BArF₃-Catalyzed Imine Hydroboration with Pinacolborane Not Requiring the Assistance of an Additional Lewis Base

Qin Yin,†‡ Yashar Soltani,‡§ Rebecca L. Melen,*‡¶ and Martin Oestreich,*†

†Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
‡School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, Cymru/Wales, United Kingdom

Supporting Information Placeholder

ABSTRACT: The rarely used boron Lewis acid tris[3,5-bis(trifluoromethyl)phenyl]borane (BArF₃) is found to be an excellent catalyst for metal-free hydroboration of imines. In the presence of 1.0 mol % of BArF₃, several ketimines and aldimes undergo hydroboration with pinacolborane (HBpin) at room temperature without the aid of an external Lewis base. BArF₃ is more reactive than other Lewis-acidic boranes, including often-used tris(pentafluorophenyl)borane [B(C₆F₅)₃]. The steric hindrance imparted by the six fluorine atoms ortho to the boron center in B(C₆F₅)₃ accounts for this. Mechanistic control experiments indicate conventional Lewis-acid catalysis involving imine activation and hydride transfer from HBpin.

Catalytic imine hydroboration is a straightforward way of preparing ubiquitous amines.¹ However, the number of protocols, of which the majority makes use of transition metals as catalysts, is still limited,² and imine hydroboration relying on main-group elements as catalysts is currently attracting attention.³ In 2012, Crudden and co-workers reported a metal-free imine hydroboration at room temperature where the actual catalyst 1 is generated from the combination of B(C₆F₅)₃ or [Ph₂C]-[B(C₆F₅)₃]⁻, DABCO (1,4-diazabicyclo[2.2.2]octane), and pinacolborane (HBpin). Hence, this transformation is initiated by B(C₆F₅)₃ or the trityl cation but catalyzed by the borenium ion 1 (Scheme 1, top).⁴ We recently found that tris[3,5-bis(trifluoromethyl)phenyl]borane (BArF₃)⁵ promotes the hydroboration of alkenes with HBpin while tris(pentafluorophenyl)borane [B(C₆F₅)₃] does not.⁶ Detailed mechanistic studies unveiled electron-deficient Ar⁶-substituted hydroboranes generated by substituent redistribution between BArF₃ and HBpin are the real catalysts. Herein, we disclose that BArF₃ is also competent to catalyze the hydroboration of imines with HBpin at room temperature without the assistance of an external Lewis base (Scheme 1, bottom).

We began investigating this imine hydroboration using ketimine 2a as the model substrate (Table 1). No reaction was observed after 18 h at room temperature without a catalyst (entry 1). We then tested different boron Lewis acids. Triphenylborane (BPh₃) was not sufficiently Lewis acidic (entry 2). Similar to Crudden’s findings,⁴ strongly Lewis-acidic B(C₆F₅)₃ showed poor catalytic activity, furnishing 36% conversion after 18 h (entry 3). In stark contrast, BArF₃ cleanly led to quantitative conversion of the imine to the amine (entry 4). Lowering the catalyst loading from 2.0 to 0.30 mol % was not detrimental, again providing full conversion (entry 5). We note here that [Ph₂C]-[B(C₆F₅)₃]⁻ did not react at all (entry 6). Also, HB(C₆F₅)₂, known as Piers’ borane, showed hardly any conversion (entry 7) while HBArF₃·SMe₂ performed as efficiently as BArF₃ (entry 8 vs entry 3).⁸ Using 1.0 mol % of BArF₃ as catalyst, we compared the reaction rates in several solvents at 1 h reaction time (entries 9–13). Benzene emerged as best, affording 58% conversion (entry 9); full consumption of the imine was obtained after 18 h, and the free amine was isolated in 87% yield after hydrolysis (entry 14). For the sake of completeness, B(C₆F₅)₃ was also probed in benzene yet without any improvement over the neat reaction, even with 5.0 mol % (entry 15 vs entry 3).—Although the present study is about the striking reactivity difference between BArF₃ and B(C₆F₅)₃, we nevertheless tried BCl₃ and BF₃·OEt₂ as catalysts in benzene as the solvent (entries 16 and 17). With 20 mol % catalyst loading, BCl₃ still performed poorly but BF₃·OEt₂ was able to mediate the imine hydroboration with quantitative conversion.
Table 1. Optimization of the Catalytic I mine Hydroboration

<table>
<thead>
<tr>
<th>entry</th>
<th>Lewis acid</th>
<th>mol %</th>
<th>time (h)</th>
<th>solvent</th>
<th>convb (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>—</td>
<td>—</td>
<td>18</td>
<td>neat</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>BPh$_3$</td>
<td>2.0</td>
<td>18</td>
<td>neat</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>B(C$_6$F$_5$)$_3$</td>
<td>2.0</td>
<td>18</td>
<td>neat</td>
<td>36</td>
</tr>
<tr>
<td>4</td>
<td>BArF$_3$</td>
<td>2.0</td>
<td>18</td>
<td>neat</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>BArF$_3$</td>
<td>0.30</td>
<td>18</td>
<td>neat</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>[Ph$_3$C]$_2$[B(C$_6$F$_5$)$_3$]</td>
<td>10</td>
<td>18</td>
<td>neat</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>HB(C$_6$F$_5$)$_2$</td>
<td>3.0</td>
<td>18</td>
<td>neat</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>HBARF$_2$-SMe$_2$</td>
<td>3.0</td>
<td>18</td>
<td>neat</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>BArF$_3$</td>
<td>1.0</td>
<td>1</td>
<td>benzene</td>
<td>58</td>
</tr>
<tr>
<td>10</td>
<td>BArF$_3$</td>
<td>1.0</td>
<td>1</td>
<td>toluene</td>
<td>30</td>
</tr>
<tr>
<td>11</td>
<td>BArF$_3$</td>
<td>1.0</td>
<td>1</td>
<td>PhCF$_3$</td>
<td>37</td>
</tr>
<tr>
<td>12</td>
<td>BArF$_3$</td>
<td>1.0</td>
<td>1</td>
<td>CH$_2$Cl$_2$</td>
<td>34</td>
</tr>
<tr>
<td>13</td>
<td>BArF$_3$</td>
<td>1.0</td>
<td>1</td>
<td>1,2-Cl$_2$C$_6$H$_4$</td>
<td>37</td>
</tr>
<tr>
<td>14</td>
<td>BArF$_3$</td>
<td>1.0</td>
<td>18</td>
<td>benzene</td>
<td>100 (87)</td>
</tr>
<tr>
<td>15</td>
<td>B(C$_6$F$_5$)$_3$</td>
<td>5.0</td>
<td>6</td>
<td>benzene</td>
<td><5</td>
</tr>
<tr>
<td>16</td>
<td>BCl$_3$</td>
<td>20</td>
<td>18</td>
<td>benzene</td>
<td>27</td>
</tr>
<tr>
<td>17</td>
<td>BF$_3$OEt$_2$</td>
<td>20</td>
<td>18</td>
<td>benzene</td>
<td>99</td>
</tr>
</tbody>
</table>

*aAll reactions were performed on a 0.1 mmol scale either neat or in solvent (1 M) in a sealed tube. bDetermined by GLC analysis using tetracosane as internal standard. cIsolated yield of the free amine after hydrolysis and purification by flash chromatography on silica gel.

With the optimal conditions in hand, we assessed the scope of this hydroboration reaction (Scheme 2). Various N-phenyl-protected ketimines 2a–h with either electron-withdrawing (Br and CF$_3$) or -donating groups (Me) on the benzene ring were tested. Full conversion was observed throughout, giving the corresponding amines 4a–h in 77 to 99% yield after aqueous workup. We then investigated the effect of different protecting groups on the nitrogen atom. A CF$_3$ substituent in the para position of the phenyl group (as in 2i) resulted in a dramatic decrease of substrate reactivity while a MeO substituent in the same position (as in 2j) completely thwarted the reaction. Changing of the protecting group from phenyl to benzyl (as in 2k) or tosyl (as in 2l) did not bring about any significant reactivity difference and good yields were obtained in both cases. Moreover, ketimines 2m and 2n derived from α-methyl acetophenone and benzophenone, respectively, were also suitable substrates. Finally, aldimes 2o and 2p also proved to be good substrates, both undergoing the hydroboration in 86% yield (gray box).

Scheme 2. BArF$_3$-Catalyzed Hydroboration of Ketimines and Aldimines

<table>
<thead>
<tr>
<th>Entry</th>
<th>R$_1$</th>
<th>R$_2$</th>
<th>Lewis acid</th>
<th>time (h)</th>
<th>solvent</th>
<th>convb (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>H</td>
<td>HBpin</td>
<td>BArF$_3$</td>
<td>1.0 mol%</td>
<td>benzene</td>
<td>87%</td>
</tr>
<tr>
<td>3</td>
<td>R$_1$</td>
<td>R$_2$</td>
<td>HBpin</td>
<td>1.2 eq</td>
<td>r.t. for 18 h</td>
<td>96%</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>HBpin</td>
<td>BArF$_3$</td>
<td>1.0 mol%</td>
<td>benzene</td>
<td>90%</td>
</tr>
<tr>
<td>5</td>
<td>R$_1$</td>
<td>R$_2$</td>
<td>HBpin</td>
<td>1.2 eq</td>
<td>r.t. for 18 h</td>
<td>99%</td>
</tr>
</tbody>
</table>

To gain insight into the mechanism of this facile imine hydroboration, several stoichiometric control experiments were performed. No interaction between the model ketimine 2a and HBpin was observed by 1H and 11B NMR spectroscopy when mixing equimolar amounts of these reactants in CD$_2$Cl$_2$ (see the Supporting Information for details). Equimolar amounts of 2a and BArF$_3$ immediately formed the expected Lewis pair 5a in CD$_2$Cl$_2$: 5a was assigned to be the thermodynamically more stable isomer by multinuclear NMR measurements. Subsequent treatment of 5a with stoichiometric HBpin resulted in smooth reduction, and full conversion was reached after 17 h (Scheme 3, top). Notably, the catalyst BArF$_3$ precipitated from the solution after completion of the reaction. In-situ formation of hydroboranes [H$_3$BArF$_3$]$_n$ (n = 1 and 2) as well as [(ArF)$_2$(H)B(μ-H)$_2$BArF$_3$]$_2$ as potential catalysts (cf. Table 1, entry 8) from ligand exchange between BArF$_3$ and HBpin was not observed. Importantly, the diagnostic formation of ArF$_2$ Bpin was not detected in both the stoichiometric and the catalytic setups. This stands in contrast to our previous study of alkene hydroboration where that substituent redistribution occurs. We believe that the σ-basic imine as opposed to the π-basic alkene prevents that process because of its better coordi-
nating ability. Furthermore, neither the formation of any bore-
nium or boronium ions nor the presence of hydridoborate
\([\text{HBAr}_3^-]\) as the counteranion was seen in the NMR spectra.
This essentially excludes the possibility of borenium-ion ca-
talysis (cf. Scheme 1, top).\(^4\) Directly mixing 2a, HBpin, and
BAr\(_3^+\) in CD\(_2\)Cl\(_2\) had the same outcome. For comparison, we
repeated the same experiment with B(C\(_6\)F\(_5\))\(_3\) where rapid for-
mation of the expected Lewis adduct 6a was also found. How-
ever, 6a was reluctant to react with HBpin, and only traces of
reduction were observed after 44 h (Scheme 3, bottom).—
Competition experiments in CD\(_2\)Cl\(_2\) (treatment of 5a with
B(C\(_6\)F\(_5\))\(_3\) and 6a with BAr\(_3^+\), respectively) revealed that the
formation of 6a is strongly favored over 5a. It must be noted
though that the solubility of BAr\(_3^+\) is rather poor, potentially
shifting the equilibrium toward 6a.

Scheme 3. Stoichiometric Control Experiments: BAr\(_3^+\) Against B(C\(_6\)F\(_5\))\(_3\)

According to literature data,\(^5\) the Lewis acidities of BAr\(_3^+\) and
B(C\(_6\)F\(_5\))\(_3\) are quite similar, depending on the Lewis base and,
hence, on the relative Lewis-acidity scale. We therefore
thought that the big difference in catalytic activity between the
two could be ascribed to steric effects. B(C\(_6\)F\(_5\))\(_3\) with its six ortho
fluorine atoms in the proximity of the boron center is far
more sterically hindered than BAr\(_3^+\). To support this hypothe-
sis, we prepared tris(3,4,5-trifluorophenyl)borane (7)\(^11\) devoid of ortho
substitution (Scheme 4, top). In line with our assumption,
this borane exhibited excellent activity in catalytic imine
hydroboration, and full conversion was achieved after 4 h at
room temperature (not shown). A control experiment with
stoichiometric formation of the Lewis adduct analogous to
those outlined above (cf. 2a \(\rightarrow\) 5a or 6a \(\rightarrow\) 3a, Scheme 3)
confirmed this result (2a \(\rightarrow\) 8a \(\rightarrow\) 3a, Scheme 4, bottom).

**Scheme 4. Molecular Structure of Tris(3,4,5-
trifluorophenyl)borane and Stoichiometric Control Exper-
iment**

Based on literature precedence\(^12\) and consistent with our ex-
perimental observation, we postulate the following mechanism
for the BAr\(_3^+\)-catalyzed imine hydroboration (Scheme 5). BAr\(_3^+\) coordinates to the imine nitrogen atom, thereby lower-
ing the LUMO of the imine (I \(\rightarrow\) II). Lewis adduct II is then
reduced to IV by HBpin, likely through transition state III (II
\(\rightarrow\) III \(\rightarrow\) IV). Transfer of BAr\(_3^+\) from Lewis adduct IV to the
more Lewis-basic imine I eventually furnishes the N-borylated
amine V and closes the catalytic cycle (IV \(\rightarrow\) V).

**Scheme 5. Postulated Catalytic Cycle for Imine Hydrobo-
ration**

In conclusion, the strong boron Lewis acids BAr\(_3^+\) as well as
tris(3,4,5-trifluorophenyl)borane have been uncovered as
efficient catalysts for imine hydroboration. Unlike the previ-
ous report by Crudden and co-workers,\(^4\) the new protocol did
not require the aid of an external Lewis base. A conventional
mechanism for Lewis-acid catalysis was shown to be operative.
Control experiments corroborated that the steric hindrance
imparted by the ortho fluorine atoms in B(C\(_6\)F\(_5\))\(_3\) accounts for
the enormous reactivity difference between BAr\(^5\) and widely used B(C\(_{6}F\))\(_{3}\). The present work is another example of a catalysis where B(C\(_{6}F\))\(_{3}\) fails to react effectively.\(^6\)

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website to include optimization data, experimental procedures, characterization of new compounds and spectral data.

AUTHOR INFORMATION

Corresponding Author

* E-mail: melener@cardiff.ac.uk.
* E-mail: martin.oestreich@tu-berlin.de.

Author Contributions

\(^{\dagger}\) These authors contributed equally.

Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENT

Q.Y. gratefully acknowledges the Alexander von Humboldt Foundation for a postdoctoral fellowship (2015–2017). Y.S. thanks the Erasmus programme for a scholarship (2016). The research stay of R.L.M. in the laboratory of M.O. was made possible by the Clara Immerwahr Award 2016 of the Cluster of Excellence UniCat. M.O. is indebted to the Einstein Foundation for a postdoctoral fellowship (2015). Y.S. gratefully acknowledges the Alexander von Humboldt Foundation for an endowed professorship. We thank Dr. Hendrik F. T. Klare (TU Berlin) for useful comments on the manuscript and Lewis C. Wilkins (Cardiff University) for his help with the X-ray measurement.

REFERENCES

(7) The lack of catalytic activity was not due to stoichiometric imine hydrosilylation. As verified by NMR measurements, HB(C\(_{6}F\))\(_{3}\) forms an adduct with the imine that does not react further with HBpin.
(10) Unlike Crudden’s initiation of the borenium-ion catalysis with [Pb\(_{2}\)](B(C\(_{6}F\))\(_{3}\)) in the presence of DABCO,\(^\dagger\) absolutely no reduction occurs with catalytic (see Table 1, entry 6) as well as stoichiometric amounts of the trityl cation in the absence of Lewis bases other than the imine. Instead, imine dimerization through triaryl-cation-mediated enamine formation was obtained from an equinolar combination of the three reactants dissolved in CD\(_{2}\)Cl\(_{2}\) while HBpin remained untouched; HBpin was found to be degraded by stoichiometric treatment with [Pb\(_{2}\)](B(C\(_{6}F\))\(_{3}\)) in independent experiments in CD\(_{2}\)Cl\(_{2}\) or CD\(_{3}\)OH.
(11) Tris(3,4-trifluorophenyl)borane (7) was prepared by treatment of 3,4,5-trifluorophenyllithium with BF\(_{3}\)·OEt\(_{2}\) at −78 °C; the pure borane was obtained after 2-fold sublimation (see the Supporting Information for details).
Table of Contents (TOC)

\[\text{boron Lewis acid (catalytic)} \]
\[\text{HBpin (1.2 equiv)} \]
\[\text{r.t. no external base} \]
\[\text{(after hydrolysis)} \]

- \[\text{BAR}^3 \]
- \[\text{B(C}_6\text{F}_5)_3 \]
- \[\text{2,6-difluoro-B(C}_6\text{F}_5)_3 \]

(full conversion) (low conversion) (full conversion)

(not sterically hindered) (sterically hindered) (not sterically hindered)