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ABSTRACT 

Major depressive disorder (MDD) is a heritable disease with a heavy personal and socio-economic 

burden. Antidepressants of different classes are prescribed to treat MDD, but reliable and repro-

ducible markers of efficacy are not available for clinical use. Further complicating treatment, the 

diagnosis of MDD is not guided by objective criteria, resulting in the risk of under- or overtreatment. 

A number of markers of MDD and antidepressant response have been investigated at the genetic, 

epigenetic, gene expression and protein levels. Polymorphisms in genes involved in anti-depressant 

metabolism (cytochrome P450 isoenzymes), antidepressant transport (ABCB1), glucocorticoid 

signalling (FKBP5) and serotonin neurotransmission (SLC6A4 and HTR2A) were among those included 

in the first pharmacogenetic assays that have been tested for clinical applicability. The results of 

these investigations were encouraging when examining patient-outcome improvement. 

Furthermore, a nine-serum biomarker panel (including BDNF, cortisol and soluble TNF-a receptor 

type II) showed good sensitivity and specificity in differentiating between MDD and healthy controls. 

These first diagnostic and response-predictive tests for MDD provided a source of optimism for 

future clinical applications. However, such findings should be considered very carefully because their 

benefit/cost ratio and clinical indications were not clearly demonstrated. Future tests may include 

combinations of different types of biomarkers and be specific for MDD subtypes or pathological 

dimensions.  

1. Introduction 

Major depressive disorder (MDD) was among the five leading diseases contributing to DALYs in 2010 

in the USA, after cardiovascular diseases and lung cancer (Murray et al. 2013). The disorder also 

carries with it a substantial increase in suicide risk (Bradvik et al. 2008), a quality of life comparable 

to that of severe physical disorders such as arthritis and heart disease (Buist-Bouwman et al. 2006) 

and significant health expenditures, with direct costs alone amounting to 42 billion dollars in Europe 

(Sobocki et al. 2006). 

Despite the demonstrated efficacy of antidepressant medications, high inter-individual variability is 

observed in both response and side-effect occurrence and the lack of reliable markers of these 

outcomes contributes to unsatisfactory treatment effectiveness, poor treatment adherence and 

early treatment discontinuation (Fabbri et al. 2013a). Furthermore, few studies include or adjust for 

placebo response, which has been shown to account for 67.6% of the efficacy observed in anti-

depressant treatment (Rief et al. 2009). Placebo response is a major concern for drug trials, as well 

as for biomarker investigations, and likely has a significant genetic component (Walsh et al. 2002; 

Tiwari et al. 2013; Holmes et al. 2016). Importantly, objective criteria are not available to support the 



diagnosis of MDD based on clinical criteria only, resulting in the risk of clinician-dependent variability 

in terms of both diagnosis type and severity. Indeed, two well-known scenarios are observed in 

clinical settings: the diagnosis conflates adaptive sadness reactions with pathological states of 

depressed mood, resulting in overdiagnosis and over-treatment; on the other hand, underdiagnosis 

and undertreatment may lead to a severe, chronic, recur-rent or treatment-resistant course 

(Lorenzo-Luaces 2015). 

Research has been oriented toward the identification of biomarkers of MDD and antidepressant 

treatment outcomes, i.e., genetic or epigenetic variations, measures of gene expression or protein 

levels. Genetic variations that have been investigated in this field are mainly common single-

nucleotide polymorphisms (SNPs). Common SNPs alone have been estimated to explain about 42% 

of the variance in antidepressant response (Tansey et al. 2013). Epigenetics refers to the study of 

phenotypic variations that are not caused by DNA sequence modifications and it includes gene 

methylation and histone modifications. Epigenetic pro-files are inherited but are responsive to 

environmental stress, especially during early development (Jaenisch and Bird, 2003). Indeed, 

exposure to stressful or traumatic life events, especially early in life, is one of the strongest risk 

factors for the development of several psychiatric disorders, including MDD. Gene expression (mRNA 

levels) and protein level measures are useful complementary data to genetic and epigenetic 

information, since several levels of regulation occur after gene translation (i.e., post-translational 

modifications involving addition of functional groups or other proteins/peptides, structural changes, 

catabolic processes). Blood cells represent an easily available sample for gene expression studies and 

they share between 35 and 80% of the transcriptome with the brain (Tylee et al. 2013). A particular 

type of ribonucleic acid (RNA) known as microRNA (miRNA) received attention recently because 

miRNAs function as modulators of the degradation and translation of messenger RNA (mRNA), thus 

they represent a fundamental regulatory step in the process leading to protein production. Proteins 

can be dosed in serum or plasma and different protocols can be applied, thereby showing the results 

of proteomic studies are affected by preanalytical and analytical variability often resulting in poor 

comparability among different studies. Furthermore, new methods for quantitative proteomics were 

recently developed to increase the precision, robust-ness, and resolution of protein measurement (Li 

et al. 2015). 

We emphasise that markers of acute depressive phases (i.e., state markers such as the expression 

level of inflammatory genes) are distinct from markers of susceptibility to MDD (i.e., markers of 

vulnerability to the disease such as genetic variants), but they partially over-lap and are not always 

easy to distinguish. For example the expression level of some genes may be altered especially during 

the acute phases, but it may not completely normalise after symptom remission. The avail-able 

evidence for gene expression levels was mostly obtained during the acute phase of MDD. Finally, the 

aetiopathogenesis of MDD is hypothesised to partially but not completely overlap with the 

mechanisms of antidepressant drug action, thus the sections discussing the markers of 

antidepressant efficacy have been separated from those discussing the markers of MDD. 

2. Methods 

The present review is focused on biomarkers of MDD and antidepressant responses that may be 

nearest to clinical applications, i.e., biomarkers that: 

1. have an association with the phenotypes of interest at several ‘‘omics’’ levels (genetic, 

epigenetic and/or peripheral blood transcriptomics/proteomics); 

2. are supported by at least one meta-analysis or replicated results in the same direction by at 

least three studies in conjunction with consistent data from translational studies. 



In addition to these criteria, biomarkers that have been included in a pilot study testing clinical 

applicability (in terms of individual and possibly economic benefits) are also included in this review. 

For an overview of markers in the first and second group see Tables 1 and 2, respectively. 

Finally, a section is dedicated to new promising bio-markers, including miRNAs and, for example, 

methodological approaches such as polygenic risk scores (PRS). The data used for this review have 

been extracted from MEDLINE, EMBASE and Web of Science (ISI) and include articles published up to 

February 2016. 

3. Serotonergic neurotransmission 

Serotonin (5-HT) is known to be involved in many physiological and behavioural processes that are 

dysregulated in MDD, including mood, appetite, sleep, activity, suicide, sexual behaviour and 

cognition. The decreased levels of 5-HT metabolites in cerebrospinal fluid (CSF), coupled with the 

mood-lowering effects of tryptophan depletion and the efficacy of serotonin-modulating 

antidepressants, have supported the theory that dysfunctions of the 5-HT system are involved in the 

pathogenesis of MDD (Jans et al. 2007). Genetic polymorphisms are among the innate factors that 

modulate 5-HTergic neurotransmission, given that heritability has been reported to account for 

approximately 35% of the variance in CSF 5-hydroxyindoleace-tic acid (5-HIAA), the main metabolite 

of 5-HT levels (Beck et al. 1984; Oxenstierna et al. 1986). 

3.1. Serotonin transporter 

The serotonin transporter (SERT) is the primary target of selective serotonin reuptake inhibitors 

(SSRIs) and one of the main targets of other antidepressant classes. The SERT is responsible for 5-HT 

reuptake from the synaptic cleft and thus determines the magnitude and duration of the 5-HT 

synaptic signal. A reduction of SERT sites in the brain (particularly in midbrain and amygdala) of 

depressed patients has been demonstrated both by functional imaging (Gryglewski et al. 2014; Yeh 

et al. 2014) and post-mortem brain studies (Mann et al. 2000). As the binding to the SERT and the 5-

HT uptake capacity remain low after recovery, low SERT activity has been suggested as a trait marker 

for mood disorders (Lesch 2001). 

3.1.1. Genetic polymorphisms 

Known polymorphisms in the gene coding for the SERT (SLC6A4) produce alterations in the 

expression level and are hypothesised to affect both the risk of affective disorders and 

antidepressant response. In detail, the short (S) allele (14-repeats) of the 5-HTTLPR 

insertion/deletion polymorphism determines a half basal expression of SERT compared to the long 

(L) allele (16-repeats) (Heils et al. 1996), as well as when compared to the L allele combination with 

the G allele of the rs25531 polymorphism (LG) (Hu et al. 2006). A number of genetic studies 

investigated the effect of the 5-HTTLPR polymorphism on susceptibility to MDD, and two meta-

analyses reported absent or negligible effects (Munafo et al. 2009; Risch et al. 2009). However, these 

meta-analyses included only a minority of the available studies. A more recent and comprehensive 

study found strong evidence that 5-HTTLPR moderates the relationship between stress and 

depression, with an association between the S allele and the risk of developing depression under 

stress (Karg et al. 2011). Stratification of the analysis for the type of stressor showed a stronger risk 

effect of the S allele in cases of childhood maltreatment and medical conditions. A more recent 

study on a cohort of 5,249 individuals assessed at birth and followed up to the age of 18 confirmed 

this gene  environment interaction (Rocha et al. 2015). The interactive effect of the S allele and 

stress on the risk of MDD may be partly explained by the modulation of the hypothalamopituitary-



adrenal (HPA) axis. Indeed, S allele carriers display increased basal activity of the HPA axis and S/S 

homozygotes show increased cortisol/corticosterone stress reactivity compared with L carriers (van 

der Doelen et al. 2014). Interesting findings from imaging studies include smaller hippocampal 

volumes in S carriers with a history of environmental adversities and higher amygdala activity in 

response to a number of negative stimuli in S carriers (Won and Ham, 2016). In conclusion, the 5-

HTTLPR S allele is considered to be a risk factor for MDD but only in cases of stressful environmental 

conditions and it is neither a required nor sufficient factor for developing MDD. Insufficient data are 

available in regard to the role of the triallelic locus (5-HTTLPR and rs25531 combination) in MDD 

susceptibility (Odgerel et al. 2013). 

 

The triallelic 5-HTTLPR/rs25531 locus was also extensively investigated as a modulator of 

antidepressant response. Single-photon emission computed tomography and positron emission 

tomography (PET) studies reported that higher pre-treatment availability and greater SSRI 

occupancy of the SERT might predict better treatment response (Kugaya et al. 2004; Yeh et al. 2015). 

The most confirmed pharmacogenetic finding was an association of the S allele with worse 

antidepressant efficacy than the LL genotype in Caucasian patients treated with SSRIs (Porcelli et al. 

2012). Relatively fewer studies genotyped the triallelic locus and they did not support a substantial 

role of the polymorphism on antidepressant efficacy (Fabbri et al. 2013a). Several pharmacogenetic 

studies (Perlis et al. 2003; Murphy et al. 2004; Popp et al. 2006; Hu et al. 2007; Smits et al. 2007; 

Maron et al. 2009) and one meta-analysis (Kato and Serretti 2010) reported that the S allele may 



also be a risk factor for the development of SSRI-induced side effects in Caucasian populations, 

though not for sexual dysfunction (Bishop et al. 2009; Strohmaier et al. 2011). 

3.1.2. Gene methylation 

DNA methylation profiles at CpG (cytosine-guanine dinucleotides) islands have been studied as a 

modulator of SLC6A4 expression. Indeed, methylation at CpG islands make a gene less accessible to 

the molecular transcriptional apparatus that decodes the DNA sequence into mRNA and hence the 

production of specific proteins is reduced. An early study found a trend of association between 

history of MDD and increased SLC6A4 methylation (Philibert et al. 2008), and a subsquent study 

reported that depressive symptoms were more common among adolescents with elevated SLC6A4 

methylation who carried the 5-HTTLPR S allele (Olsson et al. 2010). Higher SLC6A4 promoter 

methylation in subjects with a history of childhood adversities was demonstrated (Kang et al. 2013b; 

Booij et al. 2015) and associated with family history of depression and more severe depressive 

psychopathology (Kang et al. 2013b). Another recent study found no evidence of an effect of 

increased SLC6A4 methylation status on the risk of MDD (Okada et al. 2014). These findings support 

the hypothesis that SLC6A4 methylation status may be a proxy of childhood adversities (other than a 

hereditary factor) and thus it may be a useful marker of MDD susceptibility in combination with the 

5-HTTLPR S allele. SLC6A4 methylation status was also investigated in relation to antidepressant 

treatment response, but with mixed results (Kang et al. 2013b; Domschke et al. 2014; Okada et al. 

2014). 

 

3.1.3. Peripheral biomarkers 

The genetic and epigenetic modulation of SERT expression and function has been complemented by 

the study of SERT as a peripheral biomarker of MDD and antidepressant efficacy. SERT functioning 

can be studied in platelets, since the SERT protein expressed in platelets is considered identical to 

the one found in neurons, with similar structural and functional proper-ties found in both tissues 

(Yubero-Lahoz et al. 2013). Higher SERT affinity constant and higher maximal uptake rate before and 

after antidepressant treatment were associated with treatment efficacy (Rausch et al. 2001, 2002, 

2003; Myung et al. 2013). Interestingly, reductions in peripheral cell 5-HT uptake rates, cell sur-face 

SERT binding, and 5-HIAA/serotonin ratios were associated with the 5-HTTLPR S allele, suggesting 

that they may represent proxy markers of the 5-HTTLPR genotype (Singh et al. 2012). SLC6A4 

expression (mRNA level) in peripheral cells (lymphocytes) was also investigated, since lymphocytes 



are thought to potentially act as a neural probe for studying psychiatric dis-orders (Gladkevich et al. 

2004). Studies on small samples of depressed patients suggested a reduction of SERT expression 

after antidepressant treatment (Iga et al. 2005; Tsao et al. 2006) with a possible positive correlation 

with response (Belzeaux et al. 2014), but opposite findings also exist (Pena et al. 2005; Belzeaux et 

al. 2010). The reduction of SERT expression in the rat brain was associated with antidepressant-like 

behaviours (Thakker et al. 2005) and key markers of antidepressant action: reduced expression and 

function of 5-HT1A-autoreceptors, elevated extracellular 5-HT in the forebrain and increased 

neurogenesis and expression of plasticity-related genes (BDNF, VEGF, ARC)in the hippocampus 

(Ferres-Coy et al. 2013). No clear association between SLC6A4 expression and MDD risk was 

demonstrated, since the few studies reported either negative findings (Belzeaux et al. 2010), higher 

expression of the gene in patients compared to controls (Iga et al. 2005) or the opposite finding 

(Pena et al. 2005). 

3.2. Serotonin receptors 

3.2.1. Serotonin receptor 1A 

The 5-HT1A autoreceptor mediates the inhibition of serotonergic raphe neurons by negative 

feedback (Pineyro and Blier 1999), while 5-HT1A postsynaptic receptor activation has been shown to 

increase dopa-mine release in the medial prefrontal cortex (PFC), striatum and hippocampus 

(Sakaue et al. 2000). These findings suggest that increased 5-HT1A presynaptic and decreased 

postsynaptic activity may co-occur in MDD. Several studies using PET imaging demonstrated 

elevated 5-HT1A binding in the brain of MDD subjects, especially in the raphe (Parsey et al. 2010; 

Kaufman et al. 2015). 5-HT1A density distinguished male controls from depressed males with high 

sensitivity and specificity (both >80%) (Kaufman et al. 2015). A reduction in raphe 5-HT1A 

autoreceptor binding was demonstrated during SSRI treatment and was associated with symptom 

improvement (Gray et al. 2013). 

3.2.1.1. Genetic polymorphisms The G allele of a functional promoter polymorphism in the 

serotonin 1A receptor gene (HTR1A rs6295 or C-1019G) has been associated with increased 5-HT1A 

expression in raphe nucleus neurons both in vitro (Lemonde et al. 2003) and in vivo using PET 

(Parsey et al. 2010). A recent meta-analysis found that MDD patients had higher frequencies of the 

GG genotype and/or G allele than controls, confirming the hypothesis derived from func-tional 

studies. The study also found that rs878567 (syn-onymous SNP located downstream of the gene) T 

allele was associated with MDD susceptibility (Kishi et al. 2013). The most recent meta-analyses that 

inves-tigated the role of rs6295 in antidepressant efficacy provided negative findings (Zhao et al. 

2012; Niitsu et al. 2013). Other polymorphisms in the gene were marginally investigated. 

3.2.1.2. Peripheral biomarkers Higher platelet HTR1A expression was associated with MDD and 

severity of symptoms in drug-free patients (Zhang et al. 2014), and higher receptor binding was 

found in lymphocytes of depressed patients (Gonzalez et al. 2007). In contrast, a previous study did 

not report any difference in lymphocyte 5-HT1A receptor capacity and affinitybetween MDD 

patients and controls (Fajardo et al. 2003). No data are available in regard to antidepres-sant 

efficacy. 

3.2.2. Serotonin receptor 2A 

The serotonin receptor 2A (5-HT2A) is primarily a post-synaptic excitatory receptor, with wide 

distribution throughout the brain but with the highest density in the neocortex (Burnet et al. 1995). 

Both depression and suicide have been associated with greater 5-HT2A receptor binding in PFC, 

although data were not consistent (Stein et al. 2007). Accordingly, there is a decrease in 5-HT2A 



binding in cortical regions, particularly in the frontal cortex, after antidepressant treatment (Meyer 

et al. 2001), and compensatory downregulation of 5-HT2A receptors can prevent depressive 

symptoms induced by tryptophan depletion (Yatham et al. 2001). 

3.2.2.1. Genetic polymorphisms Different polymorphisms (rs6311 or -1438A/G, rs6313 or 102C/T, 

rs7997012 and rs7333412) have been investigated within the 5-HT2A gene with several positive but 

often inconsistent findings (Polesskaya and Sokolov 2002; Lin et al. 2009; Fabbri et al. 2013b; Niitsu 

et al. 2013; Zhao et al. 2014). Interestingly, the region downstream to the first intron of the gene 

was found to harbour other possibly relevant polymorphisms in the context of anti-depressant 

response. Indeed, rs7333412, rs7324017, rs1923882 (Fabbri et al. 2014) and rs7997012 (Peters et al. 

2009) are located in this region and were associated with antidepressant response in the STAR*D 

sample. Several other studies investigated rs7997012 with negative results (Illi et al. 2009; Kishi et al. 

2009; Perlis et al. 2009; Uher et al. 2009; Horstmann et al. 2010), although none of these included 

samples as large as the STAR*D study. The effect of rs7997012 and rs6313 on antidepressant 

efficacy was confirmed by the most recent meta-analysis (Lin et al. 2014). 

3.2.2.2. Peripheral biomarkers Platelet 5-HT2A binding kinetics did not differ between MDD patients 

and controls (Khait et al. 2005), but seasonal variation in plate-let 5-HT2A binding was demonstrated 

to be different in MDD patients compared to controls (Khait et al. 2002). Increased density of 

platelet 5-HT2A receptors may be a marker of MDD, but is more consistently associated with suicide 

risk (Mendelson, 2000). Despite increased receptor density, blunted receptor response was found in 

patients who have made high-lethality suicide attempts (Malone et al. 2007). Preliminary evidence 

suggested that a trend of increased HTR2A mRNA levels in peripheral lymphocytes may be observed 

during the first 8 weeks of antidepressant treatment (Belzeaux et al. 2010), suggesting that further 

studies should investigate this potential biomarker of antidepressant efficacy. Another preliminary 

study found that 5-HT2A receptor clustering in peripheral lymphocytes is altered in MDD and may be 

a bio-marker of therapeutic efficacy (Rivera-Baltanas et al. 2014). 

4. Neuroplasticity 

Neural plasticity may be defined as the ability of neurons and neural elements to adapt in response 

to intrinsic and extrinsic signals. Adult neurogenesis, the development of dendritic spines, and 

synaptic adaptations are included among the processes defined as neural plasticity. Adult 

hippocampal neurogenesis has been hypothesised to play a key role in the pathogenesis and 

successful treatment of MDD (Wainwright and Galea 2013). Indeed, depressed patients have 

reduced hippocampal volume and neurogenesis that is influ-enced by the number of episodes and 

duration of the illness (McKinnon et al. 2009; Wainwright and Galea 2013). Antidepressant drugs can 

both prevent stress-induced decrease of hippocampal neurogenesis and reverse it (Malberg and 

Duman 2003; Bessa et al. 2009). Pathway analysis confirmed the enrichment of neuroplasticity 

pathways in MDD, with the involvement of CREB signalling in neurons, synaptic long-term 

potentiation and axonal guidance signalling (Jia et al. 2011; Hunter et al. 2013). Interestingly, several 

members of the integrin signalling pathway, including ITGB3, ZYX, ARF1, CAPNS1, CDC42, ILK, LIMS1, 

RAC2 and TTN were found differentially expressed between antidepressant responders and non-

responders. Integrins are involved in the control of synaptic plasti-city and long-term potentiation 

(Martins-de-Souza et al. 2014). 

4.1. Brain-derived neurotrophic factor 

Brain-derived neurotrophic factor (BDNF) is included in the neurotrophin family of growth factors 

and acts as an important mediator of neuron survival, neuroplasticity and neurogenesis. BNDF is 



implicated in processes that modulate learning, memory and mood (Soule et al. 2006; Cowansage et 

al. 2010). Stress was demonstrated to decrease BDNF in mouse hippocampus, cortical and 

subcortical regions (Pizarro et al. 2004). Antidepressant treatment increases BDNF levels, stimulates 

neurogenesis and reverses the inhibitory effects of stress, thus BDNF and neurotrophins are possible 

targets for developing new antidepressant molecules (Masi and Brovedani 2011). 

4.1.1. Genetic polymorphisms 

The common SNP rs6265 (Val66Met or 196G/A) of the BDNF gene has received particular attention, 

since the Met allele decreases the processing and release of BDNF and is associated with decreased 

hippocampal volume in humans. However, available data do not support a significant effect of 

rs6265 on MDD susceptibility, as indicated by meta-analyses (Gratacos et al. 2007; Gyekis et al. 

2013) that also provided negative findings for other BDNF SNPs (11757C/G, 270T/C, 712A/G and 

rs988748). Conversely, the rs6265 Met allele was demonstrated to moderate the relationship 

between life stress and depression (Hosang et al. 2014; Gutierrez et al. 2015). 

Pharmacogenetic studies of antidepressant response mainly found a positive molecular heterosis 

effect of the rs6265 SNP. Indeed, the rs6265 heterozygous genotype was associated with better 

treatment outcome as confirmed by a recent meta-analysis (Niitsu et al. 2013), although some 

inconsistent or negative findings were also reported (Fabbri et al. 2013a). 

4.1.2. Gene methylation 

Hypermethylation of the BDNF gene promoter was reported in Wernicke’s area (Keller et al. 2010) 

and peripheral blood (Kang et al. 2013a) of subjects who com-mitted suicide. The CpG island of the 

BDNF gene upstream of exon I was found as a possible diagnostic biomarker of MDD (Fuchikami et 

al. 2011), and higher methylation status of the BDNF promoter was associated with MDD (D’Addario 

et al. 2013; Carlberg et al. 2014; Dell’Osso et al. 2014; Januar et al. 2015) and post-stroke depression 

(Kim et al. 2013). 

Lower histone 3 lysine 27 (H3K27) trimethylation binding within the BDNF promoter (P4 region) of 

PFC (Chen et al. 2011) and peripheral blood (Lopez et al. 2013) was associated with antidepressant 

treatment, and with positive response to treatment (Lopez et al. 2013). The effect of antidepressant 

drugs on BDNF promoter methylation levels is still scarcely investigated and available data suggested 

a possible higher methylation status in treated versus untreated patients (Carlberg et al. 2014), but 

an enhanced reduction in suicidal ideation after treatment in subjects with low methylation levels 

(Kang et al. 2013a). Methylation levels may also be reduced in patients receiving combination 

treatments of antidepressants plus mood stabilisers compared to patients on antidepressant drugs 

alone (D’Addario et al. 2013). 

4.1.3. Peripheral biomarkers 

According to recent meta-analytic results, both serum and plasma BDNF levels are decreased in 

acute MDD, but do not differ in euthymic subjects with a history of MDD compared to healthy 

controls. Furthermore, anti-depressant treatment of MDD patients increases serum BDNF levels in 

responders and remitters significantly more than in non-responders, but insufficient data are 

available for comparing plasma levels in responders versus non-responders (Polyakova et al. 2015). 

This would be an important comparison, as plasma and serum BDNF levels show at least a 100-fold 

difference (Rosenfeld et al. 1995). The results of prior meta analyses reported similar results. Their 

analyses demonstrated lower serum BDNF concentrations in antidepressant-free depressed patients 

relative to both healthy controls and antidepressant-treated depressed patients (Brunoni et al. 2008; 



Molendijk et al. 2014) and an increase in BDNF levels after antidepressant treatment that was 

associated with the degree of symptom improvement (Brunoni et al. 2008). 

4.2. Cyclic AMP response element binding protein 1 

Cyclic AMP response element binding protein 1 (CREB1) encodes a transcription factor that induces 

transcription of genes in response to hormonal stimulation of the cAMP pathway. Chronic treatment 

with SSRIs increased the expression of phosphorylated CREB1 in the hippocampus and PFC of rats, 

and treatment with antidepressants also increased the levels of protein and mRNA of CREB1 and 

BDNF in the hippocampus of rats (Ignacio et al. 2014). As a result of such findings, CREB1 is 

hypothesised to upregulate the transcription of BDNF, representing an important mechanism of 

action of antidepressants. 

4.2.1. Genetic polymorphisms 

CREB1 polymorphisms have been associated with mood disorders, mainly exhibiting a significant 

gender effect (Zubenko et al. 2003a, 2003b; Perlis et al. 2007; Dong et al. 2009; Utge et al. 2010; 

Juhasz et al. 2011; Lazary et al. 2011), nevertheless not unequivocally (Burcescu et al. 2005; Hettema 

et al. 2009). Findings for CREB1 and antidepressant response are also inconsistent (Murphy et al. 

2004; Wilkie et al. 2007; Serretti et al. 2011; Calati et al. 2013) and negative findings have also been 

reported (Dong et al. 2009; Crisafulli et al. 2012; Matsumoto et al. 2014). 

4.2.2. Peripheral biomarkers 

CREB DNA binding activity, CREB total protein expression and phosphorylated CREB were found 

decreased in leukocytes of drug-free MDD patients compared with normal controls (Ren et al. 2011; 

Lim et al. 2013). On the other hand, no difference in mRNA levels between patients and controls was 

demonstrated by other studies in small samples of MDD patients (Lai et al. 2003; Belzeaux et al. 

2010; Iacob et al. 2013). Another study focussed on mRNA levels in leukocytes demonstrated an 

opposite finding, i.e., higher CREB mRNA levels in MDD patients compared to controls (Iga et al. 

2007). We underline that negative findings were restricted to gene expression studies that did not 

consider CREB DNA binding activity and protein levels, and were therefore unable to identify 

possible consequences of abnormalities during or after mRNA translation into proteins. 

Animal models (Tardito et al. 2009) and in vitro data (Hisaoka et al. 2008) support the induction of 

CREB activation and CREB-regulatory signalling by antidepressants. Patients with low baseline 

phosphorylated CREB in peripheral T lymphocytes showed a greater rate of response than patients 

with high baseline phosphorylated CREB. A value of baseline phosphorylated CREB for predicting 

response was identified by Hisaoka et al. (2008) who reported a positive predictive value of 0.78, a 

negative predictive value of 0.64 and accuracy of 0.695. After 6 weeks of SSRI treatment, median 

values of change of both total and phosphorylated CREB were greater in responders than in non-

respond-ers (Lim et al. 2013). A greater increase in phosphorylated CREB in responders was 

confirmed by other studies using different pharmacological or psychotherapeutic treatments (Koch 

et al. 2002, 2009), but no variation was reported after venlafaxine treat-ment (Rojas et al. 2011). 

Inconsistent findings were reported in regard to CREB1 mRNA variations after antidepressant 

treatment (increased, Belzeaux et al. 2010, or decreased, Lai et al. 2003; Iga et al. 2007, levels). 

4.3. Glial cell line-derived neurotrophic factor 

Glial cell line-derived neurotrophic factor (GDNF) is a member of the transforming growth factor 

beta super-family and is extensively distributed in mammalian brains, including the hypothalamus, 

substantia nigra and thalamus (Golden et al. 1998). GDNF promotes neurite growth (Ducray et al. 



2006) and protects neurons and glial cells from oxidative or neuro-inflammatory injury (Hochstrasser 

et al. 2011; Jaumotte and Zigmond 2014). 

4.3.1. Genetic polymorphisms 

To the best of our knowledge, only one previous study investigated the possible impact of GDNF 

genetic poly-morphisms on antidepressant response and no study investigated the possible effect on 

MDD susceptibility. In detail, rs2973049 A allele and rs2216711 T allele were associated with 

paroxetine non-response in a Chinese population (Wang et al. 2014), the latter showing a selective 

effect in females. 

4.3.2. Peripheral biomarkers 

Recent meta-analytic findings supported a moderate but significant decrease in serum GDNF protein 

level in patients with depression, with a selective effect on MDD that was not observed in other 

depressive disorders nor in old-age depression (Lin and Tseng 2015). A decrease in serum GDNF 

protein level was also found in adolescent depression (Pallavi et al. 2013), but meta-analytic data are 

unavailable to support this finding. GDNF mRNA in peripheral cells was reduced in individuals during 

a major depressive episode compared to individuals in remission and to healthy controls (Otsuki et 

al. 2008). Furthermore, an increase in serum GDNF concentrations was demonstrated after 

antidepressant pharmacological treatment (Zhang et al. 2008) and electroconvulsive therapy (Zhang 

et al. 2009). 

5. Inflammation and HPA axis 

Bi-directional mechanisms have been hypothesised to link inflammatory processes and depression. 

Prolonged exposure to inflammatory mediators can impair the regulation of neuroendocrine 

response to stress, influence the availability of monoamine neurotransmitters, and decrease 

neurogenesis. Conversely, both medically ill and medically healthy patients with MDD have been 

found to exhibit elevations in inflammatory cytokines and their soluble receptors in peripheral blood 

and CSF, as well as elevations in peripheral blood concentrations of acute phase proteins, 

chemokines, adhesion molecules and inflammatory mediators such as prostaglandins (Miller et al. 

2009). A proteomic analysis in patients with MDD compared to controls confirmed that altered 

expression proteins involve lipid metabolism and inflammation (Xu et al. 2012). A comprehensive 

analytical framework based on multiple lines of evidence including association, linkage, gene 

expression, regulatory pathways and literature searches further support the role of inflammatory 

pathways in MDD (Jia et al. 2011). 

5.1. C-reactive protein 

C-reactive protein (CRP) is a marker of systemic inflammation and CRP phenotypes are 40% 

heritable, a hereditability similar to that for major depression (Su et al. 2009). Environmental factors 

such as smoking, obesity and cardiovascular diseases, as well as gender differences could also be 

implicated and modulate the relationship between the CRP gene and depression (Hage and Szalai 

2009). This may be especially import-ant in the elderly who have a high prevalence of comorbid 

chronic disorders. 

5.1.1. Genetic polymorphisms 

Several genetic polymorphisms in the CRP gene have been associated with CRP levels (Almeida et al. 

2009), but their association with depression remains controversial (Almeida et al. 2009; Halder et al. 

2010; Luciano et al. 2010; Gaysina et al. 2011; Ancelin et al. 2015). 



5.1.2. Peripheral biomarkers 

High CRP serum levels were identified as a risk factor for de novo depression in women (Pasco et al. 

2010), depression in men (Ford and Erlinger, 2004; Liukkonen et al. 2006; Elovainio et al. 2009; 

Vogelzangs et al. 2012), atypical depression (Hickman et al. 2014) and depressive symptoms (Uddin 

et al. 2011), especially of the somatic type (Duivis et al. 2013). Furthermore, life-time occurrence of 

multiple depressive episodes was associated with higher CRP levels (Copeland et al. 2012). In a very 

large cohort of more than 70, 000 individuals, cross-sectional analysis demonstrated that increased 

CRP levels were associated with increased risk for psychological distress and depression (Wium-

Andersen et al. 2013). Two meta-analyses have con-firmed that major depression is associated with 

increased CRP levels (Howren et al. 2009; Valkanova et al. 2013). 

The majority of studies demonstrated a reduction in CRP serum level after SSRI treatment (Leo et al. 

2006; O’Brien et al. 2006; Pizzi et al. 2009) and treatment with non-SSRI antidepressants (Lanquillon 

et al. 2000; Tuglu et al. 2003). A single study reported opposite findings (Dawood et al. 2007). A 

meta-analysis reported a marginally significant decrease in CRP after anti-depressant treatment 

(Hiles et al. 2012), while higher CRP levels at baseline were found to predict the persistence of 

depressive symptoms over 5 years (Zalli et al. 2015). Interestingly, MDD patients with high CRP levels 

were also reported to be less placebo-responsive and less responsive to eicosapentaenoic acid (EPA; 

Rapaport et al. 2015). 

5.2 Interleukin-1b 

Interleukin-1b (IL-1b) is a potent pro-inflammatory cytokine that acts as a key driver of both 

peripheral and central immune responses. IL-1b has been extensively described for its ability to act 

within the CNS as a modulator of hippocampal memory, as well as for its involvement in neuronal 

death (van de Veerdonk and Netea 2013). IL-1b was demonstrated to regulate the activity of key 

members of the kynurenine pathway with an effect on the availability of tryptophan and the 

production of toxic metabolites, explaining its modulaing effect on neurogenesis in human 

hippocampal pro-genitor cells (Zunszain et al. 2012). 

5.2.1. Genetic polymorphisms 

The G allele of the rs16944 polymorphism (located within the promoter of the IL-1b gene) has been 

associated with SSRI non-response (Yu et al. 2003; Tadic et al. 2008; Baune et al. 2010) and with 

recurrent major depression (Borkowska et al. 2011). In addition, IL-1b promoter polymorphism 

rs1143627 was also associated with recurrent major depression (Borkowska et al. 2011). 

5.2.2. Peripheral biomarkers 

Meta-analyses reported both a positive association between IL-1b serum level and depression 

(Howren et al. 2009), in addition to a reduction in IL-1b serum level following antidepressant 

treatment (Hannestad et al. 2011). However, one meta-analysis investigated the role of IL-1b serum 

level in major depression and reported no evidence of association (Dowlati et al. 2010). The latter 

meta-analysis included fewer studies compared to the work of Howren et al. (2009) though the 

study did take into account potential confounders (e.g., BMI, type of depression assessment). More 

recent studies found that serum levels of IL-1b were higher in MDD when compared to controls or 

bipolar disorder subjects (Mota et al. 2013) and IL-1b mRNA was identified as a possible marker for 

predicting antidepressant response (Belzeaux et al. 2012). The latter finding was confirmed by an 

independent study that found higher baseline mRNA levels of IL-1b (þ33%) in non-responders 

(Cattaneo et al. 2013). Platelet content of IL-1b was also associated with MDD (Hufner et al. 2014). 



5.3. Interleukin-6 

Interleukin-6 (IL-6) is a pleiotropic pro-inflammatory cytokine, whose peripheral concentration was 

found to be inversely related to hippocampal volume in MDD (Frodl et al. 2012). The pathogenetic 

role of IL-6 in depression involves the acute phase of response, disorders in zinc and the erythron, 

HPA axis activation, induction of the tryptophan catabolite pathway, oxidative stress, autoimmune 

processes and neuroprogression (Maes et al. 2014). 

5.3.1. Genetic polymorphisms 

IL-6 polymorphisms were mainly studied in relation to specific subtypes of depression, such as post-

stroke depression (Kim et al. 2012) and childhood depression (Misener et al. 2008), but with 

negative findings. The -174 SNP (rs1800795) is particularly interesting since individuals who carry the 

G allele have higher plasma concentrations of IL-6 (Zakharyan et al. 2012) and the polymorphism has 

been studied as a modulator of interferon-induced depression. Patients who carried the C allele (low 

synthesising IL-6) were reported to show fewer depressive and anxiety symptoms than those 

carrying the G allele, after beginning treatment with IFN-a (Bull et al. 2009; Udina et al. 2013). 

However, only a small study investigated the potential role of the SNP in MDD and it reported 

negative findings (Clerici et al. 2009), while an additional study reported no association between 

MDD and the SNP at -634 in a Chinese population (Hong et al. 2005). Our findings suggest further 

investigation of IL-6 polymorphisms in MDD is warranted, particularly as a suggestive signal 

(rs7801617 SNP) for association with escitalopram response was detected in the IL-6 gene in the 

Genome-Based Therapeutic Drugs for Depression (GENDEP) genome-wide association study (Uher et 

al. 2010). 

5.3.2. Gene methylation 

An inverse correlation between methylation of IL-6 CpGs and circulating IL-6 and CRP levels was 

reported in individuals with lifetime depression (Uddin et al. 2011), but findings have yet to be 

replicated. 

5.3.3. Peripheral biomarkers 

Two meta-analyses supported the association between MDD and higher IL-6 levels compared to 

healthy controls (Howren et al. 2009; Liu et al. 2012). Furthermore, one meta-analysis of longitudinal 

studies reported a modest effect of IL-6 levels on the risk of developing subsequent depressive 

symptoms (Valkanova et al. 2013). A pathway analysis on transcriptomic data showed that genes 

upregulated in MDD subjects com-pared to controls were enriched in IL-6 signalling path-ways 

(Jansen et al. 2016). 

Meta-analytic results also suggested a significant decrease in IL-6 serum levels after antidepressant 

treatment (Hiles et al. 2012), as confirmed by a subsequent study that demonstrated a correlation 

between plasma IL-6 levels and changes in severity of depressive state during SSRI treatment 

(Yoshimura et al. 2013). MDD patients with high IL-6 levels were also reported to be less placebo 

responsive and less responsive to EPA (Rapaport et al. 2015). IL-6 mRNA levels at baseline or after 

antidepressant treatment were not found to be associated with response in the GENDEP project 

(Cattaneo et al. 2013; Powell et al. 2013). 

5.4. Tumor necrosis factor alpha 

Tumor necrosis factor alpha (TNF-a) is a pro-inflammatory cytokine that is hypothesised to 

contribute to the development of MDD and is involved in the modulation of serotonergic 



neurotransmission through the increase of SERT expression and activity (Malynn et al. 2013). Mice 

susceptible to stress-induced anhedonia show elevated expression of TNF-a and SERT in the 

prefrontal area (Couch et al. 2013) and SSRIs inhibit the secretion of TNF-a in human T lymphocytes 

(Taler et al. 2007). 

5.4.1. Genetic polymorphisms 

The G-308A (rs1800629) TNF-a polymorphism is a functional SNP whose A allele is associated with 

higher gene expression. Consistent with the inflammatory theory of depression, the A allele was 

associated with a higher risk of MDD in Korean subjects (Jun et al. 2003), but later studies either 

found no association with post-stroke depression (Kim et al. 2012) and single-episode depression 

(Haastrup et al. 2012), or reported a positive association in the opposite direction in late-life 

depression (Cerri et al. 2009). However, these studies were performed on small sample sizes and 

limited coverage of genetic variability was provided. Importantly, the Genetic Association 

Information Network genome-wide association study (1738 cases and 1802 controls) found the 

rs76917 variant showed the strongest evidence of association with MDD (Bosker et al. 2011), 

suggesting that studies with adequate sample size and sufficient gene coverage have increased 

power to demonstrate the influence of TNF-a on MDD. No pharmacogenetic studies are avail-able 

investigating the possible association between TNF-a polymorphisms and antidepressant response. 

5.4.2. Peripheral biomarkers 

Meta-analytic results reported that TNF-a blood levels are higher in MDD compared to healthy 

controls (Dowlati et al. 2010; Liu et al. 2012), especially in sub-jects of European ancestry (Liu et al. 

2012). TNF-a mRNA levels in peripheral leukocytes were also found to be higher in patients with 

major depression com-pared to controls (Tsao et al. 2006). 

Higher baseline levels of TNF-a mRNA and protein were associated with non-response in the 

GENDEP project (Cattaneo et al. 2013; Powell et al. 2013) and findings in the inflammatory cytokine 

pathway at baseline and after antidepressant treatment were found to be targets of TNF (Powell et 

al. 2013). TNF-a mRNA levels at baseline were proposed as predictive of antidepressant response in 

conjunction with three other mRNAs (PPT1, IL-1b and HIST1H1E) (Belzeaux et al. 2012). A meta-

analysis antecedent to these studies found no clear evidence of reduction in TNF-a serum levels after 

antidepressant treatment, but found some evidence that SSRIs may reduce TNF-a serum levels 

(Hannestad et al. 2011). 

5.5. FK506-binding protein 52 or 51 

The FKBP5 (FK506-binding protein 52 or FKBP51) gene encodes for a member of the family of large 

immunophilins. The encoded protein was reported to act as a scaffolding protein regulating Akt 

activity that might have implications in the development and treatment of depression (Duman and 

Voleti 2012). The FKBP51 protein is a co-chaperone for glucocorticoid receptor (GR) maturation, 

modulating its sensitivity and thus playing a role in the regulation of stress response. Further 

supporting this notion are studies showing that increased expression of the FKBP5 gene confers 

elevated GR resistance (Binder, 2009) and that glucocorticoids induce FKBP5 expression (Vermeer et 

al. 2003). Rats exposed to chronic mild stress show increased expression of FKBP5 as well as 

enhanced cytoplasmic levels of GR, primarily in ventral hippocampus and PFC. Chronic treatment 

with the antidepresant duloxetine is able to normalise such alterations (Guidotti et al. 2013). 

5.5.1. Genetic polymorphisms 



A number of studies reported an FKBP5  environment interaction in predicting the risk of 

depression, which is consistent with the observation that FKBP5 is responsive to stressor exposure 

and increases glucocorticoid levels by modulating GR sensitivity (Zannas and Binder 2014). More 

precisely, rs9296158, rs4713916, rs1360780, rs9470080 and rs3800373 have been found to be 

involved in gene  childhood trauma interations, likely through mediating epigenetic modifications 

(see Section 4.5.2). The rs1360780 T allele was identified as the risk allele by three studies, the 

rs9470080 T allele by two studies, and the rs3800373 C allele by one study (Zannas and Binder 

2014). Some studies did not take into account FKBP5  environment interactions and three studies 

found that the rs1360780 T allele was associated with increased risk of depression (Lekman et al. 

2008; Lavebratt et al. 2010; Szczepankiewicz et al. 2014), two studies found an effect of rs4713916 

(Zobel et al. 2010; Szczepankiewicz et al. 2014), and non-replicated findings were reported for 

rs9470080, rs9296158 (Szczepankiewicz et al. 2014) and rs3800373 (Zobel et al. 2010). 

Despite controversial pharmacogenetic findings being reported for the FKBP5 gene, results obtained 

in a large sample of Caucasian subjects suggested that rs1360780, rs3800373, rs4713916 and 

rs352428 poly-morphisms may modulate antidepressant response (Fabbri and Serretti, 2015). The 

effect of rs3800373 and rs1360780 on antidepressant response was confirmed in subjects of 

Caucasian ethnicity by a recent meta-analysis (Niitsu et al. 2013). Interestingly, rs1360780 TT 

genotype showed FKBP5 protein levels that were twice as high as C allele carriers in vitro (Binder et 

al. 2004). This genotype was associated with faster response, modulation of FKBP5 expression, lower 

ACTH response in the combined dexamethasone-suppression/CRH-stimulation test and, 

hypothetically, a faster restoration of normal HPA axis function (Binder et al. 2004). Furthermore, 

rs352428 was demonstrated to be a functional polymorphism that may alter transcription factor 

binding (Ellsworth et al. 2013) and thus gene expression. 

5.5.2. Gene methylation 

DNA methylation in the rs1360780 region in intron 7 of FKBP5 showed a non-significant trend 

toward geno-type-dependent CpG methylation differences (hypomethylation) among subjects with a 

lifetime history of MDD (Hohne et al. 2015). Consistently, exposure to child abuse leads to a 

significant demethylation of CpGs in the functional glucocorticoid response elements (GREs) in 

intron 7 of the FKBP5 gene. Demethylation of these CpGs leads to an enhanced induction of FKBP5 

transcription by GR agonists and is associated with GR resistance (Klengel et al. 2013). The exposure 

to stressful events during childhood is hypothesised to induce local CpG demethylation mediated by 

GR binding to GREs, followed by a depressed transcriptional response to subsequent glucocorticoid 

exposure. Thus, stressor exposure results in higher cortisol release and GR activation in rs1360780 

risk allele carriers (Zannas and Binder, 2014). 

Of interest, the spindle and kinetochore complex subunit 2 (SKA2) protein is similar to FKBP51, in 

that it interacts with the GR. The C allele of the SKA2 genetic polymorphism rs7208505 (C/T) can be 

epigenetically modified via addition of a methyl group. The combination of genetic variation and 

epigenetic modification at rs7208505 has been associated with MDD and suicide and this finding has 

been replicated in both post-mortem brain tissue and peripheral blood samples (Guintivano et al. 

2014). 

5.5.3. Peripheral biomarkers 

In healthy subjects the rs1360780 CC genotype showed an increase of FKBP5 mRNA levels after 

stress exposure compared to CT or TT genotypes, despite no genotype effect on mRNA expression 

found in remitted MDD patients (Hohne et al. 2015). A reduction in FKBP5 mRNA levels after 8 



weeks of antidepressant treatment was associated with successful antidepressant response 

(Cattaneo et al. 2013). 

6. Clinical applications: pilot studies 

Evaluation of the reliability versus cost/effectiveness ratio of using biomarkers in clinical settings is a 

critical phase for the translation of research into tailored treatments. Studies are investigating the 

clinical usefulness of genetic testing for the prediction of antidepressant treatment outcome, in 

addition to serum-based tests analysing the expression levels of nine genes proposed for use in MDD 

diagnosis. Genetic tests for use in predicting antidepressant response include genes involved in 

antidepressant metabolism (the cytochrome P450 (CYP) superfamily; Porcelli et al. 2011), 

antidepressant transport (ABCB1) and antidepressant drug targets. For example, the GeneSight 

assay was designed to predict antidepressant response and side effects on the basis of poly-

morphisms in CYP2D6, CYP2C19, CYP2C9, CYP1A2, SLC6A4 and HTR2A. Patients classified as ‘‘at risk’’ 

according to this genetic test were reported to have 69% more total health care visits, 67% more 

general medical visits, greater than 3-fold more medical absence days, and greater than 4-fold more 

disability claims (Winner et al. 2013a). Furthermore, the GeneSight test was reported to double the 

likelihood of response compared to treatment as usual in a small prospective randomised double-

blind trial (Winner et al. 2013b) and similar findings were obtained in a larger open-label study (Hall-

Flavin et al. 2013). Finally, the GeneSight test was recently demonstrated to save $1,035.60 more in 

total medication costs (both CNS and non-CNS medications) over 1 year compared to a non-tested 

standard care cohort (Winner et al. 2015). In comparison, the commercial pharmacogenetic 

Genecept Assay includes polymorphisms in CYP2D6, CYP2C19, CYP3A4, SLC6A4, HTR2C, DRD2, 

CACNA1C, ANK3, COMT, MTHFR, MC4R, ADRA2A, BDNF, OPRM1 and GRIK1. This assay was tested in 

a naturalistic study (Brennan et al. 2015) that did not include a comparison arm receiving treatment 

as usual, thus statements regarding the clinical benefits of the test are particularly difficult. A study 

that did include patients treated as usual reported higher medication adherence and cost sav-ings in 

patients who underwent the test (Fagerness et al. 2014). Lastly, the CNSDose pharmacogenetic test 

includes polymorphisms in CYP2D6, CYP2C19, UGT1A1, ABCB1 and ABCC1 genes and in a rando-

mised trail patients receiving genotype-guided treatment showed a 2.52 greater probability of 

remission (Singh 2015). Of note, replication by the same investigators was found for the GeneSight 

test, but no inde-pendent validation of any of the above reported results was found. 

Two studies without commercial interest investigated the clinical benefits of a genotype-guided 

treatment versus treatment as usual. The first study investigated the clinical usefulness of 

polymorphisms in ABCB1, the gene encoding for the P-glycoprotein (or P-gp). P-gp is an ATP-

dependent drug efflux pump for xenobiotic compounds which limits uptake and accumulation of 

some lipophilic drugs (including several antidepressants) into the brain. In the genotype-guided 

treatment arm ABCB1 gene test results (rs2032583 and rs2235015 SNPs) were implemented into the 

clinical decision making process and this group showed higher remission rates and lower symptom 

severity at the time of discharge from hospital as compared to patients without ABCB1 testing 

(Breitenstein et al. 2014). Furthermore, antidepressant dose adjustments based on rs2032583 and 

rs2235015 were shown to affect antidepressant plasma concentration and symptom improvement 

in a consistent way (Breitenstein et al. 2016). A more recent study investigated the clinical 

usefulness of FKBP5 rs1360780 genotyping and it found that the risk allele showed a worse outcome 

in the treatment as usual arm compared to the genotyped-guided treatment arm (Stamm et al. 

2016). Unfortunately, these studies investigating ABCB1 poly-morphisms and FKBP5 rs1360780 

clinical usefulness lack independent replication and did not provide any cost/benefit ratio 

estimation. 



As reported above, a biomarker panel has been developed using serum-based testing to predict 

MDD. Results are interesting, but replication by independent groups is also lacking. The test includes 

nine bio-markers (alpha1 antitrypsin, apolipoprotein CIII, BDNF, cortisol, epidermal growth factor, 

myeloperoxidase, prolactin, resistin and soluble TNF-a receptor type II) and it demonstrated a 

sensitivity and specificity of 91.7 and 81% in differentiating between MDD and healthy controls, 

respectively (Papakostas et al. 2013). Similar findings were obtained in a further study by the same 

authors, with an overall test accuracy of 91–94%depending on the sample (Bilello et al. 2015). No 

replication by independent investigators is available. 

7. Innovative biomarkers and methodological strategies 

New research perspectives recently emerged in terms of both biomarker type and methodological 

approach. In particular, miRNAs were found to act as pivotal regulators of mRNA degradation and 

thus mRNA translation, providing complementary information to other biomarkers. miRNAs may 

also represent a relatively accessible method to therapeutically manipulate gene expression, making 

them particularly interesting targets for future treatments. Indeed miRNAs can be detected in body 

fluids such as blood and they show unexpected stability (Dwivedi 2016). For example, miR-16 was 

found to modulate SERT expression in different areas of the brain in response to antidepressants 

(Baudry et al. 2010). In mice fluoxetine was demonstrated to decrease the levels of miR-16 in the 

noradrenergic locus coeruleus and in the hippocampus, resulting in higher SERT expression in these 

areas, increased BDNF secretion and hippocampal neurogen-sis (Launay et al. 2011). In comparison, 

miR-135 has been reported to modulate SERT as well as HTR1A expression and its levels are 

increased in mice after the administration of antidepressants (Issler et al. 2014). Genetically 

modified mouse models, expressing higher or lower levels of miR-135, demonstrated major 

alterations in anxiety- and depression-like behaviours, 5-HT levels, and behavioural response to 

antidepressant treatment. Finally, miR-135a levels in blood and brain of depressed human patients 

were demonstrated to be lower compared to controls (Issler et al. 2014). A recent study including 

data on humans reported miR-1202 as a promising marker of MDD and antidepressant response 

(Lopez et al. 2014). Interestingly, the tar-gets of miR-1202 are genes involved in neurological 

processes associated with the pathogenesis of MDD, including the GRM4 gene that has been 

implicated in the regulation of anxiety-related behaviours (Pilc et al. 2008; Davis et al. 2012). Finally, 

a recent review reported a comprehensive overview in regard to miRNA in MDD and antidepressant 

treatment (Dwivedi 2016). 

Under the methodological point of view, PRS are worth note because they represent the most 

recent attempt to capture the complexity of disease traits, such as those found in MDD. PRS are 

obtained through the sum of the effect sizes of SNPs with a certain level of association with a 

particular trait. Thus, they attempt to classify patients within a risk spectrum, or in other words to 

assign to each patient a risk of developing the trait in question (i.e. response to a drug or disease 

status). 

Previous studies using this approach found that a genome-wide polygenic score was able to explain 

only small percentages of the variance in depression; for example, 1% was reported in elderly 

cohorts (Demirkan et al. 2011; Musliner et al. 2015) and 0.2%when considering a long-term average 

depression score (Chang et al. 2014). Phenotypic and environmental heterogeneity may explain 

these low percentages, but the available evidence excluded that stressful life events may interact 

with PRS associated with depression (Musliner et al. 2015). However, PRS were reported to have 

higher effect sizes as depressive symptom severity increased (Chang et al. 2014). Other possible 

sources of heterogeneity were not investigated. 



Genome-wide complex trait analysis is an alternative method that estimates the proportion of 

phenotypic variance on the basis of the genetic relatedness between individuals. Using this method, 

common variants were estimated to explain 42% of individual differences in antidepressant 

response and 43% when considering only SSRIs (Tansey et al. 2013). In contrast, a polygenic score 

based on a meta-analysis of the GENDEP and MARS projects predicted only between 0.5 and 1.2% of 

variance in improvement and remission in the STAR*D sample (GENDEP, MARS, STAR*D 

Investigators, 2013), suggesting a significant but not exciting overlap in terms of genetic variants 

involved across different MDD samples. 

8. Conclusion 

Several biomarkers of MDD and antidepressant response have been replicated at genetic, epigenetic 

and/or transcriptomic/proteomic levels (Table 1), despite controversial findings often being 

reported. Genes consistently found in the replicated studies (e.g., SLC6A4 and HTR2A) have been 

included in the first genetic tests investigated for clinical applicability (Table 2). It is important to 

underline that a favourable cost/benefit ratio has not been clearly demonstrated for any of the 

commercially available pharmacogenetic tests and currently no established clinical indications exist. 

The GeneSight test provided encouraging results, but the details regarding the algorithm used to 

classify patients according to their genotype were not published. Therefore, replication of the results 

by independent investigators has not been possible. The multi-assay, serum-based test that included 

nine bio-markers for MDD diagnosis (Papakostas et al. 2013) was performed on patients who already 

met the clinical DSM criteria for MDD, thus the cost/benefit balance of this test is not clear. 

Furthermore, the predictive properties of the serum-based test have not been replicated by an 

independent group of investigators. MDD may be too heterogeneous to be useful for the study of 

biomarkers. Given the broad nature of MDD, which most likely includes patients with many diverse 

aetiologies, it would be of interest to identify bio-marker panels to assist in identifying depression 

sub-types, such as melancholia or psychotic depression. Dimensional approaches to understand the 

risk and expression of mood disorders provide a different perspective for the development of future 

diagnostic/response-predictive tests. The Research Domain Criteria (Insel et al. 2010) focus on 

constructs under the negative valence systems domain (i.e., acute threat, potential threat, sustained 

threat, loss and frustrative non-reward) and provide dimensional criteria that are aimed at 

facilitating the identification of biomarkers of biologically homogeneous alterations that exist across 

disorders. As we specified in the Introduction, it is not always easy to distinguish between markers of 

acute depressive phases (markers of state) and markers of susceptibility to MDD, particularly for 

transcriptomic markers, and future studies investigating this issue are warranted. Finally, the 

integration of different types of biomarkers and the use of more complex multi-marker panels (that 

could be obtained through PRS, for example) represent interesting strategies to pursue for future 

clinical applications. 

Acknowledgements 

None 

Disclosure statement 

Prof. Serretti A. is or has been consultant/speaker for: Abbott, Abbvie, Angelini, Astra Zeneca, 

Clinical Data, Boheringer, Bristol Myers Squibb, Eli Lilly, GlaxoSmithKline, Innovapharma, Italfarmaco, 

Janssen, Lundbeck, Naurex, Pfizer, Polifarma, Sanofi, Servier. 

 



References 

Almeida OP, Norman PE, Allcock R, van Bockxmeer F, Hankey GJ, Jamrozik K, Flicker L. 2009. Polymorphisms 
of the CRP gene inhibit inflammatory response and increase susceptibility to depression: the Health in Men 
Study. Int J Epidemiol. 38:1049–1059. 
Ancelin ML, Farre A, Carriere I, Ritchie K, Chaudieu I, Ryan J. 2015. C-reactive protein gene variants: 
independent association with late-life depression and circulating protein levels. Transl Psychiatry. 5:e499. 
Baudry A, Mouillet-Richard S, Schneider B, Launay JM, Kellermann O. 2010. miR-16 targets the serotonin 
transporter: a new facet for adaptive responses to antidepressants. Science. 329:1537–1541. 
Baune BT, Dannlowski U, Domschke K, Janssen DG, Jordan MA, Ohrmann P, Bauer J, Biros E, Arolt V, Kugel 
H, et al. 2010. The interleukin 1 beta (IL1B) gene is associated with failure to achieve remission and impaired 
emotion processing in major depression. Biol Psychiatry. 67:543–549. 
Beck O, Borg S, Edman G, Fyro B, Oxenstierna G, Sedvall G. 1984. 5-hydroxytryptophol in human cerebrospinal 
fluid: conjugation, concentration gradient, relationship to 5- hydroxyindoleacetic acid, and influence of hereditary 
factors. J Neurochem. 43:58–61. 
Belzeaux R, Bergon A, Jeanjean V, Loriod B, Formisano- Treziny C, Verrier L, Loundou A, Baumstarck-Barrau K, 
Boyer L, Gall V, et al. 2012. Responder and nonresponder patients exhibit different peripheral transcriptional 
signatures during major depressive episode. Transl Psychiatry. 2:e185. 
Belzeaux R, Formisano-Treziny C, Loundou A, Boyer L, Gabert J, Samuelian JC, Feron F, Naudin J, Ibrahim EC. 
2010. Clinical variations modulate patterns of gene expression and define blood biomarkers in major depression. 
J Psychiatr Res. 44:1205–1213. Belzeaux R, Loundou A, Azorin JM, Naudin J, Ibrahim el C. 2014. Longitudinal 
monitoring of the serotonin transporter gene expression to assess major depressive episode evolution. 
Neuropsychobiology. 70:220–227. 
Bessa JM, Ferreira D, Melo I, Marques F, Cerqueira JJ, Palha JA, Almeida OF, Sousa N. 2009. The mood-
improving actions of antidepressants do not depend on neurogenesis but are associated with neuronal 
remodeling. Mol Psychiatry. 14:764-773–739. 
Bilello JA, Thurmond LM, Smith KM, Pi B, Rubin R, Wright SM, Taub F, Henry ME, Shelton RC, Papakostas GI. 
2015. MDDScore: confirmation of a blood test to aid in the diagnosis of major depressive disorder. J Clin 
Psychiatry. 76:e199–e206. 
Binder EB. 2009. The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and 
therapy of affective and anxiety disorders. Psychoneuroendocrinology. 34:S186–S195. 
Binder EB, Salyakina D, Lichtner P, Wochnik GM, Ising M, Putz B, Papiol S, Seaman S, Lucae S, Kohli MA, et al. 
2004. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid 
response to antidepressant treatment. Nat Genet. 36:1319–1325. 
Bishop JR, Ellingrod VL, Akroush M, Moline J. 2009. The association of serotonin transporter genotypes and 
selective serotonin reuptake inhibitor (SSRI)-associated sexual side effects: possible relationship to oral 
contraceptives. Hum Psychopharmacol. 24:207–215. 
Booij L, Szyf M, Carballedo A, Frey EM, Morris D, Dymov S, Vaisheva F, Ly V, Fahey C, Meaney J, et al. 2015. 
DNA methylation of the serotonin transporter gene in peripheral cells and stress-related changes in hippocampal 
volume: a study in depressed patients and healthy controls. PLoS One. 10:e0119061. 
Borkowska P, Kucia K, Rzezniczek S, Paul-Samojedny M, Kowalczyk M, Owczarek A, Suchanek R, Medrala T, 
Kowalski J. 2011. Interleukin-1beta promoter (_31T/C and _511C/T) polymorphisms in major recurrent 
depression. J Mol Neurosci. 44:12–16. 
Bosker FJ, Hartman CA, Nolte IM, Prins BP, Terpstra P, Posthuma D, van Veen T, Willemsen G, DeRijk RH, de 
Geus EJ, et al. 2011. Poor replication of candidate genes for major depressive disorder using genome-wide 
association data. Mol Psychiatry. 16:516–532. 
Bradvik L, Mattisson C, Bogren M, Nettelbladt P. 2008. Longterm suicide risk of depression in the Lundby cohort 
1947- 1997-severity and gender. Acta Psychiatr Scand. 117:185–191. 
Breitenstein B, Scheuer S, Bruckl TM, Meyer J, Ising M, Uhr M, Holsboer F. 2016. Association of ABCB1 gene 
variants, plasma antidepressant concentration, and treatment response: Results from a randomized clinical 
study. J Psychiatr Res. 73:86–95. 
Breitenstein B, Scheuer S, Pfister H, Uhr M, Lucae S, Holsboer F, Ising M, Bruckl TM. 2014. The clinical 
application of ABCB1 genotyping in antidepressant treatment: a pilot study. CNS Spectr. 19:165–175. 
Brennan FX, Gardner KR, Lombard J, Perlis RH, Fava M, Harris HW, Scott R. 2015. A naturalistic study of the 
effectiveness of pharmacogenetic testing to guide treatment in psychiatric patients with mood and anxiety 
disorders. Prim Care Companion CNS Disord. 17(2). doi:10.4088/PCC.14m01717. 
Brunoni AR, Lopes M, Fregni F. 2008. A systematic review and meta-analysis of clinical studies on major 
depression and BDNF levels: implications for the role of neuroplasticity in depression. Int J  
Neuropsychopharmacol. 11:1169–1180. 
Buist-Bouwman MA, De Graaf R, Vollebergh WA, Alonso J, Bruffaerts R, Ormel J, SEMeD/MHEDEA 
Investigators. 2006. Functional disability of mental disorders and comparison 
with physical disorders: a study among the general population of six European countries. Acta Psychiatr Scand. 
113:492–500. 
Bull SJ, Huezo-Diaz P, Binder EB, Cubells JF, Ranjith G, Maddock C, Miyazaki C, Alexander N, Hotopf M, Cleare 
AJ, et al. 2009. Functional polymorphisms in the interleukin-6 and serotonin transporter genes, and depression 
and fatigue induced by interferon-alpha and ribavirin treatment. Mol Psychiatry. 14:1095–1104. 
Burcescu I, Wigg K, King N, Vetro A, Kiss E, Katay L, Kennedy JL, Kovacs M, Barr CL. 2005. Association study 
of CREB1 and childhood-onset mood disorders. Am J Med Genet B Neuropsychiatr Genet. 137B:45–50. 



Burnet PW, Eastwood SL, Lacey K, Harrison PJ. 1995. The distribution of 5-HT1A and 5-HT2A receptor mRNA in 
human brain. Brain Res. 676:157–168. 
Calati R, Crisafulli C, Balestri M, Serretti A, Spina E, Calabro M, Sidoti A, Albani D, Massat I, Hofer P, et al. 2013. 
Evaluation of the role of MAPK1 and CREB1 polymorphisms on treatment resistance, response and remission in 
mood disorder patients. Prog Neuropsychopharmacol Biol Psychiatry. 44:271–278. 
Carlberg L, Scheibelreiter J, Hassler MR, Schloegelhofer M, Schmoeger M, Ludwig B, Kasper S, Aschauer H, 
Egger G, Schosser A. 2014. Brain-derived neurotrophic factor (BDNF)-epigenetic regulation in unipolar and 
bipolar affective disorder. J Affect Disord. 168:399–406. 
Cattaneo A, Gennarelli M, Uher R, Breen G, Farmer A, Aitchison KJ, Craig IW, Anacker C, Zunsztain PA, 
McGuffin P, et al. 2013. Candidate genes expression profile associated with antidepressants response in the 
GENDEP study: differentiating Neuropsychopharmacology. 38:377–385. 
Cerri AP, Arosio B, Viazzoli C, Confalonieri R, Teruzzi F, Annoni G. 2009. 308(G/A) TNF-alpha gene 
polymorphism and risk of depression late in the life. Arch Gerontol Geriatr. 49:29–34. 
Chang SC, Glymour MM, Walter S, Liang L, Koenen KC, Tchetgen EJ, Cornelis MC, Kawachi I, Rimm E, 
Kubzansky LD. 2014. Genome-wide polygenic scoring for a 14-year long-term average depression phenotype. 
Brain Behav. 4:298–311. 
Chen ES, Ernst C, Turecki G. 2011. The epigenetic effects of antidepressant treatment on human prefrontal 
cortex BDNF expression. Int J Neuropsychopharmacol. 14:427–429. 
Clerici M, Arosio B, Mundo E, Cattaneo E, Pozzoli S, Dell’osso B, Vergani C, Trabattoni D, Altamura AC. 2009. 
Cytokine polymorphisms in the pathophysiology of mood disorders. CNS 
Spectr. 14:419–425. 
Copeland WE, Shanahan L, Worthman C, Angold A, Costello EJ. 2012. Cumulative depression episodes predict 
later Creactive protein levels: a prospective analysis. Biol Psychiatry. 71:15–21. 
Couch Y, Anthony DC, Dolgov O, Revischin A, Festoff B, Santos AI, Steinbusch HW, Strekalova T. 2013. 
Microglial activation, increased TNF and SERT expression in the prefrontal cortex define stress-altered behaviour 
in mice susceptible to anhedonia. Brain Behav Immun. 29:136–146. 
Cowansage KK, LeDoux JE, Monfils MH. 2010. Brain-derived neurotrophic factor: a dynamic gatekeeper of 
neural plasticity. Curr Mol Pharmacol. 3:12–29. 
Crisafulli C, Shim DS, Andrisano C, Pae CU, Chiesa A, Han C, Patkar AA, Lee SJ, Serretti A, De Ronchi D. 
2012. Case-control association study of 14 variants of CREB1, CREBBP and CREM on diagnosis and treatment 
outcome in major depressive disorder and bipolar disorder. Psychiatry Res. 198:39–46. 
D’Addario C, Dell’Osso B, Galimberti D, Palazzo MC, Benatti B, Di Francesco A, Scarpini E, Altamura AC, 
Maccarrone M. 2013. Epigenetic modulation of BDNF gene in patients with major depressive disorder. Biol 
Psychiatry. 73:e6–e7. 
Davis MJ, Haley T, Duvoisin RM, Raber J. 2012. Measures of anxiety, sensorimotor function, and memory in 
male and female mGluR4–/– mice. Behav Brain Res. 229:21–28. 
Dawood T, Lambert EA, Barton DA, Laude D, Elghozi JL, Esler MD, Haikerwal D, Kaye DM, Hotchkin EJ, 
Lambert GW. 2007. Specific serotonin reuptake inhibition in major depressive disorder adversely affects novel 
markers of cardiac risk. Hypertens Res. 30:285–293. 
Dell’Osso B, D’Addario C, Carlotta Palazzo M, Benatti B, Camuri G, Galimberti D, Fenoglio C, Scarpini E, Di 
Francesco A, Maccarrone M, et al. 2014. Epigenetic modulation of BDNF gene: differences in DNA methylation 
between unipolar and bipolar patients. J Affect Disord. 166:330–333 
Demirkan A, Penninx BW, Hek K, Wray NR, Amin N, Aulchenko YS, van Dyck R, de Geus EJ, Hofman A, 
Uitterlinden AG, et al. 2011. Genetic risk profiles for depression and anxiety in adult and elderly cohorts. Mol 
Psychiatry. 16:773–783. 
Domschke K, Tidow N, Schwarte K, Deckert J, Lesch KP, Arolt V, Zwanzger P, Baune BT. 2014. Serotonin 
transporter gene hypomethylation predicts impaired antidepressant treatment response. Int J 
Neuropsychopharmacol. 17:1167–1176. 
Dong C, Wong ML, Licinio J. 2009. Sequence variations of ABCB1, SLC6A2, SLC6A3, SLC6A4, CREB1, 
CRHR1 and NTRK2: association with major depression and antidepressant response in Mexican-Americans. Mol 
Psychiatry.14:1105–1118. 
Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctot KL. 2010. A meta-analysis of cytokines 
in major depression. Biol Psychiatry. 67:446–457. 
Ducray A, Krebs SH, Schaller B, Seiler RW, Meyer M, Widmer  HR. 2006. GDNF family ligands display distinct 
action profiles on cultured GABAergic and serotonergic neurons of rat ventral mesencephalon. Brain Res. 
1069:104–112. 
Duivis HE, Vogelzangs N, Kupper N, de Jonge P, Penninx BW. 2013. Differential association of somatic and 
cognitive symptoms of depression and anxiety with inflammation: findings from the Netherlands Study of 
Depression and Anxiety (NESDA). Psychoneuroendocrinology. 38:1573–1585. 
Duman RS, Voleti B. 2012. Signaling pathways underlying the pathophysiology and treatment of depression: 
novel mechanisms for rapid-acting agents. Trends Neurosci. 35:47–56. 
Dwivedi Y. 2016. Pathogenetic and therapeutic applications of microRNAs in major depressive disorder. Prog 
Neuropsychopharmacol Biol Psychiatry. 64:341–348. 
Ellsworth KA, Moon I, Eckloff BW, Fridley BL, Jenkins GD, Batzler A, Biernacka JM, Abo R, Brisbin A, Ji Y, et al. 
2013. FKBP5 genetic variation: association with selective serotonin reuptake inhibitor treatment outcomes in 
major depressive disorder. Pharmacogenet Genomics. 23:156–166. 



Elovainio M, Aalto AM, Kivimaki M, Pirkola S, Sundvall J, Lonnqvist J, Reunanen A. 2009. Depression and C-
reactive protein: population-based Health 2000 Study. Psychosom Med. 71:423–430. 
Fabbri C, Di Girolamo G, Serretti A. 2013a. Pharmacogenetics of antidepressant drugs: an update after almost 
20 years of research. Am J Med Genet B Neuropsychiatr Genet. 162B:487–520. 
Fabbri C, Marsano A, Albani D, Chierchia A, Calati R, Drago A, Crisafulli C, Calabro M, Kasper S, Lanzenberger 
R, et al. 2014. PPP3CC gene: a putative modulator of antidepressant response through the B-cell receptor 
signaling pathway. Pharmacogenomics J. 14:463–472. 
Fabbri C, Marsano A, Serretti A. 2013b. Genetics of serotonin receptors and depression: state of the art. Curr 
Drug Targets. 14:531–548. 
Fabbri C, Serretti A. 2015. Pharmacogenetics of major depressive disorder: top genes and pathways toward 
clinical applications. Curr Psychiatry Rep. 17:594. 
Fagerness J, Fonseca E, Hess GP, Scott R, Gardner KR, Koffler M, Fava M, Perlis R, Brennan FX, Lombard J. 
2014. Pharmacogenetic-guided psychiatric intervention associated with increased adherence and cost savings. 
Am J Manag Care. 20:e146–e156. 
Fajardo O, Galeno J, Urbina M, Carreira I, Lima L. 2003. Serotonin, serotonin 5-HT(1A) receptors and dopamine 
in blood peripheral lymphocytes of major depression patients. Int Immunopharmacol. 3:1345–1352. 
Ferres-Coy A, Pilar-Cuellar F, Vidal R, Paz V, Masana M, Cortes R, Carmona MC, Campa L, Pazos A, 
Montefeltro A, et al. 2013. RNAi-mediated serotonin transporter suppression rapidly increases serotonergic 
neurotransmission and hippocampal neurogenesis. Transl Psychiatry. 3:e211. 
Ford DE, Erlinger TP. 2004. Depression and C-reactive protein in US adults: data from the Third National Health 
and Nutrition Examination Survey. Arch Intern Med. 164:1010–1014. 
Frodl T, Carballedo A, Hughes MM, Saleh K, Fagan A, Skokauskas N, McLoughlin DM, Meaney J, O’Keane V, 
Connor TJ. 2012. Reduced expression of glucocorticoidinducible genes GILZ and SGK-1: high IL-6 levels are 
associated with reduced hippocampal volumes in major depressive disorder. Transl Psychiatry. 2:e88. 
Fuchikami M, Morinobu S, Segawa M, Okamoto Y, Yamawaki S, Ozaki N, Inoue T, Kusumi I, Koyama T, 
Tsuchiyama K, et al. 2011. DNA methylation profiles of the brain-derived neurotrophic factor (BDNF) gene as a 
potent diagnostic biomarker in major depression. PLoS One. 6:e23881. 
Gaysina D, Pierce M, Richards M, Hotopf M, Kuh D, Hardy R. 2011. Association between adolescent emotional 
problems and metabolic syndrome: the modifying effect of C-reactive protein gene (CRP) polymorphisms. Brain 
Behav Immun. 25:750–758. 
Gladkevich A, Kauffman HF, Korf J. 2004. Lymphocytes as a neural probe: potential for studying psychiatric 
disorders. Prog Neuropsychopharmacol Biol Psychiatry. 28:559–576. 
Golden JP, Baloh RH, Kotzbauer PT, Lampe PA, Osborne PA, Milbrandt J, Johnson EM. Jr. 1998. Expression of 
neurturin, GDNF, and their receptors in the adult mouse CNS. J Comp Neurol. 398:139–150. 
Gonzalez A, Fazzino F, Castillo M, Mata S, Lima L. 2007. Serotonin, 5-HT1A serotonin receptors and 
proliferation of lymphocytes in major depression patients. Neuroimmunomodulation. 14:8–15. 
Gratacos M, Gonzalez JR, Mercader JM, de Cid R, Urretavizcaya M, Estivill X. 2007. Brain-derived neurotrophic 
factor Val66Met and psychiatric disorders: meta-analysis of case-control studies confirm association to 
substancerelated disorders, eating disorders, and schizophrenia. Biol Psychiatry. 61:911–922. 
Gray NA, Milak MS, DeLorenzo C, Ogden RT, Huang YY, Mann JJ, Parsey RV. 2013. Antidepressant treatment 
reduces serotonin- 1A autoreceptor binding in major depressive disorder. Biol Psychiatry. 74:26–31. 
Gryglewski G, Lanzenberger R, Kranz GS, Cumming P. 2014. Meta-analysis of molecular imaging of serotonin 
transporters in major depression. J Cereb Blood Flow Metab. 34:1096–1103. 
Guidotti G, Calabrese F, Anacker C, Racagni G, Pariante CM, Riva MA. 2013. Glucocorticoid receptor and 
FKBP5 expression is altered following exposure to chronic stress: modulation by antidepressant treatment. 
Neuropsychopharmacology. 38:616–627. 
Guintivano J, Brown T, Newcomer A, Jones M, Cox O, Maher BS, Eaton WW, Payne JL, Wilcox HC, Kaminsky 
ZA. 2014. Identification and replication of a combined epigenetic and genetic biomarker predicting suicide and 
suicidal behaviors. Am J Psychiatry. 171:1287–1296. 
Gutierrez B, Bellon JA, Rivera M, Molina E, King M, Marston L, Torres-Gonzalez F, Moreno-Kustner B, Moreno 
Peral P, Motrico E, et al. 2015. The risk for major depression conferred by childhood maltreatment is multiplied by 
BDNF and SERT genetic vulnerability: a replication study. J 
Psychiatry Neurosci. 40:187–196. 
Gyekis JP, Yu W, Dong S, Wang H, Qian J, Kota P, Yang J. 2013. No association of genetic variants in BDNF 
with major depression: a meta- and gene-based analysis. Am J Med Genet B Neuropsychiatr Genet. 162B:61–
70. 
Haastrup E, Bukh JD, Bock C, Vinberg M, Thorner LW, Hansen T, Werge T, Kessing LV, Ullum H. 2012. 
Promoter variants in IL18 are associated with onset of depression in patients previously exposed to stressful-life 
events. J Affect Disord. 136:134–138. 
Hage FG, Szalai AJ. 2009. The role of C-reactive protein polymorphisms in inflammation and cardiovascular risk. 
Curr Atheroscler Rep. 11:124–130. 
Halder I, Marsland AL, Cheong J, Muldoon MF, Ferrell RE, Manuck SB. 2010. Polymorphisms in the CRP gene 
moderate an association between depressive symptoms and circulating 24:160–167. 
Hall-Flavin DK, Winner JG, Allen JD, Carhart JM, Proctor B, Snyder KA, Drews MS, Eisterhold LL, Geske J, 
Mrazek DA. 2013. Utility of integrated pharmacogenomic testing to support the treatment of major depressive 
disorder in a psychiatric outpatient setting. Pharmacogenet Genomics. 23:535–548. 



Hannestad J, DellaGioia N, Bloch M. 2011. The effect of antidepressant medication treatment on serum levels of 
inflammatory cytokines: a meta-analysis. Neuropsycho pharmacology. 36:2452–2459. 
Heils A, Teufel A, Petri S, Stober G, Riederer P, Bengel D, Lesch KP. 1996. Allelic variation of human serotonin 
transporter gene expression. J Neurochem. 66:2621–2624. 
Hettema JM, An SS, van den Oord EJ, Neale MC, Kendler KS, Chen X. 2009. Association study of CREB1 with 
Major Depressive Disorder and related phenotypes. Am J Med Genet B Neuropsychiatr Genet. 150B:1128–1132. 
Hickman RJ, Khambaty T, Stewart JC. 2014. C-reactive protein is elevated in atypical but not nonatypical 
depression: data from the National Health and Nutrition Examination survey (NHANES) 1999–2004. J Behav 
Med. 37:621–629. 
Hiles SA, Baker AL, de Malmanche T, Attia J. 2012. Interleukin-6, C-reactive protein and interleukin-10 after 
antidepressant treatment in people with depression: a meta-analysis. Psychol Med. 42:2015–2026. 
Hisaoka K, Maeda N, Tsuchioka M, Takebayashi M. 2008. Antidepressants induce acute CREB phosphorylation 
and CRE-mediated gene expression in glial cells: a possible contribution to GDNF production. Brain Res. 
1196:53–58. 
Hochstrasser T, Ullrich C, Sperner-Unterweger B, Humpel C. 2011. Inflammatory stimuli reduce survival of 
serotonergic neurons and induce neuronal expression of indoleamine 2,3-dioxygenase in rat dorsal raphe 
nucleus organotypic brain slices. Neuroscience. 184:128–138. Hohne N, Poidinger M, Merz F, Pfister H, Bruckl 
T, Zimmermann P, Uhr M, Holsboer F, Ising M. 2015. FKBP5 genotype-dependent DNA methylation and mRNA 
regulation after psychosocial stress in remitted depression and healthy controls. Int J Neuropsychopharmacol. 
18:pyu087. doi:10.1093/ijnp/pyu087. 
Holmes RD, Tiwari AK, Kennedy JL. 2016. Mechanisms of the placebo effect in pain and psychiatric disorders. 
Pharmacogenomics J. Epub ahead of print. doi:10.1038/ tpj.2016.15 
Hong CJ, Yu YW, Chen TJ, Tsai SJ. 2005. Interleukin-6 genetic polymorphism and Chinese major depression. 
Neuropsychobiology. 52:202–205. Horstmann S, Lucae S, Menke A, Hennings JM, Ising M, 
Roeske D, Muller-Myhsok B, Holsboer F, Binder EB. 2010. 
Polymorphisms in GRIK4, HTR2A, and FKBP5 show interactive effects in predicting remission to antidepressant 
treatment. Neuropsychopharmacology. 35:727–740. 
Hosang GM, Shiles C, Tansey KE, McGuffin P, Uher R. 2014. Interaction between stress and the BDNF 
Val66Met polymorphism in depression: a systematic review and meta-analysis. BMC Med. 12:7. 
Howren MB, Lamkin DM, Suls J. 2009. Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-
analysis. Psychosom Med. 71:171–186. 
Hu XZ, Lipsky RH, Zhu G, Akhtar LA, Taubman J, Greenberg BD, Xu K, Arnold PD, Richter MA, Kennedy JL, et 
al. 2006. Serotonin transporter promoter gain-of-function genotypes are linked to obsessive-compulsive disorder. 
Am J Hum Genet. 78:815–826. 
Hu XZ, Rush AJ, Charney D, Wilson AF, Sorant AJ, Papanicolaou GJ, Fava M, Trivedi MH, Wisniewski SR, Laje 
G, et al. 2007. Association between a functional serotonin transporter promoter polymorphism and citalopram 
treatment in adult outpatients with major depression. Arch Gen Psychiatry. 64:783–792. 
Hufner K, Kandler C, Koudouovoh-Tripp P, Egeter J, Hochstrasser T, Stemer B, Malik P, Giesinger J, Humpel C, 
Sperner-Unterweger B. 2014. Bioprofiling of platelets in medicated patients with depression. J Affect Disord. 
172:81–88. 
Hunter AM, Leuchter AF, Power RA, Muthen B, McGrath PJ, Lewis CM, Cook IA, Garriock HA, McGuffin P, Uher 
R, et al. 2013. A genome-wide association study of a sustained pattern of antidepressant response. J Psychiatr 
Res. 47:1157–1165. 
Iacob E, Light KC, Tadler SC, Weeks HR, White AT, Hughen RW, Vanhaitsma TA, Bushnell L, Light AR. 2013. 
Dysregulation of leukocyte gene expression in women with medication-refractory depression versus healthy 
nondepressed controls. BMC Psychiatry. 13:273. 
Iga J, Ueno S, Yamauchi K, Motoki I, Tayoshi S, Ohta K, Song H, Morita K, Rokutan K, Ohmori T. 2005. 
Serotonin transporter mRNA expression in peripheral leukocytes of patients with major depression before and 
after treatment with paroxetine. Neurosci Lett. 389:12–16. Iga J, Ueno S, Yamauchi K, Numata S, Kinouchi S, 
Tayoshi- Shibuya S, Song H, Ohmori T. 2007. Altered HDAC5 and CREB mRNA expressions in the peripheral 
leukocytes of major depression. Prog Neuropsychopharmacol Biol Psychiatry. 31:628–632. 
Ignacio ZM, Reus GZ, Abelaira HM, Quevedo J. 2014. 
Epigenetic and epistatic interactions between serotonin transporter and brain-derived neurotrophic factor genetic 
polymorphism: insights in depression. Neuroscience. 275:455–468. 
Illi A, Setala-Soikkeli E, Viikki M, Poutanen O, Huhtala H, Mononen N, Lehtimaki T, Leinonen E, Kampman O. 
2009. 5-HTR1A, 5-HTR2A, 5-HTR6, TPH1 and TPH2 polymorphisms and major depression. Neuroreport. 
20:1125–1128.  
Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, Sanislow C, Wang P. 2010. Research domain 
criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry. 
167:748–751. 
GENDEP Investigators, MARS Investigators, STAR*D Investigators 2013. Common genetic variation and 
antidepressant efficacy in major depressive disorder: a metaanalysis of three genome-wide pharmacogenetic 
studies. Am J Psychiatry. 170:207–217. 
Issler O, Haramati S, Paul ED, Maeno H, Navon I, Zwang R, Gil S, Mayberg HS, Dunlop BW, Menke A, et al. 
2014. MicroRNA 135 is essential for chronic stress resiliency, antidepressant efficacy, and intact serotonergic 
activity. Neuron. 83:344–360. 



Jaenisch R, Bird A. 2003. Epigenetic regulation of gene expression: how the genome integrates intrinsic and 
environmental signals. Nat Genet. 33(Suppl):245–254. 
Jans LA, Riedel WJ, Markus CR, Blokland A. 2007. Serotonergic vulnerability and depression: assumptions, 
experimental evidence and implications. Mol Psychiatry. 12:522–543. 
Jansen R, Penninx BW, Madar V, Xia K, Milaneschi Y, Hottenga JJ, Hammerschlag AR, Beekman A, van der 
Wee N, Smit JH, et al. 2016. Gene expression in major depressive disorder. Mol Psychiatry. 21:339–347. 
Januar V, Ancelin ML, Ritchie K, Saffery R, Ryan J. 2015. BDNF promoter methylation and genetic variation in 
late-life depression. Transl Psychiatry. 5:e619. 
Jaumotte JD, Zigmond MJ. 2014. Comparison of GDF5 and GDNF as neuroprotective factors for postnatal 
dopamine neurons in ventral mesencephalic cultures. J Neurosci Res. 92:1425–1433. 
Jia P, Kao CF, Kuo PH, Zhao Z. 2011. A comprehensive network and pathway analysis of candidate genes in 
major depressive disorder. BMC Syst Biol. 5:S12. 
Juhasz G, Dunham JS, McKie S, Thomas E, Downey D, Chase D, Lloyd-Williams K, Toth ZG, Platt H, Mekli K, et 
al. 2011. The CREB1-BDNF-NTRK2 pathway in depression: multiple gene-cognition-environment interactions. 
Biol Psychiatry. 69:762–771. 
Jun TY, Pae CU, Hoon H, Chae JH, Bahk WM, Kim KS, Serretti A. 2003. Possible association between -G308A 
tumour necrosis factor-alpha gene polymorphism and major depressive disorder in the Korean population. 
Psychiatr Genet. 13:179–181. 
Kang HJ, Kim JM, Lee JY, Kim SY, Bae KY, Kim SW, Shin IS, Kim HR, Shin MG, Yoon JS. 2013a. BDNF 
promoter methylation  and suicidal behavior in depressive patients. J Affect Disord. 151:679–685. 
Kang HJ, Kim JM, Stewart R, Kim SY, Bae KY, Kim SW, Shin IS, Shin MG, Yoon JS. 2013b. Association of 
SLC6A4 methylation with early adversity, characteristics and outcomes in depression. Prog 
Neuropsychopharmacol Biol Psychiatry. 44:23–28. 
Karg K, Burmeister M, Shedden K, Sen S. 2011. The serotonin transporter promoter variant (5-HTTLPR), stress, 
and depression meta-analysis revisited: evidence of genetic moderation. Arch Gen Psychiatry. 68:444–454. 
Kato M, Serretti A. 2010. Review and meta-analysis of antidepressant pharmacogenetic findings in major 
depressive disorder. Mol Psychiatry. 15:473–500. 
Kaufman J, Sullivan GM, Yang J, Ogden RT, Miller JM, Oquendo MA, Mann JJ, Parsey RV, DeLorenzo C. 2015. 
Quantification of the Serotonin 1A Receptor Using PET: Identification of a Potential Biomarker of Major 
Depression in Males. Neuropsychopharmacology. 40:1692–1699. 
Keller S, Sarchiapone M, Zarrilli F, Videtic A, Ferraro A, Carli V, Sacchetti S, Lembo F, Angiolillo A, Jovanovic N, 
et al. 2010. Increased BDNF promoter methylation in the Wernicke area of suicide subjects. Arch Gen Psychiatry. 
67:258–267. 
Khait VD, Huang YY, Malone KM, Oquendo M, Brodsky B, Sher L, Mann JJ. 2002. Is there circannual variation of 
human platelet 5-HT(2A) binding in depression? J Affect Disord. 71:249–258. 
Khait VD, Huang YY, Zalsman G, Oquendo MA, Brent DA, Harkavy-Friedman JM, Mann JJ. 2005. Association of 
serotonin 5-HT2A receptor binding and the T102C polymorphism in depressed and healthy Caucasian subjects. 
Neuropsychopharmacology. 30:166–172. 
Kim JM, Stewart R, Kang HJ, Kim SY, Kim SW, Shin IS, Park MS, Kim HR, Shin MG, Cho KH, et al. 2013. A 
longitudinal study of BDNF promoter methylation and genotype with poststroke depression. J Affect Disord. 
149:93–99. 
Kim JM, Stewart R, Kim SW, Shin IS, Kim JT, Park MS, Park SW, Kim YH, Cho KH, Yoon JS. 2012. Associations 
of cytokine gene polymorphisms with post-stroke depression. World J Biol Psychiatry. 13:579–587. 
Kishi T, Yoshimura R, Fukuo Y, Okochi T, Matsunaga S, Umene-Nakano W, Nakamura J, Serretti A, Correll CU, 
Kane JM, et al. 2013. The serotonin 1A receptor gene confer susceptibility to mood disorders: results from an 
extended meta-analysis of patients with major depression and bipolar disorder. Eur Arch Psychiatry Clin 
Neurosci. 263:105–118. 
Kishi T, Yoshimura R, Kitajima T, Okochi T, Okumura T, Tsunoka T, Yamanouchi Y, Kinoshita Y, Kawashima K, 
Naitoh H, et al. 2009. HTR2A is Associated with SSRI Response in Major Depressive Disorder in a Japanese 
Cohort. Neuromolecular Med. 12:237–242. 
Klengel T, Mehta D, Anacker C, Rex-Haffner M, Pruessner JC, Pariante CM, Pace TW, Mercer KB, Mayberg HS, 
Bradley B, et al. 2013. Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. 
Nat Neurosci. 16:33–41. 
Koch JM, Hinze-Selch D, Stingele K, Huchzermeier C, Goder R, Seeck-Hirschner M, Aldenhoff JB. 2009. 
Changes in CREB phosphorylation and BDNF plasma levels during psychotherapy of depression. Psychother 
Psychosom. 78:187–192. 
Koch JM, Kell S, Hinze-Selch D, Aldenhoff JB. 2002. Changes in CREB-phosphorylation during recovery from 
major depression. J Psychiatr Res. 36:369–375.  
Kugaya A, Sanacora G, Staley JK, Malison RT, Bozkurt A, Khan S, Anand A, Van Dyck CH, Baldwin RM, Seibyl 
JP, et al. 2004. Brain serotonin transporter availability predicts treatment response to selective serotonin 
reuptake inhibitors. Biol Psychiatry. 56:497–502. 
Lai IC, Hong CJ, Tsai SJ. 2003. Expression of cAMP response element-binding protein in major depression 
before and after antidepressant treatment. Neuropsychobiology. 48:182–185. 
Lanquillon S, Krieg JC, Bening-Abu-Shach U, Vedder H. 2000. Cytokine production and treatment response in 
major depressive disorder. Neuropsychopharmacology. 22:370–379. 
Launay JM, Mouillet-Richard S, Baudry A, Pietri M, Kellermann O. 2011. Raphe-mediated signals control the 
hippocampal response to SRI antidepressants via miR-16. Transl Psychiatry. 1:e56. 



Lavebratt C, Aberg E, Sjoholm LK, Forsell Y. 2010. Variations in FKBP5 and BDNF genes are suggestively 
associated with depression in a Swedish population-based cohort. J Affect Disord. 125:249–255. 
Lazary J, Juhasz G, Anderson IM, Jacob CP, Nguyen TT, Lesch KP, Reif A, Deakin JF, Bagdy G. 2011. Epistatic 
interaction of CREB1 and KCNJ6 on rumination and negative emotionality. Eur Neuropsychopharmacol. 21:63–
70. Lekman M, Laje G, Charney D, Rush AJ, Wilson AF, Sorant AJ, Lipsky R, Wisniewski SR, Manji H, McMahon 
FJ, et al. 2008. 
The FKBP5-gene in depression and treatment response–an association study in the Sequenced Treatment 
Alternatives to Relieve Depression (STAR*D) Cohort. Biol Psychiatry. 63:1103–1110. 
Lemonde S, Turecki G, Bakish D, Du L, Hrdina PD, Bown CD, Sequeira A, Kushwaha N, Morris SJ, Basak A, et 
al. 2003. Impaired repression at a 5-hydroxytryptamine 1A receptor gene polymorphism associated with major 
depression and suicide. J Neurosci. 23:8788–8799. 
Leo R, Di Lorenzo G, Tesauro M, Razzini C, Forleo GB, Chiricolo G, Cola C, Zanasi M, Troisi A, Siracusano A, et 
al. 2006. Association between enhanced soluble CD40 ligand and proinflammatory and prothrombotic states in 
major depressive disorder: pilot observations on the effects of selective serotonin reuptake inhibitor therapy. J 
Clin Psychiatry. 67:1760–1766. 
Lesch KP. 2001. Serotonergic gene expression and depression: implications for developing novel 
antidepressants. J Affect Disord. 62:57–76. 
Li XJ, Lee LW, Hayward C, Brusniak MY, Fong PY, McLean M, Mulligan J, Spicer D, Fang KC, Hunsucker SW, 
et al. 2015. An integrated quantification method to increase the precision, robustness, and resolution of protein 
measurement in human plasma samples. Clin Proteomics. 12:3. 
Lim SW, Kim S, Carroll BJ, Kim DK. 2013. T-lymphocyte CREB as a potential biomarker of response to 
antidepressant drugs. Int J Neuropsychopharmacol. 16:967–974. 
Lin E, Chen PS, Chang HH, Gean PW, Tsai HC, Yang YK, Lu RB. 2009. Interaction of serotonin-related genes 
affects shortterm antidepressant response in major depressive disorder. Prog Neuropsychopharmacol Biol 
Psychiatry. 33:1167–1172. 
Lin JY, Jiang MY, Kan ZM, Chu Y. 2014. Influence of 5-HTR2A genetic polymorphisms on the efficacy of 
antidepressants in the treatment of major depressive disorder: a meta-analysis. J Affect Disord. 168:430–438. 
Lin PY, Tseng PT. 2015. Decreased glial cell line-derived neurotrophic factor levels in patients with depression: A 
meta-analytic study. J Psychiatr Res. 63:20–27. 
Liu Y, Ho RC, Mak A. 2012. Interleukin (IL)-6, tumour necrosis factor alpha (TNF-alpha) and soluble interleukin-2 
receptors (sIL-2R) are elevated in patients with major depressive disorder: a meta-analysis and meta-regression. 
J Affect Disord. 139:230–239. 
Liukkonen T, Silvennoinen-Kassinen S, Jokelainen J, Rasanen P, Leinonen M, Meyer-Rochow VB, Timonen M. 
2006. The association between C-reactive protein levels and depression: Results from the northern Finland 1966 
birth cohort study. Biol Psychiatry. 60:825–830. 
Lopez JP, Lim R, Cruceanu C, Crapper L, Fasano C, Labonte B, Maussion G, Yang JP, Yerko V, Vigneault E, et 
al. 2014. miR-1202 is a primate-specific and brain-enriched microRNA involved in major depression and 
antidepressant treatment. Nat Med. 20:764–768. 
Lopez JP, Mamdani F, Labonte B, Beaulieu MM, Yang JP, Berlim MT, Ernst C, Turecki G. 2013. Epigenetic 
regulation of BDNF expression according to antidepressant response. Mol Psychiatry. 18:398–399. 
Lorenzo-Luaces L. 2015. Heterogeneity in the prognosis of major depression: from the common cold to a highly 
debilitating and recurrent illness. Epidemiol Psychiatr Sci. 24:466–472. 
Luciano M, Houlihan LM, Harris SE, Gow AJ, Hayward C, Starr JM, Deary IJ. 2010. Association of existing and 
new candidate genes for anxiety, depression and personality traits in older people. Behav Genet. 40:518–532. 
Maes M, Anderson G, Kubera M, Berk M. 2014. Targeting classical IL-6 signalling or IL-6 trans-signalling in 
depression? Expert Opin Ther Targets. 18:495–512. 
Malberg JE, Duman RS. 2003. Cell proliferation in adult hippocampus is decreased by inescapable stress: 
reversal by fluoxetine treatment. Neuropsychopharmacology. 28:1562–1571. 
Malone KM, Ellis SP, Currier D, John Mann J. 2007. Platelet 5-HT2A receptor subresponsivity and lethality of 
attempted suicide in depressed in-patients. Int J Neuropsychopharmacol. 10:335–343. 
Malynn S, Campos-Torres A, Moynagh P, Haase J. 2013. The pro-inflammatory cytokine TNF-a regulates the 
activity and expression of the serotonin transporter (SERT) in astrocytes. 
Neurochem Res. 38:694–704. 
Mann JJ, Huang YY, Underwood MD, Kassir SA, Oppenheim S, Kelly TM, Dwork AJ, Arango V. 2000. A 
serotonin transporter gene promoter polymorphism (5-HTTLPR) and prefrontal cortical binding in major 
depression and suicide. Arch Gen Psychiatry. 57:729–738. 
Maron E, Tammiste A, Kallassalu K, Eller T, Vasar V, Nutt DJ, Metspalu A. 2009. Serotonin transporter promoter 
region polymorphisms do not influence treatment response to escitalopram in patients with major depression. Eur 
Neuropsychopharmacol. 19:451–456. 
Martins-de-Souza D, Maccarrone G, Ising M, Kloiber S, Lucae S, Holsboer F, Turck CW. 2014. Blood 
mononuclear cell proteome suggests integrin and Ras signaling as critical pathways 
for antidepressant treatment response. Biol Psychiatry. 76:e15–e17. 
Masi G, Brovedani P. 2011. The hippocampus, neurotrophic factors and depression: possible implications for the 
pharmacotherapy of depression. CNS Drugs. 25:913–931. 
Matsumoto Y, Fabbri C, Pellegrini S, Porcelli S, Politi P, Bellino S, Iofrida C, Mariotti V, Melissari E, Menchetti M, 
et al. 2014. Serotonin transporter gene: a new polymorphism may affect response to antidepressant treatments in 
major depressive disorder. Mol Diagn Ther. 18:567–577. 



McKinnon MC, Yucel K, Nazarov A, MacQueen GM. 2009. A meta-analysis examining clinical predictors of 
hippocampal volume in patients with major depressive disorder. J Psychiatry Neurosci. 34:41–54. 
Mendelson SD. 2000. The current status of the platelet 5- HT(2A) receptor in depression. J Affect Disord. 57:13–
24. 
Meyer JH, Kapur S, Eisfeld B, Brown GM, Houle S, DaSilva J, Wilson AA, Rafi-Tari S, Mayberg HS, Kennedy 
SH. 2001. The effect of paroxetine on 5-HT(2A) receptors in depression: an [(18)F]setoperone PET imaging 
study. Am J Psychiatry. 158:78–85. 
Miller AH, Maletic V, Raison CL. 2009. Inflammation and its discontents: the role of cytokines in the 
pathophysiology of major depression. Biol Psychiatry. 65:732–741. 
Misener VL, Gomez L, Wigg KG, Luca P, King N, Kiss E, Daroczi G, Kapornai K, Tamas Z, Mayer L, et al. 
International Consortium for Childhood-Onset Mood D. 2008. Cytokine Genes TNF, IL1A, IL1B, IL6, IL1RN and 
IL10, and childhood-onset mood disorders. Neuropsychobiology. 58:71–80. 
Molendijk ML, Spinhoven P, Polak M, Bus BA, Penninx BW, Elzinga BM. 2014. Serum BDNF concentrations as 
peripheral manifestations of depression: evidence from a systematic review and meta-analyses on 179 
associations (N¼9484). Mol Psychiatry. 19:791–800. 
Mota R, Gazal M, Acosta BA, de Leon PB, Jansen K, Pinheiro RT, Souza LD, Silva RA, Oses JP, Quevedo L, et 
al. 2013. Interleukin-1beta is associated with depressive episode in major depression but not in bipolar disorder. 
J Psychiatr Res. 47:2011–2014. 
Munafo MR, Durrant C, Lewis G, Flint J. 2009. Gene X environment interactions at the serotonin transporter 
locus. Biol Psychiatry. 65:211–219. 
Murphy GM Jr, Hollander SB, Rodrigues HE, Kremer C, Schatzberg AF. 2004. Effects of the serotonin 
transporter gene promoter polymorphism on mirtazapine and paroxetine efficacy and adverse events in geriatric 
major depression. Arch Gen Psychiatry. 61:1163–1169. 
Murray CJ, Atkinson C, Bhalla K, Birbeck G, Burstein R, Chou D, Dellavalle R, Danaei G, Ezzati M, Fahimi A, et 
al. US Burden of Disease Collaborators. 2013. The state of US health, 1990-2010: burden of diseases, injuries, 
and risk factors. JAMA. 310:591–608. 
Musliner KL, Seifuddin F, Judy JA, Pirooznia M, Goes FS, Zandi PP. 2015. Polygenic risk, stressful life events 
and depressive symptoms in older adults: a polygenic score analysis. Psychol Med. 45:1709–1720. 
Myung W, Lim SW, Kim S, Kim H, Chung JW, Seo MY, Kim JW, Carroll BJ, Kim DK. 2013. Serotonin transporter 
genotype and function in relation to antidepressant response in Koreans. Psychopharmacology (Berl). 225:283–
290.  
Niitsu T, Fabbri C, Bentini F, Serretti A. 2013. 
Pharmacogenetics in major depression: a comprehensive meta-analysis. Prog Neuropsychopharmacol Biol 
Psychiatry. 45:183–194. 
O’Brien SM, Scott LV, Dinan TG. 2006. Antidepressant therapy and C-reactive protein levels. Br J Psychiatry. 
188:449–452. 
Odgerel Z, Talati A, Hamilton SP, Levinson DF, Weissman MM. 2013. Genotyping serotonin transporter 
polymorphisms 5- HTTLPR and rs25531 in European- and African-American subjects from the National Institute 
of Mental Health’s Collaborative Center for Genomic Studies. Transl Psychiatry. 3:e307. 
Okada S, Morinobu S, Fuchikami M, Segawa M, Yokomaku K, Kataoka T, Okamoto Y, Yamawaki S, Inoue T, 
Kusumi I, et al. 2014. The potential of SLC6A4 gene methylation analysis for the diagnosis and treatment of 
major depression. J Psychiatr Res. 53:47–53. 
Olsson CA, Foley DL, Parkinson-Bates M, Byrnes G, McKenzie M, Patton GC, Morley R, Anney RJ, Craig JM, 
Saffery R. 2010. Prospects for epigenetic research within cohort studies of psychological disorder: a pilot 
investigation of a peripheral cell marker of epigenetic risk for depression. Biol Psychol. 83:159–165. 
Otsuki K, Uchida S, Watanuki T, Wakabayashi Y, Fujimoto M, Matsubara T, Funato H, Watanabe Y. 2008. 
Altered expression of neurotrophic factors in patients with major depression. J Psychiatr Res. 42:1145–1153. 
Oxenstierna G, Edman G, Iselius L, Oreland L, Ross SB, Sedvall G. 1986. Concentrations of monoamine 
metabolites in the cerebrospinal fluid of twins and unrelated individuals–a genetic study. J Psychiatr Res. 20:19–
29. 
Pallavi P, Sagar R, Mehta M, Sharma S, Subramanium A, Shamshi F, Sengupta U, Qadri R, Pandey RM, 
Mukhopadhyay AK. 2013. Serum neurotrophic factors in adolescent depression: gender difference and 
correlation with clinical severity. J Affect Disord. 150:415–423. 
Papakostas GI, Shelton RC, Kinrys G, Henry ME, Bakow BR, Lipkin SH, Pi B, Thurmond L, Bilello JA. 2013. 
Assessment of a multi-assay, serum-based biological diagnostic test for major depressive disorder: a pilot and 
replication study. Mol Psychiatry. 18:332–339. 
Parsey RV, Ogden RT, Miller JM, Tin A, Hesselgrave N, Goldstein E, Mikhno A, Milak M, Zanderigo F, Sullivan 
GM, et al. 2010. Higher serotonin 1A binding in a second major depression cohort: modeling and reference 
region considerations. Biol Psychiatry. 68:170–178. 
Pasco JA, Nicholson GC, Williams LJ, Jacka FN, Henry MJ, Kotowicz MA, Schneider HG, Leonard BE, Berk M. 
2010. Association of high-sensitivity C-reactive protein with de novo major depression. Br J Psychiatry. 197:372–
377. 
Pena S, Baccichet E, Urbina M, Carreira I, Lima L. 2005. Effect of mirtazapine treatment on serotonin transporter 
in blood peripheral lymphocytes of major depression patients. Int Immunopharmacol. 5:1069–1076. 
Perlis RH, Mischoulon D, Smoller JW, Wan YJ, Lamon-Fava S, 
Lin KM, Rosenbaum JF, Fava M. 2003. Serotonin transporter polymorphisms and adverse effects with fluoxetine 
treatment. Biol Psychiatry. 54:879–883. 



Perlis RH, Purcell S, Fava M, Fagerness J, Rush AJ, Trivedi MH, 
Smoller JW. 2007. Association between treatment-emergent suicidal ideation with citalopram and polymorphisms 
near cyclic adenosine monophosphate response element binding protein in the STAR*D study. Arch Gen 
Psychiatry. 64:689–697. 
Perlis RH, Fijal B, Adams DH, Sutton VK, Trivedi MH, Houston JP. 2009. Variation in catechol-O-
methyltransferase is associated with duloxetine response in a clinical trial for major depressive disorder. Biol 
Psychiatry. 65:785–791. 
Peters EJ, Slager SL, Jenkins GD, Reinalda MS, Garriock HA, Shyn SI, Kraft JB, McGrath PJ, Hamilton SP. 
2009. Resequencing of serotonin-related genes and association of tagging SNPs to citalopram response. 
Pharmacogenet Genomics. 19:1–10. 
Philibert RA, Sandhu H, Hollenbeck N, Gunter T, Adams W, Madan A. 2008. The relationship of 5HTT (SLC6A4) 
methylation and genotype on mRNA expression and liability to major depression and alcohol dependence in 
subjects from the Iowa Adoption Studies. Am J Med Genet B Neuropsychiatr Genet. 147B:543–549. 
Pilc A, Chaki S, Nowak G, Witkin JM. 2008. Mood disorders: regulation by metabotropic glutamate receptors. 
Biochem Pharmacol. 75:997–1006. 
Pineyro G, Blier P. 1999. Autoregulation of serotonin neurons: role in antidepressant drug action. Pharmacol Rev. 
51:533–591. 
Pizarro JM, Lumley LA, Medina W, Robison CL, Chang WE, Alagappan A, Bah MJ, Dawood MY, Shah JD, Mark 
B, et al. 2004. Acute social defeat reduces neurotrophin expression in brain cortical and subcortical areas in 
mice. Brain Res. 1025:10–20. 
Pizzi C, Mancini S, Angeloni L, Fontana F, Manzoli L, Costa GM. 2009. Effects of selective serotonin reuptake 
inhibitor therapy on endothelial function and inflammatory markers in patients with coronary heart disease. Clin 
Pharmacol Ther. 86:527–532. 
Polesskaya OO, Sokolov BP. 2002. Differential expression of the ‘‘C’’ and ‘‘T’’ alleles of the 5-HT2A receptor 
gene in the temporal cortex of normal individuals and schizophrenics. J Neurosci Res. 67:812–822. 
Polyakova M, Stuke K, Schuemberg K, Mueller K, Schoenknecht P, Schroeter ML. 2015. BDNF as a biomarker 
for successful treatment of mood disorders: a systematic quantitative meta-analysis. J Affect Disord. 174:432–
440. 
Popp J, Leucht S, Heres S, Steimer W. 2006. Serotonin transporter polymorphisms and side effects in 
antidepressant therapy-a pilot study. Pharmacogenomics. 7:159–166. Porcelli S, Fabbri C, Serretti A. 2012. 
Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with antidepressant 
efficacy. Eur Neuropsychopharmacol. 22:239–258. 
Porcelli S, Fabbri C, Spina E, Serretti A, De Ronchi D. 2011. Genetic polymorphisms of cytochrome P450 
enzymes and antidepressant metabolism. Expert Opin Drug Metab Toxicol. 7:1101–1115. 
Powell TR, Schalkwyk LC, Heffernan AL, Breen G, Lawrence T, Price T, Farmer AE, Aitchison KJ, Craig IW, 
Danese A, et al. 2013. Tumor necrosis factor and its targets in the inflammatory cytokine pathway are identified 
as putative transcriptomic biomarkers for escitalopram response. Eur Neuropsychopharmacol. 23:1105–1114. 
Rapaport MH, Nierenberg AA, Schettler PJ, Kinkead B, Cardoos A, Walker R, Mischoulon D. 2015. Inflammation 
as a predictive biomarker for response to omega-3 fatty acids in major depressive disorder: a proof-of-concept 
study. Mol Psychiatry. 21:71–79. 
Rausch JL, Hobby HM, Shendarkar N, Johnson ME, Li J. 2001. 
Fluvoxamine treatment of mixed anxiety and depression: evidence for serotonergically mediated anxiolysis. J Clin 
Psychopharmacol. 21:139–142. 
Rausch JL, Johnson ME, Fei YJ, Li JQ, Shendarkar N, Hobby HM, Ganapathy V, Leibach FH. 2002. Initial 
conditions of serotonin transporter kinetics and genotype: influence on SSRI treatment trial outcome. Biol 
Psychiatry. 51:723–732. 
Rausch JL, Moeller FG, Johnson ME. 2003. Initial platelet serotonin (5-HT) transport kinetics predict nortriptyline 
treatment outcome. J Clin Psychopharmacol. 23:138–144. 
Ren X, Dwivedi Y, Mondal AC, Pandey GN. 2011. Cyclic-AMP response element binding protein (CREB) in the 
neutrophils of depressed patients. Psychiatry Res. 185:108–112. 
Rief W, Nestoriuc Y, Weiss S, Welzel E, Barsky AJ, Hofmann SG. 2009. Meta-analysis of the placebo response 
in antidepressant trials. J Affect Disord. 118:1–8. 
Risch N, Herrell R, Lehner T, Liang KY, Eaves L, Hoh J, Griem A, Kovacs M, Ott J, Merikangas KR. 2009. 
Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: a 
meta-analysis. JAMA. 301:2462–2471. 
Rivera-Baltanas T, Olivares JM, Martinez-Villamarin JR, Fenton EY, Kalynchuk LE, Caruncho HJ. 2014. 
Serotonin 2A receptor clustering in peripheral lymphocytes is altered in major depression and may be a 
biomarker of therapeutic efficacy. J Affect Disord. 163:47–55. 
Rocha TB, Hutz MH, Salatino-Oliveira A, Genro JP, Polanczyk GV, Sato JR, Wehrmeister FC, Barros FC, 
Menezes AM, Rohde LA, et al. 2015. Gene-Environment Interaction in Youth Depression: Replication of the 5-
HTTLPR Moderation in a Diverse Setting. Am J Psychiatry. 172:978–985. 
Rojas PS, Fritsch R, Rojas RA, Jara P, Fiedler JL. 2011. Serum brain-derived neurotrophic factor and 
glucocorticoid receptor levels in lymphocytes as markers of antidepressant response in major depressive 
patients: a pilot study. Psychiatry Res. 189:239–245. 
Rosenfeld RD, Zeni L, Haniu M, Talvenheimo J, Radka SF, 
Bennett L, Miller JA, Welcher AA. 1995. Purification and identification of brain-derived neurotrophic factor from 
human serum. Protein Expr Purif. 6:465–471. 



Sakaue M, Somboonthum P, Nishihara B, Koyama Y, Hashimoto H, Baba A, Matsuda T. 2000. Postsynaptic 
5-hydroxytryptamine(1A) receptor activation increases in vivo dopamine release in rat prefrontal cortex. Br J 
Pharmacol. 129:1028–1034. 
Serretti A, Chiesa A, Calati R, Massat I, Linotte S, Kasper S, Lecrubier Y, Antonijevic I, Forray C, Snyder L, et al. 
2011. A preliminary investigation of the influence of CREB1 gene on treatment resistance in major depression. J 
Affect Disord. 128:56–63. 
Singh AB. 2015. Improved Antidepressant Remission in Major Depression via a Pharmacokinetic Pathway 
Polygene Pharmacogenetic Report. Clin Psychopharmacol Neurosci. 13:150–156. 
Singh YS, Altieri SC, Gilman TL, Michael HM, Tomlinson ID, Rosenthal SJ, Swain GM, Murphey-Corb MA, Ferrell 
RE, Andrews AM. 2012. Differential serotonin transport is linked to the rh5-HTTLPR in peripheral blood cells. 
Transl Psychiatry. 2:e77. Smith RM, Papp AC, Webb A, Ruble CL, Munsie LM, 
Nisenbaum LK, Kleinman JE, Lipska BK, Sadee W. 2013. Multiple regulatory variants modulate expression of 5- 
hydroxytryptamine 2A receptors in human cortex. Biol Psychiatry. 73:546–554. 
Smits K, Smits L, Peeters F, Schouten J, Janssen R, Smeets H, van Os J, Prins M. 2007. Serotonin transporter 
polymorphisms and the occurrence of adverse events during treatment with selective serotonin reuptake 
inhibitors. Int Clin Psychopharmacol. 22:137–143. 
Sobocki P, Jonsson B, Angst J, Rehnberg C. 2006. Cost of depression in Europe. J Ment Health Policy Econ. 
9:87–98. 
Soule J, Messaoudi E, Bramham CR. 2006. Brain-derived neurotrophic factor and control of synaptic 
consolidation in the adult brain. Biochem Soc Trans. 34:600–604. Stamm TJ, Rampp C, Wiethoff K, Stingl J, 
Mossner R, G OM, Ricken R, Seemuller F, Keck M, Fisher R, et al. 2016. The FKBP5 polymorphism rs1360780 
influences the effect of an algorithm-based antidepressant treatment and is associated with remission in patients 
with major depression. J Psychopharmacol. 30:40–47. 
Stein DJ, Hemmings S, Moolman-Smook H, Audenaert K. 2007. 5-HT2A: its role in frontally mediated executive 
function and related psychopathology. CNS Spectr. 12:512–516. Strohmaier J, Wust S, Uher R, Henigsberg N, 
Mors O, Hauser J, Souery D, Zobel A, Dernovsek MZ, Streit F, et al. 2011. Sexual dysfunction during treatment 
with serotonergic and noradrenergic antidepressants: clinical description and the role of the 5-HTTLPR. World J 
Biol Psychiatry. 12:528–538. 
Su S, Miller AH, Snieder H, Bremner JD, Ritchie J, Maisano C, Jones L, Murrah NV, Goldberg J, Vaccarino V. 
2009. Common genetic contributions to depressive symptoms and inflammatory markers in middle-aged men: 
the Twins Heart Study. Psychosom Med. 71:152–158. 
Szczepankiewicz A, Leszczynska-Rodziewicz A, Pawlak J, Narozna B, Rajewska-Rager A, Wilkosc M, Zaremba 
D, Maciukiewicz M, Twarowska-Hauser J. 2014. FKBP5 polymorphism is associated with major depression but 
not with bipolar disorder. J Affect Disord. 164:33–37. 
Tadic A, Rujescu D, Muller MJ, Kohnen R, Stassen HH, Szegedi A, Dahmen N. 2008. Association analysis 
between variants of the interleukin-1beta and the interleukin-1 receptor antagonist gene and antidepressant 
treatment response in major depression. Neuropsychiatr Dis Treat. 4:269–276. 
Taler M, Gil-Ad I, Lomnitski L, Korov I, Baharav E, Bar M, Zolokov A, Weizman A. 2007. Immunomodulatory 
effect of selective serotonin reuptake inhibitors (SSRIs) on human T lymphocyte function and gene expression. 
Eur Neuropsychopharmacol. 17:774–780. 
Tansey KE, Guipponi M, Hu X, Domenici E, Lewis G, Malafosse A, Wendland JR, Lewis CM, McGuffin P, Uher 
R. 2013. Contribution of common genetic variants to antidepressant 
response. Biol Psychiatry. 73:679–682. 
Tardito D, Musazzi L, Tiraboschi E, Mallei A, Racagni G, PopoliM. 2009. Early induction of CREB activation and 
CREB-regulating signalling by antidepressants. Int J Neuropsychopharmacol. 12:1367–1381. 
Thakker DR, Natt F, Husken D, van der Putten H, Maier R, Hoyer D, Cryan JF. 2005. siRNA-mediated 
knockdown of the serotonin transporter in the adult mouse brain. Mol Psychiatry. 10:782–714.  
Tiwari AK, Zai CC, Sajeev G, Arenovich T, Muller DJ, Kennedy JL. 2013. Analysis of 34 candidate genes in 
bupropion and placebo remission. Int J Neuropsychopharmacol. 16:771–781. 
Tsao CW, Lin YS, Chen CC, Bai CH, Wu SR. 2006. Cytokines and serotonin transporter in patients with major 
depression. Prog Neuropsychopharmacol Biol Psychiatry. 30:899–905. 
Tuglu C, Kara SH, Caliyurt O, Vardar E, Abay E. 2003. Increased serum tumor necrosis factor-alpha levels and 
treatment response in major depressive disorder. 
Psychopharmacology (Berl). 170:429–433. Tylee DS, Kawaguchi DM, Glatt SJ. 2013. On the outside, looking 
in: a review and evaluation of the comparability of blood and brain ‘‘-omes’’. Am J Med Genet B Neuropsychiatr 
Genet. 162B:595–603. 
Uddin M, Koenen KC, Aiello AE, Wildman DE, de los Santos R, Galea S. 2011. Epigenetic and inflammatory 
marker profiles associated with depression in a community-based epidemiologic 
sample. Psychol Med. 41:997–1007. 
Udina M, Moreno-Espana J, Navines R, Gimenez D, Langohr K, Gratacos M, Capuron L, de la Torre R, Sola R, 
Martin-Santos R. 2013. Serotonin and interleukin-6: the role of genetic polymorphisms in IFN-induced 
neuropsychiatric symptoms. Psychoneuroendocrinology. 38:1803–1813. 
Uher R, Huezo-Diaz P, Perroud N, Smith R, Rietschel M, Mors O, Hauser J, Maier W, Kozel D, Henigsberg N, et 
al. 2009.Genetic predictors of response to antidepressants in the GENDEP project. Pharmacogenomics J. 
9:225–233. 
Uher R, Perroud N, Ng MY, Hauser J, Henigsberg N, Maier W, Mors O, Placentino A, Rietschel M, Souery D, et 
al. 2010. Genome-wide pharmacogenetics of antidepressant response in the GENDEP project. Am J Psychiatry. 



167:555–564. 
Utge S, Soronen P, Partonen T, Loukola A, Kronholm E, Pirkola S, Nyman E, Porkka-Heiskanen T, Paunio T. 
2010. A population-based association study of candidate genes for depression and sleep disturbance. Am J Med 
Genet B Neuropsychiatr Genet. 153B:468–476. 
Valkanova V, Ebmeier KP, Allan CL. 2013. CRP, IL-6 and depression: a systematic review and meta-analysis of 
longitudinal studies. J Affect Disord. 150:736–744. van de Veerdonk FL, Netea MG. 2013. New Insights in the 
Immunobiology of IL-1 Family Members. Front Immunol. 4:167. 
van der Doelen RH, Deschamps W, D’Annibale C, Peeters D, Wevers RA, Zelena D, Homberg JR, Kozicz T. 
2014. Early life adversity and serotonin transporter gene variation interact at the level of the adrenal gland to 
affect the adult hypothalamo- pituitary-adrenal axis. Transl Psychiatry. 4:e409. 
Vermeer H, Hendriks-Stegeman BI, van der Burg B, van Buul- Offers SC, Jansen M. 2003. Glucocorticoid-
induced increase in lymphocytic FKBP51 messenger ribonucleic acid expression: 
a potential marker for glucocorticoid sensitivity, potency, and bioavailability. J Clin Endocrinol Metab. 88:277–
284. 
Vogelzangs N, Duivis HE, Beekman AT, Kluft C, Neuteboom J, Hoogendijk W, Smit JH, de Jonge P, Penninx 
BW. 2012. Association of depressive disorders, depression characteristics and antidepressant medication with 
inflammation. Transl Psychiatry. 2:e79. 
Wainwright SR, Galea LA. 2013. The neural plasticity theory of depression: assessing the roles of adult 
neurogenesis and PSA-NCAM within the hippocampus. Neural Plast. 2013:805497. 
Walsh BT, Seidman SN, Sysko R, Gould M. 2002. Placebo response in studies of major depression: variable, 
substantial, and growing. JAMA. 287:1840–1847. 
Wang XC, Xu DJ, Chen GH, Xia Q, Liu LN. 2014. Association of 2 neurotrophic factor polymorphisms with 
efficacy of paroxetine in patients with major depressive disorder in a Chinese population. Ther Drug Monit. 
36:612–617. 
Wilkie MJ, Smith D, Reid IC, Day RK, Matthews K, Wolf CR, Blackwood D, Smith G. 2007. A splice site 
polymorphism in the G-protein beta subunit influences antidepressant efficacy in depression. Pharmacogenet 
Genomics. 17:207–215. 
Winner J, Allen JD, Altar CA, Spahic-Mihajlovic A. 2013a. Psychiatric pharmacogenomics predicts health 
resource utilization of outpatients with anxiety and depression. Transl Psychiatry. 3:e242. 
Winner JG, Carhart JM, Altar CA, Allen JD, Dechairo BM. 2013b. A prospective, randomized, double-blind study 
assessing the clinical impact of integrated pharmacogenomics testing for major depressive disorder. Discov Med. 
16:219–227. 
Winner JG, Carhart JM, Altar CA, Goldfarb S, Allen JD, Lavezzari G, Parsons KK, Marshak AG, Garavaglia S, 
Dechairo BM. 2015. Combinatorial pharmacogenomic guidance for psychiatric medications reduces overall 
pharmacy costs in a one year prospective evaluation. Curr Med Res. 31:1633–1643. Wium-Andersen MK, Orsted 
DD, Nielsen SF, Nordestgaard BG. 2013. Elevated C-reactive protein levels, psychological distress, 
and depression in 73, 131 individuals. JAMA Psychiatry. 70:176–184. 
Won E, Ham BJ. 2016. Imaging genetics studies on monoaminergic genes in major depressive disorder. Prog 
Neuropsychopharmacol Biol Psychiatry. 64:311–319. 
Xu HB, Zhang RF, Luo D, Zhou Y, Wang Y, Fang L, Li WJ, Mu J, Zhang L, Zhang Y, et al. 2012. Comparative 
proteomic analysis of plasma from major depressive patients: identification of proteins associated with lipid 
metabolism and immunoregulation. Int J Neuropsychopharmacol. 15:1413–1425. 
Yatham LN, Liddle PF, Shiah IS, Lam RW, Adam MJ, Zis AP, Ruth TJ. 2001. Effects of rapid tryptophan 
depletion on brain 5-HT(2) receptors: a PET study. Br J Psychiatry. 178:448–453. 
Yeh YW, Ho PS, Chen CY, Kuo SC, Liang CS, Ma KH, Shiue CY, Huang WS, Cheng CY, Wang TY, et al. 2014. 
Incongruent reduction of serotonin transporter associated with suicide attempts in patients with major depressive 
disorder: a positron emission tomography study with 4-[18F]-ADAM. 
Int J Neuropsychopharmacol. 18:pyu065. 
Yeh YW, Ho PS, Kuo SC, Chen CY, Liang CS, Yen CH, Huang CC, Ma KH, Shiue CY, Huang WS, et al. 2015. 
Disproportionate reduction of serotonin transporter may predict the response and adherence to antidepressants 
in patients with major depressive disorder: a positron emission tomography study with 4-[18F]-ADAM. Int J 
Neuropsychopharmacol. 18:pyu120. Yoshimura R, Hori H, Ikenouchi-Sugita A, Umene-Nakano W, Katsuki A, 
Atake K, Nakamura J. 2013. Plasma levels of interleukin-6 and selective serotonin reuptake inhibitor 
response in patients with major depressive disorder. Hum Psychopharmacol. 28:466–470. 
Yu YW, Chen TJ, Hong CJ, Chen HM, Tsai SJ. 2003. Association Study of the interleukin-1 beta (C-511T) 
genetic polymorphism with major depressive disorder, associated symptomatology, and antidepressant 
response. Neuropsychopharmacology. 28:1182–1185. 
Yubero-Lahoz S, Robledo P, Farre M, de laTorre R. 2013. Platelet SERT as a peripheral biomarker of 
serotonergic neurotransmission in the central nervous system. Curr Med 
Chem. 20:1382–1396. 
Zakharyan R, Petrek M, Arakelyan A, Mrazek F, Atshemyan S, Boyajyan A. 2012. Interleukin-6 promoter 
polymorphism and plasma levels in patients with schizophrenia. Tissue 
Antigens. 80:136–142. 
Zalli A, Jovanova O, Hoogendijk WJ, Tiemeier H, Carvalho LA. 2015. Low-grade inflammation predicts 
persistence of depressive symptoms. Psychopharmacology (Berl). 
233:1669-1678. 



Zannas AS, Binder EB. 2014. Gene-environment interactions at the FKBP5 locus: sensitive periods, mechanisms 
and pleiotropism. Genes Brain Behav. 13:25–37. 
Zhang X, Zhang Z, Sha W, Xie C, Xi G, Zhou H, Zhang Y. 2009. Electroconvulsive therapy increases glial cell-
line derived neurotrophic factor (GDNF) serum levels in patients with drug-resistant depression. Psychiatry Res. 
170:273–275. 
Zhang X, Zhang Z, Xie C, Xi G, Zhou H, Zhang Y, Sha W. 2008. Effect of treatment on serum glial cell line-
derived neurotrophic factor in depressed patients. Prog Neuropsychopharmacol Biol Psychiatry. 32:886–890. 
Zhang ZJ, Wang D, Man SC, Ng R, McAlonan GM, Wong HK, Wong W, Lee J, Tan QR. 2014. Platelet 5-HT(1A) 
receptor correlates with major depressive disorder in drug-free patients. Prog Neuropsychopharmacol Biol 
Psychiatry. 53:74–79. 
Zhao X, Huang Y, Li J, Ma H, Jin Q, Wang Y, Wu L, Zhu G. 2012. Association between the 5-HT1A receptor 
gene polymorphism (rs6295) and antidepressants: a meta-analysis. Int Clin Psychopharmacol. 27:314–320. 
Zhao X, Sun L, Sun YH, Ren C, Chen J, Wu ZQ, Jiang YH, Lv XL. 2014. Association of HTR2A T102C and A-
1438G polymorphisms with susceptibility to major depressive disorder: a meta-analysis. Neurol Sci. 35:1857–
1866. 
Zobel A, Schuhmacher A, Jessen F, Hofels S, von Widdern O, Metten M, Pfeiffer U, Hanses C, Becker T, 
Rietschel M, et al. 2010. DNA sequence variants of the FKBP5 gene are associated with unipolar depression. Int 
J Neuropsychopharmacol. 13:649–660. 
Zubenko GS, Hughes HB, 3rd, Stiffler JS, Brechbiel A, 
Zubenko WN, Maher BS, Marazita ML. 2003a. Sequence variations in CREB1 cosegregate with depressive 
disorders in women. Mol Psychiatry. 8:611–618. 
Zubenko GS, Maher B, Hughes HB, 3rd, Zubenko WN, Stiffler JS, Kaplan BB, Marazita ML. 2003b. Genome-
wide linkage survey for genetic loci that influence the development of depressive disorders in families with 
recurrent, early-onset, major depression. Am J Med Genet B Neuropsychiatr Genet. 123B:1–18. 
Zunszain PA, Anacker C, Cattaneo A, Choudhury S, Musaelyan K, Myint AM, Thuret S, Price J, Pariante CM. 
2012. Interleukin-1b: a new regulator of the kynurenine pathway affecting human hippocampal neurogenesis. 
Neuropsychopharmacology. 37:939–949. 
 

 


