
Stacked Structure Learning for
Lifted Relational Neural Networks

Gustav Šourek1 (), Martin Svatoš1, Filip Železný1, Steven Schockaert2, and
Ondřej Kuželka3

1 Czech Technical University, Prague, Czech Republic
{souregus,svatoma1,zelezny}@fel.cvut.cz

2 School of CS & Informatics, Cardiff University, Cardiff, UK
SchockaertS1@cardiff.ac.uk

3 Department of Computer Science, KU Leuven, Belgium
ondrej.kuzelka@kuleuven.be

Abstract. Lifted Relational Neural Networks (LRNNs) describe rela-
tional domains using weighted first-order rules which act as templates
for constructing feed-forward neural networks. While previous work has
shown that using LRNNs can lead to state-of-the-art results in various
ILP tasks, these results depended on hand-crafted rules. In this paper, we
extend the framework of LRNNs with structure learning, thus enabling
a fully automated learning process. Similarly to many ILP methods, our
structure learning algorithm proceeds in an iterative fashion by top-down
searching through the hypothesis space of all possible Horn clauses, con-
sidering the predicates that occur in the training examples as well as
invented soft concepts entailed by the best weighted rules found so far.
In the experiments, we demonstrate the ability to automatically induce
useful hierarchical soft concepts leading to deep LRNNs with a compet-
itive predictive power.

1 Introduction

Lifted Relational Neural Networks (LRNNs [15]) are weighted sets of first-order
rules, which are used to construct feed-forward neural networks from relational
structures. A central characteristic of LRNNs is that a different neural network
is constructed for each learning example, but crucially, the weights of these
different neural networks are shared. This allows LRNNs to use neural networks
for learning in relational domains, despite the fact that training examples may
vary considerably in size and structure.

In previous work, LRNNs have been learned from hand-crafted rules. In such
cases, only the weights of the first-order rules have to be learned from training
data, which can be accomplished using a variant of back-propagation. The use of
hand-crafted rules offers a natural way to incorporate domain knowledge in the
learning process. In some applications, however, (sufficient) domain knowledge
is lacking and both the rules and their weights have to be learned from data. To
this end, in this paper we introduce a structure learning method for LRNNs.

2 Šourek, Svatoš, Železný, Schockaert, Kuželka

Our proposed structure learning method proceeds in an iterative fashion. In
each iteration, it may either learn a set of rules that intuitively correspond to
a new layer of a neural network template or to learn a set of rules that intu-
itively correspond to creating new connections among existing layers, a strategy
which we refer to as stacked structure learning. The rules that are added in a
given iteration either define one of the target predicates, or they define a new
predicate that may depend on predicates that were ‘invented’ at earlier layers as
well as on predicates from the considered domain. Since the actual meaning of
these predicates depends on both the learned rules and their associated weights,
structure learning is alternated with weight learning. Intuitively, this means that
the definitions of predicates defined in earlier layers can be fine-tuned based on
the rules which are added to later layers.

We present experimental result which show that the resulting LRNNs per-
form comparably to LRNNs that have been learned from hand-crafted rules. We
believe that this makes LRNNs a particularly convenient framework for learning
in relational domains, without any need for prior knowledge nor for any extensive
hypertuning. Somewhat surprisingly, we find that LRNNs with learned rules are
often more compact than those with hand-crafted rules. Finally, we also present
some initial results which suggest that the use of logical rules enable LRNNs to
efficiently learn concepts which neural networks normally struggle with.

The remainder of the paper is structured as follows. In the next section, we
first provide the required background on LRNNs. In Section 3, we then present
the proposed stucture learning method, after which we discuss our experimental
results in Section 4.

2 Preliminaries

In this section, we briefly recall the LRNN framework from [15].

LRNN Structure. A lifted relational neural network (LRNN) N is a set of
weighted definite clauses, i.e. a set of pairs (Ri, wi) where Ri is a definite clause
and wi ∈ R. For a LRNN N , we write N ∗ to denote the corresponding set of
definite clauses, i.e. N ∗ = {C | (C,w) ∈ N}. The grounding N of a LRNN N
is defined as N = {(Cθ,w) | (C,w) ∈ N , Cθ ∈ G(N ∗)}, where G(N ∗) is the
restriction of the grounding of N ∗ to those clauses that correspond to active
rules, i.e. rules whose antecedent is satisfied in the least Herbrand model of N ∗.
The neural network corresponding to N contains the following types of neurons:

– For each ground atom h occurring in N , there is a neuron Ah, called an
atom neuron.

– For each ground fact (h,w) ∈ N , there is a neuron F(h,w), called a fact
neuron.

– For every ground rule (cθ ← b1θ ∧ · · · ∧ bkθ, w) ∈ N , there is a neuron
R(cθ←b1θ∧···∧bkθ,w), called a rule neuron.

– For every (possibly non-ground) rule (c ← b1 ∧ · · · ∧ bk, w) ∈ N and every
grounding h = cθ of c that occurs in H, there is a neuron Aggh(c←b1∧···∧bk,w),
called an aggregation neuron.

Stacked Structure Learning for LRNNs 3

Forward propagation. Intuitively, the neural network computes for each gro-
und atom h a truth value, which is given by the output of the atom neuron
Ah. To obtain these truth values, the network propagates values in a way which
closely mimics the immediate consequence operator from logic progamming. In
particular, when using the immediate consequence operator, there are two ways
in which h can become true: if h corresponds to a fact, or if h is the head of
a rule whose body is already satisfied. Similarly, the inputs of the atom neuron
Ah consist of the fact neurons of the form F(h,w) and aggregation neurons of the

form Aggh(c←b1∧···∧bk,w). The output of an atom neuron with inputs i1, ..., im is
given by g∨(i1, ..., im), where g∨ is an activation function that maps the inputs
to a real-valued output. In this paper we will use

g∨(b1, . . . , bk) = sigm

(
a ·

(
k∑

i=1

bi + b0

))

where sigm is the sigmoid function sigm(x) = 1/(1+e−x). We set the parameters
a = 6 and b0 = −0.5, as g∨ then closely approximates the �Lukasiewicz fuzzy
disjunction [7] (see right panel in Figure 1). This helps with the interpretability
of LRNNs, as it means that we can intuitively think of the activation functions
as logical connectives, and of LRNNs as (fuzzy) logic programs.

A fact neuron F(h,w) has no input and has the value w as its output. The

output of the aggregation neuron Aggh(c←b1∧···∧bk,w) intuitively expresses how
strongly h can be derived using the rule c ← b1 ∧ · · · ∧ bk. The inputs of the
aggregation neuron Aggh(c←b1∧···∧bk)

are all rule neurons R(cθ←b1θ∧···∧bkθ,w) for
which cθ = h. The output of this aggregation neuron is given by w ·g∗(i1, ..., im),
where i1, ..., im are its inputs, g∗ is an activation function, and w is the weight
of the corresponding rule. We will use

g∗(b1, . . . , bm) =
1

m

m∑

i=1

bi.

The rule neuron R(cθ←b1θ∧···∧bkθ,w) intuitively needs to fire if the atoms
b1θ, ..., bkθ are all true. Accordingly, its inputs i1, ..., ik are given by the atom
neurons Ab1θ, ..., Abkθ, and its output is g∧(i1, ..., ik, w), with g∧ a third type of
activation function. In this paper we will use the activation function

g∧(b1, . . . , bk) = sigm

(
a ·

(
k∑

i=1

bi − k + 1 + b0

))

where we set a = 6 and bo = −0.5, which approximates �Lukasiewicz fuzzy
conjunction [7] (see left panel in Figure 1).

Weight learning. In applications, we usually consider LRNNs of the form
N ∪ E , where N is a weighted set of first-order rules and E is a weighted set
of ground facts. In particular, each E represents an example, while N acts as a

4 Šourek, Svatoš, Železný, Schockaert, Kuželka

1

0.80

0.1

0

0.2

0.6

0.3

0.2

x
2

0.4

0.5

x
1
 A

N
D

 x
2

0.40.4

0.6

x
1

0.7

0.8

0.6
0.2

0.9

1

0.8
01

Lukasiewicz
Sigmoidal

1

0.80

0.1

0

0.2

0.6

0.3

0.2

x
2

0.4

0.5

x
1
 O

R
 x

2

0.40.4

0.6

x
1

0.7

0.8

0.6
0.2

0.9

1

0.8
01

Lukasiewicz

Sigmoidal

Fig. 1: An approximation of �Lukasiewicz conjunction (left) and disjunction (right) by
sigmoidal activation functions g∧ and g∨ for the use in LRNNs.

template for constructing feed-forward neural networks, with N ∪ E being the
network corresponding to example E . While the weights of E are given, the
weights of N typically need to be learned from training data, as follows.

We are given a list of examples E = (E1, . . . , Em) where each Ej is a LRNN,
typically containing only weighted ground facts, and a list of training queries
Q = ({(q11 , t11), . . . , (q1k1

, t1k1
)}, . . . , {(qm1 , tm1), . . . , (qmkm

, tmkm
)}) where each qji is a

ground atom, which we call a training query atom, and tji is its target value.

For a query atom qji , let yji denote the output of the atom neuron Aqji
in the

ground neural network of N ∪ Ej . The goal of the learning process is to find
the weights wh of the rules (and possibly facts) in N for which the loss J on

the training query atoms J(Q) =
∑m

j=1

∑kj

i=1 loss(y
j
i , t

j
i) is minimized. This loss

function is then optimized using standard stochastic gradient descent algorithm
[2]. For details about weight learning of LRNNs, see [15].

3 Structure Learning

In this section we describe a structure learning algorithm for LRNNs. The al-
gorithm receives a list of training examples and a list of training queries, and it
produces a LRNN. For simplicity, we will assume that constants are only used
as identifiers of objects. In particular, we will assume that attribute values are
represented using unary literals, e.g. we would use red(o) instead of color(o, red).
Besides that we do not put any restrictions on the structure of the training
examples.

3.1 Structure of the Learned LRNNs

The structure learning algorithm will create LRNNs having a generic “stacked”
structure which we now describe. First, there are rules that define d new predi-
cates, representing soft clusters [17] of unary predicates from the dataset. These

Stacked Structure Learning for LRNNs 5

can be thought of as the first layer of the LRNN, where the weighted facts from
the dataset comprise the zeroth layer. For instance, if the unary predicates in
the dataset are A,B, . . . , Z then the LRNN will contain the following rules:

wa1 : α1
1(X) ← A(X) wb1 : α1

1(X) ← B(X) ... wz1 : α1
1(X) ← Z(X)

wa2
: α1

2(X) ← A(X) wb2 : α1
2(X) ← B(X) ... wz2 : α1

2(X) ← Z(X)

...

wad
: α1

d(X) ← A(X) wbd : α1
d(X) ← B(X) ... wzd : α1

d(X) ← Z(X)

Here each αi
j is a latent predicate representing a soft cluster, the index i denotes

the layer in which it appears (in this case, the first layer) and j indexes the
individual soft clusters in that level.

In general, the second layer will consist of two types of rules. First, there may
be rules introducing new latent predicates. In contrast to the unary predicates
that were introduced in the first layer, here the latent predicates could be also of
higher arity, although in practice an upper bound will be imposed for efficiency
reasons. In the body of these rules, we may find predicates from the dataset
itself, or latent predicates that were introduced in the first layer. The new latent
predicates introduced in these rules may then be used in the bodies of rules in
subsequent layers. Second, there may also be rules that have a predicate from the
dataset in their head. These will typically be rules that were learned to predict
the target predicates that we want to learn.

Example 1. For instance, in datasets of molecules, unary predicates can be used
to represent types of atoms, such as carbon or hydrogen. An example of a possible
second layer rule is:

wp1 : p1(X,Y) ← bond(X,Y) ∧ α1
1(X) ∧ α1

2(Y)

Here p1 is assumed to be one of the predicates from the dataset. Second layer
rules that introduce a new latent predicate could look as follows.

w2
1,1 : α2

1(V 1, V 2) ← bond(V 1, V 2) ∧ α1
1(V 1) ∧ α1

1(V 2)

w2
1,2 : α2

1(V 1, V 3) ← bond(V 1, V 2) ∧ bond(V 2, V 3) ∧ α1
1(V 1) ∧ α1

1(V 3)

The actual intuitive meaning of the predicate α2
1 will depend on the weights w2

1,1,
w2

1,2. For instance, if both are large enough, the (atom neurons corresponding to
the) predicate will have high output whenever its arguments correspond to two
atoms which are either one or two steps apart from each other in the molecule,
and which have sufficiently high membership in the soft cluster α1

1.

Any higher layers have a similar structure to the second layer, where the nth

layer contains rules whose bodies only contain predicates from layers 0 to n− 1,
and whose heads either contain a target predicate or introduce a new latent
predicate.

6 Šourek, Svatoš, Železný, Schockaert, Kuželka

Algorithm 1 General schema of structure learning

1: E ← learning examples
2: d ← latent concepts’ dimension
3: W,V,R ← ∅
4: R ← createLayer1Rules(E , d)
5: W ← initWeights(R)
6: (F ,V) ← weightedFacts(E , R,W)
7: while ¬StoppingCriterion do
8: bestRule ← ruleLearning(F ,V,R)
9: bestRules ← predicateInvention(bestRule)
10: R ← R∪ bestRules
11: W ← trainWeights(R, E ,W)
12: (F ,V) ← weightedFacts(E ,R,W)
13: end while
14: return (R,W)

3.2 Structure Learning Algorithm

The structure learning algorithm (Algorithm 1) iteratively constructs LRNNs
that have the structure described in the previous section. It alternates weight
learning steps with rule learning steps4. In the weight learning steps, the al-
gorithm uses stochastic gradient descent to minimise the squared loss of the
LRNN by optimising the weights of the rules, as described in Section 2. In the
rule learning steps, the algorithm fixes the weights of all rules which define latent
predicates and it searches for some good rule R. This rule R should be such that
the squared loss of the LRNN decreases after we add R to it and and after we
retrain the weights of all rules with non-latent head predicates. Next we describe
this algorithm in detail.

The first step of the structure learning algorithm (lines 4–5) is the construc-
tion of the first level of the LRNN, which defines the unary predicates represent-
ing soft clusters of object properties, as described in Section 3.1.

After the first step, the algorithm repeats the following procedure for a given
number of iterations or until no suitable rules can be found anymore. It fixes
the weights of all rules defining latent predicates (line 6). Then it runs a beam
search algorithm searching through the space of possible rules5 (line 8). The
scoring function which is used by the beam search algorithm is computed as
follows. Given a rule R, the algorithm creates a copy of the current LRNN to
which the given candidate rule R is added. It then optimises the log-loss of this
new LRNN (which corresponds to maximum-likelihood estimation for logistic
regression), training just the non-fixed weights, i.e. the weights of the rules with
non-latent predicates in their heads. The score of the rule R is then defined to

4 Variants of this strategy are employed by many structure learning algorithms in the
context of statistical relational learning, e.g. [4, 8, 5].

5 The space of rules is defined by two user-specified constraints: maximum rule length
and maximum number of variables in a rule.

Stacked Structure Learning for LRNNs 7

be the log-loss after training the non-fixed weights. The reason why we do not
retrain all weights of the LRNN when checking score of a rule R are efficiency
considerations because training the weights of the whole LRNN corresponds to
training a deep neural network. After the beam search algorithm finishes, the
rule R∗ that it returned is added to the original LRNN.

Note that R∗ contains one of the target predicates in its head. However,
in addition to adding R∗, we also add a set of related rules that have latent
predicates in their head (line 9), as follows. Here, we will assume for simplicity
that all latent predicates have the same arity k, but the same method can still
be used when the latent predicates are allowed to have different arities. Let i
be the highest index such that R∗ contains a latent predicate of the form αi

j

(i.e. a latent predicate from layer i) in its body, where we assume i = 1 if R∗

does not contain any latent predicates . Then for each latent predicate αi+1
j

from the (i+ 1)-th layer, the algorithm adds to the LRNN all rules which have
αi+1
j (V1, . . . , Vk) in the head and which can be obtained by unifying V1, . . . , Vk

with the variables in R∗. This process is illustrated in the following example.

Example 2. Revisiting the example of molecular datasets, let R∗ = p(A,B) ←
bond(A,B) ∧ α1

2(A) ∧ α2
5(B) and let k = 1. Then the algorithm will add the

following latent-predicate rules:

w3
1,1 : α3

1(V1) ← bond(V1, B) ∧ α1
2(V1) ∧ α2

5(B)

w3
1,2 : α3

1(V1) ← bond(A, V1) ∧ α1
2(A) ∧ α2

5(V1)

w3
2,1 : α3

2(V1) ← bond(V1, B) ∧ α1
2(V1) ∧ α2

5(B)

w3
2,2 : α3

2(V1) ← bond(A, V1) ∧ α1
2(A) ∧ α2

5(V1)

.

w3
d,1 : α3

d(V1) ← bond(V1, B) ∧ α1
2(V1) ∧ α2

5(B)

w3
d,2 : α3

d(V1) ← bond(A, V1) ∧ α1
2(A) ∧ α2

5(V1)

Note that the algorithm has to add the new rules to the layer 3 because R∗

already contained predicates from the layer 2.

After the LRNN has been extended by all these rules obtained from R∗, the
weights of all the rules, including those corresponding to latent predicates, are
retrained using stochastic gradient descent (line 11). Note that typically there
will be some latent predicates which are not used in any rules; their weights
are not considered during training. Subsequently, the algorithm again fixes the
weights of the rules corresponding to the latent predicates, and repeats the
same process to find an additional rule. This is repeated until a given stopping
condition is met.

4 Experiments

In this section we describe the results of experiments performed with the struc-
ture learning algorithm on a real-life molecular dataset and on a difficult artificial
learning problem.

8 Šourek, Svatoš, Železný, Schockaert, Kuželka

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

structureLearning nFoil kFoil

Fig. 2: Comparison of crossvalidated test errors of LRNNs produced by structure learn-
ing with nFoil and kFoil learners as baselines.

4.1 Molecular Datasets

We performed experiments on 72 NCI datasets [13], each of which contains sev-
eral thousands of molecules, labeled by their ability to inhibit the growth of
different types of tumors. We compare the performance of the proposed LRNN
structure learning method with the best previously published LRNNs, which
contain large generic, yet manually constructed weighted rule sets [15]. For fur-
ther comparison we include the relational learners kFOIL [10] and nFOIL [9],
which respectively combine relational rule learning with support vector machines
and with naive Bayes learning.

The results are shown in Figure 2 and Figure 3. The automatically learned
LRNNs outperform both kFOIL and nFOIL in terms of predictive accuracy
(measured using cross-validation). The learned LRNNs are also competitive with
the manually constructed LRNNs from [16, 15], although they do not outper-
form them. They are slightly worse than the largest of the manually constructed
LRNNs, based on graph patterns with 3 vertices, enumerating all possible com-
binations of soft cluster types of the three atoms and soft cluster types of the
two bonds connecting them. Figure 4 displays statistics of the learned LRNN
rule sets. These statistics show that the structure learner turned out to produce
quite complex LRNNs having multiple layers of invented latent predicates.

The weights of the rules defining the latent predicates in the first layer of
the LRNN can be interpreted as coordinates of a vector-space embedding of
the properties (atom types in our case). In Figure 5, we plot the evolution of
these embeddings as new rules are being added by the structure learning al-
gorithm. The left panel of Figure 5 displays the evolution of the embeddings
of atom types after these have been pre-trained using an unsupervised method
which was originally used for statistical predicate invention in [17]. The right
panel of the same figure displays the evolution of the embeddings when starting
from random initialization without any unsupervised pre-training. What can be
seen from these figures is how, as the model becomes more complex, the atom

Stacked Structure Learning for LRNNs 9

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

structureLearning chain3 chain2 chain1

Fig. 3: Comparison of test errors of LRNNs produced automatically by structure learn-
ing with 3 handcrafted LRNNs with varying lengths of chain patterns from [15].

100 150 200 250
all rules

0

20

40

60

80

100

10 20 30 40
conjunctive patterns

0

10

20

30

40

50

60

70

80

2.5 3.0 3.5 4.0 4.5
avg pattern length

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6
depth of rule set

0

20

40

60

80

100

120

140

Fig. 4: Statistics of the learned LRNN rule sets from experiments with the 72 NCI
datasets. We display (i) the number of rules (including zeroth layer soft clusters),
(ii) the number of conjunctive rules (patterns) learned, (iii) the average length of these
rules (patterns), and (iv) the overall number of layers (depth of template).

types start to make more visible clusters. Interestingly and perhaps somewhat
against intuition, the use of the unsupervised pre-training seemed to consistently
decrease predictive performance (we omit details due to limited space).

4.2 A Hard Artificial Problem

We consider the following variant of graph colorability, which can be seen as
a relational generalization of the problem of learning the XOR function. For a
graph, where each node may take on different “shades” {sh1 . . . shn} of colors
{col1 . . . colm} that are not observed (i.e. it is not given to which color each shade
corresponds), the task is to learn to classify graphs that are correctly colored, i.e.
where each edge in the graph connects two nodes of shades of different colors. In
this problem, learning a correct representation of the colors (as sets of shades)
is completely decorrelated from the target, but to correctly learn to classify

10 Šourek, Svatoš, Železný, Schockaert, Kuželka

− 5 0 5 10 15 20
− 10.0

− 7.5

− 5.0

− 2.5

0.0

2.5

5.0

7.5

10.0

pt /1 s3/1nar/1
c1/1 cl/1

o3/1 car/1

br/1

c2/1

n4/1

npl3/1
s2/1

n2/1

f/1so2/1

sn/1ni/1fe/1

oco2/1

n1/1pd/1

o2/1

nam/1

i/1se/1p3/1

n3/1

c3/1

ge/1pt /1

s3/1

nar/1

c1/1

cl/1

o3/1

car/1

br/1

c2/1

n4/1

npl3/1

s2/1

n2/1f/1

so2/1

sn/1

ni/1

fe/1

oco2/1

n1/1

pd/1

o2/1

nam/1

i/1
se/1

p3/1

n3/1

c3/1

ge/1

− 8 − 6 − 4 − 2 0 2 4 6 8
− 6

− 4

− 2

0

2

4

6

c3/1oco2/1n3/1so2/1n1/1s3/1n4/1p3/1s2/1npl3/1car/1ni/1fe/1se/1ge/1

i/1
n2/1o2/1c2/1

f/1
pd/1nar/1
c1/1

pt /1

br/1cl/1o3/1sn/1nam/1

c3/1

oco2/1n3/1

so2/1

n1/1
s3/1

n4/1
p3/1

s2/1

npl3/1

car/1

ni/1
fe/1

se/1ge/1
i/1

n2/1

o2/1

c2/1

f/1
pd/1

nar/1

c1/1

pt /1

br/1cl/1

o3/1

sn/1

nam/1

0

1

2

3

4

5

Fig. 5: PCA projection of evolution of atom embeddings during first 6 iterations (de-
noted by colors) of structure learning of a LRNN, with initialization based on unsu-
pervised pre-training (left) and with completely random initialization (right).

correctly colored graphs, we need to learn some such color concepts. An ideal
learned LRNN correctly solving the problem could be very compact, for instance
for 3 colors if might look like

w1 : notCorrectlyColored ← cl0(X), edge(X,Y), cl0(Y)

w2 : notCorrectlyColored ← cl1(X), edge(X,Y), cl1(Y)

w3 : notCorrectlyColored ← cl2(X), edge(X,Y), cl2(Y)

together with rules defining the color concepts cl0, cl1 and cl2.
Initial experiments with these artificial problems showed that the structure

learning algorithm is able to learn appropriate LRNNs. The rule sets were typ-
ically different from the rule set shown above but they also encoded correct
solutions that were comparably short. The performance results, shown in Table
1, suggest that the LRNN structure learning method is able to efficiently produce
accurate and compact solutions without extensive hyper-tuning.

5 Related Work

LRNNs are related to many older works on using neural networks for relational
learning such as [1] and more recent approaches such as [14, 3]. The structure
learning strategy that we employ in the methods presented in this paper is in
many respects similar to structure learning methods from statistical relational
learning such as [4, 8, 5]. However, what clearly distinguishes it from all these
previous SRL approaches is its ability to automatically induce hierarchies of
latent concepts. In this respect, it is also related to meta-interpretive learning
[11]. However, meta-interpretive learning is only applicable to the learning of
crisp logic programs. The structure learning approach is also related to works on
refining architectures of neural networks [6, 12]. However, from these it differs in
its ability to handle relational data.

Stacked Structure Learning for LRNNs 11

#colors-#shades majority error training error % of perfect solutions
2c-1s 0.5 0.025 0.9
2c-2s 0.5 0.0 1
3c-1s 0.33 0.0 1
3c-2s 0.33 0.014 0.6
3c-3s 0.33 0.111 0.4
4c-1s 0.25 0.1375 0.0
4c-2s 0.25 0.160 0.0
4c-3s 0.25 0.129 0.1
4c-4s 0.25 0.044 0.1

Table 1: Results of the structure learning algorithm (SL) on the graph coloring classi-
fication problem. Reported statistics are majority train error, training error, and ratio
of cases with zero learning error. All problems were run 10 times with different random
initialization seeds.

6 Conclusions and Future Work

In this paper we have introduced a method for learning the structure of LRNNs,
capable of learning deep weighted rule sets with invented latent predicates. The
predictive accuracies obtained by the learned LRNNs were competitive with re-
sults that we obtained in our previous work using manually constructed LRNNs.
The method presented in this paper therefore has the potential to make LRNNs
useful in domains where it would otherwise be difficult to come up with a rule
set manually. It also makes the adoption of LRNNs by non-expert users more
straightforward, as the proposed method can learn competitive LRNNs without
requiring any user input (besides the dataset).

Acknowledgements GŠ, MS and FŽ acknowledge support by project no. 17-26999S

granted by the Czech Science Foundation. This work was done while OK was with

Cardiff University and supported by a grant from the Leverhulme Trust (RPG-2014-

164). SS is supported by ERC Starting Grant 637277. Computational resources were

provided by the CESNET LM2015042 and the CERIT Scientific Cloud LM2015085,

provided under the programme “Projects of Large Research, Development, and Inno-

vations Infrastructures”.

References

1. Blockeel, H., Uwents, W.: Using neural networks for relational learning. In: ICML-
2004 Workshop on Statistical Relational Learning and its Connection to Other
Fields, pp. 23–28 (2004)

2. Bottou, L.: Stochastic gradient descent tricks. In: Neural networks: Tricks of the
trade, pp. 421–436. Springer (2012)

3. Cohen, W.W.: Tensorlog: A differentiable deductive database. arXiv preprint
arXiv:1605.06523 (2016)

12 Šourek, Svatoš, Železný, Schockaert, Kuželka

4. Davis, J., Burnside, E.S., de Castro Dutra, I., Page, D., Costa, V.S.: An integrated
approach to learning bayesian networks of rules. In: Proceedings of the 16th Eu-
ropean Conference on Machine Learning, pp. 84–95 (2005)

5. Dinh, Q.T., Exbrayat, M., Vrain, C.: Generative structure learning for markov
logic networks based on graph of predicates. In: IJCAI Proceedings-International
Joint Conference on Artificial Intelligence, vol. 22, p. 1249 (2011)

6. Fahlman, S.E., Lebiere, C.: The cascade-correlation learning architecture (1989)
7. Hájek, P.: Metamathematics of fuzzy logic, vol. 4. Springer Science & Business

Media (1998)
8. Kok, S., Domingos, P.: Learning the structure of markov logic networks. In: Pro-

ceedings of the 22nd International Conference on Machine Learning, pp. 441–448
(2005)

9. Landwehr, N., Kersting, K., Raedt, L.D.: Integrating naive bayes and foil. The
Journal of Machine Learning Research 8, 481–507 (2007)

10. Landwehr, N., Passerini, A., De Raedt, L., Frasconi, P.: kFOIL: learning simple
relational kernels. In: AAAI’06: Proceedings of the 21st national conference on
Artificial intelligence, pp. 389–394. AAAI Press (2006)

11. Muggleton, S.H., Lin, D., Tamaddoni-Nezhad, A.: Meta-interpretive learning of
higher-order dyadic datalog: predicate invention revisited. Machine Learning
100(1), 49–73 (2015)

12. Opitz, D.W., Shavlik, J.W.: Heuristically expanding knowledge-based neural net-
works. In: IJCAI, pp. 1360–1365 (1993)

13. Ralaivola, L., Swamidass, S.J., Saigo, H., Baldi, P.: Graph kernels for chemical
informatics. Neural Netw. 18(8), 1093–1110 (2005)

14. Rocktäschel, T., Riedel, S.: Learning knowledge base inference with neural theo-
rem provers. In: NAACL Workshop on Automated Knowledge Base Construction
(AKBC) (2016)

15. Šourek, G., Aschenbrenner, V., Železný, F., Kuželka, O.: Lifted relational neu-
ral networks. In: Proceedings of the NIPS Workshop on Cognitive Computation:
Integrating Neural and Symbolic Approaches (2015)

16. Šourek, G., Aschenbrenner, V., Železný, F., Kuželka, O.: Lifted Relational Neural
Networks. arXiv preprint (2015). URL http://arxiv.org/abs/1508.05128

17. Šourek, G., Manandhar, S., Železný, F., Schockaert, S., Kuželka, O.: Learning
predictive categories using lifted relational neural networks. In: ILP’16, 26th In-
ternational Conference on Inductive Logic Programming (2016)

