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Abstract. In this paper we study the chemotaxis-system{
ut = ∆u− χ∇ · (u∇v) + g(u) x ∈ Ω, t > 0,

vt = ∆v − v + u x ∈ Ω, t > 0,

defined in a convex smooth and bounded domain Ω of Rn, n ≥ 1, with χ > 0

and endowed with homogeneous Neumann boundary conditions. The source
g behaves similarly to the logistic function and satisfies g(s) ≤ a − bsα, for
s ≥ 0, with a ≥ 0, b > 0 and α > 1. Continuing the research initiated in [33],
where for appropriate 1 < p < α < 2 and (u0, v0) ∈ C0(Ω̄)×C2(Ω̄) the global
existence of very weak solutions (u, v) to the system (for any n ≥ 1) is shown,
we principally study boundedness and regularity of these solutions after some
time. More precisely, when n = 3, we establish that

- for all τ > 0 an upper bound for a
b
, ||u0||L1(Ω), ||v0||W2,α(Ω) can be pre-

scribed in a such a way that (u, v) is bounded and Hölder continuous
beyond τ ;

- for all (u0, v0), and sufficiently small ratio a
b
, there exists a T > 0 such

that (u, v) is bounded and Hölder continuous beyond T .
Finally, we illustrate the range of dynamics present within the chemotaxis
system in one, two and three dimensions by means of numerical simulations.

1. Introduction and motivations. According to the logistic model in population
dynamics (Pierre-François Verhulst, 1838), the self-limiting growth of a biological
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population size at a certain time, p(t), is described by the equation

dp

dt
= rp(1− p

K
).

The constant r > 0 defines the growth rate and K > 0 is the carrying capacity of
the species, which is also associated to the death rate of the same species (see [30]).
Once an initial size for the population is given, i.e. p(0) = p0, the aforementioned
equation has an explicit solution whose expression is, for any t ≥ 0,

p(t) =
Kp0e

rt

K + p0(ert − 1)
.

This shows that the total population increases progressively from p0 at time t = 0 to
the limit K, which is reached when t→∞. In particular, the size of the population
remains bounded for all time, and 0 and K are the only stationary points of p;
the first represents an unstable situation while the second an asymptotically stable
equilibrium.

This formulation does not express how the population distributes in the space
it occupies, neither considers the presence of further factors which induce the mi-
gration of the population from one zone to another. Indeed, chemotaxis is the
movement of cells present in an environment in response to a chemical stimulus
therein inhomogeneously distributed.

The mathematical model for the description of the chemotaxis proposed by Keller
and Segel in 1970 (see [11]) is defined by two parabolic differential equations, one
for the distribution of the cells, u = u(x, t), and the other for the concentration
of chemical signal, v = v(x, t), where naturally x is the spatial variable and t the
temporal one: {

ut = ∇ · (%∇u− χu∇v),
vt = ∆v − κv + u.

(1)

In system (1), the parameters %, χ and κ are positive constants. Although we will
consider such cross diffusive terms in terms of chemotactic movement, they are able
to appear for a variety of reasons, including growth of the underlying solution space
[5, 14, 43, 44] and inhomogeneities in the underlying environment [4].

In the present case we prescribe the following description to the equations.
Chemoattractant, v, spreads diffusively, decays with rate κ and is also produced
by the bacteria with rate 1. The bacteria diffuse with mobility % and drift in the di-
rection of the gradient of concentration of the chemoattractant with velocity χ|∇v|;
χ is called chemosensitivity. Hence, once the initial cells distribution and chem-
ical concentration (that is u0(x) = u(x, 0) and v0(x) = v(x, 0)) are given, under
zero-flux boundary conditions on both u and v, the previous problem describes the
chemotactic dynamics of a cells population in a totally insulated domain.

Real observations show that this movement may eventually lead to aggregation
processes, in which the density of the cells spatially coalesces and grows without
bound (chemotactic collapse). Mathematically, this collapse implies that (possibly)
u becomes unbounded at one or more points of its domain at a certain instant (blow-
up time). It is known that, in a one-dimensional domain, all the solutions of (1) are
global and uniformly bounded in time (see [21]), while that in the n-dimensional
setting, with n ≥ 2, unbounded solutions to the same problem have been detected
(see, for instance, [8] and [39]).
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In line with the chemotactic scenario, in [10] for radial solutions and in [20] for
non-radial, the authors prove that under suitable assumptions the bacteria concen-
tration blows up in finite time, for certain domains of R2 and in the cases in which
the second differential equation of (1) is replaced by 0 = ∆v − v + u (parabolic-
elliptic case). Moreover, for the classical parabolic-parabolic (or fully parabolic)
case, estimates from below and numerical computations for the blow-up time of
unbounded solutions to (1) are derived in [24] and [7], respectively (see also [17] for
a more general analysis).

Furthermore, a number of interesting results concerning properties of solutions
to chemotaxis-systems have been also attained for a broader class of problems, in
which the first equation of (1) reads ut = ∇ · (S(u)∇u)−∇ · (T (u)∇v). Precisely,
bounded or unbounded solutions of the corresponding problem is determined by
the asymptotic behaviour of the ratio T (u)/S(u), especially in terms of the space
dimension; we refer, for instance, to [6] and [40] for the parabolic-elliptic case and
to [9, 18, 27, 28, 37] for the parabolic-parabolic case.

As an approach towards the model of self-organizing behaviour of cells popula-
tions, it seems coherent to adapt the original Keller-Segel formulation to the case
in which the temporal evolution of a cells distribution may be perturbed by the
proliferation and the death of the cells themselves. Mathematically it is possible by
adding a linear combination of power functions depending on u and, possibly, on
|∇u| to the first equation of system (1) (see details in [1, 16, 32] for pure chemotaxis-
systems, but also in [31] for weakly coupled systems).

Conforming to the previous paragraph, this investigation focuses on fully para-
bolic chemotaxis-systems which are complemented by logistic-type effects. To the
best of our knowledge, the following are the most recent and partial results in this
regard; under Neumann boundary conditions and in a convex smooth and bounded
domain Ω of Rn, n ≥ 1:

i) For the problem{
ut = ∆u−∇ · (u∇v) + au− bu2 x ∈ Ω, t > 0,

vt = ∆v − v + u x ∈ Ω, t > 0,
(2)

the existence of global weak solutions is proven for any nonnegative and suffi-
cient regular initial data (u0, v0) and arbitrarily small values of b > 0. More-
over, if n = 3 and a is not too large, these solutions become classical after
some time (see [13]).

ii) For the problem{
ut = ∆u− χ∇ · (u∇v) + g(u) x ∈ Ω, t > 0,

τvt = ∆v − v + u x ∈ Ω, t > 0,
(3)

where g generalizes the logistic source in (2), and satisfies g(0) ≥ 0 and g(s) ≤
a−bs2, for s ≥ 0, and with a ≥ 0, b, χ, τ positive constants, it is proved in [36]
that if b is big enough, for all sufficiently smooth and nonnegative initial data,
(u0, v0), the problem possesses a unique bounded and global-in-time classical
solution. Furthermore, even though [22] yields global classical solutions to
(3) for any (not necessarily large) b > 0, which remain bounded in a (convex
smooth and bounded) domain of R2, the same conclusion is not clear to occur
for n ≥ 3.

iii) For the same problem (3), but with source term g controlled, respectively
from below and above, by −c0(s+ sα) and a− bsα, for s ≥ 0, and with some
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α > 1, a ≥ 0 and b, c0 > 0, global existence of very weak solutions is attained
in [33]. Moreover, for n = 3, sufficient conditions on the initial data and the
coefficients of the source g which ensure the boundedness of such solutions are
discussed in [34].

Additionally, analogous conclusions dealing with parabolic-elliptic versions of mod-
els related to (2) or (3) are also available. For instance, in [29] it is proven that weak
solutions exist for arbitrary b > 0; moreover they are smooth and globally classical if
b > (n−2)/n. Finally, with source term g as in the above item iii), global existence
of very weak solutions and their boundedness and eventual smoothness properties
are established in [35].

2. Objectives and main results. In agreement with all of the above, this present
research is dedicated to the following problem

ut = ∆u− χ∇ · (u∇v) + g(u) x ∈ Ω, t > 0,

vt = ∆v − v + u x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = 0 x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0 and v(x, 0) = v0(x) ≥ 0 x ∈ Ω,

(4)

defined in a convex smooth and bounded domain Ω of Rn, n ≥ 1, χ > 0, and where
(u0, v0) is a pair of nonnegative functions from C0(Ω̄) × C2(Ω̄), with ∂v0/∂ν = 0
on ∂Ω, ∂/∂ν indicating the outward normal derivative. Moreover, the function g
belongs to C1([0,∞)), satisfies g(0) ≥ 0 and for some α > 1 it is such that

(H1α) g(s) ≤ a− bsα, for all s ≥ 0, with a ≥ 0 and b > 0,
(H2α) g(s) ≥ −c0(s+ sα), for all s ≥ 0, with c0 > 0.

Our starting point are the contributions [33] and [34], where these partials results
are, respectively, presented:
1 ) existence of global very weak solutions: for any n ≥ 1 and α ∈ (1, 2) satisfying

α > 2− 1
n , the global existence of very weak solutions (u, v) to the system is

shown for any nonnegative initial data, (u0, v0) ∈ C0(Ω̄)× C2(Ω̄), and under
zero-flux boundary condition on v0;

2 ) boundedness of very weak solutions: in the most realistic three dimensional
setting, these very weak solutions derived in 1 ) are bounded. More precisely,
if the ratio a/b does not exceed a certain value and the initial data are such
that ||u0||Lp(Ω) and ‖∇v0‖L4(Ω) are small enough then, for appropriate 9/5 <
p < α < 2, (u, v) is uniformly-in-time bounded in (0,∞).

A natural and complementary question connected to the above results 1 ) and 2 )
is to show that singularities of solutions to (4), possibly arising after some finite
time, disappear. In other words, our main objective is to analyse whether solutions
to (4), with “unclear” behaviour over a certain period, become eventually bounded
and smooth beyond some time; additionally, it is also interesting to investigate and
characterize their long time behaviour. Specifically, we address the following issues,
which are directly related to each other.
- For any fixed time τ > 0, is it possible to claim that the very weak solutions
of (4) improve their regularity and become bounded beyond such τ? According
to Theorem 2.1 below, by imposing suitable smallness conditions on u0 and v0,
measured in proper norms, the very weak solutions are eventually bounded and
Hölder continuous provided the ratio a/b does not exceed a certain value.
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- Is it possible to claim that any of the very weak solutions of (4) improve their
regularity and become bounded beyond some time, regardless the initial sizes of
u0 and v0? Again under smallness assumption on the ratio a/b, this question is
positively shown in the forthcoming Theorem 2.2. It is proved that it is always
possible to find a T > 0 such that the very weak solution are bounded and
Hölder continuous beyond T , independently by some norm of the initial data u0

and v0; clearly, the time beyond which it occurs depends on such initial norm.
- Is it possible to characterize the asymptotics of bounded solutions, i.e. their
behaviour for t → ∞? If on the one hand all the solutions of the Pierre-
François Verhulst model converge to the constant steady state K (as shown
in §1), then the chemotaxis-diffusion-growth models may lead to a spatially
uniform steady state, or to a spatially heterogeneous steady state, as well as
irregular spatiotemporal solutions, possibly defined by time-periodic or time-
irregular pattern formations (see [2, 23]). The theoretical analysis dealing with
the behaviour of the solutions to (4) when the time increases is currently unclear
and goes beyond the scope of this paper; here, we present an important number
of numerical simulations (in one, two and three dimensions) concerning the long
time behaviour of bounded solutions and also the blow-up scenario of unbounded
ones (see §6).

Linked to the previous first two questions, these represent exactly our main theo-
retical assertions:

Theorem 2.1. Let Ω be a convex smooth and bounded domain of R3, χ > 0 and
g ∈ C1([0,∞)), with g(0) ≥ 0, such that for some 9/5 < α < 2 both assumptions
(H1α) and (H2α) are verified. Then, for any τ > 0 there exists a positive real
δ(τ) > 0 such that if

max

{(a
b

) 1
α |Ω|, ||u0||L1(Ω), ||v0||αW 2,α(Ω)

}
< δ(τ), (5)

problem (4) admits a very weak solution, (u, v), which is bounded in Ω × (τ,∞).
Moreover, (u, v) is such that for all t > τ

‖u‖C2,1(Ω̄×[t+3,t+4])+‖v‖C2,1(Ω̄×[t+3,t+4])≤ Cτ , (6)

for some Cτ > 0.

Theorem 2.2. Let Ω be a convex smooth and bounded domain of R3, χ > 0 and
g ∈ C1([0,∞)), with g(0) ≥ 0, such that for some 9/5 < α < 2 both assumptions
(H1α) and (H2α) are verified. Then, there exist positive real numbers δ̃ and T such
that if a/b < δ̃ problem (4) admits a very weak solution, (u, v), which is bounded in
Ω× (T,∞). Moreover, (u, v) is such that for all t > T

‖u‖C2,1(Ω̄×[t+3,t+4])+‖v‖C2,1(Ω̄×[t+3,t+4])≤ CT , (7)

for some CT > 0.

3. Preliminaries and definition of suitable solution. The following results
are herein formulated according to our purposes, and they are used through the
paper to prove the claimed theorems. For the sake of clarity, we also close the
section with the definition of very weak solutions to (4).
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Lemma 3.1. (The Jensen inequality) Let f be a nonnegative function belonging to
L1([t1, t2]), with t1 < t2. Then, for any concave function ϕ : R→ R this inequality
holds

1

t2 − t1

∫ t2

t1

ϕ(f(t))dt ≤ ϕ
(

1

t2 − t1

∫ t2

t1

f(t)dt

)
. (8)

Proof. See Theorem 3.4 of [25].

Now we collect some properties regarding the Neumann heat semigroup
(
et∆
)
t≥0

in Ω ⊂ Rn, n ≥ 1.

Lemma 3.2. For p ∈ (1,∞), let us consider the operator −∆ defined in the domain
D(−∆) :=

{
f ∈W 2,p(Ω)

∣∣∣ ∂f∂ν |∂Ω = 0
}
. Then the operator (−∆ + 1) is sectorial in

Lp(Ω) and for any ρ ≥ 0 possesses fractional powers (−∆ + 1)ρ, with dense domain
D((−∆ + 1)ρ). Moreover, there exist positive constants CS and µ1 such that

- for all t > 0 and p ≤ q <∞ the following Lp-Lq estimates hold

‖(−∆ + 1)ρet(∆−1)f‖Lq(Ω)≤ CSt−ρ−
n
2 ( 1

p−
1
q )e−µ1t‖f‖Lp(Ω) ∀ f ∈ Lp(Ω), (9)

- for all t > 0 and 1 < p ≤ q < ∞ the operator et∆∇· possesses a uniquely
determined extension to an operator from Lp(Ω) to Lq(Ω) obeying this Lp-Lq
estimate

‖et∆∇ · f‖Lq(Ω)≤ CS
(

1 + t−
1
2−

n
2 ( 1

p−
1
q )
)
e−µ1t‖f‖Lp(Ω) ∀f ∈ Lp(Ω;Rn), (10)

- for all t > 0 and 1 ≤ p ≤ q ≤ ∞ this Lp-Lq estimate holds

‖∇et∆f‖Lq(Ω)≤ CS
(

1 + t−
1
2−

n
2 ( 1

p−
1
q )
)
e−µ1t‖f‖Lp(Ω) ∀ f ∈ Lp(Ω). (11)

Proof. See Section 2. of [9] and Lemma 1.3 of [38].

We also make use of these elementary results.

Lemma 3.3. Let y be a positive real number satisfying y ≤ c(yl+1) for some c > 0

and 0 < l < 1. Then y ≤ max{1, (2c)
1

1−l }.

Proof. Let us suppose y ≥ 1 (if y ≤ 1 there is nothing left to show): yl ≥ 1 so that
y ≤ c(yl + 1) ≤ 2cyl and hence y ≤ (2c)

1
1−l .

Lemma 3.4. For any A,B ≥ 0 and p > 1 we have

A
1
p +B

1
p ≥ (A+B)

1
p . (12)

Proof. Let us prove relation (12) for both A and B strictly positive; otherwise
the inequality is obvious. If we set t = A/B, it is sufficient to show that the
function h(t) = (t

1
p + 1) − (t + 1)

1
p is increasing for t > 0 and p > 1. We have

h′(t) = 1
p t

1
p−1 − 1

p (t + 1)
1
p−1; since p > 1 implies (t + 1)1− 1

p > t1−
1
p , we conclude

that h′(t) > 0 for all t > 0.

Finally, we give these definitions.

Definition 3.5. Let T > 0. A pair (u, v) of nonnegative functions

u ∈ L1(Ω× (0, T )), v ∈ L1(0, T ;W 1,1(Ω)),

is said to be a very weak subsolution of (4) in Ω× (0, T ) if

g(u) and u∇v belong to L1(Ω× (0, T )),
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if

−
∫ T

0

∫
Ω

uϕt −
∫

Ω

u0ϕ(·, 0) ≤
∫ T

0

∫
Ω

u∆ϕ+ χ

∫ T

0

∫
Ω

u∇v · ∇ϕ+

∫ T

0

∫
Ω

g(u)ϕ,

for all nonnegative ϕ ∈ C∞0 (Ω̄× [0, T )), such that ∂ϕ
∂ν = 0 on ∂Ω× (0, T ), and if

−
∫ T

0

∫
Ω

vψt −
∫

Ω

v0ψ(·, 0) +

∫ T

0

∫
Ω

∇v · ∇ψ +

∫ T

0

∫
Ω

vψ =

∫ T

0

∫
Ω

uψ,

for all nonnegative ψ ∈ C∞0
(
Ω̄× [0, T )

)
.

Definition 3.6. Let T > 0 and γ ∈ (0, 1). A pair (u, v) of nonnegative functions

u ∈ L1(0, T ;Lγ(Ω)), v ∈ L2(0, T ;W 1,2(Ω)),

is said to be a weak γ-entropy supersolution of (4) in Ω× (0, T ) if{
uγ−2|∇u|2, uγ−1g(u) and uγ∇v belong to L1(Ω× (0, T )),

uγ−1|∇u| belongs to L2(Ω× (0, T )),

if

−
∫ T

0

∫
Ω

uγϕt −
∫

Ω

uγ0ϕ(·, 0) ≥ γ(1− γ)

∫ T

0

∫
Ω

uγ−2|∇u|2ϕ+

∫ T

0

∫
Ω

uγ∆ϕ

+ χγ

∫ T

0

∫
Ω

uγ∇v · ∇ϕ+ γ

∫ T

0

∫
Ω

uγ−1g(u)ϕ+ χ(γ − 1)

∫ T

0

∫
Ω

ϕuγ−1∇u · ∇v,

for all nonnegative ϕ ∈ C∞0 (Ω̄× [0, T )), such that ∂ϕ/∂ν = 0 on ∂Ω× (0, T ), and
if

−
∫ T

0

∫
Ω

vψt −
∫

Ω

v0ψ(·, 0) +

∫ T

0

∫
Ω

∇v · ∇ψ +

∫ T

0

∫
Ω

vψ =

∫ T

0

∫
Ω

uψ,

for all nonnegative ψ ∈ C∞0 (Ω̄× [0, T )).

Definition 3.7. Let T > 0. A pair (u, v) of functions is called very weak solution
for problem (4) in Ω × (0, T ) if it is both a very weak subsolution and a weak
γ-entropy supersolution of (4) in Ω× (0, T ), in the sense of Definitions 3.5 and 3.6.

A global very weak solution of (4) is a pair (u, v) of functions defined in Ω×(0,∞)
which is a very weak solution of (4) in Ω× (0, T ) for all T > 0.

4. Approximate problem and existence of very weak solutions. In prepa-
ration for the main estimates, by means of a parameter ε ∈ (0, 1), we define a per-
turbed chemotaxis-system, properly constructed to approximate and hence solve
and analyze the original problem (4). Precisely, we rely on these specific results.

Proposition 1. Let Ω be a convex smooth and bounded domain of Rn, with n ≥ 1,
and β > n+ 2. Moreover, for some α > 1, let us assume g ∈ C1([0,∞)), such that
g(0) ≥ 0, and satisfies (H1α). Then, for any ε ∈ (0, 1) and nonnegative functions
u0 ∈ C0(Ω̄) and v0 ∈ C2(Ω̄), with ∂v0/∂ν = 0 on ∂Ω, the following problem

uεt = ∆uε − χ∇ · (uε∇vε) + g(uε)− εuβε x ∈ Ω, t > 0,

vεt = ∆vε − vε + uε x ∈ Ω, t > 0,
∂uε
∂ν = ∂vε

∂ν = 0 x ∈ ∂Ω, t > 0,

uε(x, 0) = u0(x) ≥ 0 and vε(x, 0) = v0(x) ≥ 0 x ∈ Ω,

(13)

admits a unique classical and global solution (uε, vε), for which both uε and vε are
nonnegative and bounded in Ω× (0,∞).
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Proof. See Proposition 1 of [33].

We also present this result concerning both the existence and boundedness prop-
erties of global very weak solutions to system (4).

Proposition 2. Let Ω be a convex smooth and bounded domain of Rn, with n ≥
1. For some α ∈ (1, 2), with α > 2 − 1

n , let us assume g ∈ C1([0,∞)), such
that g(0) ≥ 0, and verifying both assumptions (H1α) and (H2α). Then for all
nonnegative functions (u0(x), v0(x)) ∈ C0(Ω̄)×C2(Ω̄), with ∂v0

∂ν = 0 on ∂Ω, problem
(4) admits at least one global very weak solution (u, v), according to Definition 3.7.
More precisely, this solution is the limit of a sequence of globally bounded couples of
functions (uε, vε) which classically solve the approximate problem (13), in the sense
that, for any t > 0 and 1 < p < α < 2, as ε→ 0 we have

uε → u in Lp(Ω× (0, t)),

uγε ⇀ uγ in L2(0, t;W 1,2(Ω)),

uε ⇀ u in Lα(Ω× (0, t)),

vε → v in L
α
α−1 (0, t;W 1, α

α−1 (Ω)).

Additionally, for n = 3, there exists a positive real δ > 0 such that if a and b are
such that a/b < δ then for all 9/5 < p < α < 2 it is possible to find a λ > 0
with the following property: if (u0(x), v0(x)) ∈ C0(Ω̄) × C2(Ω̄) are also such that
‖u0‖Lp(Ω)<

(
p
2

) 1
p λ and ‖∇v0‖L4(Ω)< λ

p
4 , the global very weak solution (u, v) is

uniformly-in-time bounded in (0,∞).

Proof. For the existence question, see the proof of Theorem 2.1 in [33]. For the
boundedness, Theorem 2.1 in [34].

Remark 1. By taking into account the regularity properties that the limit (u, v)
provided by Proposition 2 inherits from the sequence (uε, vε), we have that for n = 1

the Sobolev inequalities imply that both W 1,2(Ω) and W 1, α
α−1 (Ω) are compactly

embedded in C(Ω̄). As a consequence, in the one dimensional setting, for any
t > 0 the solution (u(·, t), v(·, t)) to problem (4) belongs to L∞(Ω) for any choice
of the initial distribution (u0, v0) and the parameters a and b which determine the
behaviour of function g.

5. A priori estimates and proof of the theorems. In this section our principal
objective is to infer some ε-independent and uniform-in-time estimates for both uε
and vε components of the solution (uε, vε) to (13). In this sense, the following
lemma includes some inequalities which are strongly employed with this aim.

Lemma 5.1. Let Ω be a convex smooth and bounded domain of R3 and (uε, vε) the
solution of problem (13) provided by Proposition 1. Then for any 9/5 < p < α < 2
and t2 > t1 ≥ 0, (uε, vε) verifies

∫
Ω

uε(·, t) ≤ m+ e−αa
α−1
α b

1
α (t−t1)

(∫
Ω

uε(·, t1)−m
)
∀ t ≥ t1,∫

Ω

uε(·, t) ≤Mε(t1) ∀ t ≥ t1,∫ t2

t1

∫
Ω

uαε ≤
a|Ω|(t2 − t1) +Mε(t1)

b
∀ t2 > t1,

(14a)

(14b)

(14c)



EVENTUAL SMOOTHNESS AND ASYMPTOTIC BEHAVIOUR OF SOLUTIONS TO A CHEMOTAXIS SYSTEM9

as well,∫ t2

t1

[
1

p

∫
Ω

upε +

(
1

2

∫
Ω

|∇vε|4
)α

4

]
≤ t2 − t1

p
|Ω|
(a
b

) p
α

+
((t2 − t1)|Ω|)

α−p
α

pb
p
α

Mε(t1)
p
α

+ CΩMε(t1)
b+ 1

b
+ CΩ

a|Ω|(t2 − t1)

b
,

(15)

where Mε(t1) = max
{
m, ||uε(·, t1)||L1(Ω), ||vε(·, t1)||αW 2,α(Ω)

}
, with m = (a/b)

1
α |Ω|,

CΩ being a positive constant not depending on ε.

Proof. Let be t1 ≥ 0; an integration over Ω of the first equation in (13) yields

d

dt

∫
Ω

uε(·, t) =

∫
Ω

g(uε)− ε
∫

Ω

uβε ≤ a|Ω| − b
∫

Ω

uαε − ε
∫

Ω

uβε , (16)

where also (H1α) and the Neumann boundary condition on uε were considered.
Another integration over (t1, t) of this inequality gives

b

∫ t

t1

∫
Ω

uαε + ε

∫ t

t1

∫
Ω

uβε ≤ a|Ω|(t− t1)−
∫

Ω

uεdx+

∫
Ω

uε(·, t1) ∀ t ≥ t1. (17)

Moreover, for any α > 1 the Hölder inequality yields
∫

Ω
uε ≤ |Ω|

α−1
α (
∫

Ω
uαε )

1
α ; hence

for all t > 0 relation (16) implies

d

dt

∫
Ω

uε(·, t) ≤ a|Ω| − b|Ω|1−α
(∫

Ω

uε

)α
.

By setting z(t) =
∫

Ω
uε(·, t)−m, with m = (a/b)

1
α |Ω|, we have

z′ ≤ a|Ω| − b|Ω|1−α(m+ z)α ≤ bmα|Ω|1−α − b|Ω|1−αmα
(

1 +
z

m

)α
≤ −αa

α−1
α b

1
α z ∀ t > 0,

where we have used the relation (1 +A)α ≥ 1 + αA, with A ≥ 0.
By complementing this inequality with the initial condition z(t1) =

∫
Ω
uε(·, t1)−

m, it is seen that∫
Ω

uε(·, t) ≤ m+ e−αa
α−1
α b

1
α (t−t1)

(∫
Ω

uε(·, t1)−m
)
∀ t ≥ t1,

which implies (14a) and (14b). Hence, (14c) results from (17) and (14a) and the
non negativity of

∫
Ω
uε.

Now, for any t2 > t1, let us independently estimate the terms
∫ t2
t1

1
p

∫
Ω
upε and∫ t2

t1

(
1
2

∫
Ω
|∇vε|4

)α
4 . Since p/α < 1, then the Hölder inequality allows us to write

∫ t2

t1

1

p

∫
Ω

upε ≤
∫ t2

t1

1

p

(∫
Ω

uαε

) p
α

|Ω|
α−p
α . (18)
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In addition, since p/α < 1, the function t 7→
(∫

Ω
uαε
) p
α is concave; an application of

the Jensen inequality (8) in the interval [t1, t2] provides∫ t2

t1

(∫
Ω

uαε

) p
α

= (t2 − t1)
1

t2 − t1

∫ t2

t1

(∫
Ω

uαε

) p
α

≤ (t2 − t1)
1

(t2 − t1)
p
α

(∫ t2

t1

∫
Ω

uαε

) p
α

≤ (t2 − t1)
α−p
α

[(
a|Ω|(t2 − t1)

b

) p
α

+

(
Mε(t1)

b

) p
α

]
,

(19)

where we have also used relations (14c) and (12) with p = α/p > 1.
On the other hand, since 9/5 < α < 2, the Sobolev embedding W 2,α ↪→ W 1,4

infers a positive constant Ĉ such that(
1

2

∫
Ω

|∇vε|4
)α

4

≤ Ĉ
∫

Ω

(vε
α + |∇vε|α + |∆vε|α). (20)

The linear (Cauchy) problem extracted from the second equation of (13), that is
vεt = ∆vε − vε + uε, x ∈ Ω, t > 0, with ∂vε/∂ν = 0, x ∈ ∂Ω, t > 0 and vε(x, 0) =
v0(x), has a unique classical and global solution, so that we can apply relation
(12) of Proposition 2 of [33] in the interval [t1, t2]. Precisely, in line with the
nomenclature used in such a proposition, setting p = q = α > 1, using that for
any A,B ≥ 0 the relation (A + B)α ≤ 2α(Aα + Bα) holds and estimating the
interpolation norm ‖vε(·, t1)‖α,1− 1

α
with ‖vε(·, t1)‖W 2,α(Ω), we can find a positive

constant C̃, independent on ε, such that∫ t2

t1

∫
Ω

(vε
α + |∇vε|α + |∆vε|α) ≤ C̃

(
||vε(·, t1)||αW 2,α(Ω) +

∫ t2

t1

∫
Ω

uαε

)
. (21)

In this way, by integrating (20) between t1 and t2, and in view of (14c), relation
(21) infers∫ t2

t1

(
1

2

∫
Ω

|∇vε|4
)α

4

≤ CΩMε(t1) + CΩ
a|Ω|(t2 − t1) +Mε(t1)

b
, (22)

where CΩ = ĈC̃. The sum of the expressions (18) and (22), once the bound (19) is
also taken into account, concludes the proof.

The following lemma provides, for some p > 1 and beyond some time, an ε-
independent boundedness for ‖uε‖Lp(Ω); this estimate is attained by establishing
an absorptive differential inequality for the time dependent energy function Φε(t) =
1
p

∫
Ω
upε + 1

2

∫
Ω
|∇vε|4, associated to (uε, vε).

Lemma 5.2. Let Ω be a convex smooth and bounded domain of R3 and (uε, vε) the
solution of problem (13) provided by Proposition 1. Then, for any 9/5 < p < α < 2
and τ > 0, it is possible to find two positive and ε-independent real numbers δ(τ)
and C(τ) with the property that if there exists t1 ≥ 0 such that for all ε ∈ (0, 1)

Mε(t1) = max

{(a
b

) 1
α |Ω|, ||uε(·, t1)||L1(Ω), ||vε(·, t1)||αW 2,α(Ω)

}
< δ(τ), (23)

then

||uε(·, t)||Lp(Ω) ≤ C(τ) for all t ≥ t1 +
τ

2
.
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Proof. For any t1 ≥ 0, let us define the function

Φε(t) :=
1

p

∫
Ω

upε +
1

2

∫
Ω

|∇vε|4 for all t ≥ t1.

By retracing the proof of Lemma 5.2 in [34], and using the same constants therein
introduced, one can show that Φε satisfies this absorptive differential inequality for
any t > t1

Φ′ε(t) ≤ −c6Φε(t) + c7Φε(t)
3
2 + c8Φε(t)

3 + c9Φε(t)
k + c5(Mε(t1)p−1 +Mε(t1)3),

with k = 3 (p− 1) / (5p− 9) > 3. Let us assign for any ξ ≥ 0 andMε := Mε(t1) ≥ 0
the function

ΘMε(ξ) := −c6ξ + c7ξ
3
2 + c8ξ

3 + c9ξ
k + c5(Mp−1

ε +M3
ε );

it is seen that Θ0(ξ) = −c6ξ + c7ξ
3
2 + c8ξ

3 + c9ξ
k is such that

Θ0(0) = 0 and lim
ξ→+∞

Θ0(ξ) = +∞,

as well as

Θ′0(0) = −c6 < 0, lim
ξ→+∞

Θ′0(ξ) = +∞ and Θ′′0(ξ) > 0.

Subsequently, Θ0(ξ) admits exactly two roots: 0 and another one, which is strictly
positive. Moreover, since ΘMε(ξ) is obtained by translating Θ0(ξ) in the positive
direction of the Θ-axis by the amount of c5(Mp−1

ε +M3
ε ), let us consider the set

SMε
= {ξ ≥ 0 such that ΘMε

(ξ) = 0}.

Through a continuous dependence argument, regardless the size of the positive root
of Θ0(ξ), it is always possible to find a value Mlim > 0 with the property that
the equation ΘMlim(ξ) = 0 possesses two positive roots (let us say ξ1 and ξ2, with
ξ1 < ξ2) such that ξlim = ξ1 < 1. In this sense SMlim ≡ {ξlim, ξ2}. Hence for any
ξ ≥ 0 we have

0 < Mε < Mlim ⇒

{
Θ0(ξ) < ΘMε

(ξ) < ΘMlim(ξ),

SMε
= {ξmin, ξmax}, with ξmin < ξlim<1.

(24)

Additionally, Φε(t) ≡ ξlim satisfies this initial problem{
Φ′ε(t) = ΘMlim(Φε(t)) t > 0,

Φε(0) = ξlim.
(25)

Successively, for any τ > 0 let us define

δ(τ) := min



(
ξlim|Ω|α−1

4CΩ

) 1
α

τ
2

(
pξlimb

p
α

4|Ω|
α−p
p

)α
p

τbξlim
8CΩ(b+1)(

pξlim|Ω|p−1

4

) 1
p

Mlim


. (26)
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From now on our aim is to justify the existence of a t̂ ∈ (t1, t1 + τ/2) and show that
Φε(t) satisfies the initial problem{

Φ′ε(t) ≤ ΘMε(Φε(t)) t > t̂,

Φε
(
t̂
)

= 1
p

∫
Ω
upε
(
·, t̂
)

+ 1
2

∫
Ω
|∇vε

(
·, t̂
)
|4 < ξlim.

(27)

Indeed, in view of (26), assumption (23) would imply relations (24), which in turn
would allow us to apply an ODE comparison principle to problems (25) and (27)
and conclude that Φε(t) ≤ ξmin for all t > t̂, ξmin being some zero of ΘMε(ξ), with
0 < ξmin < ξlim<1.

The average theorem establishes the existence of a time t̂ belonging to (t1, t1 + τ
2 )

such that

1

p

∫
Ω

upε(·, t̂) +

(
1

2

∫
Ω

|∇vε(·, t̂)|4
)α

4

=
2

τ

∫ t1+ τ
2

t1

[
1

p

∫
Ω

upε +

(
1

2

∫
Ω

|∇vε|4
)α

4

]
.

In this way, an application of (15) from Lemma 5.1 with t2 = t1 + τ
2 yields

1

p

∫
Ω

upε(·, t̂) +

(
1

2

∫
Ω

|∇vε(·, t̂)|4
)α

4

≤|Ω|
p

(a
b

) p
α

+
(τ

2

)−p
α |Ω|

α−p
α Mε(t1)

p
α

pb
p
α

+
2

τ
CΩMε(t1)

(
b+ 1

b

)
+ |Ω|CΩ

a

b
.

Through (23) and (26) we derive that

1

p

∫
Ω

upε(·, t̂) +

(
1

2

∫
Ω

|∇vε(·, t̂)|4
)α

4

≤ ξlim < 1,

so that, in particular,
(

1
2

∫
Ω
|∇vε(·, t̂)|4

)α
4 < 1. Subsequently, in view of α/4 < 1,

we finally get

1

p

∫
Ω

upε(·, t̂) +
1

2

∫
Ω

|∇vε(·, t̂)|4 ≤
1

p

∫
Ω

upε(·, t̂) +

(
1

2

∫
Ω

|∇vε(·, t̂)|4
)α

4

≤ ξlim < 1.

As claimed, this implies that Φε(t) ≤ ξmin for all t > t̂, for some ξmin = ξmin(τ) < 1;
thereafter, since ||uε||Lp(Ω) ≤ p

1
pΦε(t)

1
p , the proof is complete upon the choice

C(τ) = (pξmin)
1
p .

Now, the next conclusion proves that the boundedness of ||uε||Lp(Ω) is sufficient
to show that for some 3 < q < 3p/(p− 3) the W 1,q(Ω)-norm of the component vε is
controlled by a certain ε-independent and uniform-in-time positive constant; more
exactly, we show that if uε ∈ Lp(Ω) for some t ≥ t1, with t1 ≥ 0, than vε belongs
to some W 1,∞(Ω) for t beyond t1. We will use also some ideas presented in [3].

Lemma 5.3. Let Ω be a convex smooth and bounded domain of R3 and (uε, vε) the
solution of problem (13) provided by Proposition 1. Let also assume that for any
1 < p < 3 there exists t1 ≥ 0 such that

||uε(·, t)||Lp(Ω) ≤ C(t1) ∀t ≥ t1, (28)

with C(t1) a positive constant independent on ε. Then, for all q > p, with 3 < q <
3p/(p − 3), and τ∗ > 0 it is possible to find a positive and ε-independent constant
C(τ∗) such that

||vε(·, t)||W 1,q(Ω) ≤ C(τ∗) for all t ≥ t1 + τ∗. (29)
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Moreover, there exists also another positive and ε-independent constant C∞(τ∗)
such that

||uε(·, t)||L∞(Ω) + ||vε(·, t)||W 1,∞(Ω) ≤ C∞(τ∗) for all t ≥ t1 + 2τ∗. (30)

Proof. For any t1 ≥ 0, let us fix τ∗ > 0. For the first part of the theorem, we rely on
the proof of Lemma 4.1 of [9]. Precisely, adapting their work to our notation, one
can see that it is only necessary to check that C(τ∗), in this present manuscript, is
a ε-independent constant. This is justified by the ε-independence of ||uε(·, t)||Lp(Ω)

for t ≥ t1 and of ||vε(·, t1)||L1(Ω). The former, which takes the place of assumption
||u(t)||Lγ(Ω) ≤ c1 ∀ t ∈ [τ, Tmax) appearing in the mentioned Lemma 4.1, is ensured
by our hypothesis (28); the latter, corresponding to the boundedness of ||v(τ)||L1(Ω)

of the same Lemma in [9], is obtained as follows: by integrating over Ω the second
equation of (13), and using the boundary conditions, give

d

dt

∫
Ω

vε = −
∫

Ω

vε +

∫
Ω

uε.

By considering expression (14b) applied with t1 = 0, which infers
∫

Ω
uε(·, t) ≤

max{m, ‖u0‖L1(Ω), ‖v0‖αW 2,α(Ω)} =: M for all t > 0, the solution of the previous
ODE allows us to obtain∫

Ω

vε(·, t) =

∫
Ω

uε + e−t
(∫

Ω

v0(x)dx−
∫

Ω

uε

)
≤M + e−t

(∫
Ω

v0(x)dx−
∫

Ω

uε

)
≤ max

{
M, ‖v0‖L1(Ω)

}
∀ t ≥ 0;

hence, we also have

||vε(·, t1)||L1(Ω) ≤ max{M, ‖u0‖L1(Ω)} ∀ t1 ≥ 0.

Now, assumption (H1α) ensures that for any x ∈ Ω and t > 0 he following relation
holds,

uεt ≤ ∆uε − χ∇ · (uε∇vε) + a.

Hence, for any t ≥ t1 + τ∗, we set t0 := t − τ∗, so that the representation formula
for uε yields

uε(·, t) ≤ e(t−t0)∆uε(·, t0)− χ
∫ t

t0

e(t−s)∆∇ · (uε(·, s)∇vε(·, s))ds

+

∫ t

t0

e(t−s)∆ads =: uε1(·, t) + uε2(·, t) + uε3(·, t).
(31)

Since t− t0 = τ∗, and t0 ≥ t1, an application of (9) infers this estimate

‖uε1(·, t)‖L∞(Ω)≤ e−τ
∗
CS(τ∗)

−3
2 ‖uε(·, t0)‖L1(Ω)≤ c0(τ∗), (32)

with c0(τ∗) = e−τ
∗
CSM(τ∗)

−3
2 and where, as for a previous step, we have intro-

duced M = max{m, ‖u0‖L1(Ω), ‖v0‖αW 2,α(Ω)} and used that ‖uε(·, t0)‖L1(Ω)≤ M ,
exactly in view of expression (14b) with the choice t1 = 0.

In addition, for all t ≥ t1 + τ∗, we have

‖uε3(·, t)‖L∞(Ω)≤
∫ t

t0

‖e(t−s)∆a‖L∞(Ω)ds = τ∗a. (33)
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Furthermore, for any 3 < r < q we apply (10) and arrive at, that for t ≥ t1 + τ∗,

‖uε2(·, t)‖L∞(Ω)≤ χ
∫ t

t0

‖e(t−s)∆∇ · (uε(·, s)∇vε(·, s))‖L∞(Ω)ds

≤ χCS
∫ t

t0

(1 + (t− s)− 1
2−

3
2r )e−µ1(t−s)‖uε(·, s)∇vε(·, s)‖Lr(Ω)ds.

(34)

Now, for any given t′ > t1 + τ∗ we consider the ε-sequence defined by

Aε(t
′) := sup

t∈(t1+τ∗,t′)

‖uε(·, t)‖L∞(Ω), (35)

which is bounded in view of the properties of uε. Hence, the Hölder inequality,
assumption (28) and estimate (29) provide for all s ∈ (t1 + τ∗, t′)

‖uε(·, s)∇vε(·, s)‖Lr(Ω) ≤ ‖uε(·, s)‖
L

rq
q−r (Ω)

‖∇vε(·, s)‖Lq(Ω)

≤ ‖uε(·, s)‖
1−α(q−r)

rq

L∞(Ω) ‖uε(·, s)‖
α(q−r)
rq

Lp(Ω) ‖∇vε(·, s)‖Lq(Ω)

≤ (Aε(t
′))1−α(q−r)

rq C(t1)
α(q−r)
rq C(τ∗) = (c2(τ∗))Alε(t

′),

with c2(τ∗) = C(t1)
α(q−r)
rq C(τ∗) and 0 < l = 1 − α(q − r)/rq < 1. Further, by

defining t − t0 = τ∗ and by using in (34) the estimate for the cross-diffusive term
uε(·, s)∇vε(·, s), then by direct integration we have that for all t ≥ t1 + τ∗,

‖uε2(·, t)‖L∞(Ω) ≤ χCS
1

µ1

(
1− e−µ1τ

∗
)

+ µ
− 1

2 + 3
2r

1 Γ

(
1

2
− 3

2r

)
c2(τ∗)Alε(t

′)

=: c3(τ∗)Alε(t
′),

(36)

where the Gamma function, Γ, has also been employed.
From expression (31), by collecting (32), (33) and (36) we infer

‖uε(·, t)‖L∞(Ω)≤ (c4(τ∗))(Alε(t
′) + 1) for all t ∈ (t1 + τ∗, t′),

where c4(τ∗) = max{c0(τ∗) + τ∗a, c3(τ∗)}. Therefore recalling (35)

sup
t∈(t1+τ∗,t′)

‖uε(·, t)‖L∞(Ω):= Aε(t
′) ≤ c4(τ∗)(Alε(t

′) + 1) for all t′ > t1 + τ∗,

which through Lemma 3.3 yields this uniform ε-independent bound for uε:

‖uε(·, t)‖L∞(Ω)≤ max
{

1, (2c4(τ∗))
1

1−l

}
=: C1(τ∗) for all t ≥ t1 + τ∗. (37)

Now (recall Ω ⊂ R3), since q > 3 implies W 1,q(Ω) ↪−→ L∞(Ω), inequality (29) infers
some positive constant C2(τ∗) such that for any ε ∈ (0, 1)

‖vε(·, t)‖L∞(Ω)≤ C2(τ∗) ∀ t ≥ t1 + τ∗. (38)

Additionally, for any t ≥ t1 + 2τ∗, boundedness of ∇vε can be achieved by applying
to both sides of the representation formula for vε,

vε(·, t) = e(t−t0)(∆−1)vε(·, t0) +

∫ t

t0

e(t−s)(∆−1)uε(·, s)ds for all t ≥ t0,
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the gradient operator ∇; we obtain, again for t0 = t − τ∗, through estimate (11),
the support of expressions (37) and (38), and the fact that t0 ≥ t1 + τ∗

‖∇vε(·, t)‖L∞(Ω) ≤ ‖∇e(t−t0)(∆−1)vε(·, t0)‖L∞(Ω)

+

∫ t

t0

‖∇e(t−s)(∆−1)uε(·, s)‖L∞(Ω)ds

≤ CS(1 + (t∗)−
1
2 )e−τ

∗(1+µ1)‖vε(·, t0)‖L∞(Ω)

+ CS

∫ t

t0

[
1 + (t− s)− 1

2

]
e−µ1(t−s)‖uε(·, s)‖L∞(Ω)ds

≤ CSC2(τ∗)(1 + (t∗)−
1
2 )e−τ

∗(1+µ1)

+ CSC1(τ∗)

∫ t

t0

[
1 + (t− s)− 1

2

]
e−µ1(t−s)ds ≤ C3(τ∗),

(39)

with

C3(τ∗) :=CSC2(τ∗)(1 + (t∗)−
1
2 )e−τ

∗(1+µ1)

+ CSC1(τ∗)

(
1

µ1

(
1− e−µ1τ

∗
)

+ µ
−1
2

1 Γ

(
1

2

))
.

Thereafter, expressions (37), (38) and (39) justify the claim with C∞(τ∗) = C1(τ∗)+
C2(τ∗) + C3(τ∗).

After these preparations, the proof of our main results consists in demonstrating
higher regularity for (uε, vε); precisely, we first apply to the classical solution (uε, vε)
of problem (13) regularity results which enable us to derive ε-independent bounds of
this solution in some Hölder space. Then, by properly interpreting the two equations
of the same (13) as Neumann boundary value problems with Hölder and bounded
sources and coefficients, we gain higher regularity for (uε, vε). Subsequently, passing
to the limit and organizing the statements, our claims follow.

Proof of Theorem 2.1. Let τ > 0. Thanks to assumption 9/5 < α < 2, we can
pick 9/5 < p < α < 2 such that, in view of relation (5), Lemma 5.2 for t1 = 0
implies ‖uε‖Lp(Ω)≤ C(τ) for any t ≥ τ/2; hence, for 3 < q < 3p/(3 − p), with
q > p, by choosing in Lemma 5.3 the value of t1 as τ/2 and τ∗ = τ/4, the ε-uniform
boundedness of uε, vε and ∇vε in L∞(Ω× [τ,∞)) are given by (30).

Now, writing the first equation of (13) as

uεt −∇ · A(x, t, uε,∇uε) = B(x, t) x ∈ Ω, t > 0,

where A(x, t, uε,∇uε) := ∇uε−χuε∇vε and B(x, t) = g(uε)−εuβε , with x ∈ Ω, t >
0, we note that

A(x, t, uε,∇uε) · ∇uε = |∇uε|2 − χuε∇vε · ∇uε ≥ C0Φ(|uε|)|∇uε|2 − ψ0,

with C0 = 1/2, Φ(|uε|) ≡ 1 and ψ0 := χ2u2
ε|∇vε|2/2. Moreover, for C1 = C2 = 1,

ψ1 := χuε|∇vε| and ψ2 := |g(uε)|+ εuβε we also have{
|A(x, t, uε,∇uε)| ≤ C1Φ(|uε|)|∇uε|+ Φ(|uε|)

1
2ψ1,

|B(x, t)| ≤ ψ2 ≤ C2Φ(|uε|)|∇uε|2 + ψ2.

Hence, time-uniform (L∞(Ω)-)bounds for ψ0, ψ1 and ψ2 are also attained; subse-
quently conditions (A1)-(A6) and (A11) of [26] are verified so that Theorem 1.3 of
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this same paper applied for any t ≥ τ to the (classical and hence also weak) solution
uε of problem

uεt−∇· (∇uε−χuε∇vε) = g(uε)−εuβε in Ω× [t, t+ 2],
∂uε
∂ν

= 0 on ∂Ω× [t, t+ 2],

infers constants α1 ∈ (0, 1) and Cα1 > 0 such that uε ∈ Cα1,
α1
2

(
Ω̄, [τ + 1

2 ,∞)
)
and,

also, such that for any t ≥ τ
‖uε‖

Cα1,
α1
2 (Ω̄×[t+ 1

2 ,t+2])
≤ Cα1

.

Similarly, a straightforward reasoning carried out for the solution vε to the problem

vεt −∇ · ∇vε = uε − vε in Ω×
[
t+

1

2
, t+ 2

]
,

∂vε
∂ν

= 0 on ∂Ω×
[
t+

1

2
, t+ 2

]
,

justifies that for any t ≥ τ ,
‖vε‖

Cα2,
α2
2 (Ω̄×[t+1,t+2])

≤ Cα2
,

for some α2 ∈ (0, 1) and Cα2
> 0, as well as uε ∈ Cα2,

α2
2

(
Ω̄, [τ + 1,∞)

)
.

Letting θ = min{α3, α4} we have for some Cθ > 0 and any t ≥ τ
‖uε‖

Cθ,
θ
2 (Ω̄×[t+1,t+2])

+‖vε‖
Cθ,

θ
2 (Ω̄×[t+1,t+2])

≤ Cθ. (40)

Thereafter, in order to apply classical regularity results, we construct the cut-
ting function ζ for the domain (1/2, 1); ζ is an increasing function, belongs to
C0([1/2, 1]), has first-order piecewise-continuous bounded derivatives and is such
that ζ|(−∞,1/2] ≡ 0 and ζ|[1,∞) ≡ 1. In this way, for any t̃ > τ + 1, the function
(x, t) 7→ ζ(t− t̃)vε(x, t) satisfies this parabolic initial boundary problem

(ζvε)t −∇ · ∇(ζvε) = ζ ′vε + ζuε − ζvε in Ω× (t̃, t̃+ 2),
∂(ζvε)
∂ν = 0 on ∂Ω× (t̃, t̃+ 2),

(ζvε)(·, t̃) = 0 in Ω,

with smooth coefficients and source in Cθ,
θ
2 (Ω̄×[t̃, t̃+2]), due to the uniform bounds

for ζ, ζ ′ (by definition), and the Hölder continuity of uε and vε (relation (40)). As
a result, Theorem IV.5.3 of [12] (together with Theorem III.5.1 of [12], concerning
the existence question of the problem above) ensures that there exists C̃θ > 0 such
that

‖vε‖
C2+θ,1+ θ

2 (Ω̄×[t̃+1,t̃+2])
= ‖ζvε‖

C2+θ,1+ θ
2 (Ω̄×[t̃+1,t̃+2])

≤ ‖ζvε‖
C2+θ,1+ θ

2 (Ω̄×[t̃,t̃+2])
≤ C̃θ.

Analogously, the function (x, t) 7→ ζ(t− t̃)uε(x, t) solves the problem
(ζuε)t −∇ · (∇(ζuε)− χ(ζuε)∇vε) = ζ ′uε + ζ

(
g(uε)− εuβε

)
in Ω× (t̃+ 1

2 , t̃+ 2),
∂(ζuε)
∂ν = 0 on ∂Ω× (t̃+ 1

2 , t̃+ 2),

(ζuε)(·, t̃+ 1
2 ) = 0 in Ω,

so that it is possible to find Ĉθ > 0 such that
‖uε‖

C2+θ,1+ θ
2 (Ω̄×[t̃+1,t̃+2])

= ‖ζuε‖
C2+θ,1+ θ

2 (Ω̄×[t̃+1,t̃+2])

≤ ‖ζuε‖
C2+θ,1+ θ

2 (Ω̄×[t̃+ 1
2 ,t̃+2])

≤ Ĉθ.
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Hence, the two previous estimates yield for any t > τ

‖uε‖
C2+θ,1+ θ

2 (Ω̄×[t+3,t+4])
+‖vε‖

C2+θ,1+ θ
2 (Ω̄×[t+3,t+4])

≤ C̃θ + Ĉθ. (41)

From all of the above, Proposition 2 provides us a very weak solution (u, v) of (4),
as the limit with ε→ 0 of the sequence (uε, vε); it represents the classical solution
of (13), that is uniformly bounded in (τ,∞), and satisfies (41). In view of the
properties that this sequence transmits to its limit, also in terms of the compact
embeddings for Hölder spaces, (u, v) improves its characteristics and whence is a
very weak solution to problem (4), which is bounded in (τ,∞) and, additionally,
satisfies relation (6).

Proof of Theorem 2.2. Let us fix τ = 1 in Lemma 5.2, so that the corresponding
values of C(1) and δ(1) therein introduced are also given. We set

δ̃ := min

{
δ(1)

4|Ω|C̃
,

(
δ(1)

|Ω|

)α}
, (42)

where C̃ is the positive constant from Lemma 5.1 and, as for our hypothesis, let us
assume that a/b < δ̃ and, thus, m := (a/b)

1
α |Ω| < δ(1).

From inequality (14a) with t1 = 0, we have that∫
Ω

uε(·, t) ≤ m+ e−αa
α−1
α b

1
α t
(
||u0||L1(Ω) −m

)
,

so that there exists t∗ ≥ 0 such that∫
Ω

uε(·, t∗) < δ(1). (43)

Additionally, inequalities (14c) and (21), with t1 = 0, as well as the average theorem,
infer a positive value t∗ ∈

(
t2
2 , t2

)
such that

‖vε(·, t∗)‖αW 2,α(Ω) =
2

t2

∫ t2

t2
2

‖vε‖αW 2,α(Ω)≤
2

t2

∫ t2

0

‖vε‖αW 2,α(Ω)

=
2

t2

∫ t2

0

∫
Ω

(vε
α + |∇vε|α + |∆vε|α),

≤ 2C̃

t2

(
||v0||αW 2,α(Ω) +

∫ t2

0

∫
Ω

uαε

)
,

≤ 2C̃

t2

(
||v0||αW 2,α(Ω) +

M

b

)
+

2aC̃

b
|Ω|,

(44)

with, again, M = max{m, ‖u0‖L1(Ω), ‖v0‖αW 2,α(Ω)}. Now we choose t2 > 0 so large
that the corresponding t∗ is such that

2C̃

t∗

(
||v0||αW 2,α(Ω) +

M

b

)
<
δ(1)

2
.

Let t̊ = max{t∗, t∗}; recalling assumption a/b < δ̃ and definition (42), as well as
bounds (43) and (44), we have that hypothesis (23) of Lemma 5.2 holds for t1 = t̊, so
that ‖uε‖Lp(Ω)≤ C(1) for t ≥ t̊+1/2. In turn, we apply Lemma 5.3 with t1 = t̊+1/2
and τ∗ = 1/4. In view of the details given in the proof of the previous theorem, the
existence and boundedness questions and validity of relation (7) are seen to be true
upon the choice T = t̊+ 1.
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6. Numerical simulations. In this section we numerically test the presented re-
sults by simulating the chemotaxis systems in one, two and three dimensions. Fur-
ther, we investigate whether the global solutions are bounded and stationary, or
whether they have complex temporal dynamics, such as moving peaks, oscillations,
or chemotactic blow-up.

Specifically, we use finite element methods to simulate{
ut = ∆u− χ∇ · (u∇v) + a− buα,
vt = ∆v − v + u,

(45)

on domains of different dimension, employing Neumann conditions on the domain
boundaries, where applicable. Further, (unless otherwise stated) the initial condi-
tions are uniformly randomly generated with mean equal to the homogeneous steady
state, (a/b)1/α and with range (a/b)1/α/100. Domain sizes, domain discretisations
and parameter values are given in the captions of each figure.

Figure 1 illustrates the one-dimensional evolution of system (45) over time and
over multiple values of α. As highlighted in Remark 1 of Proposition 2, we expect
that when 1 < α < 2 the solution converges to a bounded solution, which we
note is heterogeneous and stationary (see Figure 1(a), and, in particular, compare
the figures as times 50 and 100). However, although the theory ensures existence
of global (and bounded) solutions only for α > 1, we can see that this is not
a bifurcation point since in Figure 1(b) the system also converges to a bounded,
heterogeneous, stationary solution when α = 0.9.

(a) α = 1.1

(b) α = 0.9

Figure 1. Simulations of system (45) in one dimension with
varying value of α, given beneath each subfigure. Each subfigure
contains the system evaluated at the time points t = 1, 10, 50 and
100. The remaining parameters values are a = 1, b = 1.1 and
χ = 6. The domain was discretised into 1000 equally spaced points.

In Figure 2 we further illustrate the coherence of Remark 1 in this paper as it
suggests that for all 1 < α < 2 the one-dimensional simulations should be bounded
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no matter the initial conditions on u and no matter the size of b. Figure 2(a)
illustrates that even after increasing the average initial value of u to 100 the solution
still tends to a stable, heterogeneous, bounded solution. Equally, in Figure 2(b),
where the parameter b has been reduced to 0.2 we see that the solution is bounded.
However, here we see a new dynamic of continuously evolving peaks. Namely,
peaks appear approximately in the centre of the domain and then travel towards
the boundaries x = 0, or x = 10. The direction of travel depends on which side of
x = 5 the peak first appears. Further, the peaks appear to alternate in directions,
with the first peak travelling to the left.

(a)

(b)

(c)

Figure 2. Simulations of system (45) in one dimension. The sim-
ulations are nearly identical to those seen in Figure 1(a). However,
each simulation involves a single parameter change. Specifically, in
(a) a larger initial condition for u was used (100 was added to the
mean); in (b) the parameter b was reduced to 0.2; Finally, in (c)
the spatial solution domain has been reduced from 10 to 1.

Up until now all of the solutions have presented bounded, spatially heterogeneous
solutions. However, stationary, bounded, uniform solutions are also possible and
these are illustrated in Figure 2(c). Specifically, using spectral analysis it is well
known [19, 41] that concentration heterogeneity arises through a symmetry breaking
of the balance between diffusion and chemotaxis. Hence, patterning of the solution
domain requires a minimal spatial scale before instability of the uniform steady
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state can occur [15, 42]. Since the solution domain in Figure 2(c) has been reduced
below this critical spatial scale the system simply tends to a uniform steady state.

Figure 3 illustrates the two-dimensional evolution of system (45) for α = 1.6
and 1.1. The solutions are simulated on a circular domain of radius 5. The two
simulations contain values of α either side of the critical value of 3/2 (recall again
Proposition 2), which states that when α is above the critical value the solutions
exist, are global and (possibly) bounded. In the specific case of Figure 3(a) the
solutions are, once again, bounded, heterogeneous and stationary. However, for

(a) α = 1.6 (b) α = 1.1

Figure 3. Simulations of system (45) in two dimensions with
varying value of α, given beneath each subfigure. Evolution time
shown above each subfigure. The remaining parameters values are
a = 1, b = 1.1 and χ = 6. The domain was triangulated into 24,968
finite elements. The figure inset of (b) shows the full extent of the
peak, which is growing without bound.

α = 1.1, which is below this critical value, we are able to produce solutions that are
prone to blow up. Note that this difference in convergence is purely a property of
domain dimension because, apart for this difference, figures 1(a) and 3(b) have the
same parameters values. Further, we note that the exploding solution appears to
occur foremost on the boundary and that the blow-up occurs very quickly since the
maximum value of the solution is over 103 (see inset of Figure 3(b)) in just over 17.4
time points. By t ≈ 17.43 the peak is over 1012 and the solution fails to converge.

Finally, Figure 4 illustrates the three-dimensional evolution of system (45) for
α = 1.8 and 1.3, which are values either side of the critical value of 5/3. The
solutions are simulated within a solid sphere of radius 7. Once again, we see that
Proposition 2 holds in Figure 4(a) as, for suitable initial data, the system evolves
to a stationary solution, which is both bounded and heterogeneous. On the other
hand, we see that the simulation within Figure 4(b) blows up within 1.44 time
units. In both cases, we can see that the balls become darker towards their centre.
This means that the population u becomes denser there because the isosurfaces
corresponding to darker colours correspond to larger values of u (see caption of
Figure 4 for more details). Whilst Figure 4(a) remains finite over the entire region,
Figure 4(b) contains a region that begins to undergo chemotactic collapse (see the
dark spot in Figure 4(b)). At the illustrated time point the density is over 106 and
grows to over 1012, before the simulation fails to converge. In this case, in contrast
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to Figure 3(b), the unstable growth occurs within the domain, rather than on the
boundary.

(a) α = 1.8 (b) α = 1.3

Figure 4. Simulations of system (45) illustrating the density
of u in three dimensions with varying value of α, given beneath
each subfigure. Evolution time shown above each subfigure. The
remaining parameters values are a = 1, b = 1.1 and χ = 6. The do-
main was discretised into 1,139,254 voxel elements. Apart from the
light grey ball illustrating the boundary of the solution domain the
images illustrate isosurfaces of the solution (i.e. surface that repre-
sent points of a constant value, thus, they are the three-dimensional
analogue of contours). In Figure (a) there are five isosurfaces of
value 1, 1.25, 1.5 1.75 and 2, coloured, yellow, green, blue, red
and black, respectively. In Figure (b) there are three isosurfaces of
value 1, 10, and 106, coloured, yellow, blue and black, respectively.

In summary, these simulations illustrate the veracity of the proof contained
within this paper. Specifically, global boundedness of a chemotactic system depends
on the spatial dimension we are considering, as well as the kinetic parameters of
the system.
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