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Key Points 

The ocean naturally stores a very large quantity of carbon as dissolved carbonate and 

bicarbonate ions 

It may be possible to store additional carbon in this sink to mitigate climate change at costs 

that are comparable to conventional mitigation 

Research is needed to understand the impacts and the feasibility of this approach  

Abstract 

Over the coming century humanity may need to find reservoirs to store several trillions of tons 

of carbon dioxide (CO2) emitted from fossil fuel combustion, which would otherwise cause 

dangerous climate change if it were left in the atmosphere. Carbon storage in the ocean as 

bicarbonate ions (by increasing ocean alkalinity) has received very little attention. Yet, recent 

work suggests sufficient capacity to sequester copious quantities of CO2. It may be possible to 

sequester hundreds of billions to trillions of tonnes of C without surpassing post-industrial 

average carbonate saturation states in the surface ocean. When globally distributed, the impact 

of elevated alkalinity is potentially small, and may help ameliorate the effects of ocean 

acidification. However, the local impact around addition sites may be more acute but is specific 

to the mineral and technology. 

The alkalinity of the ocean increases naturally because of rock weathering in which > 1.5 moles 

of carbon are removed from the atmosphere for every mole of magnesium or calcium dissolved 

from silicate minerals (e.g., wollastonite, olivine, anorthite), and 0.5 moles for carbonate 

minerals (e.g., calcite, dolomite). These processes are responsible for naturally sequestering 

0.5 billion of CO2 tons per year. Alkalinity is reduced in the ocean through carbonate mineral 

precipitation, which is almost exclusively formed from biological activity. Most of the previous 

work on the biological response to changes in carbonate chemistry have focused on acidifying 

conditions. More research is required to understand carbonate precipitation at elevated 

alkalinity to constrain the longevity of carbon storage. 

A range of technologies have been proposed to increase ocean alkalinity (accelerated 

weathering of limestone, enhanced weathering, electrochemical promoted weathering, ocean 

liming), the cost of which may be comparable to alternative carbon sequestration proposals 

(e.g., $20 - 100 tCO2
-1). There are still many unanswered technical, environmental, social, and 

ethical questions, but the scale of the carbon sequestration challenge warrants research to 

address these. 

Index Terms/Keywords 

AT  Total Alkalinity, see section 2 



2 

AWL  Accelerated weathering of limestone 

BECCS Biomass energy carbon capture and storage 

CO2   Carbon dioxide 

C  Carbon. Descriptions of global distribution and fluxes are described in billions 

of tons (Gt) of C to account for the various compounds in which C exists. The 

equivalent amount of CO2 can be calculated by multiplying by 3.67. 

CaCO3  Calcium carbonate (typically as calcite or aragonite polymorphs) 

CaO   Lime 

Ca(OH)2 Portlandite 

CCD   Carbonate compensation depth (in the ocean) 

CCS   Carbon capture and storage 

CT    Dissolved inorganic carbon (also ‘DIC’) 

Gt   Gigatons (or Pg) 

kJ   Kilojoules 

Ksp   Solubility product constant 

µatm   Microatmospheres (units of pressure) 

NaOH  Sodium hydroxide 

pCO2   Partial pressure of CO2 

PIC   Particulate inorganic carbon 

POC  Particulate organic carbon 

ppmv  Parts per million by volume 

RCP Representative concentration pathway (of greenhouse gases in the atmosphere 

to produce between 2.6 and 8.5 W m-2 of radiative forcing on the global climate 

system) 

Ωcalcite  The saturation state of calcite in solution (Ωaragonite ≈ 0.66 Ωcalcite) 

[X]  Square brackets denote concentrations of aqueous element or compound X 

1. Introduction 

1.1 Context and Scope 

Stabilizing and reducing atmospheric carbon dioxide (CO2) concentrations to avoid 

‘dangerous’ climate change is one the greatest challenges facing humanity in the 21st Century. 

Long-term sustainable solutions include the reduction of CO2 emissions by decarbonizing 

energy generation, demand reduction through efficiency improvements, and responsible land 

use management [Edenhofer et al., 2014]. However, these require a tremendous change in our 

technological and socio-economic systems that may take decades or even centuries to 
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implement. The Paris Agreement [UNFCCC 2015], which entered into force in November 

2016, aims to hold global temperature changes below 2°C through nationally declared 

contributions to greenhouse gas emission reductions. While 136 countries have ratified the 

agreement, the pledged contributions are insufficient to prevent a 2°C temperature rise [Rogelj 

et al. 2016]. 

Many future scenarios that keep climate change below 2°C do so not only by limiting the use 

of carbon, but by using technology to limit the impact of carbon use on the atmospheric 

concentration. These technologies allow the use of fossil fuels but either prevent CO2 emission 

into the atmosphere (e.g., carbon capture and storage,[Metz et al., 2005]) or remove CO2 from 

the atmosphere once there (‘negative emissions’, [Fuss et al., 2014; McLaren 2012]).  

 

Figure 1: Emission scenarios for representative concentration. Reprinted by permission from 

Macmillan Publishers Ltd: Nature Climate Change [Fuss et al., 2014], copyright © 2014. 

The representative concentration pathway (RCP) that results in a likely temperature rise by 

2100 below 2°C is RCP2.6 (Figure 1, see [van Vuuren et al., 2011]), which suggests a 

cumulative emission of 880 Gt C (we use Gt C in this study, but these values can be converted 

to Gt CO2 by multiplying by 3.66) This RCP explicitly includes 40 - 220 Gt C of negative 

emissions [Edenhofer, 2014]. Scenarios where more carbon is burned either result in warming 

in excess of 2°C, or require even more significant removal of CO2 at source or from the 

atmosphere. With current conventional fossil fuel reserves ~3,000 Gt C [McGlade and Ekins 

2015], carbon storage requirements could extend to thousands of Gt. There are few sinks with 

the capacity to store hundreds of Gt C, with that most often considered being CO2 injection 

underground in depleted hydrocarbon reservoirs or saline aquifers. Estimates of carbon storage 

in this reservoir are on the order of 100-1,000 Gt C [Bradshaw et al., 2007] Other options 

include biomass growth (~100 Gt C) [Nilsson and Schopfhauser, 1995], mineralization of 
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natural (105 Gt C) [Sanna et al., 2014] and waste (~50-100 Gt C) [Renforth et al., 2011] 

materials, enhanced ocean productivity (26-180 Gt C) [Denman 2008], and the subject of this 

review: inorganic storage in the ocean.  

The oceans contain ≈38,000 Gt C, some 45 times more than the present atmosphere, and 

oceanic uptake has already consumed close to 40% of anthropogenic C emissions [Sabine and 

Tanhua, 2010]. On long-timescales (~100-200 ka) the ocean and weathering will reduce 

atmospheric CO2 to values close to pre-industrial [Lord et al., 2016].  So the issue is not 

capacity, but rather a question of how to accelerate oceanic uptake and storage in a safe and 

cost effective way. Given the increasing reliance of future climate scenarios on negative 

emission, and the size of C sequestration that may be required, it is important to explore and 

understand the feasibility of all possible C sinks, including acceleration of the natural oceanic 

sink. 

Sequestration of inorganic C in the ocean is the least represented climate mitigation strategies 

in the literature [Bellamy et al., 2012]. This has led to considerable uncertainty about the 

potential storage capacity, environmental impact, and cost of this approach [NAS 2015]. The 

aim of this paper is to review all aspects of the inorganic C sink in the ocean, including the 

function of alkalinity in the natural oceanic C cycle (section 2), the changes in ocean chemistry 

imposed by artificial alkalinity changes (section 3), the stability of increased alkalinity in the 

ocean (section 4), technologies for increasing ocean alkalinity (section 5 and 6), and the 

potential environmental impact (section 6 and 7). This builds on existing general discussions 

of geochemical C sequestration, which ocean carbon storage is introduced in the context of 

other removal schemes [Lackner 2002; Stephens and Keith 2008]. Alkalinity storage in the 

ocean raises issues around environmental impact, quantification, monitoring, governance, and 

longevity, all of which will be explored in detail in this review. 

Storage of C by increasing ocean alkalinity requires the extraction, processing, and dissolution 

of minerals. This results in chemical transformation of CO2 and sequestration as bicarbonate 

and carbonate ions (HCO3
-, CO3

2-) in the ocean. Dissolution of a mole of Ca2+ or Mg2+ 

sequesters close to 2 moles of C (see section 2). So even dissolution of carbonate minerals (e.g., 

CaCO3) which contain a mole of C leads to some drawdown of CO2. Table 1 presents some 

reaction pathways for naturally occurring and anthropogenically produced minerals. A list of 

acronyms is included in the appendix. 

Table 1. Carbon sequestration reactions for a range of naturally occurring and anthropogenically 

produced minerals. 

Equation 

Number 
Mineral 

ΔGf 

(kJ/ 

mole)a 

Reaction 

ΔGr 

(kJ/ 

mole)a 

ΔGr 

(kJ/ 

mole 

C)a 

gCO2/ 

g(min

eral) 

Naturally occurring minerals 

1 Magnesit

e 

-1029.5 𝑀𝑔𝐶𝑂3 + 𝐶𝑂2 + 𝐻2𝑂 → 𝑀𝑔2+

+ 2𝐻𝐶𝑂3
− 

22.5 22.5 0.52 

2 Calcite -1128.5 𝐶𝑎𝐶𝑂3 + 𝐶𝑂2 + 𝐻2𝑂 → 𝐶𝑎2+

+ 2𝐻𝐶𝑂3
− 

22.8 22.8 0.44 
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3 Dolomite -2161.7 𝐶𝑎𝑀𝑔(𝐶𝑂3)2 + 2𝐶𝑂2 + 2𝐻2𝑂
→ 𝐶𝑎2+ + 𝑀𝑔2+

+ 4𝐻𝐶𝑂3
− 

48.9 24.5 0.48 

4 Forsterite -2053.6 𝑀𝑔2𝑆𝑖𝑂4 + 4𝐶𝑂2 + 4𝐻2𝑂
→ 2𝑀𝑔2+

+ 4𝐻𝐶𝑂3
−

+ 𝐻4𝑆𝑖𝑂4 

-25.3 -6.3 1.25 

5 Anorthite -4007.9 𝐶𝑎𝐴𝑙2𝑆𝑖2𝑂8 + 2𝐶𝑂2 + 3𝐻2𝑂
→ 𝐶𝑎2+ + 2𝐻𝐶𝑂3

−

+ 𝐴𝑙2𝑆𝑖2𝑂5(𝑂𝐻)4 

-36.8 -18.4 0.32 

Anthropogenically produced minerals 

6 Lime -603.5 𝐶𝑎𝑂 + 2𝐶𝑂2 + 𝐻2𝑂 → 𝐶𝑎2+

+ 2𝐻𝐶𝑂3
− 

-117.9 -58.9 1.57 

7 Portlandi

te 

-898.4 𝐶𝑎(𝑂𝐻)2 + 2𝐶𝑂2 + 𝐻2𝑂
→ 𝐶𝑎2+ + 2𝐻𝐶𝑂3

− 

-60.1 -30.0 1.19 

8 Periclase -569.2 𝑀𝑔𝑂 + 2𝐶𝑂2 + 𝐻2𝑂 → 𝑀𝑔2+

+ 2𝐻𝐶𝑂3
− 

-53.5 -26.7 2.18 

9 Brucite -833.5 𝑀𝑔(𝑂𝐻)2 + 2𝐶𝑂2 + 𝐻2𝑂
→ 𝑀𝑔2+

+ 2𝐻𝐶𝑂3
− 

-26.2 -13.1 1.51 

Electrochemical Weathering 

10   𝑁𝑎𝐶𝑙(𝑎𝑞) + 𝐻2𝑂(𝑙)

→ 𝑁𝑎𝑂𝐻(𝑎𝑞)
+ 0.5𝐶𝑙2(𝑔)
+ 0.5𝐻2(𝑔) 

   

11   0.5𝐶𝑙2(𝑔) + 0.5𝐻2

(𝑔) → 𝐻𝐶𝑙(𝑎𝑞) 

   

12  ` 4𝐻𝐶𝑙 (𝑎𝑞) + 𝑀𝑔2𝑆𝑖𝑂4(𝑠)

→ 2𝑀𝑔𝐶𝑙2(𝑠)
+ 𝑆𝑖𝑂2(𝑠)
+ 𝐻2𝑂 (𝑙) 

   

aThermodynamic information was sourced from [Robie and Hemingway 1979] 

 

1.2 History of research investigating ocean alkalinity as an engineered carbon sink 

The use of enhanced ocean alkalinity for C storage was first proposed by Kheshgi [1995]. 

Realizing the slow rate of natural mineral dissolution, Kheshgi [1995] proposed the creation of 

highly reactive lime (CaO) or portlandite (Ca(OH)2) from the calcination of limestone. 

Notionally, CaO or Ca(OH)2 would readily dissolve in the surface ocean and sequester CO2 

through the reactions in Table 1. The high energy costs of creating lime, and research focus on 

other forms of climate change mitigation, has meant that the proposal was largely disregarded 

in the 1990’s and early 2000’s. Interest in ocean liming (and more generally ocean alkalinity 

for carbon storage) was reinvigorated around debates about geoengineering [e.g., The Royal 

Society, 2009]. In this context, the techno-economic feasibility of Ocean Liming was re-



6 

examined by Renforth et al., [2013], who suggest similar energy and financial requirements to 

other air capture technologies. However, both Kheshgi [1995] and Renforth et al., [2013] 

recognized that the production of lime from limestone may not be the most efficient process 

for increasing ocean alkalinity due to the large energy and CO2 burden of calcination. The 

development of this idea and the proposed integration of mineral carbonation [Renforth and 

Kruger 2013] is expanded upon here in section 5. Consideration of ocean alkalinity carbon 

storage has largely been driven by technology proposals. An unpublished white paper 

[Henderson et al., 2008] discussed the broad range of biogeochemical consequences of ocean 

liming, and highlighted knowledge gaps including poor constraints of the relationship between 

elevated carbonate mineral saturation and precipitation, uncertainty in the impact of elevated 

alkalinity on biology, and the rate of dispersion/dilution of added materials. 

An alternative proposal was developed independently by Rau and Caldeira [1999], who 

suggested that the dissolution of carbonate minerals (e.g., CaCO3) exposed to waste flue gas 

CO2 and seawater (Accelerated Weathering of Limestone; AWL) as a means for increasing 

ocean alkalinity. The ultimate fate of the stored carbon is the same as ocean liming (i.e. HCO3
- 

and CO3
2- ions), but the reaction pathway is different. Raising the partial pressure of CO2 to 

>5,000 µatm (at a total pressure of 1 atm) in contact with seawater, creates the conditions in 

which carbonate minerals can spontaneously dissolve. Therefore, contacting carbonate 

minerals, seawater and power station flue gas (10 % CO2 at 1 atm), would result in increased 

alkalinity in the effluent discharged back to the ocean. The key limitation of this process is the 

amount of water required, in which thousands of tons of seawater are needed per ton of CO2 

sequestered. However, Rau and Caldeira [1999] point out that the once-through cooling water 

consumed within some power stations equates to around 400 tons per ton of CO2 emitted, thus 

lowering the additional water requirements of AWL. Caldeira and Rau [2000] suggested the 

cost and environmental impact compares favorably to direct injection of CO2 in the deep ocean. 

The engineering requirements were developed in Rau et al., [2007], and Langer et al., [2009] 

who explored the processing and handling costs of an up-scaled industry (discussed further in 

section 5). Rau (2011) provided results from the operation of a bench-scale experiment, which 

demonstrated high levels of CO2 sequestration largely as a function of the solution/gas volume 

ratio within the reactor. He showed that a solution:gas flow ratio of 8 was sufficient to capture 

85 % of the CO2 from a 10 % gas at 1 atm. Chou et al., [2015] investigated the operation of a 

two stage AWL reactor in which gas-liquid equilibration occurs prior to solid-liquid 

equilibration, and found lower carbon sequestration efficiencies of <50 %. Despite this work, 

AWL research has been largely confined to small-scale experiments. 

The dissolution of minerals in a carbonic acid solution is relatively slow compared to stronger 

acids. Therefore, House et al., [2007] proposed the creation of alkalinity in the ocean through 

electrolysis (equation 10 in Table 1) and the reaction of the Cl2 and H2 gaseous products in a 

fuel cell to produce electricity and hydrochloric acid (equation 11). The acidity is then 

neutralized through the dissolution of a silicate mineral (equation 12). While the kinetics of 

this process would be rapid, the energy requirements are substantial (section 5). An alternative 

electrochemical approach was proposed in which CaCO3 [Rau 2008] or a magnesium silicate 

[Rau et al., 2013] was dissolved around an acidic anode and a high pH (Ca(OH)2 or Mg(OH)2) 

solution was created around the cathode. The high pH solution would then be used to remove 

CO2 from air directly, with the resulting bicarbonate-rich solution added to the ocean.  
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Alternatively, the hydroxide could be added to the ocean to consume excess CO2. In either case 

ocean alkalinity is increased.  

A number of studies investigate the potential of adding naturally occurring minerals directly to 

the land surface [Hartmann et al., 2013; Hartmann and Kempe 2008; Köhler et al., 2010; 

Manning 2008; Manning et al., 2013; Moosdorf et al., 2014; Renforth 2012; Schuiling and 

Krijgsman 2006; Taylor et al., 2016; ten Berge et al., 2012), coastal environments  (Hangx and 

Spiers 2009; Schuiling and de Boer 2010; Montserrat et al., 2017; Meysman and Montserrat 

2017], and the open ocean [Harvey 2008; Köhler et al., 2013]. The feasibility of such 

approaches is still highly contested given the slower dissolution kinetics at ambient 

temperatures and pressures, and the solubility limits of naturally occurring minerals. However, 

the direct comparison to elevated temperature/pressure mineral carbonation is problematic, as 

constraints of reactor size are removed. In chemical engineering, a reaction time on the order 

of minutes is required to facilitate reasonable reactor sizes for commercial operations. 

Reactions in the open environment could have a time constraint on the order of years (105 -106 

times longer) because of the much larger volume. On one hand, spreading natural minerals on 

the land surface [reviewed by Hartmann et al., 2013] potentially allows the naturally corrosive 

chemistry in soil pore waters [Manning and Renforth 2013] to be used to accelerate dissolution 

kinetics. Notionally, the products of dissolution (including increased alkalinity of rainwater) 

are transported to the ocean via runoff, rivers and shallow groundwater. Alternatively, Manning 

[2008] and Manning et al., [2013] suggest that solution chemistry in soil pore-waters may 

promote the precipitation of carbonate minerals, which has been demonstrated widely in 

anthropogenic soils [Renforth et al., 2009; Washbourne et al., 2015, 2012]. If so, the 

precipitated carbonate becomes the sink for CO2 rather than ocean alkalinity. If ocean HCO3
- 

and CO3
2- were the sole repository of the carbon, then others argue that such an approach may 

be limited by the saturation state or environmental pH limits of the rain/river water [Köhler et 

al., 2011]. It may be possible to use the constantly refreshed water of coastal environments, in 

which wave action could increase the attrition of mineral particles [Schuiling and de Boer 2010; 

Montserrat et al., 2017; Meysman and Montserrat 2017]. However, the slightly alkaline pH of 

ocean water is likely to retard dissolution kinetics so that very small particles are needed 

[Hangx and Spiers 2009]. For instance, Köhler et al., [2013] investigated the direct addition of 

olivine particles to the surface ocean. As it is imperative that the added particles dissolve within 

the mixed layer, they suggest that crushing and grinding to a diameter of 1 µm is necessary.   

It is highly unlikely that any of the above proposals (e.g., Figure 2) will form humanity’s sole 

response to climate change. However, at this stage, there is nothing that warrants their 

exclusion from research and policy development, particularly considering that mineral 

weathering and ocean alkalinity production is the primary mechanism whereby nature will 

eventually consume and store anthropogenic CO2.  
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Figure 2: Proposed technologies for carbon storage as ocean alkalinity.  

2. Ocean Carbon Cycle 

Several inter-related processes are responsible for inorganic removal of CO2 from the 

atmosphere: weathering of silicate and carbonate rocks, reaction with carbonate sediments, and 

the alkalinity, or buffering capacity, of the ocean.  This section provides a brief overview of 

these processes and their operation in the natural Earth system.  It is important to note that these 

processes are distinct from “the biological pump” in which organic material is produced and 

settles to the deep ocean (equating to a carbon flux of ~10 Gt C a-1). That process also plays a 

critical role in the C cycle and is the focus of C-sequestration schemes involving ocean 

fertilization [e.g., Wallace et al., 2010; Williamson et al., 2012]. Overview of the full carbon 

cycle has also been provided elsewhere, including recently by the IPCC [Ciais et al., 2014], 

and is not repeated here. 

 

2.1 Weathering of silicate minerals 

Many silicate minerals were formed at high temperature and are unstable in the presence of 

water at the temperature and pressure conditions of the surface Earth.  These minerals break 

down slowly at the surface in a variety of reactions together referred to as chemical weathering. 

At its simplest, these reactions can be characterized by the weathering of wollastonite (CaSiO3, 

equation 13). 

𝐶𝑎𝑆𝑖𝑂3 + 𝐶𝑂2 ↔ 𝐶𝑎𝐶𝑂3 + 𝑆𝑖𝑂2  equation 13 
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Other silicate minerals involve a full array of elements and produce a range of other end-

products, frequently including clay minerals, but, as above, are often characterized by the 

consumption of CO2 (see Table 1 for examples). 

These weathering reactions are exothermic, but do proceed slowly due to the significant kinetic 

limitation created by the strong bonding found in silicate minerals. Because of their importance 

in global geochemical cycles, controls on the rates at which these reactions proceed have been 

extensively studied for individual minerals and in natural soils and catchments [White and 

Brantley 1995].  The principle factors controlling weathering rate are the temperature, run-off 

(to provide water to remove reaction products), and the available surface area (i.e. the grainsize 

of the rock or mineral [West et al., 2005]). Biological activity also accelerates weathering [e.g., 

Cockell 2011]  

The total removal of CO2 from the atmosphere by natural weathering of silicate minerals may 

be as high as ≈0.25 Gt C a-1 [Suchet and Probst 1995; Gaillardet et al., 1999; Hartmann et al., 

2009] but is poorly constrained due to difficulty in separating fluxes from weathering silicates 

and carbonates, and may be significantly smaller [Liu et al., 2011]. On geological timescales, 

this removal flux is balanced by volcanic sources of CO2 from the Earth interior.  These 

weathering and volcanic fluxes are very small compared to a total mass of carbon in the ocean-

atmosphere-biosphere system of ≈42,000 Gt C [Ciais et al., 2014], so that imbalances between 

weathering and volcanism must be sustained over long periods (i.e. 100-1,000 ka) to cause 

significant direct change to the surface-Earth carbon system and climate.  Nevertheless, such 

changes in the weathering/volcanism balance are fundamental in controlling the climate 

system, and the temperature dependence of weathering rate provides a long-term negative 

feedback on climate change to keep Earth’s long-term climate in a relatively narrow range 

[Berner et al., 1983]. 

2.2 Alkalinity control of ocean C content 

Carbon dioxide reacts with water to form the weak acid, carbonic acid (equation 14). 

𝐶𝑂2 + 𝐻2𝑂 ↔ 𝐻2𝐶𝑂3  equation 14 

This acid dissociates to form bicarbonate ion (HCO3
-) and carbonate ion (CO3

2-), with the 

extent of dissociation controlled by the excess base in the water. Alkalinity is, by definition, a 

measure of this excess base (i.e. the capacity of a solution to neutralize acid). As alkalinity 

increases, more dissociation of carbonic acid occurs, and greater amounts of C are held in 

solution as HCO3
- and CO3

2- (see Box 1 for details).  Seawater has a high alkalinity (2.5 mEq 

kg-1) which, coupled to the large volume of the ocean, make oceanic inorganic C by far the 

largest C reservoir in the ocean-atmosphere-biosphere system (≈42,000 Gt C; [Ciais et al., 

2014]). 

The functional value of alkalinity as a chemical property is that it remains unchanged with 

pressure or temperature, its change describes the cumulative effect of numerous chemical 

equilibria, and it is a measurable parameter that is useful in reconstructing those systems.  There 

are many definitions of alkalinity, with an entire chapter in the definitive text book, Zeebe and 

Wolf-Gladrow [2001] devoted to this subject. In the context of this review, however, we use 

the definition provided by Dickson [1981] in which ‘total alkalinity’ (AT) is the proton 

deficiency of a solution relative to an arbitrarily defined zero point (with additional useful 
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definitions provided in text of the supporting information [Drever, 1988]). The zero point being 

the pK value of 4.5 at 25°C and zero ionic strength, such that acids with K < 10-4.5 (e.g., 

carbonic acid, boric acid) are proton acceptors and acids with K > 10-4.5 (e.g., hydrofluoric acid, 

hydrochloric acid) are proton donors. (equation 15). 

𝐴𝑇 = [𝐻𝐶𝑂3
−] + 2[𝐶𝑂3

2−] + [𝐵(𝑂𝐻)4
−] + [𝑂𝐻−] + [𝐻𝑃𝑂4

−] + 2[𝑃𝑂4
2−] + [𝐻3𝑆𝑖𝑂4

−] + [𝐻𝑆−] +

2[𝑆2−] + [𝑁𝐻3
−] − [𝐻+] − [𝐻𝑆𝑂4

−] − [𝐻𝐹] − [𝐻3𝑃𝑂4]  (equation 15) 

 

 
 

Box 1: The carbonate system 

A partial pressure difference of CO2 over water will promote transfer across the liquid-gas 

interface and the dissolution of CO2 into the liquid. Some of that CO2 will hydrate to form 

carbonic acid (H2CO3). As aqueous CO2 is far more concentrated, it is convenient to 

express [H2CO3] and CO2(aq) collectively as CO2(aq). The equilibrium concentration of CO2 

in the water is governed by Henry’s law (equation 16): 

ൣ𝐶𝑂2 (𝑎𝑞)൧ = 𝐾𝐶𝑂2
∙ 𝑓𝐶𝑂2 equation 16 

Where fCO2 is the fugacity of CO2 (fCO2 = pCO2 for practical purposes), and KCO2 is the 

Henry’s constant. The hydrated aqueous CO2 will deprotonate into bicarbonate (HCO3
-) 

and carbonate ions (CO3
2-) (equations 17 and 18). The relative quantities of which are given 

by the equilibrium constants K1 and K2 (equations 19 and 20). 

𝐶𝑂2 (𝑎𝑞) + 𝐻2𝑂
⬚
↔ 𝐻𝐶𝑂3

− + 𝐻+  equation 17 

 𝐻𝐶𝑂3
−

⬚
↔ 𝐶𝑂3

2− + 𝐻+   equation 18 

𝐾1 =
[𝐻𝐶𝑂3

−][𝐻+]

[𝐶𝑂2 (𝑎𝑞)]
     Equation 19  𝐾2 =

ൣ𝐶𝑂3
2−൧[𝐻+]

[𝐻𝐶𝑂3
−]

  equation 20 

H+ is removed from solution during weathering (equation 1), which results in the forward 

reactions in equations 17 and 18. Aqueous CO2 is reduced, and HCO3
- and H+ produced, 

to compensate. Simultaneously, some HCO3
- will be converted to CO3

2- (equation 18). CO2 

will be transferred from the gas phase into the solution to maintain equilibrium in equation 

14). 

It is possible to constrain and calculate (at known temperature and salinity) the 

concentrations of [CO2(aq)] [HCO3
-], [CO3

2-], pH, DIC, Alkalinity, by only knowing two of the 

parameters. Details for these calculations are provided in Zeebe and Wolf-Gladrow [2001]. 

The saturation state of a solution with respect to a mineral is defined in equation 21 (for 

calcium carbonate). Ω = 1 suggests a solution in thermodynamic equilibrium with the 

mineral phase, whereas, Ω <1 or >1 suggests undersaturation and oversaturation 

respectively.  

Ω =
𝛾𝐶𝑎𝛾𝐶𝑂3ൣ𝐶𝑎2+൧[𝐶𝑂3

2−]

𝐾𝑠𝑝
  equation 21 

Where γCa and γCO3 represent the activity coefficients of calcium and carbonate ions 

respectively, which are difficult to constrain in ionic solutes like seawater [see Mucci 1983] 
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2.3 The combined impact of weathering and ocean alkalinity 

Weathering of silicates on land can remove CO2 from the atmosphere without involving the 

ocean if the cations releases are all re-precipitated as secondary minerals (e.g., CaCO3) on land 

For example, the reaction between olivine and CO2 to produce magnesium carbonate, equation 

22). 

𝑀𝑔2𝑆𝑖𝑂4 + 2𝐶𝑂2 + 2𝐻2𝑂 → 2𝑀𝑔𝐶𝑂3 + 𝐻4𝑆𝑖𝑂4  equation 22 

If, on the other hand, the cations are transported to the ocean they increase the alkalinity, and 

lead to transfer of CO2 to HCO3
- and CO3

2-. The resulting decrease of dissolved CO2 causes 

uptake of atmospheric CO2 by air-sea gas exchange.   

At the pH of seawater, most of C (≈80-90%) is in the singly-charged HCO3
- form (see Box 1).  

Addition of ions with a divalent charge, such as Ca2+, is therefore compensated by formation 

of two singly-charged ions containing C, and consequently to uptake of two CO2 molecules 

from the atmosphere. In practice the uptake is 1.4 to 1.7 molecules because of the presence of 

some CO3
2-, (i.e. a reduction of uptake efficiency, η, by 15% - 30%), depending on temperature, 

salinity and pCO2 (equation 23; see supporting information for derivation [Dickson, 1990]). 

The products of silicate weathering (e.g., equation 2) therefore have potential to make a larger 

impact on CO2 removal if they reach the ocean than if they re-precipitate as secondary minerals. 

∆𝐶𝑇

∆𝐴𝑇
= 𝜂 = (𝑆 ∙ 10−3.009 + 10−1.519)𝑙𝑛(𝑝𝐶𝑂2) − (𝑆 ∙ 10−2.100) − (𝑇 ∙ 𝑝𝐶𝑂2)(𝑆 ∙ 10−7.501 −

10−5.598) − (𝑇 ∙ 10−2.337) + 10−0.102 equation 23. 

Where pCO2 is the partial pressure of CO2 in equilibrium with the solution (in µatm), and T is 

the temperature (in °C), and S is the salinity (in %). This relationship was derived from CO2sys 

[Lewis et al., 1998] using seawater scale pH and equilibrium constants from Roy et al., [1993]. 

For pCO2 = 400 ppmv, S = 35 %, and T = 17°C, η = 0.831. This implies that 0.83 moles of 

carbon are stored per mole of H+ consumed, or 1.66 per mole of Ca2+ or Mg2+ added to the 

ocean.  

The divalent cations present in carbonate minerals (e.g., CaCO3) mean that even weathering of 

carbonates can lead to removal of CO2 from the atmosphere.  If carbonate minerals (e.g., in 

limestone) dissolve on land and subsequently re-precipitate, there is no net effect on CO2, but 

if the Ca2+ reaches the ocean, the resulting increase in alkalinity leads to uptake of CO2. 

Because the dissolution of CaCO3 releases a C atom, the net impact of such dissolution on CO2 

uptake is smaller (0.4 to 0.7) than Ca2+ ions released from silicate weathering, but it is important 

to note the rather counter-intuitive fact that dissolving CaCO3 in seawater leads to uptake of 

CO2 from the atmosphere.  

2.4 The oceanic alkalinity cycle 
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Figure 3: The global ocean A) calcium and B) pre-industrial carbon cycle. Adapted from 

Andersson [2014] and Sabine and Tanhua [2009]. Arrows represent fluxes in Gt Ca or Gt C 

per year (a-1). 

To a first approximation, the active oceanic cycle of alkalinity is that of Ca2+, and particularly 

the processes of formation and dissolution of CaCO3 (Figure 3 A). Seawater in the surface 

ocean is supersaturated with respect to calcite by a factor of about 4 times (and aragonite by 

about 2.5 times), but the presence of other elements in seawater prevent inorganic precipitation 

of calcite in almost all oceanic settings [Berner 1975]. Many species of plant and animal have, 

however, developed chemical approaches to overcome this limitation and precipitate CaCO3 

as calcite or aragonite, leading to removal of Ca2+ (and alkalinity) from the surface ocean.  This 

removal occurs in the shallow water, neritic zone, particularly in large tropical reefs and 

carbonate platforms (e.g., corals, halimeda) and in the open ocean in planktonic ecosystems 

(e.g., coccolithophores, foraminifera). By removing alkalinity, biological production of CaCO3 

from surface seawater leads to a flux of CO2 from the ocean to the atmosphere [Frankignoulle 

et al., 1994]. This is in contrast to the biological production of organic C (i.e. soft tissue), which 

causes subsequent ocean uptake of CO2. 

The deep ocean is characterized by dissolution of CaCO3 and an increase in alkalinity (Figure 

3 B; and Andersson [2014]). Remineralization of settling organic C at depth releases CO2 and 

decreases the pH of seawater.  This, coupled to a decrease in calcite solubility with increasing 

pressure, means that at some depth in the ocean, termed the calcite saturation horizon, water 

become undersaturated for calcite (Figure 4; [see Zeebe 2012]). At slightly greater depth – the 

lysocline – dissolution rates are sufficiently fast that sediment start to lose an appreciable 

fraction of the calcite settling from above. The depth at which dissolution of calcite removes 
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virtually all calcite is termed the calcite compensation depth.  This deep-ocean dissolution of 

CaCO3 leads to an increases in alkalinity of up to 10% relative to surface waters.  It serves to 

partially neutralize the acidity generated by remineralization of organic matter; a process 

termed carbonate compensation [Ridgwell and Zeebe, 2005]. On timescales longer than the 

circulation of the ocean (i.e. >1 ka), carbonate compensation alters the alkalinity of the whole 

ocean and acts as a natural buffer to offset changes in atmospheric CO2 created by imbalances 

elsewhere in the C cycle. 

 

Figure 4:  Salinity normalized potential alkalinity for the N-S P16 section in the central 

Pacific, defined according to Carter et al., [2014] and using the GLODAP dataset.  Note the 

significant increase in deep waters, particularly in the north where waters have been isolated 

from the atmosphere for more than 1 ka, accumulating respired organic carbon from above, 

and dissolved CaCO3.  Also shown are the depths of saturation for aragonite and calcite.  

Below these lines, the mineral is undersaturated (i.e. omega <1) and prone to dissolve.  The 

lysocline and carbonate compensation depth - sedimentary features reflecting this change in 

saturation, are found slightly below the depth of calcite saturation. Units are microequivalents 

kg-1. 

Upwelling of deep elevated alkalinity waters to the surface, which typically happens at high 

latitudes in the ocean, leads to surface variation in alkalinity of about 5% (Figure 5).  Seasonal 

variation of up to 80-110 µeq kg-1 are also seen, resulting from changes in vertical mixing [Lee 

et al., 2006], riverine inputs [Cai et al., 2010], and especially primary production [Wolf-

Gladrow et al., 2007]. 



14 

 

Figure 5: Salinity normalized alkalinity in the surface ocean (in microequivalents kg-1) 

showing the range and pattern of natural variation using the GLODAP dataset. 

2.5 The oceanic alkalinity cycle 

Imbalances between the input and removal fluxes of alkalinity can result in changes in global 

oceanic alkalinity and therefore the capacity of the ocean to store C. Such alkalinity-induced 

changes in partitioning of C between atmosphere and ocean are thought to play an important 

role in controlling climate change on timescales of 1 ka and longer [e.g., Zeebe 2012]. Through 

studying these natural changes in ocean alkalinity, it may be possible to constrain future 

changes in ocean chemistry from artificial changes in ocean alkalinity. 

The oceanic residence time of Ca2+ with respect to riverine input is greater than 1000 ka (Figure 

3A), on which timescale the balance between volcanic degassing and sedimentary removal of 

C becomes a dominant control. So the major way in which alkalinity changes become important 

is changes in precipitation and particularly dissolution of CaCO3 (i.e. through carbonate 

compensation).  Two time periods, (the Pleistocene and the Paleocene-Eocene) provide an 

indication of such processes. 

Several processes may have led to higher ocean alkalinity during the glacial periods of the 

Pleistocene (e.g., the last glacial, 20 ka ago). Such higher alkalinity would increase storage of 

CO2 in the ocean, and contribute to the decrease of atmospheric pCO2 known to be a significant 

cause of glacial cooling.  One such process, operating in the surface ocean, is that lower glacial 

sea level would leave less continental shelf area for formation of carbonate reefs.  The resulting 

decrease in CaCO3 precipitation, and probable erosion and dissolution of old reefs, would 

increase global ocean alkalinity [Opdyke and Walker 1992].  Another process, but operating in 

the deep ocean, stems from changes in ocean circulation in the Atlantic leading to sluggish 
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deep waters containing substantially more re-mineralized CO2.  This would lower deep-water 

pH to raise the lysocline, and thereby add alkalinity by dissolution of CaCO3 [Boyle 1988; 

Sigman et al., 2010].   

Geochemical proxies have been developed to reconstruct past aspects of the ocean carbonate 

system, with two, measured in marine carbonates, seeing the greatest use: carbonate B isotope 

composition systematically reflects changing concentrations of B species with pH, and an 

empirical relationship is observed between carbonate B/Ca and the concentration of CO3
2-.  

Application of such proxies has been used to reconstruct past ocean carbonate chemistry.  One 

such study indicates higher alkalinity in the glacial ocean [Rickaby et al., 2010], though this is 

not observed in all ocean regions [Zeebe and Marchitto 2010].  No single model is yet accepted 

to explain glacial-interglacial atmospheric pCO2 cycles, but it is clear that the CO2 removed 

from the atmosphere during glacials was stored in the ocean. Alkalinity changes may have 

played a role in this storage (see Sigman and Boyle [2000] for a summary of glacial-interglacial 

pCO2 mechanisms). 

A second example of the role of ocean alkalinity in the global carbon cycle is provided by an 

abrupt warm period 56 Ma ago; the Paleocene-Eocene Thermal Maximum (PETM). This event 

is thought to have been triggered by a massive release of C to the ocean-atmosphere system 

(>2,000 Gt C) probably from catastrophic breakdown of methane clathrates [Archer et al., 

2009]. Although the source of the C differs, this rapid C release is widely seen as a useful 

analogue for the likely response of the Earth system to present-day anthropogenic C release 

[McInerney and Wing 2011]. At the PETM, the large increase in CO2 in the ocean resulting 

from C release led to significant decreases in ocean pH and shoaling of the lysocline to increase 

ocean alkalinity [Zachos et al., 2005].  This carbonate compensation buffered a significant 

fraction of the change in CO2 and occurred on a timescale of <10,000, short geologically, but 

still a slow response relative to human timescales. The controls of atmospheric CO2 on 

glacial/interglacial time periods are reviewed by PAGES [2016] and Archer et al., [2000]. 

3. Modeling elevated alkalinity 

The importance of the carbon cycle for climate ensures that a wide range of models have been 

developed to understand and predict its operation.  These range from simple box models to 

highly sophisticated carbon components to general circulation models.  These models can be 

used to provide information about the likely impact of intentional addition of alkalinity to the 

oceans. 

3.1 Box models 

At its very simplest, the ocean can be modeled as a single box to consider the scale of change 

on the natural system required to uptake significant amounts of anthropogenic CO2.  Assuming 

addition of Ca2+:  adding one mole of Ca2+ to a single-box ocean causes an increase in HCO3
- 

and CO3
2- and the uptake of ≈1.7 moles of CO2 (see section 2.3).  Addition of sufficient Ca2+ 

to fully compensate for present anthropogenic emission of 10 Gt C a-1 therefore requires 

addition of 20 Gt Ca2+ a-1.  This is ≈20 times the annual riverine input of Ca2+, a very significant 

perturbation, and obviously a very substantial undertaking in engineering terms.  The large 

volume of the ocean and its high Ca2+ concentration, however, mean that the oceanic 

perturbation is very much smaller and only a 0.9 mmoles kg-1 increase in Ca2+ is required.  

Even if considering the surface ocean alone this annual addition is less than a 0.3% increase in 
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total Ca2+.  This simple one-box approach demonstrates the possibility of substantial uptake of 

C to the ocean with relatively small changes in the ocean, but also the scale of the effort 

required to effect significant alkalinity addition. 

At the next level of sophistication, models which divide the ocean into a small number of boxes 

can be used to assess changes caused by continued addition of ocean alkalinity.  An example 

is shown in Figure 6, which imposes the 20-fold increase to riverine alkalinity fluxes, as 

required to compensate for 10 Gt C a-1 anthropogenic emissions, for 300 years.  Such a model 

demonstrates the expectation that long-term alkalinity addition could compensate for 

anthropogenic C addition, and could prevent the associated decrease in ocean pH.  They also 

show the scale of change in alkalinity in the surface and deep ocean that results from this 

intervention, and the significant changes in lysocline depth that arise both from anthropogenic 

C emission, and from alkalinity addition. Paquay and Zeebe [2013] used a slightly more 

complex model with 10 boxes (for the surface, intermediate and deep ocean for the 3 largest 

ocean basins and the high latitudes) to investigate the impact of adding alkalinity across the 

entire surface ocean to totally compensate for various carbon emission scenarios.  In that study, 

sufficient alkalinity was added to exactly compensate for pH changes imposed by fossil fuel 

addition, which was possible even in their largest emission scenario (compensating for 5,000 

Gt C over 500 years) by adding up to 15 Gt Ca2+  a-1). 
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Figure 6:  Output from a 3-box model mimicking significant features of the ocean carbon 

system (http://www.noc.soton.ac.uk/jmodels/; Chuck et al., [2005]).  Left hand panels take an 

initially equilibrium carbon cycle and perturbs it with a sufficient C flux to cause a 2 ppmV 

increase in atmospheric CO2 a
-1, approximately equivalent to today’s rate of CO2 rise.  Right 

hand panels impose the same C flux, but also increase the riverine alkalinity flux by a factor 

of 20 to increase C uptake to the ocean.  Note that scales are not identical in left and right 

panels.  The increased alkalinity flux in the right hand panels prevents the significant changes 

in atmosphere CO2 and ocean pH seen in the left-hand figures.  The right hand panels also 

illustrate the long-term effects on ocean saturation due to continued addition of alkalinity.  

These model results were previously presented in Henderson et al., [2008]. 

3.2 Spatially resolved models 

To more completely mimic the ocean response to addition of alkalinity, ocean models with 

high spatial resolution which capture both ocean circulation and the operation of the carbon 

cycle can be used.  Ilyina et al., [2013], for instance, used the Hamburg Ocean Carbon Cycle 

Model to simulate the response to the addition of sufficient alkalinity to counteract all 

anthropogenic emissions from the ‘business as usual’ A1B baseline scenario (≈1,400 Gt C by 

2100).  This model assumed addition in particular patches of the surface ocean, equivalent to 

one seventh of the ocean surface, and was able to assess the distribution of alkalinity and its 

effects into the global ocean (Figure 7). Alkalinity increased, as expected, to between 2.3 and 

3.0 mEq kg-1 for most of the ocean, but rising up to 5.5 mEq kg-1 in the north Atlantic and 

North Pacific where alkalinity addition was imposed.  Similarly, pH was generally returned to 

values similar to pre-industrial in much of the ocean, but was elevated around application 

regions, and calcite saturation similarly increased (Ωcalcite ≈ 20).  As for the simple box models, 

this spatially-resolved modeling, indicates the general success of alkalinity addition in 

generating ocean uptake of CO2, but highlights clearly the challenges imposed by extreme 

ocean changes (e.g., elevated pH and carbonate saturation) in regions of alkalinity addition.   

http://www.noc.soton.ac.uk/jmodels/
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Figure 7: Model results to demonstrate the impact of alkalinity addition to one seventh of the 

surface ocean.  Reprinted by permission from John Wiley Sons, Inc: Geophysical Research 

Letters [Ilyina et al., 2013], copyright © 2013. Surface maps of alkalinity (top row), Ωcalcite 

(middle row) and pH (bottom row) are shown for three scenarios:   2010 (left column); 2100 

following A1B CO2 emission (middle column); 2100 with addition of alkalinity (right 

column).  The dashed boxes in the upper left panel show the regions of alkalinity addition.  

Note that ocean saturation and pH are returned to broadly 2010 levels by alkalinity addition, 

but that there are very large changes in the system in the North Atlantic and North Pacific 

around the sites of alkalinity addition  

 

Subsequent studies have also used full ocean models to assess the impact of alkalinity addition.  

Ferrer-Gonzalez and Ilyina [2016] used a fully integrated Earth System Model and added 

sufficient alkalinity to compensate emissions from RCP8.5 to a level congruent with RCP4.5.  

Despite imposing a uniform distribution of alkalinity addition, the ocean response was more 

marked in some regions, notably the Arctic, where pH climbed to 8.6 and Ωcalcite ≈ 10, and the 

tropics where Ωcalcite was also high. Keller et al., [2014] (using the UVic model) also imposed 

a uniform alkalinity addition, but limited the amount of addition to that which could be 

delivered by modern ship fleets (≈6 Gt Ca2+ a-1 as Ca(OH)2 added by uniformly increasing total 

alkalinity).  This level of addition created only modest uptake of CO2 from the atmosphere (166 

Gt C by 2100; ~8% of the A1B/RCP8.5 emissions scenario). While the ocean system was 

relatively unperturbed in this model, it powerfully illustrates the engineering difficulty inherent 

in delivering the very large amounts of alkalinity required to compensate for any significant 
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fraction of emitted CO2. It is likely that alkalinity addition could not be the sole mechanism 

used for any substantial negative emissions approach, but would be part of a portfolio of 

measures.   

Most models of alkalinity addition do not specify the chemical added to generate change, or 

assume pure Ca(OH)2, which is effectively “pure” alkalinity. Real world application of 

alkalinity might, however, be pursued by addition of a particular mineral. Köhler et al., [2013] 

investigated one such scenario by using a biogeochemical model to assess the impact of direct 

addition of olivine to the ocean surface. Olivine (forsterite rich, Mg2SiO4) dissolution increases 

total alkalinity with a molar 1:4 olivine/alkalinity ratio) but also releases silicon. The authors 

force their model with a range of olivine addition scenarios (from 1 to 10 Gt a-1) for localized 

(ship) and global distribution scenarios. Surprisingly, while there is elevated alkalinity, the 

model predicts a decrease in CaCO3 export and an increase in organic carbon export due to the 

fertilization effect of dissolved silica on diatoms. Natural silica flux into the ocean is 

approximately 170 Mt of Si a-1 (e.g., from riverine input) [Tréguer et al., 1995]. There would 

be approximately 200 Mt of Si released for every Gt of olivine added to the ocean, so it is not 

surprising that a significant fertilization effect is observed. Olivine also contains iron (as 

fayilite, Fe2SiO4), which may also fertilize biological activity. Hauck et al., [2016] suggests 

that theoretically around 0.6 Gt C a-1 could be sequestered for every Gt a-1 of olivine added to 

the surface ocean, with 57%, 37%, and 6% of the effect coming from alkalinity, iron, and 

silicon respectively. A complication in this relates to the rate of olivine dissolution required, 

which are assumed to be instant and complete in the modeling.  If CO2 is removed from the 

atmosphere, terrestrial carbon sinks would release CO2 [e.g., Vichi et al., 2013]. This ‘rebound’ 

together with emissions from material extraction, processing and transport would also diminish 

the net sequestration potential of this and other alkalinity addition approaches 

The handful of modeling studies investigating an intentional increase of ocean alkalinity have 

been useful in broadly defining the relationship between carbon sequestration extent and the 

impact on the ocean carbonate system. Figure 8 shows the range of pathways from these models 

in Ω-pCO2 space. This figure shows the decrease in Ωcalcite that has already occurred due to 

anthropogenic CO2 emissions, and the further decrease expected as CO2 emissions continue. 

Alkalinity levels are depicted by the contours (the shaded region representing levels in the 

modern ocean), and the impact of various model scenarios on this alkalinity. 

The models shown on this figure demonstrate the potential advantages to ocean saturation state 

of alkalinity addition. For instance, some studies suggest increased risk to coral ecosystems 

when Ωaragonite falls below 3 (Ωcalcite ≈ 4.5) in the open ocean surrounding reefs [Ricke et al., 

2013]. These ecosystems generally occupy waters with elevated carbonate saturation, so their 

fate may be visualized in Figure 8 by the future trajectory of the upper part of the shaded box.  

By increasing saturation state, alkalinity addition could keep the ocean at a saturation state 

conducive to continued coral reef health.   
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Figure 8: Results from modeling studies showing the relationship between Ωcalcite and pCO2 

for various alkalinity addition scenarios [Ferrer-González and Ilyina 2016; Ilyina et al., 

2013; Keller et al., 2014; Paquay and Zeebe 2013]. The contours represent average surface 

ocean (0 – 100 m depth) AT in mEq kg-1 at 16°C and 35% salinity, and the hatched region 

represents the 2 s.d. about the mean of modern surface ocean alkalinity. The open symbols 

represent ocean conditions reconstructed from Hönisch et al., [2009] for the past 2 Ma. 

4. Longevity of carbon storage 

4.1 The saturation state of carbonate minerals in the ocean 

The residence time of dissolved inorganic carbon in the whole ocean is around 100 ka, which 

would effectively form a permanent storage reservoir on human timescales. However, this may 

decrease if alkalinity is reduced by increased formation and export of carbonate minerals from 

the surface ocean. Given that seawater is already supersaturated with respect to some 

magnesium and calcium carbonate minerals (see Table S1 in supporting information), it is 

intuitive to think that any additional alkalinity would precipitate out of solution. However, 

spontaneous nucleation is strongly inhibited in seawater, and carbonate production is thought 

to be largely biologically controlled, although there is no estimate of the relative proportions. 

This section considers what controls carbonate production in the ocean, and how this may 

change if alkalinity was intentionally increased. 

Through transport, mixing, and export, elevated alkalinity at the surface will also eventually 

have an impact on conditions in the interior ocean. Elevated alkalinity in the water column will 

increase the carbon compensation depth (CCD; the depth in the oceans at which calcite 
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dissolves quicker than it is supplied; [Ridgwell 2007]). A deeper CCD will lead to an increase 

in the extent of sediment exposed to elevated saturation states, and notionally an increase in 

calcification and export, and thus increase the net removal of CaCO3 from the ocean. This 

partially undoes the effect of adding alkalinity. However some of this alkalinity will eventually 

be returned to the surface through upwelling. This effect is therefore a long-term negative 

feedback. However, it is unlikely to completely reverse the effectiveness of alkalinity input 

because the fluxes of carbonate in the natural cycle are smaller than those that those required 

on human timescales. Barker et al., [2006] suggest that elevated organic carbon export 

associated with carbonate production at the surface, may offset any CO2 release, either through 

sequestration of organic carbon into sediments/interior ocean, or through enhanced dissolution 

of sediments from increased oxidation of organic carbon.  

It is critical for the assessment of carbon storage due to ocean alkalinity to understand its overall 

impact on the carbon cycle, particularly on carbon production and export. The following 

sections present an overview of biological and abiotic controls of carbonate formation in the 

ocean. 

4.2 Biological carbonate precipitation and dissolution 

Carbonate precipitation is a key feature in the physiology of a large number of ocean dwelling 

organisms [Addadi et al., 2006; Müller 2011]. Distinction is often made between pelagic (e.g., 

coccolithophores, foraminifera, pteropods/heteropods) and benthic (e.g., corals, molluscs, and 

crustaceans) calcifiers. Figure 9 shows the typical morphology of a coccolithophore and 

foraminifera. There is considerable variation in the mechanisms of calcification [Müller, 2011] 

which result in species/genus variability to environmental stimuli. As such, research 

investigating species and ecosystem response to ocean acidification has produced variable 

results [Ries et al., 2009]. Generally, species that are more efficient at maintaining pH in the 

internal environment in which they calcify are less affected by changes in carbonate chemistry 

of the ambient environment.  
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Figure 9: Scanning electron microscope images of A) A coccolithophore Coccolithus 

pelagicus ssp. Braarudii and B) a foraminifera Globigerina bulloides. Courtesy of Michaël 

Hermoso (University of Oxford). Approximate width is 10 µm and 30 µm for A and B 

respectively 

Elevated CO2 in the atmosphere lowers [CO3
2-] in the ocean, which puts stress on shell forming 

organisms (‘ocean acidification’). Extensive research has been conducted over the last 20 years 

to understand the impact of ocean acidification on marine biota and the global carbon cycle 

[Doney et al., 2009]. Most of this research omits the investigation of elevated saturation states 

(e.g., Figure 10, which is not exhaustive, but indicative), and primarily focuses on manipulating 

[CO2 (aq)] rather than alkalinity. 

 

 
Figure 10: Indicative Ωcalcite ranges of culture experiments investigating calcification rate. 

[Bach et al., 2011; Broecker et al., 2001; Comeau et al., 2009; Gattuso et al., 1998; Hermoso 

2015; Hoppe et al., 2011; Iglesias-Rodriguez et al., 2008; Langdon et al., 2000; Langdon and 

Atkinson 2005; Langer et al., 2006; Leclercq et al., 2000; Maier et al., 2011; Rickaby et al., 

2010; Ries et al., 2009; Rokitta et al., 2012]. 

Phytoplanktonic calcifiers are responsible for a considerable proportion of particulate inorganic 

carbonate production in the surface ocean. They produce carbonate minerals in controlled 

microenvironments within the cell [Marsh 2003]. By regulating the concentration of Ca2+, CO2 
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and pH they can express a high degree of control on the internal saturation state of carbonate 

minerals. The response of these organisms to an acidifying ocean has been well studied 

(references in Figure 10). However fewer studies investigate the impact of elevated alkalinity 

on calcification rate. Langer et al., [2006] investigated a wide range of aqueous carbon dioxide 

levels by the addition of hydrochloric acid or sodium hydroxide in a closed single species 

culture experiment (Ωcalcite from 2 to 13, pH 7.8 to 8.7). They measured the cellular carbon 

content of Calcidisus leptoporus and Coccolithus pelagicus (important primary producing 

coccolithophore species). Both species showed a reduction in calcification at elevated calcite 

saturation, possibly in response to lower concentrations of aqueous CO2. As ocean acidification 

is concerned largely with [CO2 (aq)] and the resulting decrease in [CO3
2-], it is difficult to 

interpret ocean acidification results for ocean alkalinity carbon storage, which would promote 

a different relationship between [CO2 (aq)] and [CO3
2-]. For instance, it is possible to modify 

dissolved inorganic carbon (DIC) while maintaining constant pH to create conditions in which 

pCO2 and Ωcalcite are simultaneously elevated [Rickaby et al., 2010]. In these experiments there 

was little change in particulate inorganic carbon production (for Gephyrocapsa oceanica and 

C. pelagicus at pCO2 = 1,800 ppmv, and Ωcalcite = 13), whereas variations in organic carbon 

fixation were detected. However, Hermoso [2015] demonstrated a parabolic relationship 

between pH (and Ω) and growth rate for the same species. The results in Bach et al., [2011] for 

Emiliania huxleyi are highly relevant to ocean alkalinity addition. By undertaking two 

experimental regimes in which pCO2 is manipulated while allowing pH to vary or maintaining 

it at a constant value, the results decouple the impact of AT and [CO2] on inorganic carbon 

production, and suggest a plateau at around AT = 4.9 mEq kg-1.    

Although coral reefs constitute only a small proportion of the ocean they are responsible for up 

to 50% of the global CaCO3 production [Mackenzie and Andersson 2013; Smith and Kinsey 

1976]. Species of coral express a wide degree of control on the chemistry of their calcifying 

fluids. Those that have little control generally follow an abiotic relationship between Ω and 

calcification rate (Figure 11, see below). Whereas, some coral species have evolved a capacity 

for buffering against lower Ω [McCulloch et al., 2012]. The response of corals to elevated 

saturation states is poorly constrained. While corals are responsible for carbonate production, 

they are also the site for dissolution (e.g., through raised pCO2 from respiration). Generally, 

the rate of dissolution follows an abiotic relationship with Ω, which will likely be impeded by 

elevated alkalinity. Schneider et al., [2011] investigated the response of Stichopus herrmanni 

and Holothuria leucospilota (species of sea cucumber) in chemically isolated incubation 

experiments. These species dissolve calcium carbonate particles within their digestive tract and 

secrete solutions with elevated levels of alkalinity. In these experiments, alkalinity levels 

increased by around 0.1 and 0.05 mEq kg-1 for S. Herrmanni and H. leucospilota respectively 

(70-85 % due to the accelerated dissolution of carbonate, the remainder due to ammonia 

secretion). The dissolution of carbonate minerals is an important component of the natural 

carbon cycle (0.1 – 0.2 Gt C a-1), which may be impacted by elevated alkalinity. 
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Figure 11: Percentage change in calcification rates (relative to Ω = 4.6) plotted against 

seawater aragonite saturation states . Reprinted by permission from Macmillan Publishers 

Ltd: Nature Climate Change [McCulloch et al., 2012], copyright © 2012. For embedded 

figure references see McCulloch et al., [2012]. 

 

Some paleoclimate research attempts to correlate the shell mass or density of marine organisms 

to the carbonate chemistry of the oceans. Such a record of past calcification rates are important 

for understanding the potential effects of ocean acidification, but could also be useful for 

constraining the stability of elevated alkalinity. For instance, Barker and Elderfield [2002] 

derive a relationship between [CO3
2-] of seawater to the shell mass of Orbulina universa (a 

planktonic foraminifera) picked from sediment. Assuming the growth time for the organism 

remains relatively constant, the shell mass is directly analogous to calcification rate. Bijma et 

al., [2002] suggest a linear relationship between shell mass and [CO3
2-] (SW = 29.5 + 

0.051[CO3
2-]), which can be expressed as a function that relates the change in relative growth 

rate (ΔR) to the change saturation state (%ΔR = 2.0 ΔΩcalcite, assuming constant [Ca2+] = 10 

mmoles kg-1, current Ωcalcite = 4.8, pKsp = 5.62, current core-top shell mass of 38 µg). This 

suggests that the calcification rate of O. universa would increase around 12% for a future ocean 

with Ωcalcite = 7. This approach yields various sensitives from experimental studies on a range 

of organisms (increases from 12 to 79%) [Aldridge et al., 2012; Beer et al., 2010; Marshall et 

al., 2013]. Due to other environmental factors influencing shell mass during growth, there is 

weak significance in most of the shell mass-[CO3
2-] experimental relationships. As such, this 

approach only provides a limited constraint on the impact of elevated alkalinity on calcification 

rate. However, assuming the proportional change is representative of the proportional change 

in growth rate, the range of values are substantially less than what would be expected from 

exclusively abiotic controlled kinetics (~138 % rate change over the same increase in Ωcalcite, 

see below). However, if this change was directly translated into elevated PIC export (with no 

impact on carbon returned to the surface through upwelling) then a future increase of ocean 

alkalinity [e.g., Ferrer-González and Ilyina 2016] would result in a net flux of ~0.5-4 Gt C out 

of the surface ocean. 
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Given the relatively low specific gravity of organic molecules (often <1), their aggregation 

with inorganic carbon is the mechanism by which they sink out of the surface ocean (often 

referred to as ‘ballasting’, [Alldredge and Silver 1988; Klaas and Archer 2002]). The ‘marine 

snow’ product has a defined PIC: particulate organic carbon (POC) ratio (the ratio between 

particulate inorganic and organic carbon, typically 1:4). As such, increased export of inorganic 

carbon due to increased biological calcification, may also result in increased organic carbon 

export. Providing the ratio of POC to PIC is > 1, the organic carbon export would offset the 

CO2 emission associated with the counter carbonate pump. However, increased biological 

carbon export (and subsequent remineralization) could decrease the dissolved oxygen content 

in the water column (see section 7), or result in increased weathering in underlying sediments 

[Barker et al., 2006]. 

Considerably more research is required to investigate the response of organisms and 

ecosystems to elevated alkalinity. An experimental regime for this has been included below in 

Table 2, which suggests various parameters in the carbonate system for a range of addition 

scenarios. Scenario A represents the average conditions in the surface ocean following 

extensive and long term increases in ocean alkalinity as predicted by Ilyina et al., [2013] and 

this study (section 3.1). Scenario B represents an increase of ocean alkalinity with minimal 

mitigation of the most extensive CO2 emission scenario [Keller et al., 2014]. Scenario C 

represents Scenario A followed by additional CO2 removal from the atmosphere. Scenarios D 

and E represent a continuum between Scenario A and the regional ‘hot spots’ predicted in 

Ilyina et al., 2013. Scenario F simulates similar Ωcalcite conditions to E with non-equilibrated 

pCO2. 

Table 2. Experimental range for testing ocean alkalinity carbon storage.  

Scenario Description pCO2 

(µatm) 

AT  

(mEq kg-1) 

Ωcalcite
a pH

a 

A Extensive alkalinity addition and a limit to 

global emissions, global impact 

600 3.0 5.3 8.0 

B Extensive alkalinity addition and unabated 

global emissions, global impact 

1000 3.0 3.6 7.8 

C Extensive alkalinity addition and carbon 

dioxide removal from the atmosphere, 

global impact 

400 3.0 7.0 8.1 

D Rapid alkalinity addition, moderate 

localized impact 

350 4.1 12.7 8.3 

E Rapid alkalinity addition, severe localized 

impact 

350 5.5 20.1 8.4 

F Rapid alkalinity addition, severe localized 

impact on confined environments 

20 2.7 18.2 9.0 

aParameters determined using CO2sys [Lewis et al., 1998] using equilibrium constants from Roy 

et al., [1993] and approximated. Note, pCO2 and AT are the independent variables. 

 

4.3 Abiotic Carbonate Precipitation 

A long standing discussion since the 1960’s [Broecker and Takahashi 1966; Cloud Jr., 1962] 

is whether calcium carbonate can precipitate abiologically from seawater at typical 

environmental conditions. Early work attempted to explain the formation of ‘whitings’ 

[Broecker et al., 2001; Morse et al., 2003], which are characterized by the rapid flocculation 
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and deposition of calcium carbonate crystals (a common feature at the Great Bahama Bank and 

in the Persian Gulf). Initially, spontaneous (pseudo-homogenous) nucleation of carbonate in 

seawater was postulated to be the cause. But initial studies by Pytkowicz [1965] suggest that 

highly elevated saturation states were required to spontaneously precipitate calcium carbonate 

from seawater, confirmed to be between Ωcalcite ≈ 19 and 25 by Morse and He [1993]. Others 

suggest that carbonate precipitation on re-suspended sediment to be the cause of the whiting 

events [Bustos-Serrano et al., 2009; Morse et al., 2003]. If precipitation occurs on re-suspended 

sediment, the availability of a carbonate surface area for nucleation is an important control for 

carbonate precipitation from seawater. 

There have been extensive laboratory studies investigating carbonate precipitation in seawater 

for ‘seeded’ experiments (i.e. there is nuclei mineral surface in contact with the solution, Figure 

12), in which the rate is proportional to the saturation state through equation 24 [see Inskeep 

and Bloom 1985]. 

𝑅 = 𝑘(𝛺 − 1)𝑛  equation 24 

 

Figure 12: The relationship between saturation state and precipitation rate in natural and 

synthetic phosphate free seawater at 25°C. [Burton and Walter 1987; Lopez et al., 2009; 

Mucci 1986; Mucci et al., 1989; Mucci and Morse 1983; Zhong and Mucci 1995, 1989] 

Temperature is thought to control the mineralogy of the precipitating phase. In seawater, calcite 

nucleates at temperatures <8°C, and above this aragonite is the precipitating phase [Morse et 
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al., 1997]. Although, the hydrated calcium carbonate polymorph ikaite (CaCO3 . 6H2O) has 

been found to be stable at near zero temperatures [Lu et al., 2012].   

The role of magnesium [Berner 1975], phosphate [Burton and Walter 1990] and sulfate 

[Busenberg and Plummer 1985] ions on the inhibition of carbonate precipitation has received 

substantial attention. Increasing the concentration of magnesium relative to calcium is thought 

to increase the stoichiometric solubility constant of calcite resulting in a decrease in the [Ca2+] 

[CO3
2-] ion activity product (IAP, equation 25; adapted from Mucci and Morse [1983]) 

𝐼𝐴𝑃 =  
𝐾𝑐

0

𝐾𝑐
∗ ∙ (1 −

𝑆

1000
)

2

  equation 25 

Where Kc
0 is the thermodynamic solubility of calcite at 25°C and 1 atm (pKc

0 = 8.48) and S is 

the salinity. pKc* is thought to vary between 6.59 and 6.27 for [Mg2+]/[Ca2+] between 0 and 

20. Therefore, a magnesium to calcium concentration ratio of 5.1 (typical of the surface ocean) 

would reduce the ion activity product by 45% compared to a magnesium free solution. 

Although the mechanisms for Mg2+ incorporation onto calcite surfaces and its role in the 

inhibition of precipitation is the subject of continued debate [Astilleros et al., 2010; Davis et 

al., 2000; Lin and Singer 2009; Morse et al., 2007]. This inhibition is not apparent for aragonite, 

in which there is an order of magnitude less Mg2+ adsorption onto the precipitating surface 

[Berner 1975; Mucci and Morse 1983]. However, given the elevated saturation state of 

aragonite in seawater (Table S1 in the supporting information [Ball and Nordstrom 1991; 

Parkhurst et al., 1980; Parkhurst and Appelo 1999; Pilson 1998; U.S. Environmental 

Protection Agency 1998]), some form of inhibition must be occurring.  

The presence of phosphate ions (PO4
3-) in seawater has been shown to inhibit calcite 

precipitation [Burton and Walter 1990; Mucci 1986] through adsorption onto the calcite surface 

(equation 26). Both studies investigated elevated initial phosphate concentrations (up to 100’s 

of µmoles of P kg-1) with respect to typical surface ocean concentrations (<1 µmole kg-1).  

𝐿𝑜𝑔 𝑅 =  −15.76 − 1.45 log[𝑃𝑂4
3−] + 3.17 log(𝛺 − 1)  equation 26 

where [PO4
3-] is the phosphate concentration in solution (moles l-1), and R is the precipitation 

rate (moles m-2 hr-1). This relationship is thought to be valid between phosphate concentrations 

of 1 and 100 µmoles kg-1.Similar to phosphate, the presence of sulfate ions (SO4
2-) in solution 

has been shown to inhibit the precipitation of calcite [Bots et al., 2011; Busenberg and Plummer 

1985; Fernández-Díaz et al., 2010; Tang et al., 2012]. SO4
2- is present at concentrations of 

approximately 28 mmoles kg-1 in seawater, but substantially smaller concentrations are 

sufficient to impede carbonate formation [Busenberg and Plummer 1985]. 

The availability of carbonate mineral surface area in the ocean is therefore critical in upscaling 

the laboratory derived precipitation rates. This surface area is notionally provided by re-

suspended sediment in whiting events on continental shelves [Morse et al., 2003]. The 

availability of carbonate mineral surface area in the open ocean less well constrained. Using 

satellite derived Moderate-Resolution Imaging Spectroradiometer data, Balch et al., [2005] 

present surface particulate inorganic carbon concentrations for a number of oceanic regions. 

The concentration is larger in coastal areas (2.5-3.7 μg C l-1) compared to the open ocean (0.7 

– 2.8 μg C l-1). Assuming the composition of the PIC is aragonite or Mg-calcite (molecular 

mass between 97 and 100 g(carbonate) mol-1, and assuming up to 20% MgCO3), the 

concentration of carbonate minerals in the open surface ocean may be between 5.6 and 23.4 μg 
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l-1. Walter and Morse [1985] determined the surface area of shallow seawater sediments to be 

between 0.1 and 24.0 m2 g-1 , although samples were limited to size fraction >37 μm, which 

would exclude smaller particles with a larger surface area to mass ratio. However, based on 

these measurements, the volumetric surface area of carbonate minerals in the mixed layer could 

be between 10-6.3 and 10-3.2 m2 l-1. Furthermore, the majority, if not all of the PIC in the surface 

ocean is produced biologically, which has been shown to considerably less reactive than 

synthetic counterparts (see the supporting information [Cubillas et al., 2005; Hassenkam et al., 

2011; Honjo and Erez 1978; Keir 1980; Walter and Hanor 1979]), possibly due to a protective 

organic layer on the mineral surface [Godoi et al., 2009]. Figure 12 suggests that a precipitation 

rate of around 10-5 moles m-2 h-1 would be expected for seawater (Ωcalcite = 3-4) seeded with 

carbonate minerals. This could equate to a carbonate formation rate of between 0.01 and 14.3 

Gt C y-1 in the surface ocean (~300x106 km2, 60 m deep) for a volumetric surface area between 

10-6.3 and 10-3.2 m2 l-1. Clearly, the larger value is inconsistent with measurements of carbonate 

production in the ocean carbon cycle (2 Gt C y-1). However, it is possible that a lower abiotic 

precipitation rate is presently masked by a larger biological signal. While biological carbonate 

precipitation depends on numerous factors, the abiotic precipitation follows a predicable 

relationship with Ω, and (assuming the lower end member) would increase from 0.01 to 0.4 Gt 

C y-1 for an increase in Ωcalcite from its current value to 10 (a 20% increase of carbonate 

production). This value is speculative, but highlights the potential significance of abiological 

carbonate precipitation in the ocean at elevated alkalinity. 

Spontaneous (‘unseeded’) nucleation of carbonate minerals is thought to contribute little to 

carbonate production and export from the surface ocean [Pytkowicz 1965]. Morse and He 

[1993] suggest that a calcite saturation state of >19 is required for nucleation in seawater at 

25°C.  In extended duration experiments Pokrovsky [1998] investigated the induction time 

required for spontaneous CaCO3 (aragonite) nucleation, which is proportional to the saturation 

state (equation 27) 

𝐿𝑜𝑔 𝜏 = 𝐴 + 𝑛 log 𝛺  equation 27 

Where A is 7.207 and n is -3.784 for [Mg2+]/[Ca2+] ratio of 5.3 at 20°C (Figure 13). Rather 

than a threshold saturation state to induce carbonate precipitation, Pokrovsky [1998] suggests 

an induction time of around 2 months for Ωaragonite ≈ 4 decreasing to around 1 week for Ωaragonite 

≈ 7, and 9 hours for Ωaragonite = 15. Similar to seeded precipitation, it is possible that spontaneous 

nucleation occurs in the surface ocean, but is masked by a larger biological signal, and an 

increase in carbonate saturation state may accelerate these processes to have a significant 

impact on the overall carbon cycle. 
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Figure 13: The relationship between homogenous nucleation induction time and carbonate 

saturation at 20°C [adapted from Pokrovsky 1998]. 

 

5. Production processes 

5.1 Ocean Liming 

Kheshgi [1995] first proposed adding lime (CaO) or portlandite (Ca(OH)2) to the surface ocean. 

Three schemes were explored including (1) the calcination of limestone, (2) the calcination of 

limestone with flue gas CO2 capture and sequestration, (3) the calcination of limestone with 

flue gas CO2 capture and sequestration using oxy-fuel firing (a simplification of the latter is 

included in Figure 14). Accounting for carbon and energy balances across the whole life cycle, 

the technoeconomics of this approach was assessed by Renforth et al., [2013], for calcite and 

dolomite feedstocks. They suggested that lime or dolime production in an oxy-fuel fired kiln 

with CCS, together with the associated energy costs of raw material preparation and ocean 

disposal, would require between 6 and 10 GJ per net ton of CO2 sequestered. Note that in 

engineering calculations it is important to consider the total mass processed, which is why units 

in this section are in terms of CO2 rather than C. Renforth et al., [2013] also explored the use 

of steam flash calcination and solar calcination, both of which could potentially reduce the 

costs of lime production (4 and 2 GJ t CO2 respectively). 
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Figure 14: Schematic of lime production for ocean disposal. Developed from Kheshgi [1995] 

and Renforth et al., [2013]. 

Renforth and Kruger [2013] investigated the possibility of using forsterite rich olivine 

(Mg2SiO4) as a feedstock for a coupled mineral carbonation ocean liming process (Figure 15). 

Ground olivine could be fed into a (single-stage) mineral carbonation reactor (at elevated 

pCO2). This produces magnesite and silica (equation 28). After dewatering, the precipitated 

magnesite could be fed into a kiln/ slaking system to produce brucite (Mg(OH)2) (equation 29), 

which could be used for ocean liming (equation 30). The evolved CO2 is recycled back into the 

mineral carbonation reactor. The value of this approach is that it avoids the CO2 burden of 

decomposing a carbonate raw material, and MgCO3 decarbonates at a lower temperature than 

CaCO3. However, due to the energy penalty from water evaporation in the kiln, and the 

additional energy required to grind the olivine, the energy savings over CaCO3 calcination 

appear to be minimal. 

𝑀𝑔2𝑆𝑖𝑂4 + 2𝐶𝑂2 → 2𝑀𝑔𝐶𝑂3 + 𝑆𝑖𝑂2 (Mineral Carbonation) equation 28 

2𝑀𝑔𝐶𝑂3 + 2𝐻2𝑂 → 2𝑀𝑔(𝑂𝐻)2 + 2𝐶𝑂2 (Calcination)  equation 29 

2𝑀𝑔(𝑂𝐻)2 + 4𝐶𝑂2 → 2𝑀𝑔2+ + 4𝐻𝐶𝑂3
− (Ocean liming)  equation 30 
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Figure 15: A simplified schematic of a coupled mineral carbonation ocean liming process. 

Adapted from Renforth and Kruger [2013]. 

A number of multi-step mineral carbonation processes promote the creation of Mg(OH)2 as 

part of the overall reaction to capture carbon dioxide from point sources as MgCO3 [Fagerlund 

et al., 2012; Madeddu et al., 2014; Nduagu et al., 2012]. The use of the produced Mg(OH)2 to 

increase ocean alkalinity has not been explored. However, such a scheme reduces the 

constraints on plant location (rather than being next to the emission point source it could be 

located to exploit unused renewable energy), and notionally reduces the overall cost by ~60 – 

80 % (from additional CO2 draw-down per mole of base added). However, it is likely that the 

Mg(OH)2 will need to be relatively pure for ocean liming to minimize biological impact from 

Fe and Si that may be present. 

5.2 Accelerated Weathering of Limestone 

The accelerated weathering of limestone is the process in which flue gasses are scrubbed with 

a mixture of limestone and seawater [Rau and Caldeira 1999; Figure 16]. It is directly 

analogous to flue gas desulfurization, albeit on a larger scale. Seawater brought into 

equilibrium with 15% CO2 and calcite will be able to sequester 0.53 t CO2 per kt of seawater 

[Caldeira and Rau 2000]. Therefore, a coal fired power station producing 500 MW and 0.5 t 

CO2 s-1 will require around 900 m3 s-1 of seawater, which is, for example, two orders of 

magnitude greater than the largest seawater reverse osmosis facilities (1 – 5 m3 s-1 [Lior 2012]), 

and an order of magnitude greater than the largest sewage treatment works (e.g., the Atotonilco 

el Alto treatment plant, 35 m3 s-1 [Mendoza 2012]). However, a once-through seawater cooled, 

500 MW plant pumps some 20 m3 s-1 of seawater, meaning that around 6% of the plant’s CO2 

could theoretically be converted to seawater alkalinity without new pumping. The volume ratio 

between liquid and gas in the reactor has a strong influence on capture efficiency, too little 

water in the reactor and there is insufficient carbonate solubility to remove CO2 from the gas 

phase. Increasing the liquid-gas ratio increases the capture efficiency until a maximum is 

reached, after which the efficiency starts to decrease as CO2 in the gas is used to suppress the 
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natural buffering of seawater rather than promoting carbonate dissolution. While most of this 

research has focused on flue gas capture, AWL could be relevant to air capture if applied to 

mitigation of CO2 from electricity production via biomass combustion (i.e. an alternative 

storage mechanism for biomass energy carbon capture and storage). 

 

 

Figure 16: Schematic for the accelerated weathering of limestone. 

Langer et al., [2009] suggest that 71% of US power stations are located within 100 km of 

limestone deposits, and 200 are adjacent to the coast. Given the water requirements, the AWL 

reactor must be located adjacent to the coast. While there is considerable potential for AWL, 

(Rau et al, [2007] suggests a minimum cost of <$10 per t CO2 via use of waste limestone and 

recycled once-through power plant cooling seawater), the engineering requirements require 

considerable more research.  

5.3 Electrochemical splitting 

To overcome the CO2 geological sequestration burden of ocean liming, House et al., [2007] 

proposed a method to increase aqueous NaOH through direct electrolysis of seawater (Figure 

17).  This chlor-alkali method has been used industrially for over 100 years to produce NaOH 

from seawater and brines [Brinkmann et al., 2014]. The electrolysis cell consists of an anode 

and cathode separated by a sodium permeable membrane. Seawater (or an enriched NaCl brine) 

is fed into the section of cell containing the anode, chloride ions are oxidized into chlorine gas. 

At the cathode, hydrogen ions are reduced from a stream of fresh water to produce hydrogen 

gas. The result is a movement of Na+ ions across the membrane and the creation of aqueous 

NaOH at the cathode. This high pH solution could then be added to the ocean to increase 

alkalinity. The chlorine and hydrogen gases could be reacted in a fuel cell to produce 

hydrochloric acid, which must be neutralized through reaction with a silicate mineral. 

Assuming no efficiency losses, the energy requirements of electrolysis (1.8 GJ per t CO2) is 

completely met by the exergy (‘available’ energy) destruction in the fuel cell and during acid 

neutralization (1.9 GJ per t CO2). However applying a range of efficiency scenarios and energy 

emission intensities, House et al., [2007] suggest that an optimistic scenario (70% efficiency 

for electrolysis and fuel cell generation, on a 10 moles kg-1 NaCl solution) would require 

between 3 and 18 GJ per t CO2. More pessimistic efficiencies are unlikely to be carbon negative 

when exploiting anything but a decarbonized energy sector.  
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Figure 17: Direct electrolysis of seawater (adapted from House et al., [2007]) 

Rau [2008] proposed an alternative method that uses a CaCO3 solution as the electrolyte 

(Figure 18), in which acid conditions produced around the anode dissolve CaCO3. In such a 

solution the CO3
2- ions would migrate towards the anode, protonate, and degas as CO2. The 

Ca2+ cations would migrate towards the cathode to produce a high pH Ca(OH)2 rich solution. 

Notionally, Ca(OH)2 could precipitate at sufficiently elevated pH and [Ca2+], however Rau 

[2008] suggests the addition of the high pH solution to the ocean as the mechanism for ocean 

alkalinity increase. The energy requirements for this may be around 5 GJ(electrical) per t CO2 

consumed, which to be CO2-emissions-negative must be powered by non-fossil-derived 

electricity. A similar energy expenditure (7.6 GJe per t CO2) was calculated if silicate minerals 

rather than carbonates were dissolved at the anode in seawater [Rau et al., 2013]. 

 

Figure 18: Electrochemical accelerated dissolution of minerals [Rau 2008; Rau et al., 2013]. 

Seawater, natural or artificial brines could be the source of the electrolyte, which would 
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negate the use of freshwater/desalination (although this would require the treatment of H2 and 

Cl2 produced) 

An approach was proposed by Davies [2015], in which an MgCl2 rich brine is thermally 

decomposed into magnesium oxide and hydrochloric acid, which requires around 0.8 GJ of 

electrical and 13 GJ of thermal energy per t CO2 sequestered. Like the electrochemical methods 

discussed above, the hydrochloric acid is disposed/neutralized by reaction with silicate rocks. 

As Davies [2015] suggests, this proposal is probably most suitable for the treatment of 

desalination reject brines using solar energy, the global potential of which is on the order of 1 

Mt CO2 a
-1. 

5.4 Comparative Cost Estimate 

The limited technoeconomic assessment of these processes largely focus on deriving overall 

energy and carbon balances, and there has been little optimization. Furthermore, some of the 

reaction kinetics are poorly constrained (particularly for artificial materials), resulting in 

considerable uncertainty in the design of the flow sheet. Finally, the energy and cost associated 

with transporting the material from the extraction site to the processing or application site (see 

below) can only be estimated at this stage. However, Table 3 brings together the various cost 

estimates of ocean alkalinity C sequestration technologies. An important consideration is a 

‘threshold’ imposed by the energy intensity of carbon emissions derived from fossil fuels (i.e. 

the inverse of the carbon intensity of fuels; italicized in Table 3). Surpassing 10 GJ t CO2 of 

thermal energy or 3 GJ t CO2 of electrical energy, then it may be more reasonable to 

decommission a coal fired power station than to run the negative emission technology. While 

the predicted financial and energy costs are variable, and at this stage largely speculative, they 

suggest a level of competitiveness with ‘conventional’ methods of mitigation.  

 

 

Table 3. Comparison of electrical and thermal energy requirements and 

financial costs of ocean alkalinity carbon storage technologies  

Technology GJ tCO2
-1 US$ tCO2

-1 

 Electricity Thermal  

Ocean Liming (Oxy-fuel flash 

calciner: limestone) 

1.3  4.8 126 

Ocean Liming (Endex CFC: 

limestone) 

-0.1  5.5 100 

Ocean Liming (Oxy-fuel flash 

calciner dolomite) 

0.7  3.2 95 

Ocean Liming (Endex CFC: 

dolomite) 

-0.1  4.2 72 
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Ocean Liming (Solar calciner: 

limestone) 

0.4  0.6b 159 

Electrochemical weathering (Mg-

Silicate) 

5c  - 

Electrochemical weathering (CaCO3) 5c  14-190 

Electrochemical weathering (NaOH 

production) 

3-18   - 

Direct carbonate addition to 

upwelling regions 

<0.1 3.6 - 

Mineral Carbonation/Ocean liming 2.2  5.0  

Accelerated weathering of limestone   10 - 40 

Enhanced weathering 0.1–8.4 0.8-4.2 20-600 

    

Direct air capture  7.5 - 10  100-1000 

Typical cost of ‘conventional’ CCS 6.7  30-100 

Energy cost of decommissioning coal 3 10  

aPer net ton of carbon dioxide sequestered 

bAdditional thermal requirements from fossil fuels 

cPer ton of CO2 extracted rather than net sequestration. 

[Renforth et al., 2013; Renforth and Kruger 2013 and references therein] 

 

5.5 Upscaling production 

If the proposal is to mitigate humanity’s CO2 emissions then a solution must be able to operate 

on a scale that is meaningful to the challenge. However, defining what is ‘meaningful’ is 

problematic, which has previously been attempted by deconstructing the problem rather than 

assessing what might be possible. For instance, Pacala and Socolow [2004] chose annual 

emissions ‘wedges’ of 1 Gt C a-1 by 2050 (each wedge mitigating around 14% of their business 

as usual CO2 emissions scenario) by upscaling known mitigation strategies. Refining this 

approach to include projected efficiency improvements and the most up to date emission 

pathways, Davis et al., [2013] used 19 (9 to stabilize emissions and 10 to reduce to zero), 

although the wedge size remains the same. A consequence of the wedge approach is that it has 

conceptually defined the scale at which a mitigation technology should be able to achieve. The 

problem is the choice of 1 GtC is largely arbitrary. It is possible that the portfolio of climate 

change mitigation technologies will contain considerably more than 7 or 19 different measures 

(e.g., the UK Government’s pathways calculator contains over 40 proposals [DECC 2010], and 

does not expand upon a range of over 20 geoengineering proposals [Bellamy et al., 2012]). 

While some measures may be able to operate at a multiple Gt C a-1 scale (e.g., renewable energy 
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proposals), many of them could well be more feasible at hundreds of Mt C a-1 scale (solving 1 

- 5 % of the emission mitigation requirements). 

Another important aspect of scale is the cumulative potential of a mitigation strategy. Humanity 

could emit between 880 (RCP 2.6) and ~thousands of Gt C by the end of the century (section 

1). This is particularly important when considering technologies that propose to store CO2 in 

another part of the Earth system (or in geological reservoirs), where the capacity of the sink 

may be limited, and the total requirements of storage could be on the order of trillions of t of 

C. While the efficacy of a potential technology is an important consideration (i.e. the 

proportional capacity for dealing with the problem), the decision to invest in a technology must 

also include the predicted future costs, the required resources to progress development, and the 

lead time for implementation. There is no widely employed or transparent decision making 

framework for investment in technology development for a climate change solution portfolio. 

For a mineral sequestration technology to capture CO2 as bicarbonate in the ocean, the 

theoretical mass ratio between mineral and CO2 is shown in Table 1. While some of the 

anthropogenically produced minerals achieve a mass ratio of >1 (CO2: mineral), their 

production necessitates the extraction and processing of natural minerals (e.g., the calcination 

of limestone to produce lime). Therefore, between 1 and 3.5 tons of raw material will need to 

be extracted for every ton of CO2 captured. This requirement will increase once inefficiencies 

are accounted for. 

The cement industry is a useful analogue for the scale and rate of deployment of a mineral 

carbon sequestration technology. The global cement industry extracts around 7 billion tons of 

raw material (mainly limestone, shale and/or clay), which are ground and processed in a kiln, 

and the finished product (4.2 billion tons of cement a-1), is distributed locally. In 1960 global 

cement production was around 0.3 Gt, in 2014 it was 4.2 Gt. The majority of this production 

capacity was created in China, which had an annual compound production growth of 11.5 % 

between 2000 and 2012 [USGS, 2014]. However, it is unclear how comparable this growth is 

to a future mineral carbon sequestration industry (i.e. are the constraints comparable?). For 

instance, infrastructure development during the industrial revolution expanded at about 5%, 

tractor production in the U.S. during the height of agricultural mechanization grew at a rate of 

16%, post-war U.K. road infrastructure grew at a rate of 15%, and recent cement production 

grew at a rate of 12% ([DECC 2015; Hilbert and López 2011; Roth and Divall 2015; Renforth 

et al., 2011; USGS 2014]), see supporting information Table S3). With appropriate 

policy/market drivers, an expansion of >20 % may be possible, but 10-15 % may be more 

realistic, and consistent with historic industrial development. 

Figure 19 presents the time required to upscale production to 0.1 (Figure 19A), 1 (Figure 19B) 

and 10 (Figure 19C) Gt a-1 for a range of exponential growth rates (equation 31). A growth rate 

of 12% would need to be sustained for 45 to 60 years to create 1 Gt worth of production capacity 

(based on an initial capacity of 1 – 5 Mt a-1). However, sustaining this growth rate for an 

additional 20 years would create 10 Gt of capacity. Hypothetically, if 50 Mt a-1 of spare 

capacity was available (and convertible) in existing industries, then the upscaling period would 

be 26 years for 1 Gt (based on 12% growth) 

𝑃𝑡 = 𝑃0(1 + 𝑟)𝑡  equation 31 

P is the production in year t of the expansion with growth rate r, and P0 is the initial production. 
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Figure 19: Time required to create A) 0.1 Gt, B) 1 Gt, and C) 10 Gt worth of production 

capacity as a function of technology growth rate (assuming an exponential growth). The 

different lines represent the initial capacity of 1 Mt a-1 and 5 Mt a-1 (which are broadly 

consistent with the minimum and maximum production capacity of a single cement plant), 

and 50 Mt a-1 which is (hypothetical/fictional) spare capacity present within existing 

industries. 

6 Ocean Transport and Disposal 

6.1 Ocean Transport 

Moving material from the extraction and production site to the ocean will require a combination 

of land and ocean transport. The use of these depends on the location of the mineral resource, 

the processing plant, port facilities, and the application area of the ocean. As such, at this stage, 

it is possible to make only general statements regarding transport requirements of a mineral 

carbon sequestration proposal.  

Global shipping capacity is around 8 billion tons a-1 (the utilization of which broadly follows 

fluctuations in international trade [UNCTAD 2012]). Capacity of material transport over land 

is likely to be substantially more (10’s of billions of tons). For the addition of material to the 

ocean Harvey [2008] suggests a fleet of 3000 ships would be required to add 4 Gt of CaCO3. 

Renforth et al., [2013] suggest a fleet of 100 ships would be required to add 1 Gt of Ca(OH)2 

(the difference between these studies is largely a result of the solubility different of the 

materials added). Compared to an existing fleet of 50,000, this represents a small expansion. 

While upscaling transport and infrastructure to cope with additional movement of material 

could be challenging, upscaling the extraction and processing components would probably be 

more limiting. Transport over land incurs substantially more cost (energy and financial) than 
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over the ocean (see supporting information Table S4, [CEFIC 2011; Davis et al., 2011]). 

However, a mineral carbon sequestration technology may have an energy foot print of GJ per 

ton of material, it may be possible to move material 10s or 100s of km over land and 1000s km 

over the ocean before significantly impacting the energy or carbon balance of the technology. 

Given the abundance of mineral resource, it may be possible to optimize a technology to 

minimize transport requirements. Moosdorf et al., [2014] demonstrated that large distances can 

be covered with minimal impact on the CO2 budget of enhanced weathering proposals. 

6.2 Ocean addition 

Compared to the distributed global impact, the localized impact of increased alkalinity appears 

to be more substantial. For instance, if alkalinity addition were more rapid than the rate of CO2 

gas to liquid transfer, there would be an increase in [CO3
2-] and [OH-] and a decrease in [CO2 

(aq)]. However, these effects would be highly transient in the open ocean. Figure 20 shows that 

addition rates would have to be several orders of magnitude larger than suggested in Renforth 

et al., [2013] before a significant and extended impact on pH was observed (see Box 2 for 

ocean dispersal discussion). This assumes instantaneous dissolution within the rapidly mixed 

wake of a ship. It is possible that a particle could sink out of the wake and dissolve in the less 

turbulent part of the mixed layer, creating areas of elevated alkalinity. 

 

Figure 20: Change in pH from dumping of high pH solutions (or instantly dissolved particles) 

from the rear of a ship moving at 10 knots (18.5 km h-1), derived from the IMO formula (see 

Box 2). Lines denote time after disposal. The model assumes no pH buffering.  

The cumulative effect of regional alkalinity addition over decades may produce conditions with 

the potential significant ecosystem impact [e.g., Ilyina et al., 2013]. It is conceivable that in 

some confined environments, or under rapid application rates, the ambient pH may be 

sufficiently elevated to impact ocean biology. Establishing the relationship between addition 

rate and local impact could be used to develop application limits to minimize environmental 
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impact. Furthermore, alkalinity addition will likely create secondary environmental impacts 

specific to the technology and the application site due to the co-dissolution of elements that 

could stimulate biological activity. 

 

7 Environmental impact and regulation 

7.1 Global consequences of alkalinity addition 

The recent accumulation of anthropogenic CO2 in the atmosphere has caused a decrease in 

surface ocean pH by 0.1 units [Doney et al., 2009]. Future CO2 emissions will decrease the pH 

further. Increasing the pCO2 in equilibrium with the ocean increases [CO2(aq)] in solution, and 

decreases [CO3
2-]. Initial experiments [Riebesell et al., 2000] suggested that a reduction in 

[CO3
2-] and therefore a reduction in the saturation state of carbonate minerals, would lead to a 

reduction in carbonate formation of calcifying organisms. Substantial research has been 

undertaken in the last 20 years, which has unearthed a complex relationship between ocean 

chemistry and ecosystem impact [Fabry et al., 2008; Rost et al., 2008]. The consequences for 

organisms that precipitate extracellular carbonate (e.g., corals) is somewhat starker [Hoegh-

Guldberg et al., 2007]. Broadly, limiting ocean acidification is an important driver for reducing 

CO2 emissions. Within this context, some have proposed the intentional addition of alkalinity 

to the oceans as a means to limit harm [Rau et al., 2012; Williamson and Turley 2012].  

Almost 50 % of historic anthropogenic CO2 emissions have been absorbed into the ocean 

[Sabine et al., 2004]. The ability of the oceans to take up additional CO2 is described by the 

Revelle Factor (RF) (i.e. the proportional change of aqueous CO2 to DIC, equation 33; [Revelle 

and Suess 1957]). The capacity for CO2 uptake is inversely proportional to RF, and is currently 

between 9 and 15 [Sabine et al., 2004]. The RF has increased by around 15 % on pre-industrial 

levels and will increase by 30-50 % for a doubling of CO2 [Hauck and Völker 2015]. Increasing 

ocean alkalinity will proportionally decrease the RF by around 0.15 to 0.19 (for every % change 

in alkalinity there will be a 0.15% to 0.19% decrease in RF, Figure 21). If alkalinity increased 

Box 2: The dynamics of disposal at sea 

Dilution rates in the wake of ships has been investigated since the 1960s [Delvigne 1987; Delft 

1970), both theoretically [Lewis 1985] and through laboratory and field testing [Byrne et al., 1988]. 

The general formula (equation 32) for the dilution factor (D) in a ships wake was adopted by the 

International Maritime Consultative Organization (now the ‘International Maritime Organization’) 

in 1975 based on a paper submitted by the Netherlands and Norway [IMCO 1975] and can be 

formulated as: 

𝐷 =  
𝑐

𝑄
 ∙ 𝑈1.4 ∙ 𝐿1.6 ∙ 𝑡0.4  equation 32 

Where c is a constant equivalent to 0.0030 for a single discharge orifice or 0.0045 for two discharge 

orifices, Q is the volume discharge rate, U is the vessel speed, L is the waterline length, and t is the 

time after disposal. However, field testing has shown that this formula underestimates the dispersal 

rate by 3 to 10 times [Bryne et al., 1988; Chou 1996]. equation 32 assumes that the density difference 

between the disposed chemical and seawater is minimal, and thus has greater relevance to the 

disposal of liquid. Although, Balch et al., [2005] demonstrated rapid lateral dispersion of particulate 

calcium carbonate during an addition experiment to coastal waters. 
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in the surface ocean from 2.3 to 3.0 mEq kg-1, the Revelle Factor would decrease by around 

5% (offsetting 10% of the potential anthropogenic increase). 

𝑅𝐹 =  [

𝜕[𝐶𝑂2(𝑎𝑞)]

[𝐶𝑂2(𝑎𝑞)]
𝜕𝐶𝑇

𝐶𝑇

⁄ ]

𝐴𝑇=𝑐𝑜𝑛𝑠𝑡.

 equation 33 

 

 

Figure 21: The proportional change in the Revelle Factor to total alkalinity increase. 

As suggested by modeling results in section 5, the globally distributed effects of an increase in 

ocean alkalinity would be elevated alkalinity, pH or Ωcalcite. The consequences of this alkalinity 

increase on marine ecosystems is poorly understood, but it may provide a competitive 

advantage for calcifying organisms [Henderson et al., 2008].  

The addition of silicate minerals to the ocean could have a substantial fertilization effect from 

the dissolution of iron and silica in the material [Köhler et al., 2013]. Adding a billion tons of 

ultrabasic rock to the ocean (for ~0.8 billions of tons of CO2 removal), will also add ~200 

million of tons of silicon and ~70 million tons of iron (see Renforth [2012] for a summary of 

rock chemical constituents). The proportion of Fe or Si dissolved and liberated is likely to be 

a fraction of the total added in the olivine, although it is difficult to predict [Hauck et al., 2016].  

There is considerable literature on the potential environmental impact of ocean fertilization, 

including increased production of other more potent greenhouse gasses (N2O and CH4, 

[Fuhrman and Capone 1991]), lower dissolved oxygen, and nutrient driven ecosystem 

structural changes [Lampitt et al., 2008].  It may be possible to extract the Mg or Ca from a 



42 

silicate mineral (thus minimizing Si and Fe added to the ocean) to create pure oxides or 

hydroxides, however the technology to do this has yet to be developed. 

 

7.2 Localized elevated pH and reduced aqueous CO2 

In marine aquaria, ‘calcium reactors’ (that cycle the aquarium water through a bed of crushed 

limestone), or ‘Kalkwasser’ (a solution of Ca(OH)2), are widely used to prevent problematic 

decreases in pH caused by respiration and nitrification. As such, alkalinity is typically 

maintained between 3-6 mEq kg-1 [Tullock and Earle-Bridges 2002]. Even if sufficient 

alkalinity were introduced to the ocean mitigate all of anthropogenic CO2 emissions for the 

next 100 years, it is not anticipated to greatly exceed 4 mEq kg-1. The first order impact of 

increasing [CO3
2-] and [HCO3

-] in seawater is probably minimal. However, addition of 

alkalinity may induce transient elevated pH and/or lower [CO2 (aq)] around the point of addition 

(except AWL, which would likely result in elevated [CO2 (aq)] around the reactor outlet). Feng 

et al., [2016] suggest that it may be possible to influence carbonate chemistry at a regional 

scale (e.g., South China Sea, the Great Barrier Reef). However, the application rate of alkalinity 

would need to be large to have the desired effect. Ecosystems could also be exposed to the risk 

of rapid changes in chemistry should the addition be halted. 

All autotrophic organisms have evolved strategies to concentrate carbon during photosynthesis. 

This is to compensate CO2 undersaturation in the modern atmosphere (and thus ocean) for 

Rubisco (the enzyme which catalyzes photosynthesis; Henderson et al., 2008). Therefore, 

transient reductions in aqueous CO2 caused by alkalinity addition could inhibit photosynthesis, 

and thus alter the function and structure of phytoplankton communities.  Henderson et al., 

[2008] suggest that changes within the structure of these primary producers, could have 

important implications for the function of whole marine ecosystems. For instance, reduced 

rates of carbon and nitrogen fixation have been demonstrated in cyanobacterium 

Trichodesmium (an important primary producer) at low pCO2 [Hutchins et al., 2007; Ramos et 

al., 2007]. 

Scott et al., [2005] found reduced sodium uptake and ammonia excretion in Perca fluviatilis 

(Perch) exposed to a pH 9.5 (through potassium hydroxide addition). The Na+ imbalance is 

thought to allow the fish to retain H+ and mitigate the effects of alkalosis (elevated blood pH). 

Higher ammonia retention is a result of a lower concentration gradient across the gills caused 

by a decrease in the amount of ammonia converted to ammonium at the interface with high pH 

water [Saha et al., 2002]. In a toxicology study, Locke et al., (2009) suggest that between 100-

320 mg l-1 (1.3 – 4.4 mmoles l-1, resulting in a pH >10) of Ca(OH)2 is needed to have a 

detectable impact on the mortality of Gasterosteus aculeatus (a common coastal fish) over 96 

days. Fish and mammals have developed renal compensation in order to excrete excess 

alkalinity [Wood et al., 1999], but prolonged exposure may have a chronic impact. 

In a single species experiment, Cripps et al., [2013] investigated the impact of Ca(OH)2 

addition on Carcinus maenas (a globally distributed crab species). The experiments (ranging 

from pH 8.5 to 8.8, pCO2 200 to 80 µatm, Ωcalcite = 7 to 13) demonstrated respiratory alkalosis 

possibly in response to lower levels of aqueous CO2. However, the authors note that these 

fluctuations are smaller than the daily changes experienced in intertidal rock pools, and it is 

not clear how an elevated ambient pH may impact the overall fluctuations in coastal 
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environments. Locke et al., [2009] suggest Crangon septemspinosa (a common shrimp species) 

is sensitive to Ca(OH)2 addition, with 100% mortality for ~100 mg l-1 addition after 14 days. 

Bivalves appear to have less control on the pH within their blood, and are possibly more 

sensitive to environmental changes [Byrne and Dietz 1997], although control may be 

unnecessary for anything other than shell formation [Booth et al., 1984].  

7.3 Localized changes in dissolved oxygen 

Dissolved oxygen in the ocean is controlled by a number of mechanisms including the biogenic 

production at the surface, respirative removal from remineralization  of sinking organic matter, 

ocean-atmosphere gas exchange, and circulation [Joos et al., 2003]. The deleterious 

anthropogenic impact on dissolved oxygen is a concern and could increase the extent of oxygen 

minimum zones [Stramma et al., 2008]. Hypoxia alters benthic ecosystem structure and 

function, in which smaller taxa are more resilient than larger [Levin et al., 2009]. Although in 

a modest lime addition scenario (Keller et al., [2014]; equating to cumulative draw down of 

around 160 Gt C by 2100) no change in dissolved O2 was demonstrated.  

Fertilizing biological activity through the addition of iron and silicon (or increased export 

through ballasting) may increase dissolved oxygen in the photic zone, but reduce it in the waters 

below due to remineralization of exported organic carbon [Fuhrman and Capone 1991]. 

Further to biological oxygen removal, fayalite (Fe2SiO4), the iron end member of olivine is 

composed of Fe2+ which oxidizes to Fe3+ during dissolution in the presence of oxygen ([Schott 

and Berner 1985]; equation 34).  

𝐹𝑒2𝑆𝑖𝑂4 +
1

2
𝑂2 → 𝐹𝑒2𝑂3 + 𝑆𝑖𝑂2 equation 34 

An ophiolite may contain between 0 and 20% FeO [Miyashiro 1975]. A rock with a fayalite to 

forsterite mass ratio of 1:9 (FeO 7%) would consume approximately 12 g O2 for every kg 

dissolved. A column of water in the mixed layer (1 m2 by 60 m deep) could contain on the 

order of 10 moles of O2 (~200 moles kg-1, [Stramma et al., 2008]). It would therefore take 

around 25 kg m-2 of rapidly dissolving rock to completely remove O2 as it sank through the 

water column. During the European Iron Fertilization Experiment [Smetak et al., 2007], 7 tons 

of material was rapidly (within 1 day) spread over a 167 km2 patch (10-4.4 kg m-2), which over 

the following 14 days increased to 740 km2 (10-5 kg m-2). It is therefore possible that oxygen 

consumption from iron oxidation can be easily mitigated with suitable addition rates, and 

exploiting rapid dilution in the mixed layer.  However, the effects may be more significant in 

poorly mixed waters, waters with existing hypoxia, and sediments and soils.  

7.4 Alkalinity addition in shell fish production and coral reef protection 

Lime and hydrated lime have been used for almost a century to control invasive species in 

shellfish aquaculture (see Locke et al., [2009], and references therein). This involves dipping 

an entire sock of shellfish into a concentrated solution of lime/quicklime, or spraying a 

concentrated solution onto a bed [Piola et al., 2009]. For instance, Switzer et al., [2011] report 

that the addition of Ca(OH)2 was effective at controlling the invasive species of Didemnum 

vexillum (carpet sea squirt) on commercial oysters. However, at one of the treatment sites they 

report a considerable reduction in the survival rate the stock (although pH remained at ambient 

levels). This demonstrates the relative sensitivity of species to large transient doses of Ca(OH)2. 

However, Locke et al. [2009] suggests that targeted lime addition to these environments may 
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be able to minimize the impact of ocean acidification or improve water quality in anaerobic 

estuaries from excess nutrient load.  

Given the relative sensitivity of species to lime addition, its use for mitigating the effects of 

ocean acidification in natural environments requires careful consideration. The addition rate 

would have to be sufficient to overcome mixing of the local seawater with the ambient 

environment, but not sufficient to detrimentally impact ecosystems. Work is required to assess 

locations in which this may be feasible, and how such a scheme may operate. 

7.5 Regulation and ethics of adding alkalinity to the ocean 

The 1982 United Nations Convention on the Law of the Sea (LOSC [UN 1982]) lays down the 

legal framework for almost all matters relating to the seas and oceans. Carbon storage as 

alkalinity, as a novel marine activity, is not explicitly addressed in the Convention. 

Nevertheless, the provisions of the LOSC are generally applicable, setting out the territorial 

and economic claims of sovereign states, responsibilities for the protection of the marine 

environment, marine scientific research, and dispute resolution. The LOSC also provides for 

the development of specific and detailed norms under the Convention for new and emerging 

marine activities. Within this context, the issue of marine geoengineering was recently 

addressed under the London Convention and London Protocol [IMO 2003] (LC/LP), treaties 

that regulate marine pollution from the dumping of wastes or other matter at sea. The texts of 

these instruments excludes the ‘placement of matter for a purpose other than the mere disposal 

thereof, provided that such placement is not contrary to the aims of this Protocol’ from the 

definition of dumping and would therefore apparently exclude the addition of alkalinity to the 

ocean from falling under these regimes. However, in the case of ocean fertilization the Parties 

to the London Convention and the London Protocol determined in 2008 that the scope of the 

London Convention and Protocol includes ocean fertilization activities’ due to significant risk 

that such placement would be contrary to the aims of both the London Convention and the 

London Protocol. Subsequently, the London Protocol was amended in October 2013 (London 

Protocol Resolution LP.4(8) – [IMO 2008]) to regulate ocean fertilization activities, and also 

enables the Parties to regulate other marine geoengineering activities in the future, potentially 

including the addition of alkalinity to the ocean. The amendments need to be ratified by 2/3rds 

of the Contracting Parties to come into force, which would provide a legally binding 

mechanism to regulate ocean fertilization, with the possibility of regulating other marine 

geoengineering activities in the future. On the face of it, carbon storage as alkalinity falls within 

the definition of ‘marine geoengineering’ as ‘a deliberate intervention in the marine 

environment to manipulate natural processes, including to counteract anthropogenic climate 

change and/or its impacts, and that has the potential to result in deleterious effects, especially 

where those effects may be widespread, long-lasting or severe.’ Hence, though the amendment 

to the London Protocol is not yet in force, there remains a possibility that the addition of 

alkalinity to the ocean could be regulated at a later date as a placement of matter into the sea 

for marine geoengineering purposes. Therefore, the addition of alkalinity to the ocean would 

likely operate under a complicated regulatory framework. Addition to coastal waters would fall 

under national (or regional) administration, whereas open ocean addition would require 

international oversight. 

Beyond this, efforts have been undertaken to contribute to the development of an effective 

governance framework for geoengineering, a term which commonly covers several ocean 
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alkalinity proposals. Rayner et al., [2013] have laid out a set of guiding (‘Oxford’) principles 

for geoengineering, including: 1) that it be regulated as a public good; 2) public participation 

in decision-making; 3) disclosure of research and open publication of results; 4) independent 

assessment of impacts; and 5) governance before deployment. This wider discussion has 

highlighted the responsibilities of researchers working on proposals that may eventually lead 

to widespread or intended impact [Owen et al., 2013]. With this in mind, Hubert and Reichwein 

[2015] suggest a means to codify norms for research within this space, deliberating on the 

foundational principles (e.g., prevention and precaution), the responsibility of states to prevent 

activity without prior assessment of harms, and the responsibility of scientists to design and 

undertake proportional step-by-step activates to further scientific understanding. 

7.6 Monitoring 

It is possible to achieve precision of less than 0.005 mEq kg-1 (0.02%) in routine measurements 

of seawater alkalinity [Dickson et al., 2007]. This suggests that an addition of 0.005 – 0.015 

mEq kg-1 a-1 could be detected. However, it may be several years before this signal is detectable 

above the background seasonal variability (0 – 0.08 mEq kg-1). A key limitation will likely be 

the ability to collect the appropriate amount of samples/data in a short enough time period to 

accurately quantify alkalinity changes across the whole ocean. Over the last 35 years ocean 

alkalinity data were collected as part of 42 cruises at 23,000 stations (see CDIAC's ocean 

carbon data collection http://cdiac.ornl.gov/oceans/). The collection of data from scientific 

cruises would likely form an important part of an ocean alkalinity monitoring system. However, 

automated monitoring systems are becoming increasingly common, which currently omit 

alkalinity or carbonate system measurements, but will likely include these in the near future 

[GOOS 2006]. 

8 Conclusions and further work 

Storage of large volumes of CO2 may be necessary to prevent dangerous climate change. This 

paper explores the issues surrounding the chemical transformation of CO2 through mineral 

dissolution for storage as ocean alkalinity (HCO3
- CO3

2- ions). The ocean currently stores 

around 38,000 Gt C (equivalent to ~140,000 Gt CO2) in this way, and may be able to store 

trillions of tons of CO2 with limited changes in bulk chemistry. If it were used as the sole 

destination of all anthropogenic CO2 emissions over the next 100 – 500 a, then ocean alkalinity 

would increase from current levels of 2.3 mEq kg-1 to ~3 mEq kg-1 (resulting in a calcite 

saturation level of between 5 and 7.5). Considering these changes as an upper end member, it 

is unlikely that the average saturation state of calcite will surpass its pre-industrial level, 

although some environments may be more sensitive than others. 

Transient localized impact around the point of alkalinity addition could be substantial. On one 

hand, it may be possible to ameliorate the effects of ocean acidification (i.e. maintaining the 

saturation state of calcite at an appropriate value) by controlled addition to sensitive 

environments. However, rapid uncontrolled changes in pH, carbonate saturation state, and 

dissolved aqueous CO2 may have detrimental effects on ocean ecosystems. The source of 

alkalinity may be derived from carbonate or silicate minerals. Direct addition of the latter to 

the ocean may fertilize biological activity through the co-dissolution of nutrients (e.g., iron and 

silicon), although it may be possible to extract the magnesium or calcium prior to addition. 

While the addition of alkalinity is common in several marine environments (e.g., in aquaria 

and shellfish production), more research is needed to constrain the wider ecosystem response. 

http://cdiac.ornl.gov/oceans/
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Table 2 provides a range of carbonate system parameters that could be used as a basis for this 

experimental work.  

Carbonate mineral precipitation is strongly inhibited in seawater, and is almost exclusively 

produced from biological activity. In the global carbon cycle, up to 2 Gt C a-1 is incorporated 

into carbonate shells in the ocean, of which only <0.3 Gt C a-1 makes it into the lithosphere. 

The remainder is re-mineralized into dissolved aqueous species (into CO2, HCO3
- and CO3

2-). 

As such, the residence time for alkalinity in the ocean is on the order of 100 – 1,000 ka, and 

would form, for all practical purposes, a permanent sink for anthropogenic CO2. However, 

raised alkalinity in the ocean may change the rate of carbonate mineral production (both 

biogenic and abiological), but more experimental work is required to constrain this change. 

Research investigating the change of shell mass with carbonate ion concentration suggest a 

growth rate change between 10 - 80% for calcite saturation state of 7, which is considerably 

less than the expected abiological increase of 140 %. Increased alkalinity will also likely reduce 

the rate at which carbonate is re-mineralized in sediments, and increase the depth of the ocean 

in which carbonate minerals are thermodynamically unstable (‘lysocline’), and thus increase 

carbonate burial. An increased carbonate production or decrease in remineralization will lower, 

or reverse, the effectiveness of ocean alkalinity carbon storage. It is possible that increased 

carbonate production and ballasting will also increase the export of organic carbon. As the 

particulate organic to inorganic carbon ratio is >1, the effect may result in the additional draw-

down of atmospheric CO2. Considerably more work is required to understand the longevity of 

carbon storage as elevated alkalinity in the ocean. 

A range of techniques have been proposed for increasing ocean alkalinity, which exploit 

numerous reaction pathways (Table 1). However, all require the extraction, processing, and 

reaction of rocks. It may be possible to achieve CO2:rock mass ratios >1 using ultrabasic 

minerals (larger than the ~0.6 mass ratio for solid carbonate formation). It may also be possible 

to use faster dissolving carbonate minerals for alkalinity addition (CO2: rock mass ratio ~0.5). 

While some components of these processes already operate at a large scale (e.g., the production 

of lime), generally the overall technologies have not developed beyond desk-top techno-

economic assessment or bench scale laboratory work.  However, this work suggests some of 

the proposals to have a range of energy requirements and financial costs comparable to more 

widely studied alternatives (e.g., 1-10 GJ tCO2
-1, $50 – 150 tCO2

-1). However, up-scaling these 

processes to have an impact on anthropogenic CO2 emissions (i.e. billions of tons CO2 a
-1) is a 

considerable challenge (as it is for mineral carbonation).  

Finally, the modification of the ocean (a global commons) raises issues surrounding regulation, 

monitoring, and the distribution of impact. The London Convention/Protocol was created to 

limit dumping of materials in the ocean, and has been amended (yet to be ratified) to include 

marine geoengineering proposals. More work is required to develop governance for ocean 

alkalinity carbon storage, but this should be informed by, and tailored to, the potential harms 

and benefits of specific alkalinity addition approaches. 
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