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ABSTRACT
We use the optimised skew-spectrum as well as the skew-spectra associated with the Minkowski
Functionals (MFs) to test the possibility of using the cross-correlation of the Integrated Sachs-Wolfe
effect (ISW) and lensing of the cosmic microwave background(CMB) radiation to detect deviations
in the theory of gravity away from General Relativity (GR). We find that the although both statis-
tics can put constraints on modified gravity, the optimised skew-spectra are especially sensitive to
the parameterB0 that denotes the theCompton wavelengthof the scalaron at the present epoch.
We investigate three modified gravity theories, namely: thePost-Parametrised Friedmanian (PPF)
formalism; the Hu-Sawicki (HS) model; and the Bertschinger-Zukin (BZ) formalism. Employing a
likelihood analysis for an experimental setup similar to ESA’s Planck mission, we find that, assuming
GR to be the correct model, we expect the constraints from thefirst two skew-spectra,S(0)

ℓ
andS(1)

ℓ
,

to be the same:B0 < 0.45 at95% confidence level (CL), andB0 < 0.67 at99% CL in the BZ model.
The third skew-spectrum does not give any meaningful constraint. We find that the optimal skew-
spectrum provides much more powerful constraint, givingB0 < 0.071 at95% CL andB0 < 0.15 at
99% CL, which is essentially identical to what can be achieved using the full bispectrum.

Key words: : Cosmology, Methods: analytical, statistical, numerical, modified gravity, dark energy

1 INTRODUCTION

The observations of type Ia supernovae imply that our Universe is undergoing a phase of accelerated expansion (Reiss et al. 1998; Perlmutter et al.
1999). Cosmic acceleration can arise from either an exotic form of energy with negative pressure, referred to as “dark energy”, or a modification of
gravity manifesting on large scales. As shown by various authors (Bertschinger 2006; Song, Hu & Sawicki 2006; Brax et al.2008; Hu et al. 2013),
determining the cause of the acceleration os hampered by thefact that the background dynamics in dark energy and modifiedgravity models are
nearly indistinguishable. To lift this degeneracy, one cantest the evolution of perturbations in these models. The perturbative approach to growth
of structure in modified gravity can, in principle, be classified in two different frameworks: parametric and non-parametric, an example of the latter
being principal component analysis (Zhao et al. 2008, 2009,2010; Hojjati 2011). In this paper we focus on the former.

There exist several phenomenological parametrizations ofmodified gravity including the Bertschinger-Zukin (Bertschinger & Zukin 2008)
parametrization, and that of Starobinsky (2007)). These parametrizations are suitable for the quasi-static regime, where the time evolution of the
gravitation potentials is negligible compared with their spatial gradient. Furthermore, if we focus on the linear fluctuation dynamics for which the
equations in Fourier space can be reduced to simple algebraic relations, these techniques allow us to perform some analytic calculations which
make the parametrization technically efficient. However, if we want to go further beyond the quasi-static scale, while remaining in the linear per-
turbation framework, the parametrization of modified gravity becomes more complex. This is because on the largest scales, especially the super- or
near-horizon scales, the time evolution of the gravitational potentials is no longer negligible. In fact, the time derivative terms dominate the dynam-
ical equations, which means that we need to solve some temporal ordinary differential equations. All in all, the inclusion of time derivative terms
makes the parametrization of modified gravity not so manifest anymore Actually, there exists some debate about the rangeof validity of the various
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2 Munshi et al.

parametrizations; on the one hand, as shown by Zuntz et al. (2011), using a parametrization with insufficient freedom significantly tightens the appar-
ent theoretical constraints. On the other hand, for some specific modified gravity models some phenomenological parametrizations work quite well;
for instance Hojjiat at al. (2012) recently demonstrated that for small Compton wavelength in thef(R) model, the Bertschinger-Zukin parametriza-
tion is in practice good enough for current data analysis. This is because, for small Compton wavelengths, the most significant modifications w.r.t. GR
occur in the sub-horizon regime, while the modification on the super-horizon scales are subdominant. In addition to the above explicit parametriza-
tions, some quite generic frameworks have been proposed, such as the parametrized Post-Friedmann (PPF) formalism, including the Hu-Sawicki ap-
proach (Hu & Sawicki 2007; Fang, Hu & Lewis 2008), its calibration version (Lombriser, Yoo & Koyama 2013) and Baker-Ferreira-Skordis-Zuntz
algorithm (Baker et al. 2011; Baker, Fereira & Skordis 2012), and the Effective Field Theory (EFT) formalism (Gubitosi,Piazza & Vernizzi 2012;
Bloomfield et al. 2012; Hu et al. 2013). These formalisms are devoted to build up a “dictionary” of modified gravity theories and their PPF or EFT
correspondence. Since the purpose of these generic formalisms is to construct a unified way to include all the modified gravity/dark energy models,
they contain more arbitrary functions/coefficients, whichusually lead to looser constraints.

Besides the recent progress on the construction of parametrizations, many observational windows have recently been proposed, such as the In-
tegrated Sachs-Wolfe (ISW) effect (Sachs & Wolfe 1967) in Cosmic Microwave Background (CMB) anisotropies (Zhang 2006;Song, Peiris & Hu
2007; Ho et al. 2008), the power spectrum of luminous red galaxies (Yamamoto et al. 2010; He 2012; Abebe, de la Cruz-Dombriz, & Dunsby
2013), cluster abundance (Jain & Zhang 2008; Schmidt, Vikhlinin, & Hu 2009; Lombriser et al. 2010; Ferraro, Schmidt,& Hu2011), Coma clus-
ter (Terukina et al. 2013), galaxy peculiar velocities (Hu 2000), redshift-space distortions (Jennings et al. 1212; Raccanelli et al. 2013), weak-
lensing (Heavens et al. 2007; Zhang et al. 2007; Reyes et al. 2010; Hirata et al. 2008; Daniel et al. 2010; Tereno, Semboloni, & Schrabback 2011;
Laszlo et al. 2012; Simpson et al. 2013),21cm observations (Hall, Bonvin & Challinor 2000), matter bispectrum (Marin et al. 2011; Bartolo et al.
2013),etc. In addition, recently some N-body simulation algorithms in modified gravity models have been developed (Zhao 2010; Li,Mota & Barrow
2011). As shown by Song, Peiris & Hu (2007) and Lombriser et al. (2010), with WMAP resolution the modification effects on the CMB mainly come
from the ISW effect, which becomes prominent on the super-horizon scales. However, due to the unavoidable cosmic variance on large scales, the
constraints from these effects are not significant. On the other hand, since the typical modification scales are on sub-horizon scales, several stud-
ies show that the most stringent constraints come from the large-scale structure data sets. For example, the strongest current constraint onf(R)
gravity (log10B0 < −4.07; 95%CL) (Dossett, Hu, & Parkinson 2014) is driven by the galaxy spectrum from WiggleZ data sets (Parkinson et al.
2012). Various previous results show that the main constraint on modified gravity comes from galaxy or cluster scales which corresponds to the
multipole rangeℓ & 500 in CMB data, where lensing effects are no longer negligible.The recent release ofPlanckdata (Planck Collaboration
2013a) provides us with a fruitful late-time information both on ISW and lensing, which is encoded in the CMB temperaturepower-spectrum
(Planck Collaboration 2013b), the lensing potential power-spectrum (Planck Collaboration 2013b), and the CMB temperature ISW-lensing bispec-
trum (Planck Collaboration 2013d,e). The full sky lensing potential map has been constructed and the amplitude of the lensing potential power-
spectrum has been estimated at the25σ level. The ISW-lensing bispectrum is also detected with nearly 3σ confidence level. Although the ISW-
lensing bispectrum data have not yet been released, forecasts of constraints on modified gravity models through this novel observational statistic
have been investigated (DiValentino 2012; Hu et al. 2013). These studies show that the ISW-lensing bispectrum is an effective tool to constrain
modified gravity. Also notice that Hu et al. (2013) analysed CMB temperature power-spectrum data alone and improved the previous constraint from
WMAP9’s B0 < 3.37 at 95% CL to B0 < 0.91. Inclusion of the lensing potential power spectrum improved it to B0 < 0.12. The lensing-ISW
bispectrum is known to be uncorrelated to the power-spectrum and thus it can further tighten the constraint onB0.

Inspired by these results, in this paper we use the recently introduced optimum skew-spectra and the skew-spectra associated with the
Minkowski Functionals (MFs) to constrain departures from GR. Since their introduction in cosmology by Mecke, Buchert &Wagner (1994),
MFs have been extensively developed as a statistical tool for non-Gaussianity in a cosmological setting for both two-dimensional (projected) and
three-dimensional (redshift) surveys. Analytic results are known certain properties of the MFs of a Gaussian random field making them suitable
for identifying non-Gaussianity. Examples of such studiesinclude CMB data (Schmalzing & Górski 1998; Novikov, Schmalzing and Mukhanov
2000; Hikage et al. 2008; Natoli et al. 2010), weak lensing (Matsubara and Jain (2001); Sato et al. (2001); Taruya et al. (2002); Munshi et al.
(2012)), large-scale structure (Gott et al. 1986; Coles 1988; Gott et al. 1989; Melott 1990; Gott et al. 1990; Moore et al.1992; Gott et al. 1992;
Canavezes et al. 1998; Sahni, Sathyaprakash & Shandarin 1998; Schmalzing & Diaferio 2000; Kerscher et al. 2001; Hikage et al. 2002; Park et al.
2005; Hikage et al. 2006, 2008), 21cm (Gleser et al. 2006), frequency cleaned Sunyaev-Zel’dovich (SZ) maps (Munshi et al. 2013) and N-body
simulations (Schmalzing & Diaferio 2000; Kerscher et al. 2001). The MFs are spatially-defined topological statistics and, by definition, contain sta-
tistical information of all orders in the moments. This makes them complementary to the poly-spectra methods that are defined in Fourier space.
It is also possible that the two approaches will be sensitiveto different aspects of non-Gaussianity and systematic effects, although in the weakly
non-Gaussian limit it has been shown that the MFs reduce to a weighted probe of the bispectrum (Hikage et al. 2006).

The skew-spectrum is a weighted statistic that can be tuned to a particular form of non-Gaussianity, such as that which may arise either
during inflation at an early stage or from structure formation at a later time. The skew-spectrum retains more information about the specific form
of non-Gaussianity than the (one-point) skewness parameter alone. This allows not only the exploration of primary and secondary non-Gaussianity
but also the residuals from galactic foreground and unresolved point sources. The skew-spectrum is directly related tothe lowest-order cumulant
correlator and is also known as the two-to-one spectra in theliterature (Cooray 2001a). In a series of recent publications the concept of skew-
spectra was generalized to analyse the morphological properties of cosmological data sets or in particular the MFs (Munshi et al. 2013, 2012, 2013;
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Pratten & Munshi 2012). The first of these three spectra, in the context of secondary-lensing correlation studies, was introduced by Munshi et al.
(2011) and was subsequently used to analyse data release from WMAP by Calabrese et al. (2010).

The layout of the paper is as follows. In§2 we briefly outline various models and parametrization of modified gravity. Next, in§3, we review the
non-Gaussianity, at the level of bispectrum, introduced bycross-correlaion of secondaries and lensing of CMB. In§4 we introduce the skew-spectra
associated with the Minkowski Functionals (MFs) and compute them for various modified gravity scenarios.§5 is devoted to likelihood analysis
using MFs. In§6 we discuss our results. Finally§7 is reserved for concluding remarks as well as discussing the future prospects.

2 MODIFIED GRAVITY MODELS

Studies of modified gravity models can, in principle, be classified into two different frameworks (Bertschinger & Zukin 2008). The first is a model-
dependent method. One can start from a specific Lagrangian, investigating its dynamical behaviour to finally give its predictions. Various viable
modified gravity models have been proposed which fall into this category (Clifton et al. 2011). In this paper we mainly focus onf(R) models (see
e.g. DeFelice et al. (2010) for a review), such as the Starobinsky (1980) model. or the Hu-Sawicki model (Hu & Sawicki 2007).

The other method is inspired by the parametrized Post-Newtonian (PPN) approach to solar-system tests of gravity. In this case one aims to
build a model-independent framework, in which many modifiedgravity models can be parametrized in a unified way. The simplest idea is directly
to generalize the Eddington parameter (γ ≡ Φ/Ψ; Eddington (1922)) to an unknown function of space and timeγ(t,x) in a Friedmann Universe.
Many studies, such as (Bertschinger & Zukin 2008; Zhao et al.2008, 2009; Hojjati, Pogosian, Zhao 2011; Giannantonio et al. 2009) show that this
works quite well for large-scale structure data. This is because these parametrizations are mainly suitable for the quasi-static regime where the time
evolution of the gravitational potentials are negligible compared with spatial gradients. Furthermore, if we focus onthe linear analysis in the Fourier
domain, then the dynamical equations can be reduced to simple algebraic relations. These allow us to perform some analytic calculations, which
make the parametrization technically efficient. However, if we want to go further, beyond the quasi-static scale, even though still in the linear regime,
the parametrization of modified gravity is more non-trivial. This is because at the larger scales, especially the super-or near-horizon scales, the time
evolution of gravitational potentials is no longer negligible and we need to solve temporal ordinary differential equations.

Beside the above explicit parametrizations, some quite generic frameworks have been proposed, such as the Hu-Sawicki parametrized Post-
Friedmann (PPF) formalism (Hu & Sawicki 2007; Hu 2008; Fang,Hu & Lewis 2008) and its calibration version (Lombriser, Yoo& Koyama 2013).
The Hu-Sawicki PPF parametrization is defined by three functions:g(ln a, kH), fζ(ln a), fG(ln a) and a single parametercΓ. They correspond to
the metric ratio, the super-horizon relationship between the metric and density, the deviation of Newton’s constant onsuper-horizon scale from that
on quasi-static scales, and the relationship between the transition scale and the Hubble scale (Hu & Sawicki 2007). Of course, this formalism is
quite generic. However, in order to obtain the explicit parametrization form of these arbitrary functions, one needs tosolve the exact equation of
motion obtained from the original Lagrangian of the modifiedgravity theory and fit the above three functions with the exact solution. Up to now,
only a few models, such asf(R) and DGP models, have been successfully implemented in the the Hu-Sawicki PPF formalism. Even though, this
formalism still has a great advantage for numerical purposes, since it provides a unified form to write down all the modified equations. Besides
what mentioned above, there exist many other parametrizations (Bean & Tangmatitham 2010; Bertacca, Bartolo & Matarrese 2011; Linder 2005;
Gubitosi, Piazza & Vernizzi 2012; Bloomfield et al. 2012; Baker et al. 2011; Baker, Fereira & Skordis 2012; Amendola, Kunz& Sapone 2007;
Branx et al. 2012).

2.1 Hu-Sawickif(R) model

As an example of a model-dependent method, the Lagrangian ofHu-Sawicki model (hereafter HS) reads:

f(R) = −m2 c1(R/m
2)n

c2(R/m2)n + 1
; m2 ≡ H2

0Ωm = (8315Mpc)−2

(

Ωmh2

0.13

)

. (1)

As shown by Hu & Sawicki (2007), this model can pass the local solar system tests. The non-linear terms inf(R) introduce fourth-order derivatives
into this theory, rather than the more familiar second-order derivatives. Fortunately, we can reduce the derivatives to second order by defining an
extra scalar fieldχ ≡ (df/dR), namely the “scalaron”, which absorbs the higher derivatives. TheCompton wavelengthof the scalaron is defined as

B =
fRR

1 + fR
R′ H

H′
, (2)

with fR = df/dR, fRR = d2f/dR2 and ′ ≡ d/d ln a. In the high curvature regime, Eq.(1) can be expanded w.r.t.(m2/R) as:

lim
(m2/R)→0

f(R) ≈ −
c1
c2

m2 +
c1
c22

m2

(

m2

R

)n

+ · · · . (3)

From Eq.(3) we can see that, the first and second terms represent a cosmological term and a deviation from it, respectively. In order to mimicΛCDM
evolution on the background, the value of(c1/c2) can be fixed (Hu & Sawicki 2007) such that:(c1/c2) = 6(ΩΛ/Ωm). By using this relation the
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4 Munshi et al.

number of free parameters can be reduced to two. From the above analysis, we can see that, strictly speaking, due to the appearances of correction
terms to the cosmological constant, the HS model cannot exactly mimic ΛCDM. Since(m2/R) increases very fast with time, the largest value (at
the present epoch) is(m2/R) ∼ 0.03, the largest deviation to theΛCDM background happens whenn = 1, with 1% errors, corresponding to
(m2/R)c2 ∼ 0.01 in Eq.(3). For largern values, such asn = 4, 6 we can safely neglect this theoretical error. As shown by Hu et al. (2013), for
n = 1 this1% deviation fromΛCDM brings a10% error in the variance of the parameterB0, while forn = 4, 6 our results are not affected.

Without loss of generality, we can choose the two free parameters to be (n, c2). However, for more generalf(R) models theΛCDM evolution
of the background can be reproduced exactly by only introducing one free parameter (Song, Hu & Sawicki 2006). This means that there exists some
degeneracy between the two parameters. Usually General Relativity (GR) is recovered whenB0 = 0. As demonstrated by Hu et al. (2013), no matter
what valuen takes, we are always allowed to setB0 = 0 by adjustingc2. Furthermore, in order to mimicΛCDM on the background,c2 andn need
to satisfy one constraint: the first term in the denominator of Eq.(1) should be much larger than the second. This condition gives:

Bmax
0 =











0.1 , (n = 1) ,

1.2 , (n = 4) , (4a)

4.0 , (n = 6) .

Hu et al. (2013) forecast that Planck1 is expected to reduce the error bars on the modified gravity parameterB0 by at least one order of
magnitude compared to WMAP. The spectrum-bispectrum jointanalysis can further improve the results by a factor rangingfrom 1.14 to 5.32
depending on the value ofn.

2.2 Hu-Sawicki PPF formalism (PPF)

In contrast to the above subsection, in what follows we will consider all possibilities inf(R) gravity which can mimic theΛCDM background in the
Hu-Sawicki PPF formalism (hereafter PPF). The logic of the PPF formalism is the following: first, considering two limitsin the linear fluctuation
regimes, the super-horizon and quasi-static regimes. In the former the time derivatives are much more important than the spatial derivatives and in
the latter limit the vice versa; then derive and solve the gravitational equations in these limits. Given the knowledge of these two limits, one can
propose two modified gravitational equations which recoverthe above results in the super-horizon and quasi-static limits, respectively. Finally, we
integrate all the linear scales using the proposed equations.

For the metric scalar fluctuations, in principle we have onlytwo degrees of freedom, such asΦ (Newtonian potential) andΨ (curvature
potential) in the conformal Newtonian gauge, which means weonly need two dynamical equations. For PPF, these two masterequations are the
modified Poisson equation and the equation forΓ:

k2
[

Φ− + Γ
]

= 4πGa2ρm∆m ; Φ− = Φ−Ψ (5)

(1 + c2Γk
2
H)

[

Γ′ + Γ+ c2Γk
2
H(Γ− fGΦ−)

]

= S. (6)

Where the source termS is given by:

S = −

[

1

g + 1

H ′

H
+

3

2

H2
m

H2a3
(1 + fζ)

]

Vm

kH
+

[

g′ − 2g

g + 1

]

Φ− . (7)

Vm here is the scalar velocity fluctuation of the matter in both the comoving and Newtonian gauge. andHm is the contribution to Hubble parameter
from the matter component; see Hu & Sawicki (2007) for more details.

In Eq.(6), the coefficientcΓ represents the relationship between the transition scale and the Hubble scale, and the functionfζ gives the relation-
ship between the metric and the density perturbation. Forf(R) models, we havecΓ = 1, fζ = cζg and the functiong(ln a, k) can be expressed as
follows:

g(ln a, k) =
gSH + gQS(cgkH)ng

1 + (cgkH)ng
, gQS = −1/3 , ng = 2 , cg = 0.71

√

B(t) . (8)

The above descriptions have been implemented in the publicy-available PPF module (Fang, Hu & Lewis 2008) of
CAMB2 (Lewis, Challinor & Lasenby 1999). The current constraintson generalf(R) models within the Hu-Sawicki PPF formalism are

1 http://sci.esa.int/science-e/www/area/index.cfm?fareaid=17
2 http://camb.info/

c© 0000 RAS, MNRAS000, 000–000



Probing Modified Gravity Theories with ISW and CMB Lensing5

B0 < 0.42(95%CL) by using CMB and ISW-galaxy correlation data, and a strong constraintB0 < 1.1× 10−3 at95% CL (Lombriser et al. 2010).
using a larger set of data, such as WMAP53, ACBAR4, CBI5, VSA, Union6, SHOES, and BAO data.

2.3 Bertschinger-Zukin formalism (BZ)

Another popular phenomenological parametrization was proposed by (Bertschinger & Zukin 2008) (hereafter BZ) and implemented in the Einstein-
Boltzmann solver MGCAMB7 (Zhao et al. 2008; Hojjati, Pogosian, Zhao 2011). The logic of this parametrization is to re-write the two gravitational
potentials in terms of two observation-related variables,the time- and scale- dependent Newton constantGµ(a, k) and the so-called gravitational
slip γ(a, k):

k2Ψ = −4πGa2µ(a, k)ρ∆;
Φ

Ψ
= γ(a, k). (9)

G is the Newton constant in the laboratory. Furthermore, in the quasi-static regime, Bertschinger and Zukin propose a quite efficient parametrizations
for these two quantities (see also Zhao et al. (2008)):

µ(a, k) =
1 + 4

3
λ2
1k

2a4

1 + λ2
1k

2a4
; γ(a, k) =

1 + 2
3
λ2
1k

2a4

1 + 4
3
λ2
1k

2a4
. (10)

The above parametrization was refined to take the ISW effect into account through an empirical formula (Giannantonio et al. 2009):

µ(a, k) =
1

1− 1.4× 10−8|λ1|2a3

[

1 + 4
3
λ2
1k

2a4

1 + λ2
1k

2a4

]

. (11)

Compared with PPF, one can easily see the physical meaning ofparameterλ1, as the present Compton wavelengthλ2
1 = B0c

2/(2H2
0). Beside that,

we can also see that BZ is much more efficient than the former, because in BZ one only needs to solve an algebraic relation, Eq.(9) or equivalently
Eq.(11), while in PPF we have to integrate differential equations, Eq.(5) and Eq.(6). The price BZ pays is that it might not account for the ISW effect
properly in the super-horizon regime. However, recently itwas shown (Hojjiat at al. 2012) that for all practical purposes BZ forf(R) model with
smallB0 is good enough even if one considers the near-horizon scale:the maximum error isO(2%). Recently it was shown by (Hu et al. 2013) that
the temperature and lensing power spectrum data from Planckalone can give an upper bound onB0 < 0.91 at95%CL

3 ISW-LENSING CROSS-SPECTRA AS A PROBE OF MODIFIED GRAVITY T HEORIES

We will be dealing with the secondary bispectra involving the lensing of both primary anisotropies and other secondaries. Following
Spergel & Goldberg (1999), Goldberg & Spergel (1999) and Cooray & Hu (2000) we start by expanding the observed temperature anisotropy
Θ(Ω̂) = δT(Ω̂)/T in terms of the primary contributionΘP(Ω̂), the secondary contributionΘS(Ω̂) and lensing of the primaryΘL(Ω̂):

Θ(Ω̂) = ΘP(Ω̂) + ΘL(Ω̂) + ΘS(Ω̂) + · · · . (12)

HereΩ̂ = (θ, φ) is the angular position on the surface of the sky. Expanding the respective contributions in terms of spherical harmonics Ylm(Ω̂)
we can write:

ΘP(Ω̂) ≡
∑

ℓm

(Θp)ℓmYℓm(Ω̂); ΘL(Ω̂) ≡
∑

ℓm

[∇ψ(Ω̂) · ∇ΘP(Ω̂)]ℓm Yℓm(Ω̂); ΘS(Ω̂) ≡
∑

ℓm

(ΘS)ℓmYℓm(Ω̂). (13)

Hereψ(Ω̂) is the projected lensing potential (Spergel & Goldberg 1999; Goldberg & Spergel 1999). The secondary bispectrum for theCMB takes
contributions from products of P, L and S terms with varying order. The bispectrumBPLS

ℓ1ℓ2ℓ3
is defined as follows (see Bartolo et al. (2004) for

generic discussion of the bispectrum and its symmetry properties):

3 http://map.gsfc.nasa.gov/
4 http://cosmology.berkeley.edu/group/swlh/acbar/
5 http://www.astro.caltech.edu/ tjp/CBI/
6 http://supernova.lbl.gov/Union/
7 http://www.sfu.ca/ aha25/MGCAMB.html
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 ISW Power-Spectrum in Modified Theories of Gravity

PPF BZ

10

n=1       

l

HS

10

n=4       

l

HS

10

n=6

l

HS

1

GR

Figure 1. The ISW contribution to the (dimensionless) temperature power spectrumℓ(ℓ + 1)CTT
ℓ /2π is depicted as a function of the parameterB0 of the PPF

formalism. The general relativisitic (GR) predictions correspond toB0 = 0 (top-left panel). The top-left and top-right panels correspond to PPF (top-left) and BZ
(top-right) formalism. For the PPF we choseB0 = 1, 10−1, 10−2, 10−3. The bottom panels correspond to the predictions from HS (Hu& Sawicki 2007) withn = 1
(bottom-left),n = 4 (bottom-middle) andn = 6 (bottom-right). The values ofB0 in these plots areB0 = 10−2 andB0 = 10−3.

 Lensing x ISW Cross-Spectra in Modified Theories of Gravity

0

PPF BZ

10 100 1000

0

HS

n=1       

l

10 100 1000

HS

n=4

l

10 100 1000

HS

n=6

l

Figure 2. Same as previous plot but for the ISW-lensing cross-spectraℓ(ℓ + 1)CφT
ℓ /2π defined in Eq.(20) as a function of the harmonicℓ for various values of the

parameterB0. The line-styles used for various models are same as that of Figure 1.
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 Optimal Skew-Specta for Lensing x ISW

0 1000 2000
0

l

0 1000 2000

l

BZ

0

PPF

Figure 3. The optimised skew-spectraℓ3S(opt)
ℓ , introduced in Eq.(35) for various theories of modified gravity are displayed as a function of harmonicℓ. The general

relativisitic (GR) prediction corresponds toB0 = 0 . The top-left and top-middle panels correspond to the predictions from PPF and BZ respectively. The bottom panels
correspond to HS withn = 1 (bottom-left),n = 4 (bottom-middle) andn = 6 (bottom-right). The values ofB0 in these plots areB0 = 10−2 andB0 = 10−3 . We

have usedℓmax = 2500 and a Gaussian beam with FWHMθb = 5′ for the numerical evaluation ofS(opt)
ℓ . The line-styles used for various models are same as that

of Figure 1

BPLS
ℓ1ℓ2ℓ3 ≡

∑

m1m2m3

(

ℓ1 ℓ2 ℓ3
m1 m2 m3

)
∫

〈

ΘP(Ω̂1)ΘL(Ω̂2)ΘS(Ω̂3)
〉

Y ∗
ℓ1m1

(Ω̂1)Y
∗
ℓ2m2

(Ω̂2)Y
∗
ℓ3m3

(Ω̂3)dΩ̂1dΩ̂2dΩ̂3;

≡
∑

m1m2m3

(

ℓ1 ℓ2 ℓ3
m1 m2 m3

)

〈(ΘP)ℓ1m1
(ΘL)ℓ2m2

(ΘS)ℓ3m3
〉. (14)

The angular brackets representensembleaverages. The matrices denote3J symbols (Edmonds 1968) and the asterisks denote complex conjugation.
It is possible to invert the relation assuming isotropy of the background Universe:

〈(ΘP)ℓ1m1
(ΘL)ℓ2m2

(ΘS)l3m3
〉 =

(

ℓ1 ℓ2 ℓ3
m1 m2 m3

)

BPLS
ℓ1ℓ2ℓ3 . (15)

Finally the bispectrumBPLS
ℓ1ℓ2ℓ3

is expressed in terms of the unlensed primary power spectrumCTT
ℓ = 〈(ΘP)lm(Θ∗

P)ℓm〉 and the cross-spectraCφT
ℓ

(to be defined below) as follows:

BPLS
ℓ1ℓ2ℓ3 ≡ bISW−Len

ℓ1ℓ2ℓ3
Iℓ1ℓ2ℓ3 ; (16)

bISW−lens
ℓ1ℓ2ℓ3

= −
1

2

[

CφT
ℓ3

CTT
ℓ1 (Πℓ2 − Πℓ1 − Πℓ3) + cyc.perm.

]

; (17)

Iℓ1ℓ2ℓ3 ≡

√

Ξℓ1Ξℓ2Ξℓ3

4π

(

ℓ1 ℓ2 ℓ3
0 0 0

)

; (18)

Πℓ = ℓ(ℓ+ 1); Ξℓ = (2ℓ+ 1). (19)

See Spergel & Goldberg (1999), Goldberg & Spergel (1999) fora derivation. The long-wavelength modes of ISW couple with the short-wavelength
modes of fluctuations generated due to lensing, hence the non-zero cross-spectrumCφT

ℓ . The reduced bispectrum above is denoted asbISW−Lens
ℓ1ℓ2ℓ3

.

To simplify the notation for the rest of this paper, we henceforth drop the superscriptPLS from the bispectrumBℓ1ℓ2ℓ3 . The cross-spectrumCφT
ℓ
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Figure 4. The first skew-spectra associated with MFs, or the first Minkowski Spectra ℓ3S
(0)
ℓ , defined in Eq.(29), for various theories of modified gravity, displayed

as a function of the harmonicℓ. The top-left and top-middle panel correspond to PPF and BZ respectively. The General Relativisitic (GR) prediction corresponds to
B0 = 0 and is shown in the top-left panel (dot and long-dashed line). The bottom panels correspond to HS forn = 1, 4, 6 respectively. The line-styles used for various
models is same as Figure 1.

introduced above represents the cross-correlation between the projected lensing potentialψ(Ω̂) and the secondary contributionΘS(Ω̂):

〈ψ(Ω̂)ΘS(Ω̂
′)〉 =

1

4π

ℓmax
∑

ℓ=2

Ξℓ C
φT
ℓ Pℓ(Ω̂ · Ω̂′), (20)

wherePℓ are Legendre polynomials. The cross-spectrumCφT
ℓ takes different forms for ISW-lensing, Rees-Sciama (RS)-lensing or Sunyaev-

Zeldovich (SZ)-lensing correlations and we assume zero primordial non-Gaussianity. The reduced bispectrumbℓ1ℓ2ℓ3 defined above using the
notationIℓ1ℓ2ℓ3 is useful in separating the angular dependence from the dependence on the power spectraCφT

ℓ andCφT
ℓ . We will use this to express

the topological properties of the CMB maps. TheCφT
ℓ parameters for lensing secondary correlations are displayed in Figure 2.

The beambℓ(θb) and the noise of a specific experiment are characterised by the parametersσbeam andσrms:

bℓ(θb) = exp[−Πσ2
beam]; σbeam =

θb
√

8 ln(2)
; nℓ = σ2

rmsΩpix; Ωpix =
4π

Npix
, (21)

whereσrms is the rms noise per pixel, that depends on the full width at half maxima or FWHM of the beam,θb. The number of pixelsNpix required
to cover the sky determines the size of the pixelsΩpix. To incorporate the effect of experimental noise and the beam we replaceCℓ → Cℓb

2
ℓ(θb)+nℓ,

and the normalization of the skew-spectra that we will introduce later will be affected by the experimental beam and noise. The computation of the
scatter will also depend on these parameters.

The reduced bispectrum for the unresolved point sources (PS) can be characterized by a constant amplitudebPS i.e. the angular averaged
bispectrumBPS

ℓ1ℓ2ℓ3
for PS is given byBPS

ℓ1ℓ2ℓ3
= bPSIℓ1ℓ2ℓ3 ; for our numerical results we will takebPS = 10−29.

The optimal estimators for lensing-secondary mode-coupling bispectrum have been recently discussed by (Munshi et al.2011). The estimators
that we propose here are relevant in the context of constructing the MFs.

3.1 Computation ofCTT
ℓ , CφT

ℓ and Cφφ
ℓ

The ISW effect and lensing potentialφ can both be expressed in terms of the Weyl potentialΦ−Ψ:

δT (Ω̂)

T

∣

∣

∣

ISW
=

∫

dr
d

dτ
(Φ−Ψ); φ(Ω̂) = −

∫ rs

0

dr
rs − r

rrs
(Φ−Ψ). (22)
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Figure 5. Same as previous figure but for the second Minkowski Spectra,i.e. ℓ3S(1)
ℓ defined in Eq.(30). The line-styles used for various models is same as Figure 1.

Assuming a flat Universe, we can express the cross-spectraCφT
ℓ , the ISW contributionCTT

ℓ to the power-spectrum, and the lensing potential
spectrumCφφ

ℓ as follows (Hu 2000):

CφT
ℓ =

2π2

ℓ3

∫ rs

0

dr r W ISW(r)W Len(r)∆2
Φ(k, 0)

∣

∣

∣

k=ℓ
H0

r

; (23)

CTT
ℓ =

2π2

ℓ3

∫ rs

0

dr r W ISW(r)W ISW(r)∆2
Φ(k, 0)

∣

∣

∣

k=ℓ
H0

r

; (24)

Cφφ
ℓ =

2π2

ℓ3

∫ rs

0

dr r W Len(r)W Len(r)∆2
Φ(k, 0)

∣

∣

∣

k=ℓ
H0

r

, (25)

wherers is the comoving distance, andr(z) =
∫ z

0
[H0/H(z′)]dz′. We can express the gravitational potential power spectrum∆2

Φ(k, z) by using
the transfer functionT (k) and the growth factor[F (z)/(1 + z)]:

∆2
Φ(k, z) =

9

4
Ω2

mδ
2
HF (z)T 2(k)

(

k

H0

)n−1

; (26)

with δH denoting the amplitude of matter density fluctuation at the present Hubble scale. The window functionsW ISW(r) andW Len(r) used above
in Eq.(24) and Eq.(24) are expressed as follows:

W ISW(r) = −
d

dr
[(1 + γ)F] , W Len(r) = −(1 + γ)F (r)

(rs − r)

r rs
. (27)

This is the expression used in Eq.(19) to construct the bispectrum which was used to compute the optimised skew-spectra of Eq.(35) and the
sub-optimal versions in Eq.(29)-Eq.(31) to be introduced in §4 later.

4 MINKOWSKI FUNCTIONALS AND ASSOCIATED POWER-SPECTRA

The study of non-Gaussianity is usually primarily focused on the bispectrum, as this saturates the Cramér-Rao bound (Babich 2005;
Kamionkowski, Smith & Heavens. 2011) and is therefore in a sense optimal. However in practice it is difficult to probe the entire configuration
dependence using noisy data (Munshi & Heavens 2010). An alternative is to use cumulant correlators, which are multi-point correlators collapsed to
encode two-point statistics. These were introduced into galaxy clustering by Szapudi & Szalay (1999), and were later found to be useful for analyz-
ing projected surveys such as the APM galaxy survey (Munshi,Melott & Coles 2000). Being two-point statistics they can beanalyzed in multipole
space by defining an associated power spectrum (Cooray 2001a). Recent studies by Cooray, Li & Melchiorri (2008) have demonstrated their wider
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Figure 6. Same as the previous figure but for the third Minkowski Spectra ℓ3S(2)
ℓ defined in Eq.(31). The line-styles used for various models are same as that of Figure

1.

applicability including, e.g., in 21cm studies. In more recent studies the skew- and kurt-spectra were found to be useful for analysing temperature
(Munshi & Heavens 2010) as well as polarization maps (Munshiet al. 2011) and from maps of secondaries from CMB experiments (Munshi et al.
2012a; Munshi, Coles & Heavens 2013) and in weak lensing studies (Munshi et al. 2012). The MFs are well known morphological descriptors which
are used in the study of random fields. Morphological properties are the properties that remain invariant under rotationand translation (see Hadwiger
(1959) for a more formal introduction). They are defined overan excursion setΣ for a given thresholdν. The three MFs that are defined for two
dimensional (2D) studies can be expressed as (Pratten & Munshi 2012):

V0(ν) =

∫

Σ

da; V1(ν) =
1

4

∫

∂Σ

dl; V2(ν) =
1

2π

∫

∂Σ

κdl (28)

Hereda, dl are the elements for the excursion setΣ and its boundary∂Σ. The MFsVk(ν) correspond respectively to the area of the excursion setΣ,
the length of its boundary∂Σ, and the integral curvature along its boundary (which is also related to the genusg and hence the Euler characteristics
χ).

Following earlier studies (Munshi et al. 2013, 2012; Munshi, Coles & Heavens 2013) we introduce three different skew-spectra associated with
MFs for an arbitrary cosmological projected fieldΨ:

S
(0)
ℓ ≡

1

N0
S

(Ψ2,Ψ)
ℓ ≡

1

N0

1

Ξℓ

∑

m

Real([Ψ]ℓm[Ψ2]∗ℓm) =
1

N0

∑

ℓ1ℓ2

Bℓℓ1l2Jℓℓ1ℓ2 (29)

S
(1)
ℓ ≡

1

N1
S

(Ψ2,∇Ψ)
ℓ ≡

1

N1

1

Ξℓ

∑

m

Real([∇2Ψ]ℓm[Ψ2]∗ℓm) =
1

N1

∑

ℓ1ℓ2

[

Πℓ +Πℓ1 +Πℓ2

]

Bℓℓ1ℓ2Jℓℓ1ℓ2 (30)

S
(2)
ℓ ≡

1

N2
S

(∇Ψ·∇Ψ,∇2Ψ)
ℓ ≡

1

N2

1

Ξℓ

∑

m

Real([∇Ψ · ∇Ψ]ℓm[∇2Ψ]∗lm)

=
1

N2

∑

ℓ1ℓ2

1

2

[

[Πℓ +Πℓ1 −Πℓ2 ]Πℓ2 + cyc.perm.
]

Bℓℓ1ℓ2Jℓℓ1ℓ2 (31)

Jℓ1ℓ2ℓ3 ≡
Iℓ1ℓ2ℓ3
Ξℓ1

=

√

Σℓ2Σℓ3

Σℓ14π

(

ℓ1 ℓ2 ℓ3
0 0 0

)

; (32)

S(i) =
∑

ℓ

ΞℓS
(i)
ℓ ; (33)

N0 = 12πσ4
0 ; N1 = 16πσ2

0σ
2
1 ; N2 = 8πσ4

1 . (34)

In contrast to these MF-based quantities, the optimised skew-spectraSopt
ℓ for two different types of non-Gaussianity is defined by the following
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(a) (b) (c)

Figure 7. The all-sky covariance matrixS(00)
ℓℓ′

for the estimatorS(0)
ℓ is being plotted in the left panel. In middle panel we depictS

(11)
ℓℓ′

and the right panel correspond

to S
(22)
ℓℓ′

. The analytical expressions for the covariance matrices are given in Eq.(39). For the computation of these covariance matrices we assumeB0 = 0 (GR).

expression:

Sopt
ℓ (X,Y) =

1

6

∑

ℓ1ℓ2

BX
ℓℓ1ℓ2

BY
ℓℓ1ℓ2

Ctot
ℓ Ctot

ℓ1
Ctot
ℓ2

; Sopt(X,Y) =
∑

ℓ

Sopt
ℓ (X,Y). (35)

The three skew-spectra associated with MFs, defined in Eq.(29)-Eq(31), for various theories of modified gravity are shown in Figure 4 as a function of
harmonicℓ for PPF, BZ and HS models. Clearly the one-point estimator defined in Eq.(34) will have nearly vanishing amplitude due to cancellation
originating from the oscillatory pattern seen in all three skew-spectra associated with MFs. The FWHM is fixed atθb = 5′. The noise level is chosen
to match the Planck 143GHz channel. It is interesting to notethat the extrema ofℓ3S(0)

ℓ for all models occurs roughly at similarℓ values. We display
four different values ofB0 for each modelsB0 = 10−3 (solid),B0 = 10−2 (short-dashed),B0 = 10−1 (long-dashed) andB0 = 1 (dot-dashed)
respectively. For HS models we choose two different values forB0 i.e.B0 = 10−3 andB0 = 10−2. In agreement with what we found for optimised
estimators the skew-spectra for the HS models with lown values show a greater degree of sensitivity toB0 compared to their high-n counterparts,
which roughly mimic their PPF or BZ counterparts.

5 LIKELIHOOD ANALYSIS USING SKEW-SPECTRA

In this section we construct the joint covariance matrices for skew-spectra and ordinary spectra and provide results ofa likelihood analysis forecast
for the parameterB0.

The Gaussian contributions to the covariance matrix can be expressed in terms of the total power-spectrumCtot
ℓ alone; which in terms of beam

bℓ and the noise power spectrumnℓ takes the formCtot
ℓ = CTT

ℓ b2ℓ + nℓ:

S
(ij)

ℓℓ′
= 〈δS

(i)
ℓ δS

(j)

ℓ′
〉 = 〈S

(i)
ℓ S

(j)

ℓ′
〉 − 〈S

(i)
ℓ 〉〈S

(j)

ℓ′
〉

=
1

N(i)

1

N(j)

Ctot
ℓ

∑

ℓ1ℓ2

Ctot
ℓ1 Ctot

ℓ2 J
(i)
ℓℓ1ℓ2

[ (

J
(j)

ℓ′ℓ1ℓ2
+ J

(j)

ℓ′ℓ2ℓ
+ J

(j)

ℓ′ℓℓ1

)

+ (−1)ℓ+ℓ1+ℓ2
(

J
(j)

ℓ′ℓ2ℓ1
+ J

(j)

ℓ′ℓℓ2
+ J

(j)

ℓ′ℓ1ℓ

) ]

; (36)

J
(0)
ℓ1ℓ2ℓ3

= Jℓ1ℓ2ℓ3 ; J
(1)
ℓ1ℓ2ℓ3

= (Πℓ1 +Πℓ2 +Πℓ3)Jℓ1ℓ2ℓ3 ; J
(2)
ℓ1ℓ2ℓ3

= ((Πℓ1 +Πℓ2 − Πℓ3)Πℓ3 + cyc.perm.) Jℓ1ℓ2ℓ3 . (37)

We use the following expression in our derivation (Bartolo et al. 2004):

〈Bℓ1ℓ2ℓ3Bℓ′
1
ℓ′
2
ℓ′
3
〉 = Ctot

ℓ1 Ctot
ℓ2 Ctot

ℓ3

[(

δ
ℓ′
1
ℓ′
2
ℓ′
3

ℓ1ℓ2ℓ3
+ δ

ℓ′
3
ℓ′
1
ℓ′
2

ℓ1ℓ2ℓ3
+ δ

ℓ′
2
ℓ′
3
ℓ′
1

ℓ1ℓ2ℓ3
+ (−1)ℓ1+ℓ2+ℓ3

(

δ
ℓ′
1
ℓ′
3
ℓ′
2

ℓ1ℓ2ℓ3
+ δ

ℓ′
2
ℓ′
1
ℓ′
3

ℓ1ℓ2ℓ3
+ δ

ℓ′
3
ℓ′
2
ℓ′
1

ℓ1ℓ2ℓ3

) ]

;

δ
ℓ′
1
ℓ′
2
ℓ′
3

ℓ1ℓ2ℓ3
= δℓ1ℓ′1δℓ2ℓ′2δℓ3ℓ′3 . (38)

Notice that the3J symbols involved in the definitions ofS(i)
ℓ all have the azimuthal quantum numbersmi = 0 in which case we have non-zero

3J symbols only when(ℓ+ ℓ1 + ℓ2) = even, thus(−1)ℓ+ℓ1+ℓ2 = 1. Thus we notice thatJ(i)
ℓℓ1ℓ2

is symmetric under the exchange of the last two
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Figure 8. The likelihood functionLS defined in Eq.(43) for estimatorsS(0)
ℓ (left-panel),S(1)

ℓ (middle-panel) andS(2)
ℓ (right-panel) are plotted as a function ofB0.

The parametrization used in our computation is that of BZ; primarily due to it’s higher speed compared to other parametrisation in numerical implementation.

indices i.e.ℓ1 andℓ2. Using these facts, after a straightforward but tedious calculation, we can further simplify Eq.(36) to :

S
(ij)

ℓℓ′ ≡ S
(ij)

ℓℓ′ = 〈δS
(i)
ℓ δS

(j)

ℓ′ 〉 =
1

N(i)

1

N(j)

[

2 δℓℓ′ C
tot
ℓ

∑

ℓ1ℓ2

Ctot
ℓ1 Ctot

ℓ2 J
(i)
ℓℓ1ℓ2

J
(j)
ℓℓ1ℓ2

+ 4 Ctot
ℓ Ctot

ℓ′

∑

ℓ1

Cℓ1 J
(i)

ℓℓ′ℓ1
J
(j)

ℓ′ℓℓ1

]

. (39)

The first term contributes only to diagonal entries of the covariance matrix while the second term contributes also to theoff-diagonal terms. This is
the expression we have used in our numerical computations. The covariance matrix involving the bispectrum derived above is generic but depends on
the assumption that the non-Gaussianity is weak i.e.〈Bℓ1ℓ2ℓ3〉 ≃ 0 and can also be used for likelihood calculations of primordial non-Gaussianity
using MFs (Munshi et al. 2013).

For the one-point estimators introduced previously,S(i) =
∑

ℓ ΞℓS
(i)
ℓ the covariance matrixS(ij) takes the following form:

S(ij) = 〈δS(i)δS(j)〉 =
∑

ℓℓ′

ΞℓΞℓ′S
(ij)
ℓℓ′ =

1

N(i)

1

N(j)

∑

ℓ1≥ℓ2≥ℓ3

Ctot
ℓ1 Ctot

ℓ2 Ctot
ℓ3 I

(i)
ℓ1ℓ2ℓ3

I
(j)
ℓ1ℓ2ℓ3

. (40)

Finally, the covariance of the optimum estimatorSopt
ℓ defined in Eq.(35) is given by the following expression:

〈δSopt
ℓ δSopt

ℓ′ 〉 =
1

18
δℓℓ′

∑

ℓaℓb

B2
ℓℓaℓb

Ctot
ℓ Ctot

ℓa
Ctot
ℓb

+
1

9

∑

la

B2
ℓℓ′ℓa

Ctot
ℓ Ctot

ℓ′ Ctot
ℓa

=
1

3
δℓℓ′S

opt
ℓ +

1

9

∑

la

B2
ℓℓ′ℓa

Ctot
ℓ Ctot

ℓ′ Ctot
ℓa

. (41)

S
opt ≡ 〈δSoptδSopt〉 =

∑

ℓ

Sopt
ℓ = Sopt. (42)

This result agrees with the previous calculation of Munshi &Heavens (2010), using Fisher matrices in the limit of all-sky coverage. The results
given there include additional correction terms (termed “β”), related to the so calledlinear, andcubic(“α” ) terms, due to partial sky coverage. The
likelihoods for the MFs and the optimal skew-Cls are

LS = exp(−χ2
S/2); χ2

S =
∑

ij

∑

ℓℓ′

[

δS
(i)
ℓ [S(ij)]−1

ℓℓ′ δS
(i)

ℓ′

]

; (43)

Lopt = exp(−χ2
opt/2); χ2

S =
∑

ℓℓ′

[

δSopt
ℓ [Sopt]−1

ℓℓ′ δS
opt
ℓ′

]

. (44)

For corresponding one-point estimators we haveLS = exp(−[δSopt]2/2S) and similarly for joint analysis using all one-point MFsLS =
exp(−[δS(i)][S(ij)]−1[δS(j)]/2).

Bayesian Recovery ofB0: In recent works, Hikage et al. (2008) and Ducout et al. (2013)adopted a Bayesian approach in their analysis of
primordial non-Gaussianity in CMB maps using MFs. We can similarly use Bayes’ theorem to write the posterior probability for B0,P(B0|S) given
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Figure 9. The all-sky covariance matrixSopt
ℓℓ′

defined in Eq.(41) for the optimal estimatorSopt
ℓ is shown. The experimental set up corresponds to Planck 143

GHz channel withℓmax = 2000. The mode-mode coupling, even in the case of all-sky coverage, seen here in the covariance matrix is a result of the facet that
skew-spectrum is a non-Gaussian statistics. In the notation of (Munshi & Heavens 2010) the covariance matrix presentedhere comprise of only the “α” terms.
Additional mode-coupling is expected as pointed out in (Munshi & Heavens 2010). The resulting “β” terms are subdominant for near all-sky coverage. We assumed a
homogeneous uncorrelated noise distribution in our calculation, see (Munshi & Heavens 2010) for a complete treatment.We also assumedB0 = 0 (GR) background
for our computation.

the one-point MFs as the data vectorS:

P(B0|S) =
LS(S|B0)P(B0)

∫

LS(V|B0)P(B0)dB0
; S = (S(0), S(1), S(2)). (45)

HereP(B0) is the prior, assumed flat. Similarly we can also use the optimized skewness as the data vector instead of the MFs by replacing S

by Sopt and the likelihood function byLopt(S|B0). The likelihood function in such studies is typically assumed to be Gaussian, or determined
using Monte Carlo simulations. We find that the likelihood for B0 has an extended non-Gaussian tail. Thus, the analytical covariance and the
corresponding likelihood derived here will be useful in providing independent estimates, and related error-bars for sanity checks of results derived
through Monte-Carlo simulations.

6 RESULTS

We have introduced three different MFs in this study and compared their performance against the optimum estimator. The aim is to use CMB data
to constrain the departure of modified gravity theories fromGR as parametrized by the parameterB0 that denotes the Compton wavelength of the
scalaron at the present epoch. The underlying bispectrum that we probe is the one generated by correlation between ISW and lensing of the CMB.
The bispectrum is constructed fromCTT

ℓ (Figure 1) andCTφ
ℓ (Figure 2).

The set three skew-spectra associated with MFs or the first Minkowski Spectra ℓ3S(0)
ℓ , defined in Eq.(29)-Eq.(31), for various theories of

modified gravity are displayed in Figure 4 - Figure 6 as a function of the harmonicℓ. The top-left and top-middle panels in these figures corresponds
to predictions from PPF and BZ respectively. The General Relativistic (GR) prediction correspond toB0 = 0 and is shown in the top-left panel (dot
and long-dashed line). The bottom panels correspond to the results from the HS model, forn = 1, 4, 6 respectively. It is interesting to note that
the the one-point estimator defined in Eq.(34) will have nearly vanishing amplitude due to cancellation originating from the oscillatory pattern seen
in all three skew-spectra associated with MFs - which is one of the motivation for studying the associated power-spectra. The FWHM is fixed at
θb = 5′. The noise level is chosen to match the Planck 143GHz channel. It is interesting to note that the extrema ofℓ3S(0)

ℓ for all models occurs
roughly at similarℓ values and thus are relatively insensitive to the change in parameterB0. We display four different values ofB0 for each model:
B0 = 10−3 (solid),B0 = 10−2 (short-dashed),B0 = 10−1 (long-dashed) andB0 = 1 (dot-dashed) respectively. For HS models we choose two
different values forB0 i.e.B0 = 10−3 andB0 = 10−2. In agreement with what we found for optimised estimators the skew-spectra for HS models
with low n values show greater degree of sensitivity toB0 compared to their highern counterparts, that roughly mimic their PPF or BZ counterparts.
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Figure 10.Likelihood for optimal-estimatorSopt
ℓ is plotted as a function ofB0 using the covariance matrixSopt

ℓℓ′
defined in Eq.(41). The parametrization used in this

computation is that of BZ.

The corresponding optimum spectrum is given in Figure 3. By construction the optimum skew-spectra are positive definite. The peak structure of
the optimum estimator for a given model is different from itsMFs counterparts. The odd-numbered peaks of the optimum estimator are much more
pronounced compared to their even-numbered counterparts.Increasing the value ofB0 suppresses the amplitude of oscillations for both Minkowski
Spectra and the optimum skew-spectra.

We have derived the covariance of the Minkowski Spectra and optimum skew-spectra. The covariance of Minkowski Spectra depends only on
the ordinary temperature power spectrum and are independent of the bispectrum as they are derived in the limiting case ofvanishing bispectrum. The
covariance of the optimum skew-spectrum depends on the target bispectrum used for the construction of weights. Both setof covariance matrices
are well-conditioned. The analytical covariance matriceswere derived using an all-sky approximation. The mode-modecoupling despite the all-sky
approximation is related to the fact that these statistics are inherently non-Gaussian. The covariance matrices for the MFs are displayed in Figure 7
and for the optimum skew-spectra they are displayed in Figure 9. A comparison with results presented in Munshi & Heavens (2010) shows that we
recover the terms designated as “α” term there. The lack of corresponding “β” terms in the current study is simply due to all-sky coverageassumed
here for simplicity.

Finally we use these covariance matrices to compute the likelihood functions.The results are obtained by using a fiducial valueB0 = 0. The
analyticalcovariance matrix for the optimum estimators are describedin Eq.(35). These expression was used in association with Eq.(44) to compute
the likelihood function presented in Figure 10. The likelihood functions ofB0 for MFs are shown in Figure 8. In this case, we use the Eq.(39) for
the expression of covariance matrices and in Eq.(43) for theexpression of likelihood function. We findB0 < 0.67 andB0 < 0.45 for bothS(0)

ℓ and

S
(1)
ℓ at 99% and95% confidence level respectively. ForS(opt)

ℓ the numbers are0.071(99% CL) and0.15 (95% CL) respectively. It’s important to
realise that the liklihood functions arenot Gaussian as the covariance matrices depend onB0 in a non-trivial manner through their dependence on
the CMB temperature power spectrumCTT

ℓ and the lensing-temperature cross-spectrumCφT
ℓ .

7 DISCUSSION AND CONCLUSIONS

The correlation between ISW and lensing of the CMB generatesa specific signature in the CMB bispectrum. Analysis of first-year data from the
Planck satellite has detected this signature with a moderate level of signal to noise (2.6σ). The ISW-lensing bispectrum is unique as it depends on the
CMB power-spectrum generated at recombination and cross-spectra of the lensing potential and the ISW effect generatedat late times. Both ISW
and lensing are sensitive to the underlying model of gravity, and thus the resulting bispectrum provides an opportunityto constrain any departure
from GR. We consider various formulations of the modified gravity models which include HS, BZ and PPF models to compute thebispectrum.

Topological Estimators: The non-Gaussianity in CMB maps are often studied using moment-based approaches or alternatively using their
harmonic counterparts, namely the multi-spectra. Extending previous results we have studied how topological descriptors such as the MFs can
provide a complementary role, paying special attention to Planck-type experiments. The MFs are interesting as they have different responses to
various systematics. We have considered the three MFs that are used for describing the topological properties of CMB temperature maps. We
compute analytically the covariance associated with the skew-spectra associated to the MFs, and our results also include cross-covariance among
different skew-spectra. In agreement with previous results we find that the skew-spectra are highly correlated. Constructing the MFs for Planck type
experiments (143 GHz). We find that the constraints are tighter for the first two MFsS(0)

ℓ andS(1)
ℓ , which both giveB0 < 0.67 at95% CL. We do not

get any meaningful constraints usingS(2)
ℓ . The constraints can be further improved by considering Wiener filtering instead of Gaussian smoothing.
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Figure 11.The confusion from unresolved point sources is plotted for determination of optimum ISW-Lensing skew-spectrum. The normalisation for point source is
fixed atbPS = 10−29. The line-styles used for various models are same as that of Figure 1.

We provide simple analytical results for the three different Wiener filtering techniques that have been considered previously in the literature. We
also incorporate the optimum estimator and its covariance for construction of the corresponding likelihood. The MFs donot fare particularly well
in comparison with the optimal estimators, which are predicted to give much tighter constraints:B0 < 0.071 at 95% CL andB0 < 0.15 at 99%
CL. These are very close to the predictions from the full bispectrum (Hu et al. 2013), showing their optimal nature. We have not considered the
possibility of combining results from different channels which can further improve the constraints.

Contamination from Point Sources and Galactic Foregrounds: Galactic contamination are a major source of concern which can affect any
study involving the CMB. They are usually dealt with maskingor by using component separation techniques (Leach et al. 2008). The residual bias
in the estimation of primordial non-Gaussianity was found to be small (Hikage et al. 2008; Komatsu et al. 2011). However,other studies were more
conservative in interpreting the results (Chiang et al. 2003). Techniques also exists that involve marginalising overforegrounds (Komatsu et al. 2002,
2011). Point sources are an additional source of contamination for any study involving MFs. The resolved point sources with sufficient signal-to-noise
can be removed by application of an appropriate mask, but there will be low-flux, unresolved and unsubtracted sources, comprising radio-galaxies
and active galactic nuclei that emit in radio frequencies through the synchrotron process, and dusty starburst galaxies which emit thermally. However
integrated emission from the Cosmic Infrared Background (CIB) has recently been detected by Planck collaboration using the skew-spectrum
(Planck Collaboration 2013e). Any contamination from unresolved point sources can be estimated using Eq.(35). Some ofthe issues involving
mask and inhomogeneous noise can be dealt with by computing the cumulant correlatorsthat represent MFs in the real-space or in theneedlet
basis (Munshi et al. 2013). The contamination from unresolved point sources (PS) can be estimated using Eq.(35) withX = ISW-lensing and
Y = Point Sources. The contamination is shown in Figure 11. For normalisationbPS = 10−29 the contamination is several orders of magnitude
lower compared to the optimum skew-spectrum depicted in Figure 3. We have ignored the contamination from primordial non-Gaussianity which is
expected to be negligible.

RS-Lensing and tSZ-Lensing skewspectrum:The ISW-Lensing cross-correlation at the level of bispectrum has been the focus of our study
in this article. The same techniques can in principle be usedto analyse skew-spectra associated with the Rees-Sciama(RS)-lensing or thermal
Sunyaev Zeldovich(tSZ)-lensing bispectrum to constrainB0. However, the tSZ-lensing bispectrum depends on detailed modeling of underlying
“gastrophysics” and the S/N of RS-lensing skew-spectrum isbelow the detection threshold for ongoing surveys such as the Planck.

Beyond the bispectrum:The results that we have derived here are based on MFs and the optimum skew-spectrum. Going beyond third-order
correlation functions, it is possible to incorporate the power-spectrum of the lensing potentialCφφ

ℓ in constrainingB0. Optimized kurt-spectrum
introduced in Munshi et al. (2011) and later used to analyse 7-year data released by WMAP team (Smidt et al. 2011) can be valuable for studies in
this direction. These results when combined with results from power-spectrum data alone can improve the constraints byan order of magnitude. The
possibility of using polarised CMB maps will be explored elsewhere.

Constraints onB0 from other cosmological data-sets:Constraints from CMB can provide independent confirmationsof constraints derived
from studies of BAOs, studies of galaxy clusters or that fromweak lensing studies, though constraints from galaxy power-spectrum can be signifi-
cantly tighter compared to the constraints derived herelog10B0 < −4.07. The scales and redshift probed by galaxy surveys and CMB observations
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are very different and are affected by different set of observational systematics. Hence, these observations play complimentary roles in constraining
B0.

Wiener and Wiener-like Filtering and Minkowski Functional s: WienerandWiener-likefiltering are generally used for analysing realistic
data to confront issues related to component separation, point-source and galactic masks (Ducout et al. 2013). The expressions for MFs in Eq.(29)-
Eq.(31) can be modified by replacing the bispectrum byB̃ℓ1ℓ2ℓ3 = Bℓ1ℓ2ℓ3Wℓ1Wℓ2Wℓ3 . Various forms of the filtersWℓ that were found useful
in analysing realistic data are:W (M)

ℓ = Cℓb
2
ℓ/C

tot
ℓ ; W

(D1)
ℓ =

√

ℓ(ℓ+ 1)Cℓb
2
ℓ/C

tot
ℓ ; W

(D2)
ℓ = ℓ(ℓ+ 1)Cℓb

2
ℓ/C

tot
ℓ . They correspond to Wiener-

filtering (M) and Wiener-like filtering using first (D1) and second derivatives (D2) of the map. The expression for the covariance can be derived
by replacing the power-spectrum by the filtered power spectrum C̃ℓ = W 2

ℓ Cℓ in Eq.(39). By definition, the optimum estimator includes inverse
covariance weighting and its performance cannot be improved by filtering - inclusion of weights in the definition of optimum estimator in the
numerator and denominator cancel out. As a final remark, the information content of the skew-spectrum is independent of the power spectrum, as at
the lowest order the resulting cross-correlation will involve five-point spectra which vanish for a Gaussian CMB map.
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