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ABSTRACT

We use the optimised skew-spectrum as well as the skewrapesdociated with the Minkowski
Functionals (MFs) to test the possibility of using the crosgrelation of the Integrated Sachs-Wolfe
effect (ISW) and lensing of the cosmic microwave backgro{@B) radiation to detect deviations
in the theory of gravity away from General Relativity (GR)eWnhd that the although both statis-
tics can put constraints on modified gravity, the optimiseglsspectra are especially sensitive to
the parameteB, that denotes the thEompton wavelengtbf the scalaron at the present epoch.
We investigate three modified gravity theories, namely:Rst-Parametrised Friedmanian (PPF)
formalism; the Hu-Sawicki (HS) model; and the Bertschingekin (BZ) formalism. Employing a
likelihood analysis for an experimental setup similar tcA8®lanck mission, we find that, assuming

GR to be the correct model, we expect the constraints frorfirstewo skew-spectraﬁ‘éo) andStgl),
to be the same&3, < 0.45 at95% confidence level (CL), anBy < 0.67 at99% CL in the BZ model.
The third skew-spectrum does not give any meaningful caimtr\We find that the optimal skew-
spectrum provides much more powerful constraint, giviag< 0.071 at95% CL andBy < 0.15 at
99% CL, which is essentially identical to what can be achievedgighe full bispectrum.

Key words: : Cosmology, Methods: analytical, statistical, numetioabdified gravity, dark energy

1 INTRODUCTION

The observations of type la supernovae imply that our Usivés undergoing a phase of accelerated expansion (Reis489&; Perlmutter et al.

) Cosmic acceleration can arise from either an exotio bf energy with negative pressure, referred to as “daekgi, or a modification of

grawty manifesting on large scales. As shown by varioubarst(Bertschingkr 2005; Song, Hu & Sawicki 2006; Brax €2808; Hu et all. 2013),

determining the cause of the acceleration os hampered bia¢héhat the background dynamics in dark energy and modifiadity models are
nearly indistinguishable. To lift this degeneracy, one tzst the evolution of perturbations in these models. Thaugeative approach to growth
of structure in modified gravity can, in principle, be cldiggl in two different frameworks: parametric and non-par@imean example of the latter
being principal component analysis (Zhao et al. 2008, 22090; Hojjall 2011). In this paper we focus on the former.

There exist several phenomenological parametrizationmaiified gravity including the Bertschinger-Zukin_(Betigwer & Zukin| 2008)
parametrization, and that MSEOWD. Thesamatrizations are suitable for the quasi-static reginteere the time evolution of the
gravitation potentials is negligible compared with thgaasal gradient. Furthermore, if we focus on the linear fiation dynamics for which the
equations in Fourier space can be reduced to simple algetsaitions, these techniques allow us to perform some @oaglculations which
make the parametrization technically efficient. Howeviewe want to go further beyond the quasi-static scale, whaheaining in the linear per-
turbation framework, the parametrization of modified gtyablecomes more complex. This is because on the largesssesleecially the super- or
near-horizon scales, the time evolution of the gravitatiguotentials is no longer negligible. In fact, the time dative terms dominate the dynam-
ical equations, which means that we need to solve some tedngalinary differential equations. All in all, the inclusi of time derivative terms
makes the parametrization of modified gravity not so mahidagmore Actually, there exists some debate about the rafnggidity of the various
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parametrizations; on the one hand, as shom}m QZusing a parametrization with insufficient freedormgigantly tightens the appar-
ent theoretical constraints. On the other hand, for someifspenodified gravity models some phenomenological paramstons work quite well;
for instancl@llZ) recently demonstrateat tbr small Compton wavelength in thi§R) model, the Bertschinger-Zukin parametriza-
tion is in practice good enough for current data analysiss iBrbecause, for small Compton wavelengths, the mostfiignt modifications w.r.t. GR
occur in the sub-horizon regime, while the modification om$hper-horizon scales are subdominant. In addition tolibeeaexplicit parametriza-
tions, some quite generic frameworks have been proposeld asithe parametrized Post-Friedmann (PPF) formalishudimg the Hu-Sawicki ap-
proach [(Hu & Sawicki 2007; Fang, Hu & Lewlis 2008), its caliiwa version ((Lombriser, Yoo & Koyaria 2013) and Baker-Fiea«Skordis-Zuntz
algorithm (Baker et al. 2011; Baker, Fereira & Skardis 20B2)d the Effective Field Theory (EFT) formalism (GubitdBiazza & Vernizzi 2012;
Bloomfield et all 2012; Hu et &l. 2013). These formalisms @neoted to build up a “dictionary” of modified gravity theasiand their PPF or EFT
correspondence. Since the purpose of these generic femsis to construct a unified way to include all the modified/igyadark energy models,
they contain more arbitrary functions/coefficients, whislually lead to looser constraints.

Besides the recent progress on the construction of paraai@ns, many observational windows have recently beepgsed, such as the In-
tegrated Sachs-Wolfe (ISW) effett (Sachs & Wolfe 1967) is@iz Microwave Background (CMB) anisotropies (ZHang 2
[2007;[Ho et all 2008), the power spectrum of luminous redxigdalYamamoto et al. 2010; He 2012; Abebe, de la Cruz-DamBrDunsby
[2013), cluster abundance (Jain & Zhang 2008; Schmidt, Viknl& Hu [2009:[ Lombriser et al. 2010; Ferraro. Schmidt.& B011), Coma clus-
ter (Terukina et all_2013), galaxy peculiar velocities |(H0®), redshift-space distortions (Jennings et al. 1212:cRaelli et al| 2013), weak-
lensing (Heavens etal. 2007; Zhang et al. 2007; Reyes e0&0; Hirata et &l. 2008; Daniel etlal. 2010; Tereno, Sembip&@chrabbadk 2011;
Laszlo et all 2012; Simpson et Al. 2013)cm observations_(Hall, Bonvin & Challinor 2000), matterpsstrum [(Marin et &l. 2017; Bartolo etlal.
[2013),etc In addition, recently some N-body simulation algorithmsriodified gravity models have been developed (Zhao 20104bfa & Barrow
[2011). As shown by Song. Peiris & Hu (2007) and Lombriser &28i10), with WMAP resolution the modification effects oe tBMB mainly come
from the ISW effect, which becomes prominent on the supeizbn scales. However, due to the unavoidable cosmic vegian large scales, the
constraints from these effects are not significant. On therdband, since the typical modification scales are on sulzdroscales, several stud-
ies show that the most stringent constraints come from tiyedscale structure data sets. For example, the strongeeht constraint orf (R
gravity (log,,Bo < —4.07; 95%CL) (Dossett, Hu, & Parkinstin 2014) is driven by the galaxy spee from WiggleZ data set al.

). Various previous results show that the main comgta modified gravity comes from galaxy or cluster scalescwitiorresponds to the
multipole range? > 500 in CMB data, where lensing effects are no longer negligiilee recent release ¢flanck data ((Planck Collaboration
) provides us with a fruitful late-time informationtb@mn ISW and lensing, which is encoded in the CMB temperapanger-spectrum
(Planck Collaboratioh 201Bb), the lensing potential pesgectrum|(Planck Collaboration 2013b), and the CMB tewmipee 1SW-lensing bispec-
trum (Planck Collaboration Zgﬂﬂi,e). The full sky lensiraigmtial map has been constructed and the amplitude of tisénkp potential power-
spectrum has been estimated at 2he level. The ISW-lensing bispectrum is also detected withrlgedr confidence level. Although the ISW-
lensing bispectrum data have not yet been released, fésegzsonstraints on modified gravity models through thisel@bservational statistic
have been investigated (DiValentino 2012; Hu éf al. P018esE studies show that the ISW-lensing bispectrum is actizéetool to constrain
modified gravity. Also notice th13) analysédBtemperature power-spectrum data alone and improvedréwguis constraint from
WMAP9's By < 3.37 at95% CL to Bo < 0.91. Inclusion of the lensing potential power spectrum impubiteto By < 0.12. The lensing-ISW
bispectrum is known to be uncorrelated to the power-specamd thus it can further tighten the constraintin

Inspired by these results, in this paper we use the recenttpduced optimum skew-spectra and the skew-spectra iatstavith the
Minkowski Functionals (MFs) to constrain departures frorR.Gince their introduction in cosmology by Mecke, BucheM\&gner [(1994),
MFs have been extensively developed as a statistical tooldn-Gaussianity in a cosmological setting for both twamelnsional (projected) and
three-dimensional (redshift) surveys. Analytic resuls lenown certain properties of the MFs of a Gaussian randoleh ifi@king them suitable
for identifying non-Gaussianity. Examples of such studiesude CMB datal(Schmalzing & Gorski 1998; Novikov, Sctineg and Mukhanov
[2000;[Hikage et all_2008; Natoli etlal. 2010), weak lensinga@dbara and Jain (2001); Sato ét Al L@_odzl) Taruyd €t @02)2 Munshi et al.
(2012)), large-scale structure (Gott etlal. 1986: CGblesd1@Rott et all 1989; Meldit 1990; Gott et 90; Moore etl#192; Gott et gll_1992;
Canavezes et Al, 1998; Sahni, Sathyaprakash & Shandaré)|$88malzing & Diaferio 2000; Kerscher gj al. 2001; HlkaggIHZQQjZi Park et al.
[2005; Hikage et al. 2006, 2d08), 21ch (Gleser &t al. 200@}uency cleaned Sunyaev-Zel'dovich (SZ) maps (Munshil&a13) and N-body
simulations/(Schmalzing & Diafetlo 2000; Kerscher éf aD2D The MFs are spatially-defined topological statistiod, dy definition, contain sta-
tistical information of all orders in the moments. This makbem complementary to the poly-spectra methods that direeden Fourier space.
It is also possible that the two approaches will be sensttvéifferent aspects of non-Gaussianity and systematecesf although in the weakly
non-Gaussian limit it has been shown that the MFs reduce teighted probe of the bispectrummo%).

The skew-spectrum is a weighted statistic that can be tumed garticular form of non-Gaussianity, such as that whicly ewdse either
during inflation at an early stage or from structure formai a later time. The skew-spectrum retains more informadimout the specific form
of non-Gaussianity than the (one-point) skewness pararaktee. This allows not only the exploration of primary aeg¢@dary non-Gaussianity
but also the residuals from galactic foreground and unvesiopoint sources. The skew-spectrum is directly relatetieédowest-order cumulant
correlator and is also known as the two-to-one spectra iditi@ture mmha). In a series of recent publicetithe concept of skew-
spectra was generalized to analyse the morphological giepef cosmological data sets or in particular the MEs (shiret all 2013, 2012, 2013;
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[Pratten & Munshi 2012). The first of these three spectra, énctintext of secondary-lensing correlation studies, wasdaced by Munshi et al.
(2011) and was subsequently used to analyse data releas&\fh@AP by|Calabrese et al. (2d10).

The layout of the paper is as follows. §&8 we briefly outline various models and parametrization oflified gravity. Next, irf3, we review the
non-Gaussianity, at the level of bispectrum, introduce@nogs-correlaion of secondaries and lensing of CMBfmve introduce the skew-spectra
associated with the Minkowski Functionals (MFs) and coraggthem for various modified gravity scenarig8 is devoted to likelihood analysis
using MFs. Injg we discuss our results. Finallifl is reserved for concluding remarks as well as discussiadutiire prospects.

2 MODIFIED GRAVITY MODELS

Studies of modified gravity models can, in principle, be siféad into two different frameworks (Bertschinger & ZUkid@). The first is a model-
dependent method. One can start from a specific Lagrangieestigating its dynamical behaviour to finally give its dictions. Various viable
modified gravity models have been proposed which fall ints ¢ategory/(Clifton et al. 201.1). In this paper we mainlydson f(R) models (see
e.g/DeFelice et al. (20/10) for a review), such a< the Stasii(1980) model. or the Hu-Sawicki model (Hu & Sawlicki 2p07

The other method is inspired by the parametrized Post-Neario(PPN) approach to solar-system tests of gravity. Is ¢hse one aims to
build a model-independent framework, in which many modifiealvity models can be parametrized in a unified way. The @Estptlea is directly
to generalize the Eddington parameter£ & /; mh @2)) to an unknown function of space and tirfiex) in a Friedmann Universe.
Many studies, such as (Bertschinger & Zukin 2008; Zhao k2G08 | 2009: Hojjati, Pogosian, Zhao 2D11; Giannantonid,@009) show that this
works quite well for large-scale structure data. This isause these parametrizations are mainly suitable for thei-gGtetic regime where the time
evolution of the gravitational potentials are negligibbergared with spatial gradients. Furthermore, if we focutherinear analysis in the Fourier
domain, then the dynamical equations can be reduced toesialgebraic relations. These allow us to perform some dnatgtculations, which
make the parametrization technically efficient. Howevera want to go further, beyond the quasi-static scale, eveugh still in the linear regime,
the parametrization of modified gravity is more non-trivilis is because at the larger scales, especially the soipeear-horizon scales, the time
evolution of gravitational potentials is no longer nedigi and we need to solve temporal ordinary differential &qua.

Beside the above explicit parametrizations, some quitegeframeworks have been proposed, such as the Hu-Savackinetrized Post-
Friedmann (PPF) formalisrh (Hu & Sawittki 2007:/Hu 2008: Fafig.& Lewis2008) and its calibration versidn (Lombriser. Yad<oyamal 2018).
The Hu-Sawicki PPF parametrization is defined by three fanstg(Ilna, k), fc(Ina), fo(Ina) and a single parameter. They correspond to
the metric ratio, the super-horizon relationship betwédennbetric and density, the deviation of Newton’s constansugrer-horizon scale from that
on quasi-static scales, and the relationship between #msition scale and the Hubble scale (Hu & Sawicki 2007). Qfrse, this formalism is
quite generic. However, in order to obtain the explicit pae&rization form of these arbitrary functions, one needsdiee the exact equation of
motion obtained from the original Lagrangian of the modifigelvity theory and fit the above three functions with the ésatution. Up to now,
only a few models, such g§R) and DGP models, have been successfully implemented in éhelukSawicki PPF formalism. Even though, this
formalism still has a great advantage for numerical purposice it provides a unified form to write down all the modifequations. Besides
what mentioned above, there exist many other parametim(iBean & Tangmatitham 2010; Bertacca, Bartolo & Matan2811] Lindet 2005;
Gubitosi, Piazza & Vernizzi 2012; Bloomfield et al. 2012; Balt al.| 20111| Baker, Fereira & Skofdis 2012; Amendola, K&r&aponel 2007;
Branx et all 2012).

2.1 Hu-Sawicki f(R) model

As an example of a model-dependent method, the Lagrangidin-&awicki model (hereafter HS) reads:
_ 2 Cl(R/Hl )" 2 _ 112 _ —2 (Qmh?
f(R)=-m SR/mIr 1 ®R/m?) +1 m” = HoQw = (8315Mpc) 013 ) 1)

As shown by Hu & Sawickil(2007), this model can pass the lockdrssystem tests. The non-linear termg'iiR ) introduce fourth-order derivatives
into this theory, rather than the more familiar second-odizivatives. Fortunately, we can reduce the derivatieesetond order by defining an
extra scalar fieldc = (df/dR), namely the “scalaron”, which absorbs the higher deriestiT heCompton wavelengtbf the scalaron is defined as

_ frr / H
Bt @)
with fr = df/dR, frr = d*>f/dR? and’ = d/d Ina. In the high curvature regime, E[g.(1) can be expanded wx1/R) as
2\ N
. Ci_2  C1_»o2 (I
1 R)~ —— - — S 3
(mﬁglwof( A 3™ <R> - ®

From Eq[(B) we can see that, the first and second terms rep@sesmological term and a deviation from it, respectivielprder to mimicACDM
evolution on the background, the value(ef /c2) can be fixed |(Hu & Sawicki 2007) such théts /c2) = 6(Qa /). By using this relation the
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number of free parameters can be reduced to two. From theeabmlysis, we can see that, strictly speaking, due to theaagpces of correction

terms to the cosmological constant, the HS model cannotlgxaimic ACDM. Since(m?/R) increases very fast with time, the largest value (at

the present epoch) ian?/R) ~ 0.03, the largest deviation to th&CDM background happens when= 1, with 1% errors, corresponding to

(m?/R)ca ~ 0.01 in Eq.[3). For largen values, such as = 4, 6 we can safely neglect this theoretical error. As showmm), for

n = 1 this 1% deviation fromACDM brings al0% error in the variance of the parametgy, while forn = 4, 6 our results are not affected.
Without loss of generality, we can choose the two free patarsa¢o be %, c2). However, for more genergl(R) models theACDM evolution

of the background can be reproduced exactly by only intrivdpene free parameter (Song, Hu & Sawlicki 2006). This melaaisthere exists some

degeneracy between the two parameters. Usually GeneiatiRgl(GR) is recovered wheB, = 0. As demonstrated 13), no matter

what valuen takes, we are always allowed to $&t = 0 by adjustinge.. Furthermore, in order to mimi€CDM on the background;; andn need

to satisfy one constraint: the first term in the denominatda(d) should be much larger than the second. This comdgiees:

01, (n=1),
By =< 12, (n=4), (4a)
40, (n=6).

Hu et al. ) forecast that Plafitis expected to reduce the error bars on the modified gravitgnpeter By by at least one order of
magnitude compared to WMAP. The spectrum-bispectrum janalysis can further improve the results by a factor ran@iom 1.14 to 5.32
depending on the value af

2.2 Hu-Sawicki PPF formalism (PPF)

In contrast to the above subsection, in what follows we vailigider all possibilities irf (R) gravity which can mimic thé\CDM background in the
Hu-Sawicki PPF formalism (hereafter PPF). The logic of ti=Formalism is the following: first, considering two limits the linear fluctuation
regimes, the super-horizon and quasi-static regimes difidimer the time derivatives are much more important tharsgiatial derivatives and in
the latter limit the vice versa; then derive and solve thevigadonal equations in these limits. Given the knowledd@é¢hese two limits, one can
propose two modified gravitational equations which rectkierabove results in the super-horizon and quasi-statitslimespectively. Finally, we
integrate all the linear scales using the proposed equsation
For the metric scalar fluctuations, in principle we have omlp degrees of freedom, such @s(Newtonian potential) andr (curvature

potential) in the conformal Newtonian gauge, which meansonlg need two dynamical equations. For PPF, these two magtetions are the
modified Poisson equation and the equationlfor

K2 [<I>, + r] — 4GP pm A, B =D - (5)
(1+ k) [ 4+ T+ Rk (T — fod-)] = 5. ©)
Where the source tert$i is given by:

1 H 3 H? Vin g —2g
=—|— =+ -—"(1 — — | d_. 7
[g+1H+2H2a3( +f<)] sz+{g—|—1 ™
Vo here is the scalar velocity fluctuation of the matter in bblhdomoving and Newtonian gauge. afig, is the contribution to Hubble parameter
from the matter component; see Hu & Sawlicki (2007) for moritte
In Eq.[8), the coefficientr represents the relationship between the transition scaléhe Hubble scale, and the functifingives the relation-
ship between the metric and the density perturbation.ffBr) models, we haver = 1, f. = c¢cg and the functiory(In a, k) can be expressed as
follows:

g(ina, k) = St ges(eakn)™ 0 e 9 e =0.71VBQ) . ®)
1+ (cgkm)"s
The above descriptions have been implemented in the publiaifable PPF  module | (Fang, Hu & Lewis 2008) of
CcAMBE (Lewis, Challinor & Lasenbly 1999). The current constraints general f(R) models within the Hu-Sawicki PPF formalism are

1 http://sci.esa.int/science-e/www/area/index.cfneia=17
2 http://camb.info/
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Bo < 0.42(95%CL) by using CMB and ISW-galaxy correlation data, and a stromgaintB, < 1.1 x 10~% at95% CL (Lombriser et dl. 2010).
using a larger set of data, such as wMBPaCBART, cBf, VSA, Unioffl, SHOES, and BAO data.

2.3 Bertschinger-Zukin formalism (BZ)

Another popular phenomenological parametrization wap@sed byl(Bertschinger & Zukin 2008) (hereafter BZ) and ienmnted in the Einstein-
Boltzmann solver MGCAMB (Zhao et al. 2008: Hojjati, Pogosian, Zhao 2011). The lofithis parametrization is to re-write the two gravitational

potentials in terms of two observation-related variabiles,time- and scale- dependent Newton constnfa, k) and the so-called gravitational
slipy(a, k):

W = —4rGa’u(a, k) pA; % = ~(ak). ©

G is the Newton constant in the laboratory. Furthermore, énfirasi-static regime, Bertschinger and Zukin proposeta gfficient parametrizations

for these two quantities (see atlIdZOOS)):

1+ 3A3k%a" 1+ 2A3k%

k)= —2 —— — ky=——>———. 10
:L‘L(a7 ) 1+)\%k2a4 ’ 7(‘17 ) 14+ %)\%kQGA ( )
The above parametrization was refined to take the ISW efféatgiccount through an empirical formula (Giannantonid £2G09):

1 1+ 22321
k)= 3 11
k) = T T 0 P | T CkZal (11)

Compared with PPF, one can easily see the physical meanjpayafeter\;, as the present Compton wavelength= Boc?/(2H3). Beside that,
we can also see that BZ is much more efficient than the forneeatuse in BZ one only needs to solve an algebraic relatio@Eor equivalently
Eq.[13), while in PPF we have to integrate differential eiqunes, Eql(5) and EQ.16). The price BZ pays is that it mightamzount for the ISW effect
properly in the super-horizon regime. However, recentlyas shown2) that for all practical purge$Z for f(R) model with
smallBy is good enough even if one considers the near-horizon sbalenaximum error i€ (2%). Recently it was shown b @13) that
the temperature and lensing power spectrum data from Pklook can give an upper bound Ba < 0.91 at95%CL

3 ISW-LENSING CROSS-SPECTRA AS A PROBE OF MODIFIED GRAVITY T HEORIES

We will be dealing with the secondary bispectra involving tlensing of both primary anisotropies and other seconslaf®llowing

'Spergel & Goldbergl (1999). Goldberg & Spe'gel (1999) and r@pé& HU (2000) we start by expanding the observed tempeatmisotropy

O(2) = dT(Q2)/T in terms of the primary contributio®p (£2), the secondary contributidBs(£2) and lensing of the primar@y, (£2):

0() =0p(Q2) +OL(2)+06s(Q)+--- . 12)

HereQ = (6, ¢) is the angular position on the surface of the sky. Expandiegéspective contributions in terms of spherical harrrmh’ggl(f))
we can write:

Op() =D (Op)emYem(2); OL(Y) =D [VH(Q) - VOR(D]em Yem(Q); O5(Q) =D (O5)em Yem (). (13)
m m Im
Here«(Q) is the projected lensing potential (Spergel & Goldherg It @8idberg & Spergel 1999). The secondary bispectrum foCt takes

contributions from products of P, L and S terms with varyinges. The bispectrunBZIZSZB is defined as follows (sée Bartolo et al. (2004) for
generic discussion of the bispectrum and its symmetry pigsg:

3 http://map.gsfc.nasa.gov/

4 http://cosmology.berkeley.edu/group/swih/acbar/
5 http://www.astro.caltech.edu/ tjp/CBI/

6 http://supernova.lbl.gov/Union/

7 http://www.sfu.ca/ aha25/MGCAMB.html
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Optimal Skew-Specta for Lensing x ISW
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relativisitic (GR) prediction correspondsiBy = 0 . The top-left and top-middle panels correspond to the ptiedis from PPF and BZ respectively. The bottom panels

correspond to HS with, = 1 (bottom-left),n = 4 (bottom-middle) anch = 6 (bottom-right). The values dB in these plots ar®y = 102 andBy = 10—3. We

have used,ax = 2500 and a Gaussian beam with FWH#) = 5’ for the numerical evaluation cﬁ’éopt). The line-styles used for various models are same as that

of Figure[1
Gl A . R A
B = X () [(Or(@)0u@)08(@)) Vi () ()Y, ()1 a0l
mi1moms
l J4 l
= > (mﬁ . m‘;)<<®p>e1m1<®L>e2m2(6s>zgm3>. (14)
mimoms

The angular brackets represemsemblaverages. The matrices dengtésymbols|(Edmonéis 1968) and the asterisks denote complgugation.
Itis possible to invert the relation assuming isotropy @& bfackground Universe:

J4 V4 £
<(®P)l1m1 (GL)627”2(®S)13"L3> = ( Wlll 77122 TY;S >BZI£€3' (15)

Finally the bispectrurrB}"f;Sl3 is expressed in terms of the unlensed primary power spedpuim= (0 );,.(0})en) and the cross-spectﬂﬁ’T

(to be defined below) as follows:

BZLZEH = bEZégLenIZlZzZs§ (16)

B = 5 [CETCRT (M, — TH, — THyy) + eye.perm ] (@7
B0, 50,80 (O by £

Ioiese5 = : 47: s ( 01 02 S ) ; (18)

e =£(L41); E¢=(2041). (19)

See Spergel & Goldberg (1999). Goldberg & Spergel (1999 fierivation. The long-wavelength modes of ISW couple Wighghort- Wavelength

modes of fluctuations generated due to lensing, hence theeroncross- spectrumd>T The reduced bispectrum above is denotedel 253““5.

To simplify the notation for the rest of this paper, we heoctf drop the superscriL'S from the bispectrunBe, ¢,¢,. The cross- spectrum"’T
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The First Minkowski Functional
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Figure 4. The first skew-spectra associated with MFs, or the first Mivéo Spectra ZI’SLEO), defined in EqL{29), for various theories of modified grawitigplayed
as a function of the harmonit The top-left and top-middle panel correspond to PPF andeBgectively. The General Relativisitic (GR) predictiomresponds to
Bo = 0 and is shown in the top-left panel (dot and long-dashed.lifle¢ bottom panels correspond to HSfo&= 1, 4, 6 respectively. The line-styles used for various
models is same as Figure 1.

introduced above represents the cross-correlation batthesprojected lensing potentiﬁ(@) and the secondary contributi@g(fl):

A ANy 1 emax: ¢T A A
W(es(Q)) = - §:j 2T RU(Q- Q) (20)
where P, are Legendre polynomials. The cross-spectmj‘ﬁp takes different forms for ISW-lensing, Rees-Sciama (R®ing or Sunyaev-
Zeldovich (SZ)-lensing correlations and we assume zenmgndial non-Gaussianity. The reduced bispectrum, ., defined above using the
notationly, ¢, ¢, is useful in separating the angular dependence from thendepee on the power spectrﬁT andCZ’T. We will use this to express
the topological properties of the CMB maps. WﬁT parameters for lensing secondary correlations are disglayFigurdD.
The beanb,(6,) and the noise of a specific experiment are characterisedetyyatametersyeam andorms:

L7 Nne = U?mstix; Qpix = am
81n(2)

(1)

bf(eb) = exp[_Hageam]; Obeam —

whereo,ms is the rms noise per pixel, that depends on the full width Htrhaxima or FWHM of the bean®),. The number of pixel® i« required
to cover the sky determines the size of the pix&ls.. To incorporate the effect of experimental noise and therbea replace, — C;b2(0y) +ne,
and the normalization of the skew-spectra that we will idtree later will be affected by the experimental beam andendibe computation of the
scatter will also depend on these parameters.

The reduced bispectrum for the unresolved point source¥ ¢®$be characterized by a constant amplitbge i.e. the angular averaged
bispectrumB; 5, ., for PSis given byBy 5, ;. = bpsly, s,e,; for our numerical results we will takig>s = 107>,

The optimal estimators for lensing-secondary mode-cagdispectrum have been recently discusse). The estimators
that we propose here are relevant in the context of constguttie MFs.

3.1 Computation ofC{ T, c¢™ and CJ?
The ISW effect and lensing potentialcan both be expressed in terms of the Weyl potediial :
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The Second Minkowski Functional
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Figure 5. Same as previous figure but for the second Minkowski Speimrd?s‘gl) defined in Eq[{30). The line-styles used for various modetsaime as Figufd 1.

Assuming a flat Universe, we can express the cross-spétﬁ?a the ISW contributionC7 T to the power-spectrum, and the lensing potential
spectrumCy? as follows [(Hi1 2000):

2 Ts
ot =2 [ ar e WS WAk (k0)| (23)
0 =00
2 Tg
orT =2 / drr WISV WS () A3 (10)| (24)
0 =
or* = 2 [ W W () AL 0)| (25)
c s, P g Ha
wherer; is the comoving distance, andz) = [’[Ho/H (z')]dz". We can express the gravitational potential power spectiuirik, ) by using
the transfer functiol’(k) and the growth factofF'(z)/(1 + 2)]:
9 k n—1
A3k, 2) = =Q5 65 F ()T (k) ( ; (26)
4 Ho

with &z denoting the amplitude of matter density fluctuation at tresent Hubble scale. The window functidi&>" () and " (r) used above
in Eq.[23) and Ed.(24) are expressed as follows:

d en s
W) =~ L E, W) = e C (27)
This is the expression used in Eq)19) to construct the btsp® which was used to compute the optimised skew-speétEgq33) and the

sub-optimal versions in E@.(R9)-EHg.{31) to be introduaed later.

4 MINKOWSKI FUNCTIONALS AND ASSOCIATED POWER-SPECTRA

The study of non-Gaussianity is usually primarily focused the bispectrum, as this saturates the Cramér-Rao bdm
[Kamionkowski, Smith & Heavens, 2011) and is therefore in msseoptimal. However in practice it is difficult to probe thetiee conflguratlon
dependence using noisy data (Munshi & Heavens|2010). Amalige is to use cumulant correlators, which are multiapobrrelators collapsed to
encode two-point statistics. These were introduced intaxgaclustering by Szapudi & Szalay (1999), and were latentbto be useful for analyz-
ing projected surveys such as the APM galaxy survey (Munélott & Coles 2000). Being two-point statistics they candmalyzed in multipole

space by defining an associated power spectrum (Cooray/p®aeent studies Hy Cooray, Li & Melchidrfi (2008) have destoated their wider
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The Third Minkowski Functional
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Figure 6. Same as the previous figure but for the third Minkowski s;mré‘tsf) defined in Eq[{31). The line-styles used for various modelsame as that of Figure
@

applicability including, e.g., in 21cm studies. In moreaptstudies the skew- and kurt-spectra were found to be lusefanalysing temperature
(Munshi & Heaverjs 2010) as well as polarization m.) and from maps of secondaries from CMB experiml.
2012a! Munshi, Coles & Heavens 2013) and in weak IensingesZ). The MFs are well known morpholobitesscriptors which

are used in the study of random fields. Morphological prapedre the properties that remain invariant under rotatr@htranslation (séMber
@) for a more formal introduction). They are defined averexcursion setl for a given threshold. The three MFs that are defined for two

dimensional (2D) studies can be expressed as (Pratten &0 2):

Vb(u):/zda; Vl(u):i/azdl; Va(v) = %/@2 wdl (28)

Hereda, di are the elements for the excursion Bednd its boundarg. The MFsV} (v) correspond respectively to the area of the excursiolset
the length of its boundar§X:, and the integral curvature along its boundary (which ie at$ated to the genugand hence the Euler characteristics

X)-
Following earlier studies (Munshi etlal. 2013, 2012; Munslules & Heavens 2013) we introduce three different skeeessp associated with

MFs for an arbitrary cosmological projected field

2
Séo) = N S(‘I' ) = No = ZReal lem[¥%]0) = ZBeelr2Jeelzz (29)
0 ity
1y _ 1 q2ve) _ . 1
SZE ) = ESZE ) = FlE_Z ZReal([V2\I/]gm[\I/2]gm) =N ;‘; [He + Iy, +H52]Bulngeeleg (30)
m 142
1 . 2
5P = (Ve Ve yIY) Real([VU - VU], [V 05,
‘ N, ¢ N2HZZ eal([ Jem| Jim)
1 1
A Z [[He + gy — Ty, T, + cyc.perm. ] Bty ey Jery e, (31)
2 0ty
_deesey  [BeyXey (b L2 Ly
J(122Z3 = Ell - Ell A 0 0 0 ) (32)
SO =3"=,8; (33)
‘
No = 12#03; Ny = 16#030%; Ny = 87r011. (34)

In contrast to these MF-based quantities, the optimisr—:'rzi/-slrlrectraS}’pt for two different types of non-Gaussianity is defined by tbkofving
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Figure 7. The all-sky covariance matrig,,,

to Sé?,z ) The analytical expressions for the covariance matricegizen in Eq[(3P). For the computation of these covarianatrioes we assumgy = 0 (GR).

expression:

Sopt X Y B221Z2BZZ1Z2 . Sopt X.Y) = Sopt XY 35
Z cecce (X,Y) = Y SPX,Y). (35)

L

The three skew-spectra associated with MFs, defined ih@gEa[31), for various theories of modified gravity are shawFigure4 as a function of
harmonic/ for PPF, BZ and HS models. Clearly the one-point estimatfineld in Eq[3%#) will have nearly vanishing amplitude due aocellation
originating from the oscillatory pattern seen in all thrkew-spectra associated with MFs. The FWHM is fixedat= 5'. The noise level is chosen
to match the Planck 143GHz channel. It is interesting to titaethe extrema of'SlfO) for all models occurs roughly at similavalues. We display
four different values oB, for each model®, = 10~ (solid), Bo = 102 (short-dashed)Bo, = 10~" (long-dashed) anis, = 1 (dot-dashed)
respectively. For HS models we choose two different valoes§ i.e. Bo = 10~ andBy = 10~2. In agreement with what we found for optimised
estimators the skew-spectra for the HS models with#dovalues show a greater degree of sensitivity3tocompared to their high- counterparts,
which roughly mimic their PPF or BZ counterparts.

5 LIKELIHOOD ANALYSIS USING SKEW-SPECTRA

In this section we construct the joint covariance matriceskew-spectra and ordinary spectra and provide resulidikélihood analysis forecast
for the parameteB.

The Gaussian contributions to the covariance matrix carxpeessed in terms of the total power-specti@tf alone; which in terms of beam
b, and the noise power spectrum takes the fornC;°t = CL Tb? + ny:

Se(zg) <5S( )5S(J)> _ <S(i)S(j)> _ <Séi)><S£/j)>

¢ toteget g @) ) ) 1+t (70) ) @ V1.
N(z) N(J)CZ Z CerCe Jurey [ (Jf’J‘fl‘fz + Jé’]lgl + ijee ) (=17 (Je/]ezll + Jz/JuQ Jyty 2)] (36)
L1
Jé?;geg N Jl(llzzlg = (I, + e, + Hf3) Joy 0553 Je(fzzly, = ((ILgy + ITgy — Ilgg)Igy + cyc.perm.) Jo1t00s- (37)

We use the following expression in our derivation (Bartdlalé 2004):
_ ot ptotptot [ (shthth | sththts | sheheh butatts (S8 | St | e ],
<BfllzlsBe'1€'2€’3> = Cél Clz Cls [(5212223 + 5212223 + 5512253 (—1) 5 lzzzg + 5512223 + 5512223 )
ool Z

O0renes = Ocye; 00y, O0y0r,- (38)

Notice that the3J symbols involved in the definitions cﬂ‘é“ all have the azimuthal quantum numbens = 0 in which case we have non-zero
3J symbols only wher(¢ + £ + ) = even, thus(—1)*“1**2 = 1. Thus we notice thaf, . is symmetric under the exchange of the last two
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Figure 8. The likelihood functions defined in Eq[{43) for estimatoslgo) (Ieft-panel),Slfl) (middle-panel) ancﬁéz) (right-panel) are plotted as a function Bf.
The parametrization used in our computation is that of Béngrily due to it's higher speed compared to other parasegion in numerical implementation.

indices i.e/; and/,. Using these facts, after a straightforward but tediousutation, we can further simplify EG.(B6) to :

1

(i7) _ (i) _ 15qi) g c(d)
st = 8 = (551655 = NN

() = [2 Ser €37 Cireit D), JD, +Acket chl I8, J;;gel} (39)

s

The first term contributes only to diagonal entries of theac@mnce matrix while the second term contributes also t@ffidiagonal terms. This is
the expression we have used in our numerical computatidresc@variance matrix involving the bispectrum derived @&is\generic but depends on
the assumption that the non-Gaussianity is weak 32, »,¢,) ~ 0 and can also be used for likelihood calculations of primairdbn-Gaussianity
using MFs WS).
For the one-point estimators introduced previously) = 3°, Z,5" the covariance matri§(/) takes the following form:
S = (55650 = Y BES) = e Y GO 1 e, (40)
o0 ) VG g >0,

Finally, the covariance of the optimum estimag¥* defined in EqI(35) is given by the following expression:

<6Sopt650pt> _ ié , Bl?lalb 1 Z BZZ’ZG _ 35 lsopt + l Z Btgeléa (41)
1 o 18 2L = CEOtCzOtCE;)t Ctotctotctot 3 o2y 9 : Czc’tc;?tcgm .
aty a a a
SOP = (§SPIGSPY) = TSPt = S (42)

L

This result agrees with the previous calculation_of Munshil@avens| (2010), using Fisher matrices in the limit of ajj-skverage. The results
given there include additional correction terms (termg¢,‘related to the so callelihear, andcubic(“a” ) terms, due to partial sky coverage. The
likelihoods for the MFs and the optimal skew-Cls are

s =exp(—x3/2;  E =Y > [5s]rest | (43)
ij 00
Lopt = exp(—Xept/2);  X& =D [0S S, 657" . (44)

e

For corresponding one-point estimators we hdlge = exp(—[65°P*]?/2S) and similarly for joint analysis using all one-point MR =
exp(—[65V][S"D] 7 [5S5D)/2).
Bayesian Recovery of3o: In recent works, Hikage et al. (2008) and Ducout étlal. (2Gi®R)pted a Bayesian approach in their analysis of

primordial non-Gaussianity in CMB maps using MFs. We carilsihy use Bayes’ theorem to write the posterior probapildr Bo, P(Bo|S) given
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Figure 9. The all-sky covariance matriSZ};’,t defined in Eq[(41) for the optimal estimatﬁi?pt is shown. The experimental set up corresponds to Planck 143
GHz channel with,,,o = 2000. The mode-mode coupling, even in the case of all-sky coeeragen here in the covariance matrix is a result of the fheat t
skew-spectrum is a non-Gaussian statistics. In the natatfalMu @0) the covariance matrix preseheé comprise of only thea” terms.
Additional mode-coupling is expected as pointed oummm The resulting™ terms are subdominant for near all-sky coverage. We asgame
homogeneous uncorrelated noise distribution in our cafitu, 56@10) for a complete treatnWatalso assumeB, = 0 (GR) background
for our computation.

the one-point MFs as the data vecgr

Ls(S|Bo)P(Bo) |
[ Ls(V|Bo)P(Bo)dBy’

Here P(By) is the prior, assumed flat. Similarly we can also use the aptichskewness as the data vector instead of the MFs by ragl&ci
by S°P* and the likelihood function byop (S|Bo). The likelihood function in such studies is typically as®ahto be Gaussian, or determined
using Monte Carlo simulations. We find that the likelihood &, has an extended non-Gaussian tail. Thus, the analyticariemee and the
corresponding likelihood derived here will be useful inyding independent estimates, and related error-barsafiaityschecks of results derived
through Monte-Carlo simulations.

P(Bo[S) = S = (5, 5M 5@y, (45)

6 RESULTS

We have introduced three different MFs in this study and caneqb their performance against the optimum estimator. Theésato use CMB data
to constrain the departure of modified gravity theories fl@R as parametrized by the paramelrthat denotes the Compton wavelength of the
scalaron at the present epoch. The underlying bispectratwi probe is the one generated by correlation between |SIAeasing of the CMB.
The bispectrum is constructed fratd ™ (Figureld) andC; ¢ (Figure2).

The set three skew-spectra associated with MFs or the finskdiski Spectra KSSlEO), defined in Eq{29)-Eq.(31), for various theories of
modified gravity are displayed in Figure 4 - Figliie 6 as a fiomodf the harmonid. The top-left and top-middle panels in these figures cooedp
to predictions from PPF and BZ respectively. The GeneraaRestic (GR) prediction correspond 8, = 0 and is shown in the top-left panel (dot
and long-dashed line). The bottom panels correspond toethdts from the HS model, for = 1, 4, 6 respectively. It is interesting to note that
the the one-point estimator defined in Eql(34) will have lyaznishing amplitude due to cancellation originatingfrthe oscillatory pattern seen
in all three skew-spectra associated with MFs - which is drnth@ motivation for studying the associated power-spedhee FWHM is fixed at
0, = 5'. The noise level is chosen to match the Planck 143GHz chattriglinteresting to note that the extremaééfséo) for all models occurs
roughly at similar? values and thus are relatively insensitive to the changaiarpeterB,. We display four different values @, for each model:
Bo = 1072 (solid), Bo = 10~2 (short-dashed)3o = 10~" (long-dashed) ani, = 1 (dot-dashed) respectively. For HS models we choose two
different values foiBy i.e.Bo = 10~2 andB, = 10~ 2. In agreement with what we found for optimised estimatoesstkew-spectra for HS models
with low n values show greater degree of sensitivitiBtpcompared to their higher counterparts, that roughly mimic their PPF or BZ counterpar
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Figure 10. Likelihood for optimal-estimatoS?pt is plotted as a function d8 using the covariance matrﬁ(?ff defined in Eq[41). The parametrization used in this

computation is that of BZ.

The corresponding optimum spectrum is given in Figdre 3. &ystruction the optimum skew-spectra are positive defifiie peak structure of
the optimum estimator for a given model is different fromNtEs counterparts. The odd-numbered peaks of the optimumast are much more
pronounced compared to their even-numbered counterpacteasing the value dBy suppresses the amplitude of oscillations for both Minkawsk
Spectra and the optimum skew-spectra.

We have derived the covariance of the Minkowski Spectra atithoim skew-spectra. The covariance of Minkowski Specggetids only on
the ordinary temperature power spectrum and are indepentiire bispectrum as they are derived in the limiting caseaofshing bispectrum. The
covariance of the optimum skew-spectrum depends on thetthigpectrum used for the construction of weights. Botlogebvariance matrices
are well-conditioned. The analytical covariance matrigese derived using an all-sky approximation. The mode-numigling despite the all-sky
approximation is related to the fact that these statistiesrinerently non-Gaussian. The covariance matrices &M#As are displayed in Figufé 7
and for the optimum skew-spectra they are displayed in E[§uA comparison with results presented in Munshi & Heav@4 () shows that we
recover the terms designated as term there. The lack of corresponding™terms in the current study is simply due to all-sky coveragsumed
here for simplicity.

Finally we use these covariance matrices to compute théhded functions.The results are obtained by using a fiducial vaBie= 0. The
analyticalcovariance matrix for the optimum estimators are describé&d.[35). These expression was used in association wi@#to compute
the likelihood function presented in Figure] 10. The likebkl functions of3¢ for MFs are shown in Figurlgl 8. In this case, we use the EL.@9) f
the expression of covariance matrices and in[Ed).(43) foexipeession of likelihood function. We finfly < 0.67 and B, < 0.45 for bothSlfO) and

S‘El) at99% and95% confidence level respectively. FSé"pt) the numbers are.071(99% CL) and0.15 (95% CL) respectively. It's important to
realise that the liklihood functions aret Gaussian as the covariance matrices depenBgim a non-trivial manner through their dependence on
the CMB temperature power spectrd@h™ and the lensing-temperature cross-spectﬁj’m.

7 DISCUSSION AND CONCLUSIONS

The correlation between ISW and lensing of the CMB generatgsecific signature in the CMB bispectrum. Analysis of fysar data from the
Planck satellite has detected this signature with a moelégael of signal to noise2(60). The ISW-lensing bispectrum is unique as it depends on the
CMB power-spectrum generated at recombination and ciessts: of the lensing potential and the ISW effect generatddte times. Both ISW
and lensing are sensitive to the underlying model of graeityl thus the resulting bispectrum provides an opportunigonstrain any departure
from GR. We consider various formulations of the modifiedvgyamodels which include HS, BZ and PPF models to computéitgectrum.
Topological Estimators: The non-Gaussianity in CMB maps are often studied using moinased approaches or alternatively using their
harmonic counterparts, namely the multi-spectra. Extengirevious results we have studied how topological desespsuch as the MFs can
provide a complementary role, paying special attentionlémék-type experiments. The MFs are interesting as theg lifferent responses to
various systematics. We have considered the three MFs tbaiszd for describing the topological properties of CMB pierature maps. We
compute analytically the covariance associated with tieevsspectra associated to the MFs, and our results alsadmdross-covariance among
different skew-spectra. In agreement with previous resué find that the skew-spectra are highly correlated. Coctatig the MFs for Planck type
experiments (143 GHz). We find that the constraints aredigbt the first two MFS’SEO) andSél), which both giveBy < 0.67 at95% CL. We do not

get any meaningful constraints usiﬁéz). The constraints can be further improved by consideringnidfidiltering instead of Gaussian smoothing.
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Figure 11. The confusion from unresolved point sources is plotted &iednination of optimum ISW-Lensing skew-spectrum. Themaisation for point source is
fixed atbps = 10~29. The line-styles used for various models are same as thatjofdfl.

We provide simple analytical results for the three différédfiener filtering techniques that have been considerediquisly in the literature. We
also incorporate the optimum estimator and its covariancednstruction of the corresponding likelihood. The MFsnao fare particularly well
in comparison with the optimal estimators, which are predido give much tighter constrain8y < 0.071 at95% CL andBy < 0.15 at 99%
CL. These are very close to the predictions from the full btspum MILZ_Q.{S), showing their optimal nature. Weehawet considered the
possibility of combining results from different channelkieh can further improve the constraints.

Contamination from Point Sources and Galactic Foregrounds Galactic contamination are a major source of concern whachatfect any
study involving the CMB. They are usually dealt with maskaordoy using component separation technlqmmﬂhe residual bias
in the estimation of primordial non- Gau55|an|ty was founthe smalll(Hikage et &l. 2008; Komatsu et al. 2011). Howesideer studies were more
conservative in interpreting the resuDUechnlques also exists that involve marginalising éwergrounds| (Komatsu et lal. 2002,
). Point sources are an additional source of contaiimfdr any study involving MFs. The resolved point sourcéhwufficient signal-to-noise
can be removed by application of an appropriate mask, but tél be low-flux, unresolved and unsubtracted sourcesymtsing radio-galaxies
and active galactic nuclei that emit in radio frequenciesugh the synchrotron process, and dusty starburst galesiesh emit thermally. However
integrated emission from the Cosmic Infrared BackgrountBJ®as recently been detected by Planck collaborationgutiie skew-spectrum
(Planck Collaboration 2013e). Any contamination from wofeed point sources can be estimated using[ER.(35). Sortieedésues involving
mask and inhomogeneous noise can be dealt with by computengumulant correlatorghat represent MFs in the real-space or in tieedlet
basis 3). The contamination from unremlpoint sources (PS) can be estimated usind Hg.(35) Xvith ISW-lensing and
Y = Point Sources. The contamination is shown in Figurel11. For normalisabien = 10~2° the contamination is several orders of magnitude
lower compared to the optimum skew-spectrum depicted inre[§. We have ignored the contamination from primordial-@@ussianity which is
expected to be negligible.

RS-Lensing and tSZ-Lensing skewspectrumThe ISW-Lensing cross-correlation at the level of bispaothas been the focus of our study
in this article. The same techniques can in principle be useahalyse skew-spectra associated with the Rees-Sci@)wdRsing or thermal
Sunyaev Zeldovich(tSZ)-lensing bispectrum to constiain However, the tSZ-lensing bispectrum depends on detailedefmg of underlying
“gastrophysics” and the S/N of RS-lensing skew-spectrubeiew the detection threshold for ongoing surveys sucha®thnck.

Beyond the bispectrum:The results that we have derived here are based on MFs angtiheum skew-spectrum. Going beyond third-order
correlation functions, it is possible to incorporate thevppspectrum of the lensing potent@f¢ in constrainingB,. Optimized kurt-spectrum
introduced |MI@11) and later used to analygeaf data released by WMAP team (Smidt et al. 2011) can hmbt for studies in
this direction. These results when combined with resuttihfpower-spectrum data alone can improve the constrairas loyder of magnitude. The
possibility of using polarised CMB maps will be exploredesi$ere.

Constraints on By from other cosmological data-setgConstraints from CMB can provide independent confirmatiminsonstraints derived
from studies of BAOSs, studies of galaxy clusters or that fiweak lensing studies, though constraints from galaxy pepectrum can be signifi-
cantly tighter compared to the constraints derived hege, By < —4.07. The scales and redshift probed by galaxy surveys and CMBredisons
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are very different and are affected by different set of oltgrnal systematics. Hence, these observations play looetary roles in constraining
Bo.

Wiener and Wiener-like Filtering and Minkowski Functional s: Wienerand Wiener-likefiltering are generally used for analysing realistic
data to confront issues related to component separatiamt-gource and galactic masOlS). Theesspons for MFs in Eq.(29)-
Eq.[31) can be modified by replacing the bispectrumiyr, s, = B, ¢,0, We, We, We,. Various forms of the filterdV, that were found useful
in analysing realistic data aréV,™" = Cob?/Ctot; WPV = /Il + 1)Cob? /Cit; W PP = £(¢ 4+ 1)Ceb? /C°. They correspond to Wiener-
filtering (M) and Wiener-like filtering using first (D1) andsend derivatives (D2) of the map. The expression for the iiamae can be derived
by replacing the power-spectrum by the filtered power spattt, = W2C, in Eq.[39). By definition, the optimum estimator includeseirse
covariance weighting and its performance cannot be imgrdyefiltering - inclusion of weights in the definition of optim estimator in the
numerator and denominator cancel out. As a final remarknieernation content of the skew-spectrum is independertt@pbwer spectrum, as at
the lowest order the resulting cross-correlation will ilweofive-point spectra which vanish for a Gaussian CMB map.
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