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Theory of condensation of indirect excitons in a trap
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We present theoretical studies of condensation of indirect excitons in a trap. Our model quantifies the effect of
screening of the trap potential by indirect excitons on exciton condensation. The theoretical studies are applied to
a system of indirect excitons in a GaAs/AlGaAs coupled quantum well structure in a diamond-shaped electrostatic
trap where exciton condensation was studied in earlier experiments. The estimated condensation temperature of
the indirect excitons in the trap reaches hundreds of milliKelvins.
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I. INTRODUCTION

Potential traps made possible the realization of Bose-
Einstein condensation of atoms [1,2]. Traps also became an
effective tool for studying cold excitons – cold bosons in
condensed-matter materials. The realization of a cold and
dense exciton gas in a trap requires long exciton lifetimes
allowing excitons to travel to the trap center and cool to
low temperatures before recombination. Furthermore, the
realization of a cold and dense exciton gas requires an excitonic
state to be the ground state [3]. These requirements are fulfilled
in a system of indirect excitons (IXs). An IX in a coupled
quantum well (CQW) structure is composed of an electron
and a hole in spatially separated layers [Fig. 1(a)]. The spatial
separation allows one to control the overlap of electron and
hole wave functions and engineer structures with lifetimes
of IXs orders of magnitude longer than lifetimes of regular
excitons [4,5].

In a set of experimental studies, IXs were created in a
GaAs/AlGaAs CQW. Long lifetimes of the IXs allow them
to cool to low temperatures within about 0.1 K of the lattice
temperature a few nanoseconds after the generation [6] or a
few micrometers away from the excitation spot [7]. In turn, the
lattice temperature can be lowered to about 50 mK in an optical
dilution refrigerator. This allows the implementation of a cold
exciton gas with temperatures well below the temperature of
quantum degeneracy Td = 2π�

2n/(kBm) (for a typical GaAs
CQW with the exciton mass m = 0.22m0, Td ∼ 3 K for the
exciton density per spin state n = 1010 cm−2).

A trapping potential for IXs can be created by voltage. IXs
have a built-in dipole moment ed, where d is the separation
between the electron and hole layers. An electric field Fz

perpendicular to the QW plane results in the IX energy
shift E = −edFz [8]. This gives the opportunity to create
in-plane potential landscapes for IXs E(x,y) = −edFz(x,y).
Advantages of electrostatically created potential landscapes
include the opportunity to realize a desired in-plane potential
profile and control it by voltage in situ, i.e., on a time scale
shorter than the IX lifetime. IXs were studied in a variety of
electrostatic traps [9–25] as well as in periodic trap potentials
including static [26–30] and moving [31,32] electrostatic
lattices.

Other potential landscapes for IXs that can be controlled
in situ include moving lattices created by surface acoustic

waves [33–36] and laser-induced traps [7,37,38]. Excitons
were also studied in a variety of traps whose profile cannot
be changed in situ. These traps include strain-induced traps
[39–43], traps created by laser-induced interdiffusion [44],
and magnetic traps [45].

The bosonic nature of excitons allows for their Bose-
Einstein condensation at low temperatures [46]. Spontaneous
coherence and condensation of IXs was measured in a
diamond-shaped electrostatic trap [18]. In this work, we
present theoretical studies of IX condensation in the trap.

II. THEORETICAL MODEL

The trap is created using a diamond-shaped top electrode
[Fig. 1(b)]. Because a thinner electrode produces a smaller
Fz due to field divergence near the electrode edges, a voltage
between the diamond-shaped electrode and the homogeneous
bottom electrode creates a confining potential with the IX
energy gradually reducing toward the trap center [15]. The
considered device includes a 3.5 × 30 μm diamond electrode
at Vdiamond = −2.5 V surrounded by an “outer plane” electrode
at Vouter = −2 V. Two 8-nm GaAs QWs separated by a
4-nm Al0.33Ga0.67As barrier are positioned 100 nm above the
n+-GaAs layer within an undoped 1-μm-thick Al0.33Ga0.67As
layer. Positioning the CQW closer to the homogeneous
electrode suppresses the in-plane electric field [10], which
otherwise can lead to exciton dissociation. This configuration
corresponds to the experimental system studied in Ref. [18].
The IX energy profile in the bare trap calculated numerically
from the Poisson equation is presented in Fig. 1(c). A confining
potential of the diamond trap allows collecting IXs from a large
area, facilitating the creation of a dense and cold IX gas in the
trap and, in turn, exciton condensation in the trap. Furthermore,
as shown below, a paraboliclike confining potential of the
diamond trap increases the condensation temperature.

IXs in the trap are considered within the following approx-
imation.

(i) The dimensions of the trap are much larger than the
IX Bohr radius, which is ∼10 nm in the structure, and the
potential energy variation on the IX Bohr radius is negligible
in comparison to the IX binding energy, which is ∼4 meV
[47,48]. Therefore, IXs are considered as pointlike Bose
particles within the model. Exact two-body quantum dynamics
of IXs in electrostatic potentials was studied in Refs. [49,50].
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FIG. 1. (a) Energy band diagram of the CQW; e, electron; h,
hole. The cyan dashed ellipse indicates an indirect exciton (IX).
(b) Schematic of device. CQW (black dashed lines) is positioned
within an undoped 1-μm-thick Al0.33Ga0.67As layer (yellow) between
a conducting n+-GaAs layer serving as a homogeneous bottom
electrode (green) and a 3.5 × 30-μm diamond-shaped top electrode
(blue) surrounded by an “outer plane” electrode (red). (c) Simulation
of the IX energy profile in the bare trap for Vdiamond = −2.5 V and
Vouter = −2 V.

(ii) Interactions play a key role in the physics of IX systems.
In the first approximation, the exciton-exciton interaction
potential is given by v(r) = 2e2

κ
( 1
r

− 1√
r2+d2 ), where d is the

center-to-center separation of the two wells in the CQW and κ

is the dielectric constant of the semiconductor. At r � d this
potential has the form of the dipole-dipole repulsion, v(r) �
e2d2/(κr3). Interaction between IXs leads to an increase of IX
photoluminescence (PL) energy E with density n, which has
been known since early spectroscopic studies of IXs [51,52].
The Hartree approximation of the exciton interaction gives the
PL energy shift

�Ec = n

∫
v(r)d2r = 4πe2d

κ
n. (1)

Equation (1) is similar to the expression for the voltage on
a parallel-plate capacitor with surface charge density ±en on
the plates and is known as the “capacitor” formula [53]. The
capacitor formula provides a qualitative explanation for the ob-
served increase of �E with photoexcitation power. However,
analytical theory beyond the Hartree approximation [54–61]
and Monte Carlo calculations [62,63] suggest that the capacitor
formula significantly overestimates �E. The origin of this
overestimation is the following. The repulsively interacting
IXs avoid each other, which lowers their interaction energy
per particle as well as their energy shift compared with the
uncorrelated state assumed in the Hartree approximation. The
correlations can be quantified by the dimensionless correlation
parameter γ [28,30]: γ = ν̄1�E/n , where ν̄1 = m / (2π�

2)
is the bare exciton density of states and m = me + mh, me,
and mh are the effective masses of excitons, electrons, and

holes, respectively. The capacitor formula (1) predicts the
density-independent correlation parameter γc = 2d

ae

m
me

, which
is about γc ≈ 7 for the GaAs CQW structures studied in
Refs. [28,30] and the present work. Here ae = �

2κ/(mee
2)

is the electron Bohr radius. This gives the IX energy shift,

�E = γ

γc
�Ec = γ

γc

4πe2d

κ
n = gn, (2)

where we introduce the interaction parameter g. For the plate
capacitor formula gc = 4πe2d

κ
[Eq. (1)]. Recent experiments

[28,30] indicated strong correlation in the IX system with
γ /γc ∼ 0.1 at low exciton densities. At the highest electron-
hole densities γ /γc reaches 1. Accurate measurements of
γ (n)/γc yet have to be done. Within the model, the IX energy
shift due to interaction is approximated as �E = gn and
estimates for different values of g are presented in this work.

(iii) A spinless exciton system is considered within the
model. The interaction between different IX spin states as
well as accurate values for the splitting of IX spin states yet
have to be determined.

(iv) In experimental studies, at low densities and temper-
atures, IXs in the trap are localized by the in-plane disorder
potential (disorder in narrow CQW samples is mainly due to
fluctuations of the QW width) [15]. However, with increasing
density, the disorder is screened by exciton-exciton interaction,
and, at high densities, the trap behaves as a smooth potential.
A smooth trap potential [Fig. 1(c)] is considered in this work.

To find the exciton energy levels Ei and stationary states ψi

we solve the two-dimensional (2D) single-particle Schrödinger
equation (

p̂2
x + p̂2

y

2m
+ V̂ + Û

)
ψi = Eiψi. (3)

Here, the exciton mass m = 0.22m0 [64] (m0 is the free
electron mass), V̂ is the external potential [Fig. 1(c)], and
U (x,y) = gn(x,y) is the interaction potential.

The IX density n(x,y) is calculated using the equilibrium
occupation numbers of the single-particle states Ni , which are
defined by the Bose-Einstein distribution

n(x,y) =
∞∑
i=0

Ni |ψi(x,y)|2, (4)

Ni = 1

exp
(

Ei−μ

kBT

) − 1
. (5)

In the last formula, kB is the Boltzmann constant, T is the
temperature of the exciton gas, μ is the chemical potential,
which depends implicitly on the total number of excitons N ,

N =
∞∑
i=0

Ni(μ,T ). (6)

III. SIMULATION RESULTS AND DISCUSSIONS

The bare trap profile [Fig. 1(c)] is paraboliclike in both
the x and the y directions [Figs. 2(a) and 2(b), black lines],
V (x,y) ≈ m

2 (ω2
xx

2 + ω2
yy

2), with �ωx ≈ 3 μeV and �ωy ≈
14 μeV. The effects of screening and condensation of IXs
in a trap are demonstrated in Figs. 2–4 for the number of
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FIG. 2. (a),(b) The IX energy profile in the bare diamond-
shaped trap (black lines) and screened diamond-shaped trap for
T = 50 mK (blue thick lines) and 10 K (red narrow lines). (c),(d) The
corresponding IX density distribution n (solid lines) and ground-state
density distributions n0 (dashed lines). For the screened trap in
(a)–(d), the IX number in the trap N = 750 and interaction parameter
g = 20 μeV μm2.

IXs in the trap N = 750. At low temperature T = 50 mK,
IXs effectively screen the trap so the profile of the screened
trap is almost flat [Figs. 2(a) and (b), blue lines]. At T =
50 mK, the exciton density essentially follows the inverted
trap profile [Figs. 2(c) and 2(d), blue lines] that is characteristic
for a system with an energy shift due to interaction �E ∝ n.
The width of the ground-state density distribution n0(x,y) =
N0|ψ0(x,y)|2 along the x and y axes increases by about 13 and
7 times, respectively, due to the trap screening [compare blue
and black dashed lines in Figs. 2(c) and 2(d)]. Similar features
for screening of the trap potential were found for cold atoms
in a trap [65,66]. More than half of IXs are in the ground state
i = 0 at T = 50 mK [compare solid and dashed blue lines
in Figs. 2(c) and 2(d)]. No pronounced bimodal distribution
is found for the IX density [Figs. 2(c) and 2(d), solid blue
lines], consistent with a strong repulsive interaction between
IXs and, consequently, a relatively wide ground-state wave
function [Figs. 2(c) and 2(d), dashed blue lines].

The screening of the trap by IXs is less effective at high
temperatures [Figs. 2(a) and 2(b), red lines]. Due to this, the
width of the ground-state density distribution along x and y

axes increases by about 11 and 6 times, respectively, with
lowering the temperature [compare blue and red dashed lines
in Figs. 2(c) and 2(d)]. At the same time, the width of the
entire exciton cloud reduces with lowering the temperature

FIG. 3. Occupations νi = Ni/N and energies δEi = Ei − E0 of
the IX states in a diamond-shaped trap for different temperatures
T = 10 K (red squares, ×1000), 1 K (green diamonds, ×100),
350 mK (cyan triangles, ×10), and 50 mK (blue dots). For the same
temperatures, dashed lines show Maxwell-Boltzmann distributions
∝ exp(δEi/(kBT )) brought to ν0 at δEi = 0 for comparison. The inset
shows occupations νi for a wider range of energies δEi . N = 750 and
g = 20 μeV μm2.

due to the IX collection toward the trap center [compare blue
and red solid lines in Figs. 2(c) and 2(d)].

The IX distribution over the trap states is presented for
different temperatures in Fig. 3. At high temperature T =
10 K, low-energy IX states are nearly equidistant (Fig. 3,
red squares) with the splitting between them ≈2 μeV. With
lowering temperature, the trap profile becomes more and more
flat and the splitting between IX states reduces to ≈0.03 μeV
at T = 50 mK [Fig. 3, blue points, and Fig. 4(a), red dotted
curve].

At high temperature T = 10 K, the IX gas is classical
with the chemical potential μ separated from the lowest
energy IX state i = 0 by more than kBT [Fig. 4(a)], the
ground-state occupation number N0 	 1 [Figs. 3 and 4(b)],
and the IX distribution close to the Maxwell-Boltzmann
distribution (Fig. 3; compare red squares with red dashed
line). For N = 750 (Figs. 2–4), the exciton density in the
trap reaches ∼ 5 × 109 cm−2 [Figs. 2(c) and 2(d)] and the
temperature of quantum degeneracy Td ∼ 1 K. At this tem-
perature, a degenerate Bose gas of IXs forms in the trap with
E0 − μ ∼ kBT [Fig. 4(a)], N0 ∼ 1 [Figs. 3 and 4(b)], and the
Bose-Einstein IX distribution [Eq. (5)] deviating substantially
from the Maxwell-Boltzmann distribution (Fig. 3; compare
green diamonds with green dashed line). At low temperature
T = 50 mK, a Bose-Einstein condensate of IXs forms in the
trap with more than half of all IXs in the trap occupying the
lowest-energy IX state, N0 ≡ ν0N ≈ 400 [Figs. 3 and 4(b)].
At this temperature, E0 − μ 	 kBT [Fig. 4(a)].

Figure 4(b) presents the occupation of the ground state
ν0 ≡ N0/N and first excited state ν1 ≡ N1/N as a function
of temperature. As for any system of bosons of a finite
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FIG. 4. (a) Splitting between the IX ground state i = 0 and first
excited state i = 1 (red dotted line) and the IX chemical potential
relative to the ground state E0 − μ (blue solid line) for IXs in
a diamond-shaped trap as a function of temperature. The thermal
energy kBT is shown by a black dashed line for comparison. (b) The
occupation of the ground state ν0 ≡ N0/N (blue solid line) and first
excited state ν1 ≡ N1/N (red dotted line) for IXs in a diamond-shaped
trap as a function of temperature. N = 750, g = 20 μeV μm2.

size and finite number of particles [67] the condensation
transition is smooth so the condensation temperature is
somehow uncertain and needs to be defined. For certainty,
in this work, we define the condensation temperature Tc as
the temperature at which the ground-state occupation reaches
1/e of all particles in the trap, ν0 ≡ N0/N = 1/e (we note
parenthetically that in a 3D infinite system of noninteracting
bosons, 1/e occupation of the ground state is reached below
the condensation temperature Tc-3D, at T ∼ 0.7Tc-3D). This
definition results in the condensation temperature Tc ≈ 80 mK
for N = 750 IXs in the trap for g = 20 μeV μm2 [Fig. 4(b)].
Figure 4(b) also shows that the occupation of the first excited
state i = 1 reaches maximum around this temperature.

The density dependence of the IX condensation temperature
Tc(N ) is shown in Fig. 5. The limiting cases of a paraboli-
clike trap with no screening and rectangular trap presenting
“complete” screening to a flat boxlike potential are presented
by the cyan and black lines, respectively. The “parabolic trap”

FIG. 5. Condensation temperature Tc vs the number of IXs N

calculated for a 2D diamond-shaped trap with g = 20 μeV μm2 (red
diamond) and for a 1D problem with g = 20, 7.1, and 2 μeV μm2

(red solid, blue dashed, and magenta dotted lines, respectively)
mapped to the 2D problem as described in the text. g = 20 μeV μm2

corresponds to IX interaction strength given by the “plate capacitor”
formula; a lower g corresponds to a weaker IX interaction due to
IX correlations as described in the text. The limiting “no screening”
case of noninteracting IXs in a paraboliclike trap with �ωx ≈ 3 μeV
and �ωy ≈ 14 μeV is presented by cyan dash-double-dotted line.
The other limit of “complete screening” to flat potential is presented
by IXs in 3.5 × 30 μm2 rectangular trap with infinite walls (black
dash-dotted line).

numerical simulation use the parameters of the unscreened trap
V (x,y) = m

2 (ω2
xx

2 + ω2
yy

2), with �ωx ≈ 3 μeV and �ωy ≈
14 μeV. The results of these simulations are close (see Fig. 7)
to the analytical estimates for ideal noninteracting bosons
in a parabolic 2D trap kBTc-parabolic =

√
6

π
�ω2D

√
N , where

ω2D = √
ωxωy [65,67].

The “rectangular trap” numerical simulations use a rect-
angular trap potential with the sides equal to the diamond
electrode diagonals (3.5 and 30 μm). The results of these
simulations are close (see Fig. 7) to the analytical estimates
for ideal noninteracting bosons in a rectangular 2D trap
kBTc-rectangular = kBTd/ ln N = 2π�

2N
mA ln N

, where A is the area
[67]. We note that this formula is more accurate for a square
trap. For a rectangular trap of a fixed area A = a1a2, Tc-rectangular

reduces when the sides of the rectangle a1 �= a2 (see Fig. 8).
The condensation temperature for the screened diamond

trap falls between these limits (Fig. 5, diamond). Since the
calculations for a 2D diamond trap require significant com-
puting time, we make the following approximation mapping
the 2D problem to 1D problem. The elongated 2D profile of
the diamond-shaped trap [Fig. 1(c)] is replaced with a 1D trap
with the same energy profile in the x direction V = V (x). The
2D interaction parameter g is replaced with a 1D interaction
parameter g1D chosen to produce the same energy shift due
to IX interaction in the 1D trap as in the 2D diamond-shaped
trap. The corresponding conversion of g to g1D is presented
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FIG. 6. (a),(b) The IX energy profile in a 1D trap for T = 50 mK (a) and 10 K (b). The IX number in the trap N = 75 (red), 750 (green), and
7500 (blue). The bare trap energy profile is shown by black line. (c),(d) The corresponding IX density distributions n (solid) and ground-state
density distributions n0 (dashed). For the screened trap in (a)–(d), the 1D interaction parameters correspond to the 2D interaction parameter
g = 20 μeV μm2, as described in the text.

in Fig. 9. The condensation temperature Tc = Tc(N ) obtained
within this approximation is presented in Fig. 5 by red, blue,
and magenta lines for different g. This 1D approximation
produces roughly the same Tc as the 2D model (compare red
line and diamond in Fig. 5).

The highest values of N in Fig. 5 are limited by the IX
density at which the trap still provides a confining potential,
i.e., is not completely screened. This limiting IX number is
determined by the number at which the interaction-induced
energy shift is still smaller than the depth of the bare trap
potential (Fig. 10).

Another limit on the IX density is imposed by the Mott
transition. The Mott transition is expected when na2 ∼ 0.1
(review of the estimates for the Mott transition can be found in
Ref. [68]). For IX Bohr radius a ∼ 10 nm in the structure [48],

this gives the estimated IX density for the Mott transition nM ∼
1011 cm−2. For N = 750, the area of the exciton cloud A ∼
20 μm2 (Fig. 2) leading to the estimated number of particles
at the Mott transition NM ∼ AnM ∼ 2 × 104. The extension
of the IX cloud increases with N . This is quantified within the
1D approximation by Fig. 6. The cloud extension leads to even
higher estimated values for NM , beyond the limits imposed by
the complete screening of the trap potential described above.

The red, blue, and magenta lines in Fig. 5 present
the simulations for different interaction parameter g. The
red diamond and red curve in Fig. 5 as well as data in
Figs. 2–4 display calculations for g, which correspond to IX
interaction strength given by the “plate capacitor” formula,
g = 20 μeV μm2 ∼ gc [Eq. (1)]. A lower g corresponds to a
weaker IX interaction due to IX correlations [28,30]. In Fig. 5,
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the magenta line corresponds to g ∼ 0.1gc and the blue line to
g ∼ 0.4gc. Experimental estimates [28,30] show that g varies
from ∼0.1gc to ∼gc with increasing density. [The accurate
measurements of the density dependence for g = g(n) yet need
to be done.] This implies that the condensation temperature
dependence on N moves from magenta curve at lower N

toward blue and red curves at higher N .
The simulation results are in qualitative agreement with

the experimental data in Ref. [18]. In the presence of exciton
correlations revealed in earlier measurements of IXs in the
studied CQW [28,30], for the measured IX energy shift
1.3 meV [18], the estimated IX number N ∼ 3 × 103–104

(blue and magenta lines in Fig. 10) and, in turn, the estimated
condensation temperature Tc ∼ 0.3–1 K (Fig. 5). This theoret-
ical estimate is in qualitative agreement with the experimental
results: In the experiment [18], with lowering the temperature,
the exciton coherence length starts to increase relative to the
high-temperature classical value around 2 K and at T ∼ 1 K
the extension of coherence over the entire IX cloud is observed.
Note, however, that accuracy of the theoretical model should
be improved in future works by including to the model the
effects of disorder, different spin states, and density- and
spin-dependent exciton interaction.

The agreement between the theoretical estimates presented
in this work and experimental measurements of IXs conden-
sation in Ref. [18] indicates that IX condensation can be ad-
equately described by the theory based on (quasi)equilibrium
Bose-Einstein distribution of interacting bosons.

However, it is worth noting the properties of IX systems,
which should be taken into account.

(a) The interaction strength between IXs is affected by
correlations. The correlations can be estimated theoretically
[54–63] and measured experimentally [28,30,69]. Improving
the accuracy in estimates of IX correlations should improve
the accuracy of the model of IX condensation.

(b) While at low densities, condensation of the composite
bosons – excitons, is similar to Bose-Einstein condensation
[46], at high densities, excitons undergo the Mott transition,
above which hydrogenlike excitons dissociate (see [68] for
review). The theory [70] predicts that a BCS-like exciton
condensate may form in electron-hole plasma. The model of
IX condensation is applicable for the IX densities below the
density of the Mott transition.

(c) The presence of different spin states for excitons may
lead to peculiarities of exciton condensation. Some of them
are outlined below. IXs in a GaAs CQW may have four spin
projections on the z direction: Jz = −2, −1, +1, +2. The
states Jz = −1 and +1 contribute to left- and right-circularly
polarized emission and their coherent superposition to linearly
polarized emission, whereas the states Jz = −2 and +2 are
dark [71]. (c1) Within the model approximation, the interaction
between all states is taken equal. However, the interaction
between IXs depends on their Jz [59]. The accuracy of
the model can be improved by taking this into account.
Within this approach, the interaction should be affected by the
exciton distribution over spin states. This distribution, in turn,
depends on the spin-state energies. The splitting between the
Jz = ±2 and ±1 spin states � is determined by the exchange

interaction between the electron and the hole in the exciton
and scales � ∝ τ−1

r [71–74]. For regular direct excitons, DXs,
in single GaAs QW, � < 100 μeV [74]. For IXs in the
studied CQW, the radiative lifetime τr is about thousand times
larger than for DXs [75] and, therefore, the splitting is very
small, � < 0.1 μeV. The splitting between the spin states
can be also affected by in-plane anisotropy in the structure
induced by strain or monolayer fluctuations of interfaces. The
measurements of IX spontaneous coherence by shift interfer-
ometry in the region of the rings in exciton emission pattern
[76] (without confinement in an electrostatic trap) and the
measurements of IX spin polarization by polarization-resolved
optical imaging of IX emission [77] showed that all four IX
spin states form the IX condensate. We note, however, that
other measurements based on the energy shift analysis were
discussed in terms of the particle accumulation in the optically
dark Jz = ±2 states [23,25,78]. (c2) The interaction between
IXs also depends on their energies. For instance, the energy
dependence of exchange interaction leads to the effective
mass renormalization, such renormalization was measured for
electron-hole plasma in Refs. [79,80]. Furthermore, exchange
interaction between bosons in the same state vanishes, which
can substantially reduce the overall interaction energy at low
temperatures where the fraction of IXs occupying the same
state is substantial (Fig. 3). The accuracy of the model of IX
condensation can be improved by taking these effects into
account.

(d) When the distance d between the electron and hole
layers is large, interaction between IXs is repulsive and con-
densation in real space to high-density electron-hole droplets
or exciton droplets is energetically unfavorable [54–56]. In
turn, in CQW structures with small d, condensation in real
space may be possible. Condensation in real space was
reported in Refs. [25,81]. The model of IX condensation is
applicable for IXs in CQW (with sufficiently large d), where
IXs form the ground state (such CQW was studied in Ref. [18]
and other works).

(e) Optical excitation above the barrier gap, electric
leakage currents across the structure, and defects may cause
in-plane pattern formations. For instance, electron-rich and
hole-rich regions, exciton rings at the interface between
these regions [78,82–88], and spatially modulated exciton
state [78,82,83,88] were observed in gated QW structures.
Furthermore, exciton temperature can be higher in the regions
of optical excitation [7] and in the regions of electric
currents through the structure [83]. The density and tem-
perature inhomogeneities can complicate the condensation.
The model of IX condensation is applicable in a system
where IX condensation is not affected by IX density or
temperature inhomogeneities or free electrons or holes (ef-
fects, which may complicate condensation, were avoided in
a system of IXs created by optical excitation positioned
away from the trap center in the diamond-shaped trap in
Ref. [18]).

(f) It is worth mentioning that there might be other
effects, for instance effects related to the device design and
performance [89], which can make the system behavior and
data analysis complex.
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IV. SUMMARY

In conclusion, we presented a theoretical model for con-
densation of indirect excitons in a trap. The model quantifies
the effect of screening of the trap potential by IXs on
exciton condensation. The theoretical studies were applied
to a system of IXs in a GaAs/AlGaAs CQW in a diamond-
shaped electrostatic trap where exciton condensation was
studied in earlier experiments [18]. The qualitative agreement
between the theoretical estimates presented in this work
and experimental measurements of IXs condensation [18]
indicates that IX condensation can be adequately described
by the theory based on (quasi)equilibrium Bose-Einstein
distribution of interacting bosons. The application of the
model to various traps and materials, which were studied
or can be studied experimentally, as well as improving the
accuracy of the simulations by including in the model the
effects of disorder, different spin states, and density- and

FIG. 7. Condensation temperature Tc vs the number of IXs N

for analytically solvable problems of parabolic and rectangular
potentials. Numerical simulations for Tc (cyan dash-double-dotted
line) and analytical estimates kBTc-parabolic =

√
6

π
�
√

ωxωyN (narrow
cyan dash-double-dotted line) for noninteracting IXs in the parabolic
potential V (x,y) = m

2 (ω2
xx

2 + ω2
yy

2), with �ωx ≈ 3 μeV and �ωy ≈
14 μeV. Numerical simulations for Tc (black dash-dotted line) and
analytical estimates kBTc-rectangular = kBTd/ ln N = 2π�

2N

mA ln N
(narrow

black dash-dotted line) for IXs in the 3.5 × 30 μm2 rectangular trap
with infinite walls.

state-dependent exciton interaction form the subject for future
work.
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APPENDIX

This Appendix presents the comparison of numerical simu-
lations with analytical solutions for condensation temperature
Tc of noninteracting IXs for parabolic and rectangular traps
(Fig. 7), the comparison of condensation temperatures Tc of
IXs in rectangular traps with different side ratios (Fig. 8), the
relation between the interaction parameters in the 1D and 2D
models (Fig. 9), and the IX ground-state energy shift vs IX
number in the trap (Fig. 10).

FIG. 8. Numerical simulations for condensation temperature Tc

vs the number of IXs N for IXs in the rectangular trap with infinite
walls for different side ratios a1/a2 = 1, 2, 4, 8, 16, and 32 (red,
green, blue, cyan, magenta, and black solid lines, respectively) and
the same area A = a1a2 = 105 μm2. The black dashed line marks
analytical estimate kBTc-rectangular = kBTd/ ln N = 2π�

2N

mA ln N
.
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FIG. 9. One-dimensional interaction parameter g1D vs the num-
ber of IXs N for three two-dimensional interaction parameters g = 2
(magenta dotted line), 7.1 (blue dashed line), and 20 (red solid line)
μeV μm2. For fixed N and g, the 1D interaction parameter g1D is
such that chemical potentials μ at T = 0 K, calculated within the
Thomas-Fermi limit [when the kinetic energy term is omitted in
Eq. (3)], in 1D and 2D problems are the same.

FIG. 10. The ground-state energy E0 vs the number of IXs N for
the 1D problem. Three lines (magenta dotted, blue dashed, and red
solid) correspond to the 1D interaction parameters g1D(N ) shown in
Fig. 9 by the same colors and, in turn, to 2D interaction parameters
g = 2 (magenta dotted line), 7.1 (blue dashed line), and 20 (red solid
line) μeV μm2.
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