceptionally well-preserved
1065	planktonic Foraminifera from the Eocene/Oligocene boundary of Tanzania.
1066	Cushman Foundation Special Publication 45: 1–85.
1067	Phipps, C.J. 1774. A voyage towards the North Pole undertaken by his Majesty's
1068	Command 1773. Bowyer, W. and Nichols, J., London.
1069	Premoli Silva, I. and Jenkins, D.G. 1993. Decision on the Eocene-Oligocene boundary
1070	stratotype. Episodes 16(3), 379-382.
1071	Rampal, J. 1973. Phylogénie des ptéropodes thécosomes d'après la structure de la
1072	coquille et la morphologie du manteau. Comptes Rendus de l'Académie des.
1073	Sciences de Paris 277(D): 1345-1348.
1074	Rafinesque, C.S. 1815. Analyse de la Nature ou tableau de l'univers et des corps
1075	organisés. Rafinesque, Palerme: 1-224.

1076	Sherborn, C.D. and Griffin, F.J. 1934. On the dates of publication of the natural history
1077	portions of Alcide d'Orbigny's "Voyage Amérique Méridionale". Annals and
1078	Magazine of Natural History, (10)13(73):130-134.
1079	Van Dongen, B.E., Talbot, H.M., Schouten, S., Pearson, P.N. and Pancost, R.D. 2006.
1080	Well preserved Palaeogene and Cretaceous biomarkers from the Kilwa area,
1081	Tanzania. Organic Geochemistry 37: 539–557.
1082	doi:10.1016/j.orggeochem.2006.01.003
1083	Wade, B.S., Pearson, P.N. 2008. Planktonic foraminiferal turnover, diversity fluctuations
1084	and geochemical signals across the Eocene/Oligocene boundary in Tanzania.
1085	Marine Micropaleontology 68: 244–255.
1086	Wall-Palmer, D., Hart, M.B., Smart, C.W., Sparks, R.S., Friant, A.L., Boudon, G.,
1087	Deplus, C., Komorowski, J.C., 2012. Pteropods from the Caribbean Sea:
1088	variations in calcification as an indicator of past ocean carbonate saturation.
1089	Biogeosciences, 9(1): 309-15.
1090	Winkle Palmer, K. van 1947. The Mollusca of the Jackson Eocene of the Mississippi
1091	Embayment (Sabine River to the Alabama River), 2. Univalves. Bulletins of
1092	American Paleontology 30: 207-563.
1093	Zilch, A., 1959. Gastropoda, 2. Euthyneura, 1. In: Wenz, W. (ed.). Handbuch der
1094	Paläozoologie 6: xii + 200 pp.