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1 Introduction

Graphics community has evidenced a trend of creating photorealistic vector
arts in recent years. To represent multicolored objects with smooth color tran-
sition, many vector graphics artists (e.g. Morisaki [1], Forrest [2] and Highside
[3]) adopt gradient meshes, a powerful vector graphics representation available
in commercial softwares, such as Illustrator and Coreldraw. Gradient mesh is
a regular 2D grid with attributes including position, color, and their gradients
specified at each mesh point. To create gradient meshes, artists have to manu-
ally specify mesh grids and manipulate the associated attributes. This process
requires skills and can be highly labor intensive. Given a pre-created gradient
mesh, changing its color appearance may still involve a lot of selection and
color assignment operations, particularly when the smooth color transition is
to be maintained. For instance, manually recoloring the 11×10 gradient mesh
(Fig. 1) may take an artist more than ten minutes to accomplish. The recolor-
ing editing becomes more demanding when the vector art consists of multiple
gradient meshes, or the gradient mesh has a large size.

(1) Select a mesh point

(2) Select a desired color

Fig. 1 Recoloring gradient meshes typically involves selecting grid points and adjusting the
associated colors and their gradients.

In the literature, several methods have been developed to handle the gra-
dient mesh recoloring problem. The first attempt was reported by Xiao et al.
[6], which changes the color appearance of a gradient mesh by borrowing the
color statistics of a reference image. This method was later extended to an
optimization-based scheme [7]. Both works use the rasterized gradient meshes
for calculating color statistics of gradient meshes. However, similar to other
example-based color transfer works, it can be difficult for users to prepare a
good reference image which contains desirable colors.

To circumvent dependencies on an additional reference image and the ras-
terized gradient mesh, we propose a user scribble-based method for gradient
mesh recoloring. Our method allows users to indicate the target color distribu-
tion by directly drawing scribbles in desired colors over gradient meshes. To the
best of our knowledge, no previous methods for gradient mesh recoloring rely
on user scribbles only. In order to propagate color distribution yet respecting
local color gradients in gradient meshes, we propose an auxiliary mesh, named
as control net . The control net embeds local color gradients by constructing
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Input gradient mesh
with user scribbles

Recolor using extended
chrominance blending

Determine scribble set

Construct control net

Recolored
gradient mesh

Fig. 2 Framework of our scribble-based gradient mesh recoloring.

auxiliary net points for each mesh patch. The indicated color scribbles are then
propagated over the control net with special attentions paid to the topological
structure of gradient meshes, which may contain image holes. The recolored
gradient mesh is finally reconstructed from the recolored control net. Fig. 2
illustrates the framework of our method. In the experiments, we compare our
method with several alternative solutions. As the experimental results show,
the proposed method can produce pleasant recolored results.

2 Related Work

In the literature, Sun et al. [4] and Lai et al. [5] developed semi-automatic
and automatic methods for generating gradient meshes from a raster image.
Lai et al. [5] extended the topology property of gradient meshes to allow an
arbitrary number of holes in image objects. With these generation methods,
a straightforward way to do gradient mesh recoloring is to recolor rasterized
images and then regenerate gradient meshes. However, this process is not only
time consuming, but may also change the topological structure of gradient
meshes or cause obvious color bleedings and sampling artifacts.

The work by Xiao et al. [6] is the first attempt to address gradient mesh
recoloring. They borrow the idea from example-based image color transfer [8,
13–20], which takes the color distribution of another image as reference. Specif-
ically, they calculated the color statistics of gradient meshes and the example
image, and adopted a PCA-based color transfer to update the color and local
color gradients of mesh points. They later extended the PCA-based recoloring
to an optimization-based scheme [7]. It aims to minimize the differences of the
color distribution of the example image and the transferred gradient mesh. By
adding image gradients as a constraint, they got an optimal linear transfer
function which can preserve the structure details of the gradient mesh. These
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two works both need an example image and have to do calculation on the
rasterized gradient meshes.

In our work, we borrow the idea from scribble-based image color trans-
fer [21–29], which allows the user to draw strokes in desired colors and diffuse
the colors across the image. By this way, our method has no dependence on
an example image and the rasterized gradient meshes.

In the following, we briefly review scribble-based color transfer method-
s. Levin et al. [21] proposed a global optimization method that minimizes a
quadratic cost function derived from the color difference between a pixel and
the weighted average of its neighbors. For images with complex textures, this
method may require a very large number of scribbles to achieve high quality
colorization. To address this problem, different methods [30,25,31] have been
proposed to generate scribbles automatically. Sapiro [32] colorized a grayscale
image constrained by image gradients and color scribbles that serve as bound-
ary conditions. The resulted color is obtained via solving Poisson equations.
Drew and Finlayson [26] made use of Di Zenzo gradient and adjusted col-
or gradients to generate an appropriate contrast direction. The results have
color-contrast that appears the same as the luminance-contrast of the origi-
nal. Yatziv and Sapiro [24] developed a fast algorithm that colorizes grayscale
pixels by blending color scribbles. The weights are proportional to geodesic
distances between pixels and their corresponding scribbles in the luminance
channel. Kawulok and Smolka [27] proposed a competitive approach for select-
ing an appropriate type of propagation path costs, and developed a modified
chrominance distance computed along each path. They further considered tex-
tural features for path optimization [29].

In our work, we base our recoloring scheme on the colorization technique
proposed in [24] and extend it for gradient mesh recoloring. The extension in-
cludes handling the topological structure of gradient meshes, and constructing
a set of valid scribble points defined on gradient meshes from user-specified
color scribbles.

3 Gradient Mesh Recoloring

3.1 Problem Formulation

Like image color transfer methods, we assume that neighboring pixels having
close colors should have similar colors after recoloring. It is noted that pixel
values of gradient meshes need to be computed via interpolating colors and
color gradients at mesh points, as gradient meshes are defined in parametric
domain. Therefore, recoloring gradient meshes involves updating both color
values and color gradients at mesh points. If not considering color gradients,
an M × N gradient mesh can be packed to form an M × N image. Then
directly applying existing image color transfer methods on this image may
result in distracting artifacts. Fig. 10(a) shows an example, in which the grid
structure in the middle region is rather exaggerated.
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To consider color gradients at mesh points, one straightforward approach
is to sparsely discretize gradient meshes in parametric domain, and then re-
estimate colors and color gradients after recoloring. However, we know that
estimating color and color gradients from an image is a complicated task as
pointed out in [5]. Furthermore, both the discretization and estimation steps
are non-linear operations, which may cause a large computation burden.

In our work, we consider color gradients by proposing an approximate rep-
resentation for gradient meshes, namely control net. For each gradient mesh
patch, the control net constructs auxiliary net points according to partial
derivative estimation. This representation guarantees fast computing perfor-
mance since both the construction and re-estimation steps are linear opera-
tions. Also note that the control net is designed for facilitating recoloring pur-
pose and has no practical physical meaning. Then gradient mesh recoloring is
realized by 1) constructing a control net from gradient meshes, 2) performing
recoloring on the control net, and 3) reconstructing gradient meshes from the
recolored control net. Fig. 2 illustrates this process.

3.2 Gradient Mesh Representation

Following [4,5], a normal gradient mesh is a regular planar grid of Ferguson
patches [33], each containing four control points (Fig. 3(a)). A control point
has the attributes specifying the position {x, y}, color {r, g, b}, and gradients
of position and color {∂um, ∂vm,α∂um,β∂vm}, where m is a component of
either position or color, α and β are two scaling factors. Each point in a
Ferguson patch, including its position and color, can be calculated via the
following interpolation,

m(u, v) = UCQCTV T , (1)

where

Q =









m0 m2 ∂vm0 ∂vm2

m1 m3 ∂vm1 ∂vm3

∂um0 ∂um2 0 0
∂um1 ∂um3 0 0









, C =









1 0 0 0
0 0 1 0
−3 3 −2 −1
2 −2 1 1









,

U = [1 u u2 u3], V = [1 v v2 v3], and 0 ≤ u, v ≤ 1.
The gradient mesh representation is extended in [5] to allow topology holes.

As illustrated in Fig. 3(b), the grid is sliced with a horizontal cut to model a
hole. Each mesh point vS within the cut is split into two vertices v̄S and v̂S .
For each end vertex, vL for example, the two Ferguson patches adjacent to the
hole have different u derivatives, and they satisfy ∂um̄L = −∂um̂L in order to
ensure smoothness. A mesh with H holes can be converted to H + 1 normal
gradient meshes without holes by reusing vertices along the cuts.

Gradient meshes can represent image objects that contain large regions of
smooth color transition. In case that an image object has small or complex
structures, dense mesh grid or multiple gradient meshes are usually used. As we
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(a) (b)

Fig. 3 Gradient mesh representation. (a) A normal gradient mesh contains four Ferguson
patches. (b) A topology-preserving gradient mesh contains a hole.

p00 p03

p10

p30 p33

p11

p02

p20

u

v

m0( ) p01 m1( )

m3( )m2( )

Fig. 4 Control net construction. The detailed explanation is referred to the text.

are focused on color editing while preserving the topology of gradient meshes,
the position components remain intact and m is supposed to represent color.

3.3 Control Net Construction

Our control net structure is inspired by the geometric structure of bicubic
Bézier patches, in which each patch is determined by 4× 4 control points. We
first introduce the control net constructed for a normal gradient mesh, and
then discuss how to create the control net for a gradient mesh with holes.

3.3.1 Control Net for Normal Gradient Meshes

Control net construction. For a Ferguson patch, its control net contains 16
control points arranged in a 4× 4 grid, as shown in Fig. 4. The control points
are determined analytically in three ways:

1. The four corner points correspond to the four mesh points of a Ferguson
patch, e.g., p00 = m0.

2. The eight intermediate points on the boundaries are derived from the cor-
ner points by using the forward/backward difference formulas for com-
puting partial derivatives. For example, the gradient along u direction for
point m0 is calculated as ∂um0 = p01 − p00; since p00 = m0, we have
p01 = m0 + ∂um0.
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3. The four inner points are set to represent the mixed partial derivatives of
the corner points. Let us take p11 for instance. The mixed partial derivative
of m0 is estimated via ∂uvm0 = p11−p01−p10+p00. Note that ∂uvm0 = 0
for the Ferguson patch. Hence, p11 = p01+ p10− p00 = m0+ ∂um0+ ∂vm0.

In summary, the 16 control points in the control net have definitions as
follows,























































p00 = m0, p03 = m1, p30 = m2, p33 = m3,

p01 = m0 + ∂um0, p10 = m0 + ∂vm0

p02 = m1 − α1∂um1, p13 = m1 + ∂vm1,

p31 = m2 + ∂um2, p20 = m2 − β2∂vm2,

p32 = m3 − α3∂um3, p23 = m3 − β3∂vm3,

p11 = m0 + ∂um0 + ∂vm0,

p12 = m1 − α1∂um1 + ∂vm1,

p21 = m2 + ∂um2 − β2∂vm2,

p22 = m3 − α3∂um3 − β3∂vm3.

(2)

By simple computation, we know that the control net for an M ×N gradient
mesh has a grid size of (3M − 2)× (3N − 2).

Mesh reconstruction from control net. Given the control net, we can recon-
struct the gradient mesh. Let mi,j refer to one mesh point in a normal gradient
mesh, and p3i,3j denotes the corresponding control point in the control net.
Then the color mi,j satisfies

mi,j = p3i,3j . (3)

Suppose the partial derivative along u direction of mi,j to be ∂umi,j . It meets
the following conditions,

{

p3i+1,3j = p3i,3j + ∂umi,j ,

p3i−1,3j = p3i,3j − αi,j∂umi,j .
(4)

We estimate ∂umi,j via the central difference, given by

∂umi,j =
p3i+1,3j − p3i−1,3j

1 + αi,j

. (5)

∂vmi,j is computed in a similar way. There is one thing deserving a mention:
the factor α (and β) should keep its original value, although it can be estimated
according to (4). This is because α and β are also used in the interpolation
of mesh positions, and any change in their values may modify the shape of
gradient meshes.
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Control net 1

Control net 2

Hole region

(a) (b)

Fig. 5 Control net for topology-preserving gradient meshes. (a) An example of topology-
preserving gradient meshes. (b) An illustrative concatenated control net containing one hole.

3.3.2 Control Net for Topology-Preserving Gradient Meshes

Recall that topology-preserving gradient meshes contain one or more holes
(as shown in Fig. 5(a)). To construct the control net, we first decompose
the gradient mesh with holes apart by reusing joint mesh points along the
horizontal cuts (marked as yellow lines in Fig. 5(a)). Then, a control net is
built for each decomposed gradient mesh. It is obvious that the decomposed
normal gradient meshes and their control nets share the same width. As a
result, we can simply concatenate these control nets to form a complete one
(as illustrated in Fig. 5(b)).

The recoloring is applied to the concatenated control net. To reconstruct
gradient meshes after recoloring, we separate the concatenated control net
along the horizontal cuts and reconstruct each gradient mesh individually.
During the final composition, the color values and gradients at the joint mesh
points are averaged in order to maintain the smoothness.

3.4 Recoloring Using Extended Chrominance Blending

Considering both visual quality and speed performance, we adapt the fast col-
orization approach proposed in [24], which is based on weighted chrominance
blending. Let R denote the set of points in the control net, a and b be two
points in R. Considering chrominance changes, we modify the geodesic dis-
tance function between a and b, which is originally based on luminance, to the
following formula

d(a, b) = min
Γ (s)

∫ l(Γ )

0

|∇Cb · Γ (s)|+ |∇Cr · Γ (s)|ds, (6)

where Cb and Cr denote chrominance values in Y CbCr color space, and Γ (s)
denotes a curve in R connecting a and b, parameterized by its arc length s ∈
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(a) (b) (c)

Fig. 6 Recoloring using chrominance blending: (a) input gradient mesh with user scribbles;
(b) the result by using the geodesic distance defined by Eq. (6); (c) the result by using the
modified geodesic distance defined by Eq. (8).

[0, l(Γ )]. This geodesic distance integrates Cb and Cr chrominance gradients
along the curve Γ (s).

Next, we compute the intrinsic distance dc(b) as the minimum distance
from b to any point a with a certain scribble chrominance c. For an arbitrary
point t to be recolored, its chrominance is computed as a weighted blending
of chrominance of color scribbles, given by

chrom(t) =

∑

cw(dc(t))c
∑

cw(dc(t))
, (7)

where the weighting function is set as w(r) = r−ǫ [24]. The weights can
be efficiently computed via Dijkstra algorithm, and ǫ is empirically set as
ǫ = 1. The recoloring computation has an average time complexity of O(|Ω| ·
|chrominances(Ωc)|)

4. In case that the mesh is very big, we can adopt the
relaxation in [24] to reduce the time complexity to O(|Ω|), which blends the
two or three most significant chrominance (the chrominance with the closest
intrinsic distance).

For gradient meshes with holes, we add a stopping constraint on neigh-
boring points when computing the geodesic distance over the control net. To
be specific, we demand two neighboring points, which are located on each of
the horizontal boundaries of a hole (except the two end points), to disconnect
from each other (refer to Fig. 5(b)). Let P denote the set of such neighboring
points. The modified geodesic distance between a and b is defined as

d̄(a, b) =

{

∞, if (Γ (s1), Γ (s1 + ds)) ∈ P,

d(a, b), others.
(8)

The modified geodesic distance is used for the computation of blending weight-
s. Fig. 6 compares recoloring results by using two distances defined by Eq. (6)
and Eq. (8). We can see that without the stopping constraint, the red scribble
propagates across the hole more easily (Fig. 6(b)).
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3.5 Scribble Point Set Determination

As shown in Fig. 6(a), color scribbles are specified over the rasterized gradient
mesh image. It is necessary to determine a proper set of mesh points to reflect
color scribbles (denoted as Ωc). The simplest way is to detect which mesh
points are right on the color scribbles. However, in practice a color scribble may
pass across mesh patches (i.e. Ferguson patches) without or just partially going
through mesh points. This simple scheme may miss certain color scribbles (see
Fig. 7(d)).

Here, we develop a heuristic method to decide Ωc. Given a color scribble,
we can find which patches it passes through, named as scribble patches. In
a scribble patch, one mesh point is selected as a scribble point if one of the
following conditions is satisfied,

1. The mesh point is on the color scribble;
2. One of its two associated mesh curves intersects with the color scribble;
3. The nearest distance between the mesh point and the color scribble is below

a user-defined threshold Lτ .

Without loss of generality, the threshold Lτ is set as a fraction of the
longest boundary length of the current scribble patch, given by

Lτ = ρmax
t

Lt, (9)

where {Lt|t = 0, 1, 2, 3} denotes four boundaries of the current scribble patch.
In our experiments, we choose the default value ρ = 0.3. Fig. 7(c) shows the
scribble point set generated by this way, and Fig. 7(e) is the recoloring result,
which is more reasonable than Fig. 7(d).

4 Experiments and Discussion

In our experiments, we use gradient mesh vector graphics developed using the
methods of [5,6], which contain normal gradient meshes as well as topology-
preserving gradient meshes with holes. Since there are no previous works on
scribble-based gradient mesh recoloring, we make comparison with four pos-
sible recoloring solutions to evaluate our approach: 1) two alternatives of re-
coloring on rasterized images; 2) recoloring mesh points only; 3) applying
Poisson-based recoloring on the control net. In the end, we investigate the
impact of coefficients on the algorithm, and report time performance.

4.1 Comparison with Recoloring on Rasterized Images

As pointed out in [6], a naive approach to recolor a gradient mesh is recoloring
on rasterized images, followed by regenerating gradient meshes. This approach
is not only expensive, but may also change the topological structure of gradient
meshes. In addition, recoloring on rasterized images may lead to color bleedings
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(a) (b) (c)

(d) (e)

Fig. 7 Scribble point set determination. (a) User scribbles on gradient mesh. (b) Ωc con-
taining the control points on the scribbles only. (c) Ωc determined by our method. Here, Ωc

is visualized over the control net domain. (d) The recoloring result using Ωc in (b). (e) The
recoloring result using Ωc in (c).

(a) (b)

Fig. 8 Recoloring on the rasterized image of multiple gradient meshes in (a) v.s. our method
in (b).

in boundary regions or overlapped regions of adjacent image objects. One
example is shown in Fig. 8(a), in which the pink-orange color marked on the
left pepper also affects the color appearance of the right pepper.

Another possible way is to recolor rasterized images first, then update
gradient meshes by re-sampling color information from the recolored images.
However, in comparison with our result in Fig. 9(d), this method may cause
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(a) (b)

(c) (d)

Fig. 9 Recoloring on a rasterized image (b) followed by re-sampling color information for
gradient meshes results in (c), which has obvious artifacts around the snail’s back. Our
gradient mesh recoloring (d) has no such artifacts.

obvious artifacts around the snail’s back in Fig. 9(c). Note that the color
bleedings and sampling artifacts are inevitable when recoloring the rasterized
image. In other words, similar artifacts can still occur even more sophisticated
image colorization methods are adapted in these two possible schemes.

4.2 Comparison with Recoloring Mesh Points Only

As mentioned before, packing mesh points can form a 2D image. This im-
plies that a possible recoloring alternative is directly applying our extended
chrominance blending on the naively packed image, and reuse the original color
gradients. With experiments, we find this alternative generates results visually
similar to our method. However, when recoloring a gradient image with more
substantial color changes (such as Fig. 10(a)), it may generate weird color
transitions. As shown in Fig. 10(b), we can easily see stripe-like artifacts in
the middle region. It is because the original color gradients reflect the smooth
color transition in Fig. 10(a). When the color appearance changes greatly, the
original color gradients may not be applicable.

4.3 Comparison with Poisson-based Recoloring

In this section, we evaluate another possible alternative by extending Poisson-
based image color transfer [32]. User scribbles serve as boundary conditions
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(a) (b) (c)

Fig. 10 Recoloring mesh points only in (b) v.s. our method in (c).

and the recoloring of the control net is obtained via solving Poisson equations.
It it noted that when using this scheme to process gradient meshes with holes,
constraints on hole boundaries have to be taken into consideration.

For simplicity, we conduct a comparative experiment between Poisson-
based recoloring and our approach on gradient meshes without holes. Fig. 11
demonstrates results. We can see that Poisson-based recoloring generates re-
coloring results similar to ours, yet with distracting color bleedings on some
petals. Besides, Poisson-based recoloring takes a longer computing time. For
the example in Fig. 11 with a mesh size of 52× 63, our chrominance blending
uses 0.09 seconds, and Poisson-based recoloring spends 1.49 seconds.

(a) (b) (c)

Fig. 11 Poisson-based recoloring in (b) v.s. our method in (c).

4.4 Coefficient Evaluation

Our method is affected by two coefficients, i.e. ρ in Eq. (9) for determining
scribble points on gradient meshes, and ǫ used in Eq. (7) for weighting color
scribbles in chrominance blending. We find varying coefficient values lead to
slightly different color appearances. Generally speaking, a larger ρ makes color
scribbles label more mesh points in gradient meshes, for example, the pink
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(a) (b) (c) (d)

Fig. 12 ρ evaluation. Top row displays the source gradient mesh with user scribbles and
result images with ρ = 0.1, 0.5, 0.9. Bottom row show the blowups.

source image
with scribbles

(a) (b) (c) (d)

Fig. 13 ǫ evaluation. From (a) to (d) displays the recolored result with ǫ = 1, 2, 3, 5.

stroke in the boxed region in Fig. 12. In terms of visual appearance, a small
ρ generates smoother color transitions, while a large ρ may lead to sharper
changes, as shown in Fig. 12(d). The choice of color blending coefficient ǫ

changes the weights from different scribble colors, and consequently influences
the smoothness of color transition. As Fig. 13 shows, the larger ǫ is, the stronger
the colors blend. Here, we adopt ρ = 0.3 and ǫ = 1 as the default values in our
other experiments, as they generate pleasant visual effects along with relatively
smoother color transitions.

4.5 Discussion

4.5.1 Control Net Approximation Evaluation

The control net representation is indeed an approximation for gradient meshes.
To evaluate the approximation accuracy, we compute PSNR and SSIM values
by comparing the rasterized images from the original gradient mesh and it-
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Table 1 Control Net Approximation Evaluation

Figure Mesh Pixel PSNR SSIM
Size Number

Fig. 2 44× 78 35,265 68.5 0.9998
Fig. 6 37× 62 226,995 67.7 0.9985

Fig. 7(a) 28× 37 136,285 66.8 0.9949
Fig. 10 28× 26 135,206 68.4 0.9956
Fig. 11 52× 63 150,406 68.7 0.9970

Fig. 14(e) 51× 51 111,517 69.9 0.9999

Table 2 Timing Performance in our experiments. Fig. “plumeria” has 1 hole. Fig. “jade2”
and “snail” both have 2 holes. Other figures do not have holes.

Name Figure Mesh Size Scribble point Recoloring(s) Total(s)
set detection(s)

plumeria Fig. 6 37 × 62 0.336 0.074 0.420
jade2 Fig. 7(a) 28 × 37 0.078 0.063 0.141
snail Fig. 13 37× 66, 51× 60 0.738 0.430 1.168
jade3 Fig. 14(b) 57 × 61 0.105 0.109 0.214
plum Fig. 14(f) 51 × 51 0.344 0.078 0.422
plum* Fig. 14(h) 51 × 51 0.500 0.140 0.640

s control net representation. Table 1 lists the statistics for several gradient
meshes. Here, the pixel number means the number of valid pixels of rasterized
gradient mesh objects regardless of canvas regions. We can see that both P-
SNR and SSIM values are rather high, which indicates that the control net is
a high-quality approximation of gradient meshes.

4.5.2 Timing Performance

Our system is implemented with C++ language, executed on a desktop com-
puter equipped with a 3.00Ghz Intel Core i5-3330 CPU and 8GB memory.
Fig. 14 shows more recoloring results. Timing statistics of our experiments are
listed in Table 2. For each example, the average running time is computed by
repeating the experiment with the same settings for four times. The running
time is split into two parts: one for the scribble point set determination and
the other for the recoloring. Since the control net construction is very fast and
almost spends no time, we combine its time with that of the scribble point set
determination. In our UI, the scribbles are drawn by moving the mouse. When
the mouse moves fast, the stroke seems to break into multiple dots, while we
observe this has almost no impact on the recoloring results.

From Table 2, we find that gradient meshes with larger mesh sizes tend to
take longer times when detecting the scribble point set. For instance, “jade2”
(mesh size of 28×37) spends 0.078 seconds while “jade3” (mesh size of 57×61)
spends 0.105 seconds. The detection time also becomes large when the number
of scribble strokes increases, by comparing “plum”, “jade3” and “plumeria”
examples. On the other hand, we find that the recoloring step is very fast for
gradient meshes, no matter whether there exist holes or not.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Fig. 14 More results.

4.5.3 Limitations

Our scribble point set determination assumes that one mesh point is affected
by just one color scribble if it exists. In extreme cases, it is possible that color
scribbles are close in position and fall in one patch or neighboring patches. In
our implementation we simply choose the nearest scribble’s color for the mesh
point under consideration. Alternatively, we may record both colors and the
distances between mesh point and color scribbles, which can be used in the
chrominance blending process. Since this extreme case does not occur in our
experiments, our method is sufficient to handle normal cases.

In addition, like other scribble-based methods for image color transfer,
our method also depends on the distribution of color scribbles. For instance in
Fig. 14(k), there are no color scribbles on the cup’s body. As a result, the green
color is propagated to some regions in the cup’s body. Fig. 14(j) demonstrates
a more pleasing recoloring result when more white color scribbles are assigned
on the cup’s body.

5 Conclusion

In this paper, we present a convenient and efficient recoloring method of gradi-
ent meshes by using user-specified color scribbles. Our approach is performed
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on mesh objects directly, without dependence on either the rasterized image of
gradient meshes or an additional reference image. Our easy-to-use interactive
tool allows users to annotate gradient meshes with a few color scribbles, and
then automatically propagates the indicated colors while preserving the topol-
ogy of gradient meshes. A control net, which considers both colors and local
color gradients of mesh points, is built from gradient meshes, serving as the
intermediate computing domain for the recoloring. The experimental results
further demonstrate that our approach has better performance than several
possible alternatives.
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