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Abstract. Acoustic emission based damage detection in composite structures is based on
detection of ultra high frequency packets of acoustic waves emitted from damage sources (such
as fibre breakage, fatigue fracture, amongst others) with a network of distributed sensors. This
non-destructive monitoring scheme requires solving an inverse problem where the measured
signals are linked back to the location of the source. This in turn enables rapid deployment
of mitigative measures. The presence of significant amount of uncertainty associated with
the operating conditions and measurements makes the problem of damage identification quite
challenging. The uncertainties stem from the fact that the measured signals are affected by
the irregular geometries, manufacturing imprecision, imperfect boundary conditions, existing
damages/structural degradation, amongst others. This work aims to tackle these uncertainties
within a framework of automated probabilistic damage detection. The method trains a
probabilistic model of the parametrized input and output model of the acoustic emission system
with experimental data to give probabilistic descriptors of damage locations. A response surface
modelling the acoustic emission as a function of parametrized damage signals collected from
sensors would be calibrated with a training dataset using Bayesian inference. This is used to
deduce damage locations in the online monitoring phase. During online monitoring, the spatially
correlated time data is utilized in conjunction with the calibrated acoustic emissions model to
infer the probabilistic description of the acoustic emission source within a hierarchical Bayesian
inference framework. The methodology is tested on a composite structure consisting of carbon
fibre panel with stiffeners and damage source behaviour has been experimentally simulated
using standard H-N sources. The methodology presented in this study would be applicable in
the current form to structural damage detection under varying operational loads and would be
investigated in future studies.

1. Introduction
Maintenance costs for high value assets, such as aircraft and wind turbines, make a
significant contribution to operating costs and the successful implementation of structural health
monitoring (SHM) systems has the potential reduce these costs by a considerable amount (up
to 30M p.a., Airbus sources). Some SHM technologies that have shown good potential in lab
scale demonstrations have struggled to translate this performance in to industrial applications
because the increseasd structural complexity, noise levels and vatiation in operating conditions
leads to increasing uncertainty and lower accuracy. The acoustic emission (AE) technique is one
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such approach that has been shown to perform poorly in industrial environments [1]. Despite
this poor performance the AE technique has a number of desirable attributes that make it
appealling for SHM applications, in particular: it is able to monitor in real-time (making it
suitable for in-service monitoring), it is able to globally monitor a structure using a distributed
array of sensors and it is possible to both locate and characterise damage. This list of desirable
attributes means that addressing the poor performance observed in industrial environments is
seen as a worthwhile activity.

Acoustic emission is the phenomenon whereby small amounts of elastic energy are released
by changes whithin a material or structure. These changes result from mechanical mechanisms
such as crack growth and plastic deformation as well as friction and rubbing (which are often
considered noise sources). The energy is released from it point of origin (often referred to as the
source) and propagates out in all directions as an elastic stress wave, akin to an ultrasond wave.
As with ultrasound waves the elastic stress waves produce minute surface displacements when
they arrive at or travel along a surface. These surface displacements can then be converted to
a voltage response using a piezoelectric transducer. These transient signals are analysed in real
time by most modern AE systems but can also be digitised and stored to allow further signal
processing and analysis. If a distributed array of sensors is used to detect the energy released
from a single source, or energy release, then triangulation techniques can be utilised to predict the
location of the source (i.e. the damage location), in a similar fashion to determining the epicentre
of an earthquake in seismology. Figure 1 presents a schematic of the AE measurement process

Figure 1. Schematic of AE measurement process.

and it is clear that any changes in the material and/or geometry will affect the resultant recorded
signal. Accounting for the boundary uncertainty explicitly in the mathematical model of the
physical process is complex and associated with significant computational overhead [2]. Thus
accurate damage location using AE in complex structures presents significant challenge. The
loss in accuracy observed in complex structures occurs for two specific reasons: firstly a failure
to accurately determine the signal arrival time and secondly an overly simplified representation
of the AE wave propagation path and velocity in the location calculations [3, 4].

This study aims to overcome the above limitations using a novel approach which trains and
calibrates the damage model using a compound correlation metric between the signals recorded
with the distributed sensory network. When only using the arrival time of the signal at the
individual sensors (and the difference in arrival time) as the basis of training the model, a large
portion of the the signal data is not being utilized fully. Additionally error is incurred in the
adhoc definitions of signal threshold values which are used to calculate arrival time. Moreover,
it is strongly based on the assumption of the existence of a travel path between the damage and
the sensor location (this can be considered as an underlying regularization) which might often
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not be the case. The proposed methodology, in contrast, constructs a compressed representation
of the full signal characteristics using a projected correlation metric (as discussed in section 3)
which utilizes the full signal characteristics to infer the source of the incoming waves. The
gaussian process based surrogate regression approach explicitly accounts for the uncertainty in
lack of training data and/or the error incurred using the process described in section 4.

2. Acoustic emission source location
The traditional approach to determination of the arrival time of an AE signal, and that used
in all commercially available systems, is a simple threshold approach whereby a user defined
threshold level is set and data is recorded when the transducer voltage response exeeds this
level with the first threshold crossing time taken as the signals arrival time. It is, however,
possible for signal to be present prior to the first threshold crossing and attenuation of signal
amplitude can mean variation in signal arrival time determination. A wide range of approaches
have been developed in an attempt to improve the arrival time determination compared with
the traditional threshold crossing technique. A range of frequency based techniques including
filtering [5], cross-correlation [?] and wavelet transforms [6, 7] have been investigated, however,
statistical approaches based on 6th order statistical moments [8] and the Akaike Infomation
Criteria (AIC) [9, 10] have been shown to be more reliable. The AIC approach in particular has
been demonstrates to be very robust across a range of materials and structures [11].

Standard AE location algorithms assume a single, constant, wave propagation speed, however,
in composite materials the wave speed is seen to vary with propagation direction and is dependent
on fibre orientations within the layup used. Several researchers have tried to address this
challenge and some success has been by extending the traditional time of arrival optimization
scheme to include a variable wave speed dependent on propagation direction [12, 13]. Ciampa
and Meo [14] adopted a novel approach whereby closely spaced sensor pairs were used to reduce
the number of unknown propagation velocities in a set of simultaneous non-linear equations that
describe the source position. An iterative Newton appraoch was adopted to solve the unknowns
in the equations and therefore yield an estimate of the source position without prior knowledge
of the wave speeds in the material. Despite these advances achieved in anisotropic monolithic
materials, none of the approaches are capable of accounting for geometric complixities such
as access holes, curvatures and thickness changes that commonly occur in industrial structures.
Alternatively a mapping approach has been proposed and rigorously validated [15, 16, 11, 17, 18]
in which a structure is mapped using artificial AE sources (such as a H-N source [19, 20]) to
derive an emprical relationship between the known source position and the resultant arrival
times at an array of sensors. This relationship can then be used to determine the source origin
for a set of measured arrival times. The empirical nature of the approach inherantly accounts
for all material and structural complexity such as anisotropy and geometric features.

The previously discussed approaches are deterministic and do not consider the uncertainty in
the measurements and calculations performed. This is particularly relevant to their application
to industrial environments where uncertainty is seen to increase, with varying operating
conditions such as temperature affecting wave propagation and therefore reducing reliability.
To account for the uncertainty that can be expereinced in an industrial environment researchers
have begun to adopt probabilistic approaches. Schumacher et al [21] developed an approach
based on Bayesian statistics for AE source location in a reinforced concrete beams that accounts
for uncertainties and errors that exist within the measurement and calculation process. A
simplified model for the concrete beam was developed, in which the mean of the wave slowness,
the standard deviation of the wave slowness, the event time and the standard deviation of the
observed arrival times are represented as prior probability density functions (PDF). The initial
PDF of each parameter was then refined using experimental data collected from H-N sources
at known positions on the beam surface. The refined model could then be used to predict the
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most likely position of any subsequent AE sources. The approach reduced the mean error of
22 arbitrarily located H-N sources from 40mm down to 30mm. Further work by Zarate et
al [22] developed a Bayesian framework based on a ray tracing model of AE wave propagation
in liquid filled storage tanks. The approach allowed structure bourne and water bourne wave
paths to be considered. Using a Markov Chain Monte Carlo (MCMC) method to sample the
posterior distribution of the source position in x and y coordinates the most probably source
position could be determined. Both of these probabilistic approaches are limited to homogeneous
materials and simple geometries, i.e. direct and uninterrupted wave paths.

This main aim to the present work is to combine the Bayesian probabilistic mapping of the
source of AE to the correlation characteristics of the signal collected at the distributed sensor
network. This would not only capture the essential information pertaining to the phase difference
and attenuation of elastic waves travelling different distances over the surface of the composite
structures to reach individual sensors but also include the complex effects of boundary reflection
within the signal correlation characteristics. The uncertainty due to the measurement noise and
experimental errors would be explicitly accounted for in the probabilistic model and conditioned
on the training data generated with H-N sources.

3. Important signal characteristics for damage identification
The notion of correlation between the signals observed at different locations in a distributed
sensory network is of prime importance in the inference of underlying parameters representative
of the physical process. If we consider ns sensors distributed on the structure under study, the
collected signal is represented as

X = {xi : xi = [xi[1], xi[2], . . . , xi[n]]ᵀ ∀i = 1, . . . , ns} 1

where each sample xi[j] has been collected at sensor i at n discrete time points j = 1, ldots, n.
An initiation of crack or a growth in crack size is accompanied by a packet of ultrasonic wave
which propagates radially outwards from its point of origin along the plane of the composite
structure. Each sensor captures signal xi[n] as show in figure 2. Additionally reflection from

0 1000 2000 3000 4000 5000 6000
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x
[n

]

n

Figure 2. Sample AE signal captured at a particular sensor location.

boundaries and/or other geometrical discontinuities (such as holes) result in a complicated
propagation characteristics. It is expected that the accumulated data from the distributed
sensory network would contain distinguishing features (statistics) which would map the detected
waveforms uniquely to the source location.
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The correlation matrix R̄ between the signals collected at each of the ns sensors is defined as

R̄τ =


R11(τ) R12(τ) · · · R1ns(τ)
R21(τ) R22(τ) R2ns(τ)

...
. . .

...
Rns1(τ) Rns2(τ) · · · Rnsns(τ)

 2

where each element Rij(τ) of the correlation matrix is defined in the continuous time domain
as

Rij(τ) =

∫ ∞
−∞

xi(t)xj(t+ τ)dt 3

for real-valued signal components. For L1 integrable signals, i.e.
∫∞
−∞ |x(t)| dt <∞ the Fourier

transform of the signal exists and is related to the terms in R̄ matrix. In equation 3, when i = j,
the terms Rii, i.e. the diagonal terms in the matrix R̄τ , give the autocorrelation measure of the
signals at each sensor.

For discrete time signals the cross-correlation for real-valued signals is defined as

Rij(τ) = E
[
(xi[n]− µi)(xj [n+ τ ]− µj)

]
∀i, j = 1, . . . , ns 4

The cross-correlation is often normalized by the respective auto-correlation functions at zero lag
such that

rij(τ) =
Rij(τ)√

Rii(0)Rjj(0)
where |rij(τ)| ≤ 1 ∀i, j, τ 5

and we denote the normalized version of R̄τ as r̄τ where each element of the matrix in
equation 2 is normalized as per equation 5. It is important to note that Rij(τ) = Rji(−τ)
and Rij(τ) = Rij(−τ), hence rτ is a symmetric matrix for all τ . The normalized correlation
coefficient is utilized here to balancethe varying intensity of the AE source. The mapping which
links training dataset to the source location assumes that the source intensity is normalized
across the entire training dataset which is achieved with the normalized correlation coefficient.

The power spectral density S which gives the frequency content of the signal is related to the
cross-correlation function by the Fourier transform dual, following Wiener-Khintchin theorem
[23], as

Sij(ω) =

∫ ∞
−∞

Rij(τ)e−iωτdτ and Rij(τ) =
1

2π

∫ ∞
−∞
Sij(ω)e−iωτdω 6

and when considering windowed signals over finite duration T , the and for discrete time signals
it is of the form

Sij(ω) = lim
T→∞

E
[

1

T
x̃∗i (ω)x̃j(ω)

]
7

where x̃∗i (ω) is the Fourier transform of the time signal xi[n]. The power spectral density

Sii(ω) = lim
T→∞

E
[

1
T |x̃

∗
i (ω)|2

]
is a measure of the signal’s energy distribution over the frequency

range. Thus each term of the correlation matrix R̄τ has a spectral decomposition in terms of
the power spectral density and are sometimes referred to as integrated spectrum.

The correlation matrix captures the essential information regarding the correlation of the
signals captured using the distributed sensor network which contains essential information
regarding the delay or phase of the arriving signals. The matrix R̄τ is constructed over the
interval −τs ≤ τ ≤ τs such that each of its elements Rij(τ) or the normalized cross-correlation
rij(τ) is a vector of dimension 2τs+1. Since the correlation matrix is symmetric, only the upper
triangular part is considered in a matrix representation

r̄∆k,τs =
[
rτs,i : rτs,i ∈ R2τs+1 and − τs ≤ τ ≤ τs ∀i ∈ I

]
8
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where I is the set of indices associated with the ordering of the elements of the upper triangle of
rτ at some instance τ and rτs,i is a vector which contains the cross-correlation measure over the
interval ±τs. It is important to note that the subscript ∆k of the matrix r̄∆k,τs k = 1, . . . , nt
denotes normalized correlation data evaluated for the k-th test point out of a total of nt training
sets. Thus the full set of training correlation data is given as

r̄∆,τs =
[
r̄∆1,τs , r̄∆2,τs , . . . , r̄∆nt ,τs

]
where r̄∆k,τs ∈ R2τs+1 × nI , k = 1, . . . , nt 9

where nI is the cardinality of the set I.
The objective here is to obtain a map between the normalized correlation matrix representing

the signal data for each of the nt training sets and the corresponding coordinates of the acoustic
source. However, the computational demands of modelling the large predictor matrix r̄∆,τs is
substantial and would make the subsequent real-time model prediction infeasible. Thus we seek
an optimal reduced basis which can be used to represent the data for each training set such that

find T : R2τs+1 × nInt → Rnr × nInt where T (r̄∆i,τs) = αi,τs ∀i = 1, . . . , nInt

such that Φ∆,τs = arg inf
φ∆j ,τs

,∀j
‖Φ∆,τs [α1,τs , . . . ,αnInt,τs ]− r̄∆i,τs‖F 10

where nr << 2τs + 1 and αi,τs ∈ Rnr . Thus the transformation T expresses the normalized
correlation terms using an optimal basis on which the solution would be projected and an
additional orthonormality constraint of Φᵀ

∆,τs
Φ∆,τs = I can be imposed on the basis. This

optimal basis can be informed by the left singular eigenvectors of the training correlation data
contained in r̄∆,τs or the principal eigenvectors associated with r̄ᵀ∆,τs r̄∆,τs . The compressed
correlation data is be expressed in terms of this optimal basis as

ατs = {α1,τs , . . . ,αnt,τs} = Φ∆,τs where r̄ᵀ∆,τs where ατs ∈ Rnr × nInt 11

The matrix ατs consists of a collection of nInt vectors each of dimension nr, thus for each of
the nt training points we get a set of nI vectors which contains the compressed information.

Next we introduce the linear map vec(·) : Rn×k → Rnk which transforms a collection of k
vectors each of dimension n into a single vectors of dimension nk (where each of the k vectors
are stacked end to end). The matrix r̄∆,τs is transformed as

αv =
{
vec(α1,τs), . . . , vec(αnt,τs)

}
where αv ∈ RnrnI×nt 12

such that each of the nrnI vector in αv corresponds to the compressed data collected at the
distributed sensor network on the structural system.

The problem then defined defined in terms of finding the map G : αv,xy → rxy where rxy
is a vector of the Euclidean distance of AE source from each sensor in the distributed sensory
network and the subscript (xy) denotes the Cartesian coordinates of the AE soruce. The problem
is posed as the following multivariate least square regression problem

γ = arg inf
γ∈RnrnI

‖αv,xyγ − rxy‖2 13

However, for each training run, there is an uncertainty around the measured signal. We construct
a scalar error indicator following from equation 13 as

εr = ‖r̂xy − rxy‖ where r̂xy = αv,xyγ 14

where r̂xy is the approximate identified location of the acoustic source associated with the
training data where the known true source is at rxy distance from the sensors. Equation 14
gives the error associated with the regression map G : αv,xy → rxy. Thus the error indicator εr
for the training dataset is mapped on the spatial domain using a Gaussian process surrogate,
discussed in the following section, based on which the probabilistic prediction of the source
location is performed based on the observed signal data at the distributed sensory network.
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4. Bayesian emulation of the error surface
In the previous section, the error indicator εr is a function of (x, y) coordinates of the AE source
such that εr : (x, y)→ R. In this section, we introduce a Gaussian process model [24] compute
a surrogate response surface of the error indicator over the spatial domain of the structural
system.

The coordinates (x, y) of the AE source over the domain [lx, ly] serves as the parameter space
or the input space over which the error indicator εr is trained. Here it is assumed that the
observed error output vector [εr1(x, y), . . . , εrnt (x, y)] are realisations of a Gaussian stochastic
process with parametrized mean and covariance functions. The model structure is thus expressed
as

εr(x, y) = h(x, y)ᵀβ + Z(x, y) 15

where h(x, y) is a vector of known functions and β is an unknown hyperparameter to be
estimated from the data. The choice of h(ξ) is an active research area [25, 26]. The function
Z(·) is a stochastic process with mean zero and covariance function

Cov(Z((x, y)), Z(x′, y′)) = σ2
zC((x, y), (x′, y′)) 16

where C(·, ·) is a correlation function and σ2
z is the process variance, a hyperparameter that can

also be estimated from the data. In order to choose a valid positive-definite correlation function,
we consider products of one-dimensional correlations[27] with functional forms

C((x, y), (x′, y′)) = exp
{
− bi

∣∣∣x− x′∣∣∣2 − bi∣∣∣y − y′∣∣∣2} 17

where bi > 0 for all i with x, x
′ ∈ [0, lx] and y, y

′ ∈ [0, ly]. The above correlation function
is infinitely differentiable which is convenient when Gaussian processes are used to model not
only the code output, but also its derivatives [28]. The vector of smoothness hyperparameters
b =

(
b1, b2)ᵀ quantifies the rate at which the output varies over the spatial domain.

Let D =
{(

(x, y)i, εr(x, y)i
)∣∣i = 1, . . . , nt

}
be a set of nt training runs. Given this observed

dataset, Bayes’ theorem is used to estimate the hyperparameters as follows

P(β, σ2z ,b
∣∣D) =

P(D
∣∣β, σ2z ,b)P(β, σ2z ,b)

P(D)
18

where P(β, σ2z ,b
∣∣D) is the posterior probability of the hyperparameters, P(D

∣∣β, σ2z ,b) is the
likelihood, P(β, σ2z ,b) is the prior of the hyperparameters, and P(D) is the marginal likelihood.
A detailed derivation of prior-to-posterior analysis along with the hyperparameter estimation is
given in [29, 30].

The assumed Gaussian process prior on the code’s output implies that the posterior
distribution is also a Gaussian process. Once the hyperparameters are estimated, the mean
of the posterior distribution approximates the output of ε∗r at any point (x∗, y∗) on the physical
domain. The variance of the posterior distribution quantifies the uncertainty that arises from
having only a limited number of observations [31]. It can be shown that the posterior distribution
is of the form

εr(x, y)
∣∣εobs, σ2

z ∼ N
(
m∗(x, y), σ2

zC
∗((x, y), (x′, y′))

)
19

where the posterior mean and posterior variance are respectively

m∗(x, y) = β̂ + rᵀC−1(y − 1β̂) 20

C∗((x, y), (x′, y′)) = C((x, y), (x′, y′))− rᵀ(x, y)C−1r(x, y) 21
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In the above expressions, C ∈ Rnt×nt such that [C]ij = C((xi, yi), (xj , yj)), ∀i, j = 1, . . . , nt,

r(x, y) ∈ Rnt such that r(x, y) =
(
C((x, y), (x, y)(1)), . . . , C((x, y), (x, y)(nt))

)ᵀ
, and 1 ∈ Rn such

that 1 =
(
1, . . . , 1

)ᵀ
.

Finally, it has been shown that if σ2
z is integrated out of the posterior distribution, then

ε(x, y)−m∗(x, y)

σ̂z
√
C∗

∼ tn−1 22

which is a Student’s t-distribution with n−1 degrees of freedom. Thus, the error indicator can be
evaluated at any (x, y) (location predicted by the multivariate least square regression problem
in equation 13) and ε(x, y) gives the uncertainty in the acoustic source location. Once the
error response surface surrogate has been trained, the prediction of the error is straightforward
and computationally efficient which allows for real-time identification of damage location in the
structure under active operating conditions.

The error surface ε(x, y) trained above is used in conjunction with the least square estimator
using correlation characteristics (presented in section 3) to give a probabilistic prediction of
the AE source conditional on the training data. At the prediction stage the reduced correlation
matrix, constructed using the optimal basis Φ∆,τs , is mapped to the AE source and the associated
error is evaluated from the trained Gaussian process surrogate in equation 22. Thus a robust
probabilistic estimate of the AE source location is obtained using the correlation characteristics
of the signal collected from the distributed sensor network. The above procedure is summarized

Algorithm 1 Source localization with Bayesian identification using sensor cross-correlation

Input: Sensor signal data: X = {xi : xi = [xi[1], xi[2], . . . , xi[n]]ᵀ ∀i = 1, . . . , ns}
Input: Equidistant test grid on plate surface: {~ri : i = 1, . . . , nd}
Output: Source location ~rs and the uncertainty around it ε(~rs) ∼ π(θ|~rs)

1: for k = 1 to nd do
2: Accumulate sensor data for grid point k: {x1, . . . , xns} where xi ∈ Rnt ∀i
3: for i = 1 to ns do
4: for j = i to ns do
5: Calculate normalized cross-correlation (r̄∆k,τs)ij ∈ R2τs+1

6: end for
7: end for
8: Assemble the upper triangular cross-correlation matrix r̄∆k,τs ∈ R2τs+1 × nI

9: end for
10: Compressed representation of r̄∆k,τs as T (r̄∆i,τs) = αi,τs using optimal basis Φ∆,τs .
11: Solve γ = arg inf

γ
‖αv,τsγ − ~r‖2 which maps αi,τs to ~r

12: Approximation error εri = αv,τsγ − ~r, ∀i ∈ nd for each test point on grid
13: A prior for Gaussian process surrogate: εri ∼ N (µ,Z(~r)|θ) with hyper-parameter set θ.

14: Obtain posterior: εr(~r)
∣∣εobs, θ∗ ∼ N

(
µ∗θ(~r), Z

∗
θ (~r)

)
conditioned on training data εobs

15: globals Φ∆,τs , µ∗, Z∗, θ∗

16: Compute r̂∆,τs , the normalized cross-correlation with test data
17: Evaluate: αv,τs = r̂T∆,τsΦ∆,τs and ~r 0 = αv,τsγ

18: Prediction: ~rc = ~r0 +N
(
µ∗θ(~r0), Z∗θ (~r0)

)
in Algorithm 1 whereby the steps to obtain posterior prediction from a probabilistic surrogate
has been listed.
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5. Experimental setup
In order to develop and validate the above approach for damage localization, data was collected
from a stiffened carbon fibre composite panel, representative of an aerospace structure.

5.1. Sample details
The manufactured stiffened panel is presented in Figure figure 3. The stiffeners were purchased
from Easy Composites Ltd. (Staffordshire, UK) they consist of a 90o L-shaped cross-section
with laminate thickness of 3mm and cross-section dimensions of 25 × 25mm and a length of
600mm. The stiffeners are made from 2× 2 twill high strength carbon fibres in an epxoy matrix

(a) Stiffener side (b) Grid side

Figure 3. Manufactured panel a) from stiffener side showing sensor positions and b) from skin
side showing grid used for data collection.

with fibres aligned in the 0o and 90o directions. The skin was manufactured from 12 plies of
Cytec MTM28/T800HB/200/42% 2×2 twill weave carbon fibre composite material with a (0)12

layup and was cured in an autoclave in line with the manufacturers recommended cure cycle.
Following curing the thickness was 2.85mm and the skin panel was cut to 550 × 600mm using
a water cooled diamond tipped cutting wheel. The skin and stiffeners were lightly abraded and
degreased in preparation for bonding using permabond ET5429 adhesive. The final overall panel
dimensions were 550 × 600mm with the stiffeners running vertically. Two aluminium dumby
ribs (representative of attachment to a wing rib for a composite wing skin) were attached at 1/4
and 3/4 hight of the panel by drilling and bolting using 12 M4 bolts for each, as seen in 3(a).
The top and bottom edges of the panel were potted into 20mm deep aluminium frames using
Airtech TMR2001 high temperature laminating resin to allow application of a compressive load
(not considered in this paper). A 500 × 500mm grid with 50mm resolution was applied to the
skin side of the panel (3(b)) and was used to aid the collection of training data.

5.2. Panel instrumentation
The panel was instrumented with eight AE sensors as seen in 3(a), five McWade NS-3303 (300
kHz), the larger gold coloured sensors, and three Mistral Group Ltd. Nano30 sensors (300kHz),
the smaller silver sensors. Four McWade sensors are arranged in a 275×175mm square with the
fifth placed centrally. The Nano30 sensors are arranged in a 75mm spaced triangular array. The
sensor outputs are amplified by 40dB using a McWade PA3303 pre-amplifier for the McWade
sensors and a Mistral Group Ltd. 2/4/6 (20-1200kHz) pre-amplifier for the Nano30 sensors. A
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silicon adhesive (Loctite 595) was used to attatch the sensors and provide a suitable acoustic
couplant, the adhsive was allowed to cure for 24 hrs before any data acquisition or testing was
undertaken and the correct coupling of the sensors was assessed using a H-N source [19, 20].
The AE data was recorded with a Mistras Group Ltd. PCI-2 acquisition system using a 45dB
threshold level. The detected signals were sampled at 5MHz for a duration of 1000µs: 600µs
after the threshold crossing point and with a pre-trigger of 400µs. The time when the threshold
crossing occurs for each test point has been recorded and shown in figure 4 and has been discussed
in section 6.

5.3. Data acquisition
AE data was collected from the manufactured composite panel using a H-N source [19, 20] to
excite artificial AE waves. The H-N source is recognised as a standard reference source (ASTM
E976) for AE testing and requires the fracture of a 0.5mm diameter 2H pencil lead agains the
sample surface at an angle of 30o. This is facilitated using a propelling pencil fitted with a
plastic rocker the rocker is placed on the sample and the pencil rotated until the lead contacts
the surface and then fractures. This results in minute elastic deformation of the surface under
the tip of the pencil lead and when the lead fractures the elastic energy stored in the surface
is rapidly released and excites a broadband elastic stress wave. This is highly representative
of the rapid release of elastic energy that occurs when cracks and fractures grow in materials
and hence is why it has been adopted as a standardised reference source for AE testing. The
H-N source commonly excites a larger amplitdue signal than a real fracture, however, the source
mechanism is still representative and it has been shown to be a suitable artificial source for
training a system for the detection and analysis of AE signals from real fracture events as seen
in the Delta T Mapping techniques discussed above.

The data used in this work were collected using H-N sources performed at the nodes of the
grid applied to the front of the stiffened panel. Ten H-N sources were conducted at each of the
grid nodes within the 500×500mm grid shown in 3(b) and for each H-N source eight AE signals
were recorded and stored (one from each sensor).

6. Results and discussion
A sample of the collected sensor data is shown in figure 4 where each red dot signify the time (x-
axis) of arrival of the wave at a sensor (8 sensors denoted by Ch 1” to “Ch 8”) and its maximum
amplitude (y-axis). A “hit” is recorded when the signal received at a particular sensor exceeds
a preset threshold value. Figure 4 shows the hits recorded simultaneously at all the eight sensor
locations. All the hits between the vertical blue lines on each channel indicate a test performed
with the H-N source at a grid point (figure 3(b)) on the panel. Around 10 tests have been
performed at each grid point due to which there are approximately 10 hits (red dots) between
two consecutive blue lines. The red dots are aligned in time across all channels except for the
small time difference associated with the waves travelling different distances from the source to
reach each sensor. All the tests represented in figure 4 have been performed along the 11 test
grid points at x = 0 (the bottommost line in the grid). This figure essentially represents only
the time of arrival for the signal at the individual sensors, but the correlation measure between
the sensors is shown in the next figure.

Figure 5 shows the elements of the normalized correlation matrix r̄τ (described in equation 5)
where the dimension of r̄τ for a particular τ is 8 × 8 since we have 8 sensors distributed over
the physical domain of the composite structure. Each sub-window in the figure denotes the
correlation rij(τ) over −100 ≤ τ ≤ 100. The figure shows that the autocorrelation function is
symmetric, i.e. rij(τ) = rij(−τ) and rij(τ) = rji(tau). The correlation function is treated as
an energy indicator of the waveforms recorded by each sensor as well as containing essential
information about the phase of the waves arriving at each sensor.
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Figure 4. Normalized correlation coefficients of the signal collected at the distributed sensor
network (only the first 4 out of the total of 8 sensor signals shown) over discrete time steps
−100 ≤ τs ≤ 100

The optimal basis on which the correlation matrix is projected to obtain a compressed
representation of the information collected at the sensors is shown in figure 6 A total of 30 basis
functions have been used to approximate the terms of the correlation matrix. The basis functions
are orthonormalized and have been calculated using the left eigenvectors of the correlation matrix
using the singular value decomposition. The rapidly decaying singular value spectrum of the
ensures that a good approximation is obtained with the reduced basis. The correlation matrix
projected on these 30 optimal bases is termed as the reduced correlation matrix.

The accuracy of the identified AE source using the least square estimate is shown in figure 8.
The black dots indicate the training points on the 10× 10 grid of the composite panel while the
red dots indicate the approximate identified acoustic source locations obtained using the least
square mapping of the reduced correlation matrix to the vector of the distance of the acoustic
source from the sensor network (as discussed in equation 13). The error εr(x, y) is given by
the distance of the identified source locations (red dots) to the known position of AE (black
squares).

This error indicator εr(x, y) varies as per the accuracy of the fit and a Gaussian process
surrogate is used to build a probabilistic error surface over the spatial domain as discussed
in section 4. Figure 8 gives the mean and standard deviation of the posterior error surface
conditional on the observations. This gives a distribution of the accuracy of the least sqaures
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Figure 5. Normalized correlation coefficients of the signal collected at the distributed sensor
network over discrete time steps −100 ≤ τs ≤ 100
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Figure 6. The first 10 modes of the reduced basis for the normalized correlation matrix

estimate as a function of the spatial coordinates. It can be verified that the mean error is almost
zero at those training locations where the accuracy of the least square method is maximum. The
locations where there are no training points show a high value of mean error and correspondingly
high standard deviation of error which is an expected behavior.
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Figure 7. The accuracy of fit of the training dataset based on the observed correlation matrix
over the physical domain of the composite panel. The square blocks shown in black constitute
the actual test grid while the red dots are least square estimates of the AE source.
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Figure 8. The mean an standard deviation of the error response surface over the domain of
the plate. The colormap of (a) varies between 0 − 45mm while for the standard deviation is
between 0− 20mm

Figure 9 shows the probability distribution associated with an identified test point. The
actual location of the acoustic source is shown as the green dot (although this information
has not been used to train the model). The assumed gaussian process surrogate predicts the
probability distribution of the identified acoustic source location conditional on the training data
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Figure 9. The probability distribution associated with a source identification. The true source
is shown as a green dot.

and though the mean true location does not match the exact source location (which is expected
due to experimental errors and measurement noise), the true source location is contained within
the 95% probability envelope as shown in figure 9.

Thus effectiveness of the methodology is demonstrated in terms of the accuracy of identifying
the source of the AE. The cost of producing the gaussian process surrogate is incurred mostly in
an offline training stage while in the online identification stage the effective location of the AE
source is derived efficiently from the surrogate. This allows for implementation of the technique
in real-time identification procedure within the performance constraints of the signal processing
platforms.

7. Conclusion and future work
The study demonstrates the effectiveness of the proposed correlation matrix based identification
of AE sources in applications of non-destructive testing. The effectiveness of the method stems
from using direct evaluations of normalized autocorrelation functions which effectively reduces
the impact of signal noise and captures the essential correlation information between the signals
recorded with the distributed sensor network. A reduced set of basis vectors which compress the
correlation information reduces the memory and computational overhead associated with the
method. A Gaussian process surrogate is fitted on the error surface over the spatial domain to
explicitly consider the error associated with deterministic evaluators. The results demonstrate
the effective of the method in predicting the source location with test data on the same panel.

The study promises a number of interesting future investigations to extend and improve the
proposed methodology to address additional challenges. Some of these are

• The application of the proposed methodology to identify the generation cracks on the
composite panel under fatigue loading cycles.

• The portability of the trained surrogate i.e. the ability of the trained model to predict AE
sources in nominally similar test panels.

• A hierarchical probabilistic model of the AE source mapped to the correlation matrix,
where identification stages can be compartmentalized to correspond to various levels of
refinement. This would involve the use of a combination of probabilistic classification and
regression methodology in an automated sequence to improve the accuracy and minimize
the computational overhead associated with the method.
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Subsequent work would also focus on using physics based model of ultrasonic wave
propagation in composite panels which would provide a means of identifying the nature of
damage induced in the structure which has not been addressed in this study. This would
allow us to go beyond the black-box input-output mapping techniques which is expected to
significantly improve the performance of the identification algorithm and provide additional
information pertaining to the degradation of health of operational structures.
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