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Key points. 

 

1. We demonstrate an important role for NR4A receptors in regulating 

neutrophil lifespan and homeostasis in vitro and in vivo.  

2. These findings may define targets for therapies for diseases driven by 

defects in neutrophil number and/or survival. 
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Abstract 

Neutrophil lifespan is plastic and highly responsive to factors that regulate 

cellular survival.  Defects in neutrophil number and survival are common to both 

hematologic disorders and chronic inflammatory diseases. At sites of 

inflammation, neutrophils respond to multiple signals that activate protein 

kinase A (PKA) signaling, which positively regulates neutrophil survival. The aim 

of this study was to define transcriptional responses to PKA activation and to 

delineate the roles of these factors in neutrophil function and survival. In human 

neutrophil gene array studies, we show that PKA activation upregulates a 

significant number of apoptosis related genes, the most highly regulated of these 

being NR4A2 and NR4A3. Direct PKA activation by the site-selective PKA agonist 

pair N6/8-AHA and treatment with endogenous activators of PKA, including 

adenosine and PGE2, results in a profound delay of neutrophil apoptosis and 

concomitant upregulation of NR4A2/3 in a PKA dependent manner. NR4A3 

expression is also increased at sites of neutrophilic inflammation in a human 

model of intradermal inflammation. PKA activation also promotes survival of 

murine neutrophil progenitor cells, and siRNA to NR4A2 decreases neutrophil 

production in this model. Antisense knockdown of NR4A2 and NR4A3 

homologues in zebrafish larvae significantly reduces absolute neutrophil number 

without affecting cellular migration. In summary, we show that NR4A2 and 

NR4A3 are components of a downstream transcriptional response to PKA 

activation in the neutrophil, and that they positively regulate neutrophil survival 

and homeostasis.  
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Introduction 

Neutrophils are an essential component of the innate immune response and are 

the primary cellular response to tissue infection and inflammation. As the most 

abundant circulating leukocyte, neutrophils undergo spontaneous apoptosis in 

order to limit inflammation and maintain homeostasis. Ordinarily short-lived 

cells, inflammatory neutrophils can prolong their lifespan in order to maximize 

functional potential such as pathogen eradication1. As a result, neutrophils are 

extremely sensitive to factors that trigger cell survival, and engage 

transcriptional and signaling pathways that allow them to rapidly respond to 

their environment2. Defects in neutrophil number and survival are a common 

factor in hematologic conditions, including neutropenia and myeloid hyperplasia, 

and in chronic inflammatory diseases3. Yet, current therapeutics for these 

disorders are associated with long-term side effects or do not treat the 

underlying cellular mechanisms. Understanding the mechanisms that underpin 

neutrophil survival in this context will reveal targets to which novel and highly 

selective therapeutic approaches can be designed. 

 

Factors that increase intracellular cAMP levels also prolong neutrophil survival4. 

cAMP molecules bind to and activate protein kinase A (PKA), a ubiquitous family 

of kinases with multiple cellular functions, including cell survival. Conversely, 

PKA is inactivated by depletion of cAMP, which rapidly turns off signaling, 

making it a candidate for the precise regulation of neutrophil survival. Although 

PKA has been linked to the control of neutrophil survival, as well as control of 

other key effector functions such as adhesion, superoxide production and matrix 

metalloproteinase secretion5-8, the downstream signaling of PKA in neutrophils 

remains unclear. This study aimed to define transcriptional responses to PKA 

activation and to delineate the roles of these factors in regulating neutrophil 

function and survival, in order to identify new therapeutic targets for conditions 

in which defects in neutrophil number and survival are a key component.  
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Methods 

Materials  

All chemicals were from Sigma-Aldrich (St. Louis, MO) unless otherwise stated. 

Adenosine, 8-(6-Aminohexyl) aminoadenosine 3’:5’-cyclic monophosphate (8-

AHA-cAMP), Adenosine 5’-[g-thio]triphosphate tetralithium salt (ATPγs), 

dibutyryl cAMP (dbcAMP), Butaprost and LY-294002 hydrochloride were all 

from Sigma-Aldrich, LPS from E. coli serotype R515 (Enzo Life Sciences, 

Farmingdale, NY), N6-monobutyryladenosine-3,5’-cyclic monophosphate (N6-

MB-cAMP) and 8-bromoadenosine- 3’, 5-cyclic monophosphorothioate (Rp-8-Br-

cAMPS) (Biolog, Bremen, Germany), prostaglandin E2 (PGE2) (Cambridge 

Bioscience, Cambridge, UK),  Recombinant human GM-CSF (Stem Cell 

Technologies, Vancouver, Canada). 

 

Neutrophil isolation and culture 

Human neutrophils were isolated by dextran sedimentation followed by plasma-

Percoll gradient centrifugation from whole blood of healthy volunteers with 

written informed consent and ethical approval from the South Sheffield Research 

Ethics Committee9,10. In selected experiments, neutrophils and monocytes were 

further purified by negative magnetic selection, using either a custom mixture 

from StemCell Technologies, containing antibodies to CD36, CD2, CD3, CD9 

CD19, CD56 and glycophorin A, or the monocyte isolation kit II (Miltenyl Biotech, 

Bergisch Gladbach, Germany), respectively. Following negative selection 

neutrophil and monocyte purity was >99%.   

 

Neutrophils were suspended at 5x106/ml in RPMI (Thermo Scientific, Waltham, 

MA) containing 1% penicillin/streptomycin and 10% low endotoxin FCS 

(PromoCell, Heidelberg, Germany) and cultured in 96-well flexiwell plates at 

37oC, 5% CO2. For hypoxic culture, an in vivo 400 hypoxic work station (Ruskinn, 

Bridgend, UK) with a 5% CO2/balance N2 gas mix delivered an oxygen tension of 

0.75 kPa into the chamber, which correlated with a culture media oxygen tension 

of 3 kPa. Media were allowed to equilibrate overnight prior to use. Freshly 

isolated neutrophils were designated as time 0. Agonists and/or inhibitors were 

added at time 0 and incubated as described. PKA was agonised by a combination 
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of 8-AHA-cAMP [100μM or 1mM as indicated] and N6-MB-cAMP [100μM or 1mM 

as indicated] and collectively termed N6/8-AHA. Neutrophils treated with 

LY294002 or Rp-8-Br-cAMPS were pre-incubated for 30 or 15 mins respectively, 

prior to addition of PKA agonists. 

To create the monocyte conditioned supernatant (S/N) and to concentrate 

monocyte-derived factors, monocytes (2x106/ml) were injected into pre-

hydrated 10kDa dialysis cassettes (Thermo Scientific). Cassettes were placed 

inside 150cm2 tissue culture flasks with re-closable lids (Helena Biosciences, 

Gateshead, UK) containing RPMI with 10% human serum, 1% 

penicillin/streptomycin, and 100ng/ml LPS. Monocytes were cultured for 20 

hours, during which time autocrine factors (>10kDa) accumulated in the 

cassette. Monocytes were removed from cassettes and pelleted gently from the 

media to generate cell-free supernatant which was stored at -80°C. 

 

Murine progenitor cell differentiation and culture 

Murine conditionally immortalised progenitors (mCMP, Prof. Philip Taylor, 

Cardiff University) expressed a hoxb8-estrogen receptor binding domain fusion 

protein and were routinely passaged in the presence of β-estradiol11. Upon 

estrogen withdrawl, mCMP were differentiated into neutrophils in the presence 

of murine Stem Cell Factor (SCF) and G-CSF. Briefly, mCMP were cultured at 0.1-

1 x 106/ml in base medium (OptiMEM (Invitrogen, Karlsruhe, Germany) plus 

10% HI-FCS (PromoCell), 1% L-glutamine (Invitrogen), 30 μM β-

mercaptoethanol and 1% penicillin/streptomycin) supplemented with 10 ng/ml 

recombinant murine SCF (Peprotech, Rocky Hill, NJ) and 1 μM β-estradiol. All 

experiments were performed with cells between passages 2 to 8. Differentiation 

of mCMP to neutrophils was carried out in base medium as above, supplemented 

daily with 20 ng/ml recombinant murine SCF and G-CSF for 4 days12. 

Hemocytometer counts and cytocentrifuge slides were made daily and the purity 

of mature neutrophils on day 4 was typically >90%, as assessed by cellular 

morphology. 

 

Assessment of neutrophil viability and apoptosis 
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Neutrophil apoptosis was measured by oil immersion light microscopy (x100 

objective, Nikon Eclipse TE300, Nikon, Japan). Nuclear morphology was assessed 

on Giemsa-stained cytocentrifuge slides by counting >300 cells per slide10. 

Apoptosis was also measured by Annexin V/ToPro-3 viability staining. In brief, 

cells were washed in PBS and stained with 2.5μl Annexin V-PE (BD Biosciences, 

San Jose, CA) and ToPro3 iodide (1:10,000 dilution, Molecular Probes, Eugene, 

OR) and samples analyzed using a FACS Calibur flow cytometer (BD Biosciences) 

and FlowJo software (Tree Star, Ashland, OR). Hemocytometer counts and flow 

cytometrical CountBright bead (ThermoFisher Scientific) assays were performed 

to assess cell numbers and for trypan blue exclusion. 

 

RT-PCR and qPCR 

RNA was prepared from cell lysates using TRI reagent and cDNA was transcribed 

using high-capacity cDNA reverse transcriptase kit (Applied Biosystems, 

Warrington, UK). Quantitative PCR (qPCR) was carried out using primer-probe 

sets from Applied Biosystems. For normalisation, β actin (Hs99999903) and 

GAPDH (Glyceraldehyde-3-phosphate dehydrogenase) were used. PCR master 

mix was from Eurogentec (Southampton, UK), and reactions were carried out 

using an ABI7900 automated TaqMan system (Applied Biosystems). mRNA 

quantities were analysed in duplicate, normalised against GAPDH or β actin as an 

internal control gene and expressed in relation to mRNA from a media control 

sample as a calibrator. Results are expressed as relative gene expression/relative 

quantity (RQ) using the ΔΔCt method. 

 

RNA Microarray  

Neutrophil RNA extracts were produced after culturing with N6/8-AHA [1mM], 

GM-CSF [100u/ml], LPS [1μg/ml], monocyte-conditioned media (S/N) or in 

hypoxic conditions for 4 hours and converted to cDNA as described. cDNA from 

five donors was pooled prior to microarray analysis. Stimulated neutrophils 

were compared to unstimulated and run on Affymetrix GeneChip Human 

Genome U133 Plus 2.0 Array. To detect changes in total gene expression, data 

was analysed using DAVID 6.7 bioinformatics resource 

(http://david.abcc.ncifcrf.gov/).  
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siRNA gene knockdown by Amaxa Nucleofection 

Nucleofection of mCMP was carried out using a NucleofectorTM 2b device (Lonza) 

according to the manufacturers’ protocol. Lyophilised ON-TARGET plus siRNA 

pools [20μM] (Thermo Scientific) for NR4A2 (L-048281-01-0005), NR4A3 (L-

043983-01-0005) or a non-targeting control (siScrbl) were transfected with 

Amaxa Nucleofector Kit V (Thermo Scientific) and program D-023. All 

nucleofections were carried out at room temperature and recovered in 1 ml 

fresh growth medium. Transfected mCMP were subsequently differentiated as 

described. Efficiency of gene product knockdown was assessed by RT-PCR.  

 

Morpholino injection and zebrafish tail injury 

Standard control [2.0 pM]; NR4A2-MO13 [0.5-2.0 pM] or NR4A3-MO [0.125-

0.5pM] (5’ATGGGAAAATGACTATCACACTGCT-3’) (Genetools, Philomath, OR) 

were injected into Tg(mpx:GFP)i11414 at the 1 cell stage. Embryos were injured 

at 3 days post fertilisation (dpf) by tail transection and neutrophil recruitment 

and resolution at the site of injury was assayed as described15. Embryos were 

imaged at low magnification on a TE- 2000U microscope (Nikon) and an Orca-AG 

camera (Hamamatsu, Japan) using a 4x NA 0.1 air objective (whole body counts) 

using Volocity™ and neutrophil numbers were determined. 

 

Statistical analysis 

Data are expressed as mean ± standard errors of the mean (SEM). Data was 

analysed using analysis of variance (ANOVA) with appropriate post test using 

the Prism 6.0 software (GraphPad, Prism, San Diego, CA).  

 

Results: 

Transcriptional changes in human neutrophils in response to 

inflammatory stimuli. Neutrophils are capable of rapid transcriptional changes 

that are highly tailored to environmental needs, whether this be responses to 

injury, inflammation or infection16,2,17. Identifying gene expression that is unique 

to individual stimuli will reveal potential therapeutic targets that modify specific 

elements of neutrophil function. In order to explore the apoptosis-related 
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transcriptional changes that follow PKA activation, an unbiased microarray 

approach was taken. PKA-dependent and independent agonists were used in 

order to identify genes that are unique to PKA signaling. Human neutrophils 

were cultured with a range of stimuli known to prolong neutrophil survival, 

reflecting both highly selective agonists (N6/8-AHA, GM-CSF, LPS) and more 

physiological stimuli (monocyte conditioned supernatant and hypoxia), for 4 

hours and pooled cDNA from 5 donors was subjected to Affymetrix microarray 

analysis, hu133 plus 2. The complete microarray dataset (GSE94923) is available 

at: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE94923. Gene 

expression levels were compared to media treated populations and an FDR<10% 

and a greater than 2-fold change was considered significant. By using the web-

based functional analysis tool DAVID, we then asked whether differentially 

expressed genes were enriched in specific functional pathways. We identified Z 

clusters of functional terms that were statistically significant (FDR<10%). 

Among these, the Gene Ontology term ‘regulation of apoptosis’ (GO:004281) was 

significant. We then focused on the specific genes represented in this term, and 

presented the data to show only genes that are up- or down-regulated by the 

PKA agonist, N6/8-AHA (Figure 1). A complete figure of all GO:004281 regulated 

genes and DAVID analysis files are available as supplemental data (Figure S1 & 

Table S1). Figure 1 shows a marked diversity in the regulation of apoptosis-

related genes between survival stimuli. Only a single upregulated gene was 

common to all stimuli (PSEN1 which encodes for the gamma-secretase protease 

complex member, presenilin-1). Five genes upregulated in common with N6/8-

AHA, conditioned supernatant, GM-CSF and LPS, included the pro-inflammatory 

cytokines IL-1α and IL-1β. The activation of PKA by N6/8-AHA, however, also led 

to the initiation of a unique transcriptional apoptosis programme, with the 

exclusive upregulation of a wide variety of genes by greater than 2-fold, 

including protein kinase C, MAPK and NR4A. With respect to absolute transcript 

levels, NR4A2 and NR4A3 were the two most highly regulated genes following 

N6/8-AHA treatment. In addition, neutrophils were most transcriptionally 

responsive to PKA activation by N6/8-AHA, compared to the other stimuli, with 

the expression of over 70 apoptosis-related genes being induced in the curated 

DAVID cluster. Conditioned supernatant and GM-CSF treatment upregulated a 

For personal use only.on June 26, 2017. by guest  www.bloodjournal.orgFrom 

http://www.bloodjournal.org/
http://www.bloodjournal.org/site/subscriptions/ToS.xhtml


 10

high number of common genes, including a number of cell death components 

such as Bcl-xL, caspase and FADD-like apoptosis regulator (CFLAR) and caspases 

4, 5 and 10 (Figure S1). Of all stimuli, LPS and hypoxia resulted in only a limited 

apoptosis-related gene expression profile.  

 

The high levels of upregulation of NR4A2 and NR4A3 seen in the array data sets 

were validated by qPCR. In parallel, three other genes associated with activation 

of inflammation and which showed different regulation between survival stimuli 

(VEGF, IL-1α and IL-1β) were also validated by qPCR (Figure 2). NR4A2 and 

NR4A3 were exclusively and profoundly upregulated by N6/8-AHA treatment, 

linking this transcription factor family to PKA signaling in the neutrophil (Figure 

2A-B). As in the microarray, specific survival factor-dependent patterns of gene 

expression were evident. Conditioned monocyte supernatant upregulated VEGF, 

IL-1α and IL-1β (Figure 2C-E). LPS, GM-CSF and hypoxia had limited or no effect 

on target gene regulation, with the exception of upregulation of IL-1α by GM-CSF 

(Figure 2A-E). These findings reveal that the human neutrophil is capable of 

generating unique transcriptional programmes in response to individual 

inflammatory stimuli, and that PKA profoundly regulates NR4A2 and NR4A3, 

which have, as yet, no clear roles in neutrophil function.  

 

NR4A2 and NR4A3 genes are regulated by inflammation in a PKA 

dependent manner. Our initial studies confirmed that PKA activation potently 

activated a unique survival gene expression profile. Neutrophils are the most 

abundant circulating leukocyte and undergo spontaneous apoptosis in order to 

both limit inflammation and maintain homeostasis. The roles of PKA activation 

in granulocyte survival remain incompletely understood, and limitations in the 

quality of functional antagonists of this pathway have hampered exploration of 

the relevant signaling pathways. Functional consequences of PKA signaling on 

neutrophil apoptosis were studied using selective agonists of PKA. Agonising 

PKA with N6/8-AHA led to a concentration dependent decrease in neutrophil 

apoptosis at 20h (Figure 3A, Figure S2A), reaching significance at 50 µM. The site 

selective type IA PKA activator, N6-MB-cAMP, also significantly delayed 

neutrophil apoptosis at this time (Figure 3B, Figure S2B). Consistent with a 
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selective pathway regulating survival, we showed N6/8-AHA-induced neutrophil 

survival was reversible by Rp-8-Br-cAMPS, a highly selective PKA inhibitor with 

no cross reactivity for EPAC (Figure 3C) but not the PI3K inhibitor, LY294002 

(Figure 3D). In contrast, neutrophil survival induced by GM-CSF was prevented 

by LY294002. The potential relevance of NR4A transcripts was supported by 

these studies, since concomitant with the onset of spontaneous neutrophil 

apoptosis, both NR4A2 and NR4A3 transcripts rapidly decayed during neutrophil 

culture (Figure 3E), which was in part rescued by the survival factor dbcAMP for 

NR4A3 but not NR4A2 (Figure 3F-G).  

 

We explored whether other candidate endogenous activators of PKA signaling 

commonly found at sites of inflammation, including adenosine and PGE2, also 

caused delays in neutrophil apoptosis. Adenosine, ATPγs and PGE2 delayed 

neutrophil apoptosis, and the survival effects, with the exception of adenosine, 

were reversed by Rp-8-Br-cAMPS (Figure 4A, Figure S2D). In contrast, LPS- and 

GM-CSF-induced survival was not PKA dependent (Figure 4A, Figure S2D). To 

confirm that Rp-8-Br-cAMPS restored apoptosis rather than an alternative form 

of cell death, we show that the pan-caspase inhibitor Q-VD-OPh was able to fully 

reverse this effect (Figure S2B). In parallel, qPCR experiments measuring 

NR4A2/3 gene expression showed adenosine, ATPγs and PGE2 upregulated 

NR4A2 and NR4A3 transcripts, and this upregulation was blocked by Rp-8-Br-

cAMPS (Figure 4B-C). Modest changes in NR4A3 in response to LPS were not 

inhibited by Rp-8-Br-cAMPS (Figure 4B-C). Both PGE2 and the EP2 receptor 

agonist, butaprost delayed neutrophil apoptosis in a concentration- and PKA-

dependent manner (Figure 4D-E). PGE2-mediated upregulation of NR4A2/3 was 

seen at 4 h, which was fully inhibited by Rp-8-Br-cAMPS (Figure 4F-G). These 

data pointed towards NR4A2/3 expression as an important aspect of 

neutrophilic inflammation in vivo that could contribute to neutrophil persistence. 

The functional consequences of PKA signaling in vivo, where cells are also 

exposed to other activation signals may be different to those in vitro, as 

demonstrated by one study which observed that exposure to hypoxia reduced 

the survival response of neutrophils to steroids18. We therefore determined 

whether PKA signaling could still contribute to neutrophil survival in contexts 
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where more than one survival stimuli are present. Firstly, we show in an in vivo 

model of human intradermal endotoxin challenge that NR4A3, but not NR4A2, is 

upregulated greater than 2-fold by LPS (Figure S3), occurring at a timepoint 

which coincides with peak neutrophil recruitment19 and indicating that PKA 

signalling takes place in this context. To further investigate this in vitro, 

neutrophils were co-incubated with a sub-maximal concentration of LPS and the 

physiological activator of PKA; PGE2. PGE2 remained able to significantly inhibit 

neutrophil apoptosis in the presence of LPS (Figure 5A) and in parallel, observed 

a significant upregulation of NR4A2/3 when both stimuli were present (Figure 

5B-C). These data suggest that PKA activation is likely to lead to NR4A2/3 

upregulation and neutrophil survival in complex environments consisting of 

multiple stimuli. 

 

 

NR4A2 and NR4A3 gene deletion impedes neutrophil production. The 

function of NR4A in the context of neutrophil survival and inflammation was 

investigated by gene knockdown strategies. Since human neutrophils are 

genetically intractable, we adopted Hoxb8 conditionally immortalised murine 

myeloid progenitor cells, which allow the study of NR4A in fully functional 

neutrophils11. We first confirmed the importance of PKA in survival signaling in 

these cells by showing a decrease in percent apoptosis and increase in viable cell 

number following N6/8-AHA treatment (Figure 6A-C). Myeloid cells were 

transfected with NR4A2 and NR4A3 siRNA by nucleofection. Gene knockdown 

was verified by RT-PCR, yielding an average knockdown of 90% for NR4A2 and 

75% for NR4A3 (Figure S4). Cell numbers were assessed over 4 days post-

transfection and, in scrambled siRNA transfected control populations, cells 

proliferated by approximately 4 fold by day 4 (Figure 6D-E). Knockdown of 

NR4A2 but not NR4A3 resulted in a reduction in cell numbers from day 2, 

reaching significance at day 4 (Figure 6D-E), suggesting that NR4A proteins are 

involved in the regulation of neutrophil survival during differentiation and 

neutrophil development. The increase in cell number between day 2 and 4 may 

reflect a gradual regeneration of NR4A transcripts and therefore restoration of 

survival pathways. There was no impact of NR4A2/3 knockdown on maturation 
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of neutrophils over time (Figure 6F) or at the end of the differentiation period 

(Figure 6G). NR4A2 KD modestly increased apoptosis of neutrophils on day 4 

(Figure 6G-H).  

 

To test the possibility that NR4A2 and NR4A3 might influence developmental 

myelopoiesis in vivo, we used the transparent zebrafish larval model in which 

transgenically-labelled fluorescent neutrophils can easily be visualised during 

development14. To modulate expression of NR4A family members in vivo, we 

injected morpholino-modified antisense constructs into fertilised zebrafish eggs 

and observed the effect on neutrophil number and response to injury. Zebrafish 

larvae developed normally following morpholino injection (Figure 7A). Absolute 

numbers of neutrophils at 80 hpf are significantly reduced at all NR4A2 

morpholino concentrations used (Figure 7B) and at the two highest 

concentrations of NR4A3 morpholino used (Figure 7C). At their maximal effects, 

NR4A2/3 morpholinos reduce neutrophil number by over 50% when compared 

to control morpholino (Figure 7B-C). To assess the effect of NR4A knockdown on 

neutrophil function, we used a well established model of tissue injury initiated 

by tailfin transection in 3dpf larvae. To adjust for altered numbers of total 

neutrophils, we examined the proportion of total neutrophils recruited to the 

tailfin wound. In this system, neither NR4A2 or NR4A3 knockdown affected the 

proportion of neutrophils at the site of injury, either at 6 (Figure 7D-E) or 24 hpi 

(Figure 7F-G), suggesting the effects on neutrophil lifespan and development are 

independent of effects on neutrophil function.  
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Discussion 

We show that in human neutrophils, PKA activation leads to a profound 

upregulation of NR4A2 and NR4A3 mRNAs, which is paralleled by a delay in 

neutrophil apoptosis. PGE2 treatment also delays neutrophil apoptosis and 

upregulates NR4A2/3 in a PKA dependent manner. Moreover, NR4A3 expression 

is increased at sites of neutrophilic inflammation in human intradermal models, 

and knockdown of NR4A2/3 in murine myeloid cells and zebrafish larvae 

significantly reduces neutrophil number. These findings demonstrate a role for 

NR4A family members in neutrophil survival and development, and reveal the 

potential for new therapeutic targets for conditions in which these defects are a 

key component.  

 

PKA performs important signaling functions in the neutrophil, with roles in 

migration, adhesion, superoxide production and MMP secretion7,8,20. Roles for 

PKA in neutrophil lifespan have also been described, while PKA activation has 

been shown to have both pro-survival and pro-apoptotic outcomes21-23. In 

contrast to the pro-survival roles of PKA in vitro, PKA was found to play a role in 

the resolution of neutrophilic inflammation in vivo by driving neutrophil 

apoptosis23. In our study, activation of PKA by N6/8-AHA, a selective PKA type 1 

agonist, results in a profound transcriptional response and upregulated more 

genes in neutrophils than any other pro-inflammatory stimulus tested. In 

addition, compared to the remaining stimuli, PKA activation induced the 

expression of a unique apoptosis transcriptome, including the induction of JNK, 

IL-4, MMP9, PKC and NR4A2/3. Within this unique PKA transcriptome was the 

down-regulation of a number of important pro-apoptotic genes including: DEDD, 

a caspase signalling molecule, TRADD, the multi death receptor adaptor protein 

and the tumor suppressor RUNX3. Selected qPCR validation assays showed that 

the targets most highly regulated by N6/8-AHA were NR4A2/3, linking them to 

PKA activation in our studies. The induction of NR4A3 by conditioned 

supernatant may reflect the presence of PKA signaling agonists such as 

adenosine or prostaglandins.  
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The NR4A family of orphan nuclear receptors are emerging as important 

regulators of cellular function, with clear roles in inflammatory signaling24. 

Although the upstream agonists of NR4A receptors in neutrophils are not known, 

they are activated by a number of signaling pathways in other cell types, 

including PKA and PGE225,26. Little is known about NR4A2/3 gene expression in 

the human neutrophil and expression of NR4A/3 at the protein level has yet to 

be demonstrated for this cell type, due to lack of reliable antibodies. Two array 

studies have shown induction of NR4A family members, in particular NR4A3 in 

LPS and GM-CSF/IFNγ treated human neutrophils, although in our study, LPS did 

not regulate NR4A2/3 in vitro27,28. This may be due to differences in cell purities 

since small numbers of contaminating monocytes or eosinophils may yield high 

gene copy numbers29. A recent murine study has shown the induction of NR4A 

genes in inflammatory neutrophils isolated from mice that developed serum-

transfer arthritis, providing evidence for NR4A regulation at sites of 

inflammation in vivo30. Consistent with these findings, we show an increase in 

NR4A3 mRNA expression at sites of neutrophillic inflammation in human 

intradermal endotoxin challenge models (Figure S4), although it is not possible 

to be certain of the cellular origin of the transcripts. the data suggest that NR4A3 

may be a suitable target to which anti-inflammatory therapeutic strategies may 

be designed, although this would require further study. A study by Pei et al 

shows NR4A1 protein expression in macrophages and other cells including 

smooth muscle cells, within human coronary artery atherosclerotic plaques, 

further demonstrating a clinical relevance for NR4A family expression at sites of 

inflammation31. 

 

Our data link NR4A2/3 expression to neutrophil survival, in that NR4A2/3 

transcripts are degraded at time points that precede spontaneous neutrophil 

apoptosis, and that agonists that induce NR4A expression also delay neutrophil 

cell death. In all cases, the upregulation of NR4A2/3 transcripts was PKA 

dependent, linking NR4A regulation exclusively to upstream PKA signaling. 

These experiments are limited in that an NR4A inhibitor would provide 

definitive evidence that NR4A was essential in modulating PKA-dependent 

human neutrophil survival, however no such pharmacological tools existed at 
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the time of study. To address this further, NR4A gene knockdown approaches 

were explored. Although neutrophils are genetically intractable, siRNA strategies 

were possible in hoxb8 conditionally immortalised murine myeloid progenitor 

cells, in which NR4A2, but not NR4A3 gene knockdown reduced cell proliferation. 

It is not clear whether NR4A2 knockdown murine neutrophils fail to differentiate 

or die prematurely by apoptosis, although the proportion of mature neutrophils 

was the same in all siRNA transfected populations, and the increase in Annexin V 

positive cells in combination with the pro-survival effect of N6/8-AHA may 

suggest the latter is more likely. NR4A2/3 knockdown in a neutrophil reporter 

zebrafish line results in a significant reduction in total neutrophil number, 

suggesting the NR4A family may play a role in neutrophil differentiation in vivo. 

These findings are supported by the results obtained from studies of mCMP, and 

together begin to reveal a role for NR4A2/3 in myeloid cell development and 

differentiation. In support of this, a role for the NR4A family in regulating T cell 

and monocyte homeostasis has been described by others35,36. Interestingly, 

augmented NR4A2/3 expression has been demonstrated in bone marrow 

mononuclear cells and myeloid progenitors from patients with aplastic anemia 

and acute myeloid leukemia, further supporting roles for the NR4A family in the 

context of normal bone marrow development37,38. A role for NR4A2 and not 

NR4A3 in mCMP may reflect divergent roles for NR4A members in mice, or 

perhaps that NR4A3 can compensate for the absence of NR4A2. Consistent with 

this, distinct roles are seen in other models where NR4A3 has been shown to 

control proliferation of human hepatocytes and vascular smooth muscle cells32,33 

and NR4A2 overexpression in human synoviocytes promotes proliferation and 

survival34.  

 

While we show that NR4A2/3 may play a role in neutrophil proliferation and 

homeostasis, we were unable to demonstrate a role for NR4A2/3 in the 

resolution of inflammation in zebrafish tail injury models in vivo. This may 

reflect that, aside from the induction of apoptosis, reverse migration away from 

injury may also play a significant part in inflammation resolution in this 

organism39. In support of this, PKA is thought to be a negative regulator of 

neutrophil migration in vivo which may in part explain why loss of PKA signaling 
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does not impede migration of neutrophils away from the site of inflammation5,40. 

A conditional neutrophil NR4A knockout strategy would reveal more about the 

specific role of NR4A in the neutrophil, but is beyond the scope of this study. 

  

In conclusion, here we show an important role for the NR4A receptors in 

regulating neutrophil lifespan and homeostasis. Understanding the signaling 

underpinning these functions may help define targets for therapies for diseases 

driven by defects in neutrophil number and survival. 
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Figure legends 

Figure 1. Regulated gene clusters in stimulated neutrophils. Neutrophils 

were cultured for 4h with N6/8-AHA [1mM] (PKA), monocyte conditioned 

supernatant (SN), GM-CSF [100u/ml], LPS [1μg/ml] and under hypoxic 

conditions whereafter the RNA was analysed by Affymetrix microarray 

(GENECHIP HU133 plus 2.0). Using DAVID web-based functional analysis 

application we identified several functional terms that were over-represented in 

the list of differentially expressed genes. This figure represents the differential 

expression status of genes in the gene ontology term GO:004281 (regulation of 

apoptosis), which was regulated by each stimuli. Greater than 2-fold 

upregulation is indicated in red, no change in grey and >2-fold down-regulation 

in green. Shows all genes upregulated (A) and downregulated (B) by N6/8-AHA. 

Please refer to Table S1 for DAVID analysis files and figure S1 for a complete 

figure of all regulated genes within GO:004281. 

Figure 2. qPCR validation of selected targets identified from microarray 

data. Ultra-purified neutrophils were stimulated with N6/8-AHA (PKA) [1mM], 

monocyte conditioned supernatant (SN), GM-CSF [100u/ml], LPS [1μg/ml] or 

cultured under hypoxic conditions for 4h. cDNA was prepared and qPCR 

performed for the following genes: NR4A2 (A), NR4A3 (B), VEGFA (C), IL-1α (D) 

and IL-1β (E). Charts show mean±SEM and are generated from 5 independent 

experiments. Statistical analysis was carried out by one way ANOVA and 

Dunnett’s post-test. Statistically significant comparisons are denoted by ** 
(P<0.01) and ***(P<0.001) where treated populations were compared to control.  

Figure 3. PKA activation regulates neutrophil survival. Percoll-purified 

neutrophils were cultured with media or N6/8-AHA (A) at concentrations of 10, 

50 and 100 or N6-MB-cAMP (B) at concentrations of 500 and 1000 μM for 20h. 

Neutrophils were pre-treated with media (open bars) or Rp-8-Br-cAMPS [0.7 

mM] (black bar) for 30 min prior to the addition of N6/8-AHA [100 μM] for a 

further 20h (C). Neutrophils were pre-treated with media (open bars) or 

LY294002 [10 μM] for 30 min (black bars) and cultured for a further 20h with 

GM-CSF [50 u/ml] or N6/8-AHA [100 μM] (D). Apoptosis was determined by 

light microscopy (A-D). Charts show mean ± SEM percentage apoptosis from 3 

(C), 4 (A, B) or 5 (D) independent experiments. Statistical analyses was carried 

out by ANOVA with Bonferroni post-test and significant differences indicated by 

*(P<0.05), **(P<0.01) and ***(P<0.001) where treated populations were 

compared to media control, or as indicated by line. Neutrophils were aged in 

culture and RNA was made at timepoints of 1, 4 and 6h (E). In selected 

experiments, neutrophils were cultured with dbcAMP for 4 and 20h and RNA 

made at 0, 4 and 20h. NR4A2/3 expression was determined by qPCR (E-G). 

Charts show fold change from 1h media (E) or 0h control (F,G) where NR4A 

expression was normalised to GAPDH loading control. Each panel shows data 

from 3 independent experiments. 

Figure 4. PGE2 signaling regulates neutrophil apoptosis and NR4A 

expression in a PKA dependent manner. Ultra-purified neutrophils were 

cultured in the absence (open bars) or presence (black bars) of Rp-8-Br-cAMPS 

(RP8) [0.7mM] for 30 min prior to the addition of the following stimuli: N6/8-
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AHA [100μM], PGE2 [10 μM], ATPγs [1 μM], adenosine [100 μM], LPS [100 

ng/ml] and GM-CSF [50 u/ml] for a further 5h (A). Apoptosis was determined by 

light microscopy and expressed as mean ± SEM from 5 independent experiments. 

In parallel experiments, neutrophils were cultured in the absence (open bars) or 

presence (black bars) of Rp-8-Br-cAMPS [0.7 mM] for 30 min prior to the 

addition of the following stimuli: LPS [100 ng/ml], PGE2 [10 μM], adenosine [100 

μM] or ATPγs [1 μM], for a further 4h (B, C). NR4A2 (B) and NR4A3 (C) 

expression was measured by qPCR. Charts show fold change from 0h control 

where NR4A expression was normalised to GAPDH loading control and are from 

3 independent expts. Neutrophils were treated with media or a concentration-

response of PGE2 ranging from 10 nM to 10 μM (D) or Butaprost [100 nM and 1 

mM] (E) in the presence (open squares) or absence (closed circles) of Rp-8-Br-

cAMPS [0.7mM] for 4 h. Apoptosis was determined by light microscopy and 

expressed as mean ± SEM from 3 (D, E) independent expts. Ultra-purified 

neutrophils were pre-incubated with media or Rp-8-Br-cAMPS [0.7 mM] for 30 

mins before the addition of media or PGE2 [10 μM] for a further 1 or 4 h. NR4A2 

(F) and NR4A3 (G) expression was measured by qPCR. Charts show fold change 

from 0h control where NR4A expression was normalised to GAPDH loading 

control and are from 3 independent expts. Data were analysed by ANOVA with 

Bonferroni or Sidak post-test and statistical differences indicated by *(P<0.05), 

**(P<0.01), ***(P<0.001), and ****( P<0.0001). Comparisons were made between 

agonist alone or agonist plus Rp-8-Br-cAMPS treated conditions for panels D and 
E, or as the lines indicate for the remaining panels. 

Figure 5. PGE2 promotes neutrophil survival and increases NR4A2/3 

mRNA transcripts in the presence of LPS. Ultra-purified neutrophils were 

were pretreated for 15 minutes with (black bars) or without (open bars) Rp-8-

Br-cAMPS (RP8) [0.7 mM] before addition of 1 ng/ml LPS, 10 μM PGE2 or both 

LPS and PGE2 together. Apoptosis was measured by light microscopy and 

expressed as mean ± SEM, n=4 (A). NR4A2 (B) and NR4A3 (C) expression was 

measured by qPCR. Charts show fold change from media control where NR4A 

expression was normalised to GAPDH loading control and are from 5 

independent expts. Statistical analysis was performed by Two-Way ANOVA with 

Sidak’s posttests. Asterisks (*) denote significant differences to the relevant 

media control. Octothorpes (#) indicate differences between control and Rp-8-

Br-cAMPS treated conditions. Results were considered to be statistically 

significant for P<0.05 (*, #) and P<0.01 (**). 

Figure 6. NR4A2 siRNA knockdown inhibits myeloid cell proliferation. 

Hoxb8 conditionally immortalised murine myeloid progenitor cells were 

subjected to estrogen withdrawal and differentiated to mature neutrophils 

(>90% maturity) in the presence of SCF and G-CSF for 4 days with daily media 

replenishment. Mature neutrophils were incubated with or without N6/8AHA 

[100 μM] for 6 hours in apoptosis medium (A-C). Cell viability and apoptosis was 

visualized by oil immersion light microscopy (A, where arrow denotes aan 

apoptotic cell) and quantified by flow cytometry (B, C). RNAi transfections were 

conducted one day post-estrogen withdrawal using Amaxa Nucleofector 

technology. Cells were transfected with siRNA for NR4A2, NR4A3 or a non-

targeting control (siScrbl) on day 1. Total cell number was determined by 

haemocytometer counts (D-E) at days 1, 2, 3 and 4. Neutrophil maturity was 
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assessed by light microscopy (F-G). Apoptosis was measured on day 4 (H) and 

day 5 (I) by flow cytometry. Data are expressed as mean ± SEM, n=4 (B, C, G), n=3 

(D, E), n=1 (F, H, I). Statistical analysis was performed by ANOVA with 

Bonferroni post-test. Significant differences to media controls or siScrbl 

transfected cultures were denoted by **(P<0.01) or ***(P<0.001) respectively. 

 

Figure 7. NR4A2/3 regulates neutrophil number in zebrafish larvae. 

mpx:GFP zebrafish larvae were injected with NR4A2 [0.5 pM, 1 pM or 2 pM] (A, B, 

D, F), NR4A3 [0.125 pM, 0.25 pM or 0.5 pM] (A, C, E, G) or control morpholino 

(MO) [2 pM] (A-G) at the one cell stage. Neutrophils were visualised as GFP 

positive events by fluorescent microscopy (A). Total neutrophil number was 

assessed at 80 hpf (B-C) (n=20 performed as 3 separate experiments). Larvae 

were injured at 72hpf (hours post fertilisation) and neutrophil counts performed 

at 6 (D-E) and 24 hpi (hours post injury) (F-G) (n=16 performed as two separate 

experiments). Statistical analysis was performed by ANOVA with Dunnett’s post-

test. Significant differences compared to control MO were denoted by ***(P 

<0.001) and **** (P<0.0001) 
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