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Abstract We construct classes of homogeneous random fields on a three-dimensional
Euclidean space that take values in linear spaces of tensors of a fixed rank and are isotropic
with respect to a fixed orthogonal representation of the group of 3 × 3 orthogonal matrices.
The constructed classes depend on finitely many isotropic spectral densities. We say that
such a field belongs to either the Matérn or the dual Matérn class if all of the above densities
are Matérn or dual Matérn. Several examples are considered.
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1 Introduction

Random functions of more than one variable, or random fields, were introduced in the 20th
years of the past century as mathematical models of physical phenomena like turbulence,
see, e.g., [9,20,39]. To explain how random fields appear in continuum physics, consider the
following example.

Example 1 Let E = E3 be a three-dimensional Euclidean point space, and let V be the
translation space of E with an inner product (·, ·). Following [43], the elements A of E are
called the places in E . The symbol B − A is the vector in V that translates A into B.

Let B ⊂ E be a subset of E occupied by a material, e.g., a turbulent fluid or a deformable
body. The temperature is a rank 0 tensor-valued function T : B → R

1. The velocity of a fluid
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is a rank 1 tensor-valued function v : B → V . The strain tensor is a rank 2 tensor-valued
function ε : B → S2(V ), where S2(V ) is the linear space of symmetric rank 2 tensors over
V . The piezoelectricity tensor is a rank 3 tensor-valued function D : B → S2(V ) ⊗ V . The
elastic modulus is a rank 4 tensor-valued function C : B → S2(S2(V )). Denote the range of
any of the above functions by V. Physicists call V for ranks 2 or 3 or 4 the constitutive tensor
space. It is a subspace of the tensor power V⊗r , where r is a nonnegative integer. The form

(x1 ⊗ · · · ⊗ xr , y1 ⊗ · · · ⊗ yr ) = (x1, y1) · · · (xr , yr )

can be extended by linearity to the inner product on V⊗r and then restricted to V.
At microscopic length scales, spatial randomness of the material needs to be taken into

account. Mathematically, there is a probability space (�,F,P) and a function T(A, ω) : B×
� → V such that for any fixed A0 ∈ V and for any Borel set B ⊆ V the inverse image
T−1(A0, B) is an event. The map T(x, ω) is a random field.

Translate the whole bodyB by a vector x ∈ V . The random fields T(A+x) and T(A) have
the same finite-dimensional distributions. It is therefore convenient to assume that there is a
random field defined on all of E such that its restriction to B is equal to T(A). For brevity,
denote the new field by the same symbol T(A) (but this time A ∈ E). The random field
T(A) is strictly homogeneous, that is, the random fields T(A + x) and T(A) have the same
finite-dimensional distributions. In other words, for each positive integer n, for each x ∈ V ,
and for all distinct places A1, …, An ∈ E the random elements T(A1) ⊕ · · · ⊕ T(An) and
T(A1 + x) ⊕ · · · ⊕ T(An + x) of the direct sum on n copies of the space V have the same
probability distribution.

Let K be the material symmetry group of the material body B acting in V . The group K
is a subgroup of the orthogonal group O(V ). For simplicity, we assume that the material is
fully symmetric, that is, K = O(V ). Fix a place O ∈ B and identify E with V by the map
f that maps A ∈ E to A − O ∈ V . Then K acts in E and rotates the body B by

g · A = f −1g f A, g ∈ O(V ), A ∈ B.

Let U be the restriction of the orthogonal representation g �→ g⊗r of the group O(V ) to the
subspace V of the space V⊗r . The group K acts in V by v �→ U (g)v, g ∈ K . Under the
action of K in E , the point A0 becomes g · A0. Under the action of K in V, the random tensor
T(A0) becomesU (g)T(A0). The random fields T(g · A) andU (g)T(A) must have the same
finite-dimensional distributions, because g · A0 is the same material point in a different place.
Note that this property does not depend on a particular choice of the place O , because the
field is strictly homogeneous. We call such a field strictly isotropic.

Assume that the random field T(A) is second-order, that is

E[‖T(A)‖2] < ∞, A ∈ E .

Define the one-point correlation tensor of the field T(A) by

〈T(A)〉 = E[T(A)]
and its two-point correlation tensor by

〈T(A),T(B)〉 = E[(T(A) − 〈T(A)〉) ⊗ (T(B) − 〈T(B)〉)].
Assume that the fieldT(A) ismean-square continuous, that is, its two-point correlation tensor
〈T(A),T(B)〉 : E × E → V ⊗ V is a continuous function.

Note that [35] had shown that anyfinite-variance isotropic randomfield on a compact group
is necessarily mean-square continuous under standard measurability assumptions, and hence
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its covariance function is continuous. In the related settings, the characterisation of covariance
function for a real homogeneous isotropic random field in d-dimensional Euclidean space
was given in the classical paper by [40], where it was conjectured that the only form of
discontinuity which could be allowed for such a function would occur at the origin. This
conjecture was proved by [7] for d ≥ 2. This result was widely used in Geostatistics (see, i.e.,
[13], among the others), who argued that the homogenous and isotropic random field could
be expressed as a mean-square continuous component and what they called “nugget effect”,
e.g. a purely discontinuous component. In fact this latter component should be necessarily
non-measurable (see, i.e., [18, Example 1.2.5]). The relation between measurability and
mean-square continuity in non-compact situation is still unclear even for scalar randomfields.
That is why we assume in this paper that our random fields are mean-square continuous, and
hence their covariance functions are continuous.

If the field T(A) is strictly homogeneous, then its one-point correlation tensor is a constant
tensor in V, while its two-point correlation tensor is a function of the vector B − A, i.e., a
function on V . Call such a field wide-sense homogeneous.

Similarly, if the field T(A) is strictly isotropic, then we have

〈T(g · A)〉 = U (g)〈T(A)〉,
〈T(g · A),T(g · B)〉 = (U ⊗U )(g)〈T(A),T(B)〉. (1)

Definition 1 A random field T(A) is called wide-sense isotropic if its one-point and two-
point correlation tensors satisfy (1).

For simplicity, identify the field {T(A) : A ∈ E } defined on E with the field {T′(x) : x ∈
V } defined by T′(x) = T(O + x). Introduce the Cartesian coordinate system (x, y, z) in V .
Use the introduced system to identify V with the coordinate space R3 and O(V ) with O(3).
Call R3 the space domain. The action of O(3) on R

3 is the matrix-vector multiplication.
Definition 1 was used by many authors including [36,42,46].
There is another definition of isotropy.

Definition 2 [46] A random field T(A) is called a multidimensional scalar wide-sense
isotropic if its one-point correlation tensor is a constant, while the two-point correlation
tensor 〈T(x,T(y)〉 depends only on ‖y − x‖.

It is easy to see that Definition 2 is a particular case of Definition 1 when the representation
U is trivial, that is, maps all elements g ∈ K to the identity operator.

In the case of r = 0, the complete description of the two-point correlation functions
of scalar homogeneous and isotropic random fields is as follows. Recall that a measure μ

defined on the Borel σ -field of a Hausdorff topological space X is called Borel measure.

Theorem 1 Formula

〈T (x), T (y)〉 =
∫ ∞

0

sin(λ‖y − x‖)
λ‖y − x‖ dμ(λ) (2)

establishes a one-to-one correspondence between the set of two-point correlation functions
of homogeneous and isotropic random fields T (x) on the space domain R3 and the set of all
finite Borel measures μ on the interval [0,∞).

Theorem 1 is a translation of the result proved by [40] to the language of random fields.
This translation is performed as follows. Assume that B(x) is a two-point correlation function
of a homogeneous and isotropic random field T (x). Let n be a positive integer, let x1, . . . , xn
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be n distinct points in R
3, and let c1, . . . , cn be n complex numbers. Consider the random

variable X = ∑n
j=1 c j [T (x j ) − 〈T (x j )〉]. Its variance is non-negative:

E[X2] =
n∑

j,k=1

c j ck〈T (x j ), T (xk)〉 ≥ 0.

In other words, the two-point correlation function 〈T (x), T (y)〉 is a non-negative-definite
function. Moreover, it is continuous, because the random field T (x) is mean-square continu-
ous, and depends only on the distance ‖y − x‖ between the points x and y, because the field
is homogeneous and isotropic. [40] proved that Eq. (2) describes all of such functions.

Conversely, assume that the function 〈T (x), T (y)〉 is described by Equation (2). The
centred Gaussian random field with the two-point correlation function (2) is homogeneous
and isotropic. In other words, there is a link between the theory of random fields and the
theory of positive-definite functions.

In what follows, we consider the fields with absolutely continuous spectrum.

Definition 3 ([17]) A homogeneous and isotropic random field T (x) has an absolutely
continuous spectrum if the measure μ is absolutely continuous with respect to the measure
4πλ2 dλ, i.e., there exist a nonnegative measurable function f (λ) such that∫ ∞

0
λ2 f (λ) dλ < ∞

and dμ(λ) = 4πλ2 f (λ) dλ. The function f (λ) is called the isotropic spectral density of the
random field T (x).

Example 2 (The Matérn two-point correlation function) Consider a two-point correlation
function of a scalar random field T (x) of the form

〈T (x), T (y)〉 = Mν,a (x, y) = 21−νσ 2

Γ (ν)
(a ‖x − y‖)ν Kν (a ‖x − y‖) , (3)

where σ 2 > 0, a > 0, ν > 0 and Kν (z) is the Bessel function of the third kind of order
ν. Here, the parameter ν measures the differentiability of the random field; the parameter
σ is its variance and the parameter a measures how quickly the correlation function of the
random field decays with distance. The corresponding isotropic spectral density is

f (λ) = fν,a,σ 2 (λ) = σ 2Γ
(
ν + 3

2

)
a2ν

2π3/2
(
a2 + λ2

)ν+ 3
2

, λ ≥ 0.

Note that Example 2 demonstrates another link, this time between the theory of random
fields and the theory of special functions.

In this paper, we consider the following problem. How to define the Matérn two-point
correlation tensor for the case of r > 0?Aparticular answer to this question can be formulated
as follows.

Example 3 (Parsimonious Matérn model, [12]) We assume that the vector random field

T (x) = (T1 (x) , . . . , Tm (x))� , x ∈ R
3,

has the two-point correlation tensor B (x, y) = (Bi j (x, y))1≤i, j≤m . It is not straightforward
to specify the cross-covariance functions Bi j (x) , 1 ≤ i, j ≤ m, i �= j , as non-trivial,
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valid parametric models because of the requirement of their non-negative definiteness. In the
multivariate Matérn model, each marginal covariance function

Bii (x, y) = σ 2
i Mνi ,ai (x, y) , i = 1, . . . ,m,

is of the type (3) with the isotropic spectral density fii (λ) = fνi ,ai ,σ 2
i

(λ) .

Each cross-covariance function

Bi j (x, y) = Bji (x, y) = bi jσiσ j Mνi j ,ai j (x, y) , 1 ≤ i, j ≤ m, i �= j

is also a Matérn function with co-location correlation coefficient bi j , smoothness parameter
νi j and scale parameter ai j .The spectral densities are

fi j (x) = fνi j ,ai j ,bi jσiσ j (x) , 1 ≤ i, j ≤ m, i �= j.

The question then is to determine the values of νi j , ai j and bi j so that the non-negative
definiteness condition is satisfied. Let m ≥ 2. Suppose that

νi j = 1

2

(
νi + ν j

)
, 1 ≤ i, j ≤ m, i �= j,

and that there is a common scale parameter in the sense that there exists an a > 0 such that

ai = · · · = am = a, and ai j = a for 1 ≤ i, j ≤ m, i �= j.

Then the multivariate Matérn model provides a valid second-order structure in R3 if

bi j = βi j

[
Γ

(
νi + 3

2

)
Γ (νi )

Γ
(
ν j + 3

2

)
Γ

(
ν j

)
]1/2

Γ
( 1
2

(
νi + ν j

))
Γ

( 1
2

(
νi + ν j

) + 3
2

)

for 1 ≤ i, j ≤ m, i �= j, where the matrix
(
βi j

)
i, j=1,...,m has diagonal elements βi i = 1 for

i = 1, . . . ,m, and off-diagonal elements βi j , 1 ≤ i, j ≤ m, i �= j so that it is symmetric
and non-negative definite.

Example 4 (Flexible Matérn model) Consider the vector random field T(x) ∈ R
m, x ∈ R

3

with the two-point covariance tensor
〈
Ti (x), Tj (y)

〉 = Bi j (x, y) = B̄i j (y − x) = σi j Mνi j ,ai j (x, y) , 1 ≤ i, j ≤ m,

where again

Mν,a (x, y) = 21−νσ 2

Γ (ν)
(a ‖y − x‖)ν Kν (a ‖y − x‖) .

Denote by N the set of all nonnegative-definite matrices. Assume that the matrix � =
(σi j )1≤i, j≤m = (σi j ) ∈ N , and denote σ 2

i = σi i , i = 1, . . . ,m.
Then the spectral density F = ( fi j )1≤i, j≤m has the entries

fi j (λ) = 1

(2π)3

∫
R3

e−i(λ,h) B̄i j (h) dh

= σi j a
2νi j
i j

1

(ai j + ‖λ‖2)νi j+ 3
2

Γ (νi j + 3
2 )

Γ (νi j )
, 1 ≤ i, j ≤ m, λ ∈ R

3.

We need to find some conditions on parameters ai j > 0, νi j > 0, under which F ∈ N .
The general conditions can be found in [2,8].
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Recall that a symmetric, real m × m matrix � = (θi j )1≤i, j≤m, is said to be conditionally
negative definite [3], if the inequality

m∑
i=1

m∑
j=1

ci c jθi j ≤ 0

holds for any real numbers c1, . . . , cm, subject to

m∑
i=1

ci = 0.

In general, a necessary condition for the above inequality is

θi i + θ j j ≤ 2θi j , i, j = 1, . . . ,m,

which implies that all entries of a conditionally negative definite matrix are nonnegative
whenever its diagonal entries are non-negative. If all its diagonal entries vanish, a condi-
tionally negative definite matrix is also named a Euclidean distance matrix. It is known that
� = (θi j )1≤i, j≤m is conditionally negative definite if and only if an m × m matrix S with
entries exp{−θi j u} is positive definite, for every fixed u ≥ 0 (cf. [3, Theorem 4.1.3]), or
S = e−u�, where e� is an Hadamar exponential of a matrix �.

Some simple examples of conditionally negative definite matrices are

(i) θi j = θi + θ j ;
(ii) θi j = const;
(iii) θi j = ∣∣θi − θ j

∣∣ ;
(iv) θi j = ∣∣θi − θ j

∣∣2
(v) θi j = max{θi , θ j };
(vi) θi j = −θiθ j .

Recall that the Hadamard product of two matrices A and B is the matrix A ◦ B =
(Ai j · Bi j )1≤i, j≤m . By Schur theorem if A ∈ N , B ∈ N , then so is A ◦ B.

Then
F = � ◦ A ◦ B ◦ C,

where one need to find conditions under which

A =
⎛
⎝ 1

(1 + ‖λ‖2 /a2i j )
νi j+ 3

2

⎞
⎠

1≤i, j≤m

≥ 0, B =
(

1

a3i j

)

1≤i, j≤m

≥ 0,

C =
(

Γ (νi j + 3
2 )

Γ (νi j )

)

1≤i, j≤m

≥ 0.

We consider first the case 1, in which we assume that

ai = · · · = am = a, 1 ≤ i, j ≤ m.

Then

A = e− 3
2

(
exp

{
−νi j log

(
1 + ‖λ‖2

a2

)})

1≤i, j≤m

≥ 0,

if and only if the matrix
Y = (−νi j

)
1≤i, j≤m
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is conditionally negative definite (see above examples (i)–(vi)), then for such (−νi j )1≤i, j≤m,

we have to check that the matrix C = (Γ (νi j + 3
2 )/Γ (νi j )1≤i, j≤m ≥ 0. This class is not

empty, since it includes the case of the so-called parsimonious model: νi j = νi+ν j
2 (see

Example 3).
Recall that a Hermitianmatrix A = (ai j )i, j=1,...,p is conditional non-negative if x�Ax∗ ≥

0, for all x ∈ C
p such that

∑p

i=1
xi = 0, and x∗ is the complex conjugate of x.

Thus, for the case 1, the followingmultivariateMatérnmodels are valid under the following
conditions (see, [2,8]):

(A1) Assume that

(i) ai = · · · = am = a, 1 ≤ i, j ≤ m;
(ii) −νi j ,1 ≤ i, j ≤ m; form conditionally non-negative matrices;

(iii) σi j
Γ (νi j+ 3

2 )

Γ (νi j )
, 1 ≤ i, j ≤ m; form non-negative definite matrices.

Consider the case 2:
νi j = ν > 0, 1 ≤ i, j ≤ m.

Then the following multivariate Matérn models are valid under the following conditions [2]:
(A2) either

(a) −a2i j ,1 ≤ i, j ≤ m, form a conditionally non-negativematrix and σi j a2νi j , 1 ≤ i, j ≤ m,

form non-negative definite matrices; or
(b) −a−2

i j ,1 ≤ i, j ≤ m, form a conditionally non-negative matrix and σi j/a3i j , 1 ≤ i, j ≤
m, form non-negative definite matrices.

These classes of Matérn models are not empty since in the case of parsimonious model
they are consistent with [12, Theorem 1]. For the parsimonious model from this paper (νi j =
νi i+ν j j

2 , 1 ≤ i, j ≤ m), the following multivariate Matérn models are valid under conditions
(A3) either

(a) νi j = νi i+ν j j
2 , a2i j = a2i i+a2j j

2 , 1 ≤ i, j ≤ m, and σi j a
2νi j
i j /Γ (νi j ), 1 ≤ i, j ≤ m,form

non-negative definite matrices;
or

(b) νi j = νi i+ν j j
2 , a−2

i j = a−2
i i +a−2

j j
2 , 1 ≤ i, j ≤ m,and σi j/a3i j/Γ (νi j ), 1 ≤ i, j ≤ m, form

non-negative definite matrices;

The most general conditions and new examples can be found in [2,8]. The paper by [11]
reviews the main approaches to building multivariate correlation and covariance structures,
including the multivariate Matérn models.

Example 5 (Dual Matérn models) Adapting the so-called duality theorem (see, i.e., [10]),
one can show that under the conditions A1, A2 or A3

1

(1 + ‖h‖2)νi j+ 3
2

=
∫
R3

ei(λ,h)si j (λ)dλ, 1 ≤ i, j ≤ m,

where

si j (λ) = 1

(2π)32νi j−1Γ (νi j + 3
2 )

(‖λ‖)νi j Kνi j (‖λ‖), λ ∈R3, 1 ≤ i, j ≤ m,
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is the valid spectral density of the vector random field with correlation structure ((1 +
‖h‖2)−(νi j+ 3

2 ))1≤i, j≤m = (Di j (h))1≤i, j≤m . We will call it the dual Matérn model.
Note that for the Matérn models

∫
R3

B̄i j (x)dx < ∞.

This condition is known as short range dependence, while for the dual Matérn model, the
long range dependence is possible:

∫
R3

Di j (h)dh = ∞, if 0 < νi j <
3

2
.

When m = 3, the random field of Example 3 is scalar isotropic but not isotropic. How
to construct examples of homogeneous and isotropic vector and tensor random fields with
Matérn two-point correlation tensors?

To solve this problem, we develop a sketch of a general theory of homogeneous and
isotropic tensor-valued random fields in Sect. 2. This theory was developed by [30,33].
In particular, we explain another two links: one leads from the theory of random fields to
classical invariant theory, other one was established recently and leads from the theory of
random fields to the theory of convex compacta.

In Sect. 3, we give examples of Matérn homogeneous and isotropic tensor-valued random
fields. Finally, in Appendices we shortly describe the mathematical terminology which is
not always familiar to specialists in probability: tensors, group representations, and classical
invariant theory. For different aspects of theory of random fields see also [24,25].

2 A Sketch of a General Theory

Let r be a nonnegative integer, let V be an invariant subspace of the representation g �→ g⊗r

of the group O(3), and let U be the restriction of the above representation to V. Consider a
homogeneous V-valued random field T(x), x ∈ R

3. Assume it is isotropic, that is, satisfies
(1). It is very easy to see that its one-point correlation tensor 〈T(x)〉 is an arbitrary element
of the isotypic subspace of the space V that corresponds to the trivial representation. In
particular, in the case of r = 0 the representation U is trivial, and 〈T(x)〉 is an arbitrary real
number. In the case of r = 1 we have U (g) = g. This representation does not contain a
trivial component, therefore 〈T(x)〉 = 0. In the case of r = 2 andU (g) = S2(g) the isotypic
subspace that corresponds to the trivial representation is described in Example 12, we have
〈T(x)〉 = C I , where C is an arbitrary real number, and I is the identity operator in R

3, and
so on.

Can we quickly describe the two-point correlation tensor in the same way? The answer is
positive. Indeed, the second equation in (1) means that 〈T(x),T(y)〉 is a measurable covariant
of the pair (g,U ). The integrity basis for polynomial invariants of the defining representation
contains one element I1 = ‖x‖2. By theWineman–Pipkin theorem (AppendixA,Theorem6),
we obtain

〈T(x),T(y)〉 =
L∑

l=1

ϕl(‖y − x‖2)Tl(y − x),

where Tl(y − x) are the basic covariant tensors of the representation U .

123
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For example, when r = 1, the basis covariant tensors of the defining representations are
δi j and xi x j by the result of [44] mentioned in Appendix C. We obtain the result by [39]:

〈T(x),T(y)〉 = ϕ1(‖y − x‖2)δi j + ϕ2(‖y − x‖2) (yi − xi )(y j − x j )

‖y − x‖2 .

When r = 2 and U (g) = S2(g), the three rank 4 isotropic tensors are δi jδkl , δikδ jl ,
and δilδ jk . Consider the group � of order 8 of the permutations of symbols i , j , k, and l,
generated by the transpositions (i j), (kl), and the product (ik)( jl). The group � acts on the
set of rank 4 isotropic tensors and has two orbits. The sums of elements on each orbit are
basis isotropic tensors:

L1
i jkl = δi jδkl , L2

i jkl = δikδ jl + δilδ jk .

Consider the case of degree 2 and of order 4. For the pair of representations (g⊗4, (R3)⊗4)

and (g,R3) we have 6 covariant tensors:

δil x j xk, δ jk xi xl , δ jl xi xk, δik x j xl , δkl xi x j , δi j xk xl .

The action of the group � has 2 orbits, and the symmetric covariant tensors are

‖x‖2L3
i jkl(x) = δil x j xk + δ jk xi xl + δ jl xi xk + δik x j xl ,

‖x‖2L4
i jkl(x) = δkl xi x j + δi j xk xl .

In the case of degree 4 and of order 4 we have only one covariant:

‖x‖4L5
i jkl(x) = xi x j xk xl .

The result by [28]

〈T(x),T(y)〉 =
5∑

m=1

ϕm(‖y − x‖2)Lm
i jkl(y − x)

easily follows.
The case of r = 3 will be considered in details elsewhere.
When r = 4 and U (g) = S2(S2(g)), the situation is more delicate. A linear relations

between isotropic tensors, called syzygies, appear. There are 8 symmetric isotropic tensors
connected by 1 syzygy, 13 basic covariant tensors of degree 2 and of order 8 connected by
3 syzygies, 10 basic covariant tensors of degree 4 and of order 8 connected by 2 syzygies,
3 basic covariant tensors of degree 6 and of order 8, and 1 basic covariant tensor of degree 8
and of order 8, see [31,32] for details. It follows that there are

(8 − 1) + (13 − 3) + (10 − 2) + 3 + 1 = 29

linearly independent basic covariant tensors. The result by [29] includes only 15 of them and
is therefore incomplete.

How to find the functions ϕm? In the case of r = 0, the answer is given by Theorem 1:

ϕ1(‖y − x‖2) =
∫ ∞

0

sin(λ‖y − x‖)
λ‖y − x‖ dμ(λ).

In the case of r = 1, the answer has been found by [46]:

ϕ1(‖y − x‖2) = 1

ρ2

(∫ ∞

0
j2(λρ) dΦ2(λ) −

∫ ∞

0
j1(λρ) dΦ1(λ)

)
,
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ϕ2(‖y − x‖2) =
∫ ∞

0

j1(λρ)

λρ
dΦ1(λ) +

∫ ∞

0

(
j0(λρ) − j1(λρ)

λρ

)
dΦ2(λ), (4)

where ρ = ‖y − x‖, jn are the spherical Bessel functions, and Φ1 and Φ2 are two finite
measures on [0,∞) with Φ1({0}) = Φ2({0}).

In the general case, we proceed in steps. The main idea is simple.We describe all homoge-
neous random fields and throw away those that are not isotropic. The homogeneous random
fields are described by the following result.

Theorem 2 Formula

〈T(x),T(y)〉 =
∫
R̂3

ei(p,y−x) dμ(p) (5)

establishes a one-to-one correspondence between the set of the two-point correlation tensors
of homogeneous random fields T(x) on the space domain R3 with values in a complex finite-
dimensional space VC and the set of all measures μ on the Borel σ -field B(R̂3) of the
wavenumber domain R̂3 with values in the cone of nonnegative-definite Hermitian operators
in VC.

This theorem was proved by [22,23] for one-dimensional stochastic processes. Kol-
mogorov’s results have been further developed by [4–6,27] among others.

We would like to write as many formulae as possible in a coordinate-free form, like (5).
To do that, let J be a real structure in the space VC, that is, a map j : VC → VC with

– J (x + y) = J (x) + J (y), x, y ∈ VC.
– J (αx) = α J (x), x ∈ VC, α ∈ C.
– J (J (x)) = x, x ∈ VC.

Any tensor x ∈ VC can be written as x = x+ + x−, where

x+ = 1

2
(x + Jx), x− = 1

2
(x − Jx).

Denote
V+ = { x ∈ VC : Jx = x }, V− = { x ∈ VC : Jx = −x }.

Both sets V+ and V− are real vector spaces. If the values of the random field T(x) lie in V+,
then the measure μ satisfies the condition

μ(−A) = μ�(A) (6)

for all Borel subsets A ⊆ R̂
3, where −A = {−p : p ∈ A }.

Next, the followingLemmacan be proved. Letp = (λ, ϕp, θp)be the spherical coordinates
in the wavenumber domain.

Lemma 1 A homogeneous random field described by (5) and (6) is isotropic if and only if
its two-point correlation tensor has the form

〈T(x),T(y)〉 = 1

4π

∫ ∞

0

∫
S2
ei(p,y−x) f (λ,ϕp, θp) sin θp dϕp dθp dν(λ), (7)

where ν is a finite measure on the interval [0,∞), and where f is a measurable function
taking values in the set of all symmetric nonnegative-definite operators onV+ with unit trace
and satisfying the condition

f (gp) = S2(U )(g) f (p), p ∈ R̂
3, g ∈ O(3). (8)
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When λ = 0, condition (8) gives f (0) = S2(U )(g) f (0) for all g ∈ O(3). In other words,
the tensor f (0) lies in the isotypic subspace of the space S2(V+) that corresponds to the
trivial representation of the group O(3), call it H1. The intersection of H1 with the set of all
symmetric nonnegative-definite operators on V+ with unit trace is a convex compact set, call
it C1.

When λ > 0, condition (8) gives f (λ, 0, 0) = S2(U )(g) f (λ, 0, 0) for all g ∈ O(2),
because O(2) is the subgroup of O(3) that fixes the point (λ, 0, 0). In other words, consider
the restriction of the representation S2(U ) to the subgroup O(2). The tensor f (λ, 0, 0) lies
in the isotypic subspace of the space S2(V+) that corresponds to the trivial representation
of the group O(2), call it H0. We have H1 ⊂ H0, because O(2) is a subgroup of O(3). The
intersection of H0 with the set of all symmetric nonnegative-definite operators on V+ with
unit trace is a convex compact set, call it C0.

Fix an orthonormal basisT0,1,0,…,T0,n0,0 of the spaceH1. Assume that the spaceH0�H1

has the non-zero intersection with the spaces of n1 copies of the irreducible representation
U 2g , n2 copies of the irreducible representation U 4g , …, nr copies of the irreducible rep-
resentation U 2rg of the group O(3), and let T2�,n,m , −2� ≤ m ≤ 2�, be the tensors of the
Gordienko basis of the nth copy of the representation U 2�g . We have

f (λ, 0, 0) =
r∑

�=0

n�∑
n=1

f�n(λ)T2�,n,0 (9)

with f�n(0) = 0 for � > 0 and 1 ≤ n ≤ n�. By (8) we obtain

f (λ, ϕp, θp) =
r∑

�=0

n�∑
n=1

f�n(λ)

2�∑
m=−2�

U 2�g
m0 (ϕp, θp)T2�,n,m .

Equation (7) takes the form

〈T(x),T(y)〉 = 1

2
√

π

r∑
�=0

n�∑
n=1

2�∑
m=−2�

∫ ∞

0

∫
S2
ei(p,y−x) f�n(λ)

1√
4� + 1

×Sm2�(ϕp, θp)T2�,n,m sin θp dϕp dθp dν(λ), (10)

where we used the relation

U 2�g
m0 (ϕp, θp) =

√
4π

4� + 1
Sm2�(ϕp, θp).

Substitute the Rayleigh expansion

ei(p,r) = 4π
∞∑

�=0

�∑
m=−�

i� j�(‖p‖ · ‖r‖)Sm� (θp, ϕp)Sm� (θr, ϕr)

into (10). We obtain

〈T(x),T(y)〉 = 2
√

π

r∑
�=0

n�∑
n=1

2�∑
m=−2�

∫ ∞

0
(−1)� j2�(λ‖r‖) f�n(λ)

1√
4� + 1

× Sm� (ϕr, θr)T2�,n,m dν(λ),
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where r = y − x. Returning back to the matrix entries U 2�g
m0 (ϕr, θr), we have

〈T(x),T(y)〉 =
∫ ∞

0

r∑
�=0

(−1)� j2�(λ‖r‖)
n�∑
n=1

f�n(λ)M2�,n(ϕr, θr) dν(λ), (11)

where

M2�,n(ϕr, θr) =
2�∑

m=−2�

U 2�g
m0 (ϕr, θr)T2�,n,m .

It is easy to check that the function M2�,n(ϕr, θr) is a covariant of degree 2� and of
order 2r . Therefore, the M-function is a linear combination of basic symmetric covariant
tensors, or L-functions:

M2�,n(ϕr, θr) =
�∑

k=0

qkr∑
q=1

cnkq
L2k,q(y − x)

‖y − x‖2k ,

where qkr is the number of linearly independent symmetric covariant tensors of degree 2k
and of order 2r . The right hand side is indeed a polynomial in sines and cosines of the angles
ϕr and θr. Equation (11) takes the form

〈T(x),T(y)〉 =
∫ ∞

0

r∑
�=0

(−1)� j2�(λ‖r‖)
n�∑
n=1

f�n(λ)

×
�∑

k=0

qkr∑
q=1

cnkq
L2k,q(y − x)

‖y − x‖2k dν(λ).

Recall that f�n(λ) are measurable functions such that the tensor (9) lies in C1 for λ = 0
and in C0 for λ > 0. The final form of the two-point correlation tensor of the random field
T(x) is determined by geometry of convex compacta C0 and C1. For example, in the case of
r = 1 the set C0 is an interval (see [33]), while C1 is a one-point set inside this interval. The set
C0 has two extreme points, and the corresponding random field is a sum of two uncorrelated
components given by Eq. (12) below. The one-point set C1 lies in the middle of the interval,
the condition Φ1({0}) = Φ2({0}) follows. In the case of r = 2, the set of extreme points of
the set C0 has three connected components: two one-point sets and an ellipse, see [33], and
the corresponding random field is a sum of three uncorrelated components.

In general, the two-point correlation tensor of the field has the simplest form when the set
C0 is a simplex. We use this idea in Examples 6 and 8 below.

3 Examples of Matérn Homogeneous and Isotropic Random Fields

Example 6 Consider a centred homogeneous scalar isotropic random field T (x) on the space
R
3 with values in the two-dimensional space R

2. It is easy to see that both C0 and C1 are
equal to the set of all symmetric nonnegative-definite 2 × 2 matrices with unit trace. Every
such matrix has the form (

x y
y 1 − x

)
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with x ∈ [0, 1] and y2 ≤ x(1 − x). Geometrically, C0 and C1 are the balls(
x − 1

2

)2

+ y2 = 1

4
.

Inscribe an equilateral triangle with vertices

C1 =
(
0 0
0 1

)
, C2,3 = 1

4

(
1 ±√

3
±√

3 3

)

into the above ball. The function f (p) takes the form

f (p) =
3∑

m=1

am(‖p‖)Cm,

where am(‖p‖) are the barycentric coordinates of the point f (p) inside the triangle. The
two-point correlation tensor of the field takes the form

〈T (x), T (y)〉 =
3∑

m=1

∫ ∞

0

sin(λ‖y − x‖)
λ‖y − x‖ Cm dΦm(λ),

where dΦm(λ) = am(λ)dν(λ) are three finite measures on [0,∞), and ν is the measure of
Eq. (7). Define dΦm(λ) asMatérn spectral densities of Example 2 (resp. dual Matérn spectral
densities of Example 5). We obtain a scalar homogeneous and isotropic Matérn (resp. dual
Matérn) random field.

Example 7 Using (4) and the well-known formulae

j0(t) = sin t

t
, j1(t) = sin t

t2
− cos t

t
, j2(t) =

(
3

t2
− 1

)
sin t

t
− 3 cos t

t2
,

we write the two-point correlation tensor of rank 1 homogeneous and isotropic random field
in the form

〈v(x), v(y)〉 = B(1)
i j (r) + B(2)

i j (r),

where r = y − x, and

B(1)
i j (x, y) =

∫ ∞

0

[(
−3 sin(λ‖r‖)

(λ‖r‖)3 + sin(λ‖r‖)
λ‖r‖ + 3 cos(λ‖r‖)

(λ‖r‖)2
)

ri r j
‖r‖2

+
(
sin(λ‖r‖)
(λ‖r‖)3 − cos(λ‖r‖)

(λ‖r‖)2
)

δi j

]
dΦ1(λ),

B(2)
i j (x, y) =

∫ ∞

0

[(
3 sin(λ‖r‖)

(λ‖r‖)3 − sin(λ‖r‖)
λ‖r‖ − 3 cos(λ‖r‖)

(λ‖r‖)2
)

ri r j
‖r‖2

+
(
sin(λ‖r‖)

λ‖r‖ − sin(λ‖r‖)
(λ‖r‖)3 + cos(λ‖r‖)

(λ‖r‖)2
)

δi j

]
dΦ2(λ). (12)

Now assume that the measures Φ1 and Φ2 are described by Matérn densities:

dΦi (λ) = 2πλ2
σ 2
i Γ

(
νi + 3

2

)
a2νii

2π3/2
(
a2i + λ2

)νi+ 3
2

, i = 1, 2.

It is possible to substitute these densities to (12) and calculate the integrals using [37,
Eq. 2.5.9.1]. We obtain rather long expressions that include the generalised hypergeometric
function 1F2.
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The situation is different for the dual model:

dΦi (λ) = 1

(2π)22νi−1Γ (νi + 3/2)
λν+2Kν(λ).

Using [38, Eqs. 2.16.14.3, 2.16.14.4], we obtain

B(k)
i j (x, y) = Ck

(
− 3πΓ (2νk)

4‖r‖3(1 + ‖r‖2)νk/2
[
P−νk

νk−1

(
‖r‖√

1 + ‖r‖2
)

− P−νk
νk−1

(
− ‖r‖√

1 + ‖r‖2
)]

+ 2νk
√

πΓ (νk + 3/2)

(1 + ‖r‖2)νk+3/2

+ 3 · 2νk−1√πΓ (νk + 1/2)

(1 + ‖r‖2)νk+1/2

)
ri r j
‖r‖2

+C1

(
πΓ (2νk)

4‖r‖3(1 + ‖r‖2)ν1/2
[
P−νk

νk−1

(
‖r‖√

1 + ‖r‖2
)

− P−νk
νk−1

(
− ‖r‖√

1 + ‖r‖2
)]

− 2νk
√

πΓ (νk + 1/2)

(1 + ‖r‖2)νk+3/2

)
δi j ,

where

Ck = 1

(2π)22νk−1Γ (νk + 3/2)
, k = 1, 2.

Example 8 Consider the case when r = 2 and U (g) = S2(g) . In order to write down
symmetric rank 4 tensors in a compressed matrix form, consider an orthogonal operator τ

acting from S2(S2(R3)) to S2(R6) as follows:

τ fi jkl =

⎛
⎜⎜⎜⎜⎝

f−1−1−1−1 f−1−100 f−1−111
√
2 f−1−1−10

√
2 f−1−101

√
2 f−1−11−1

f00−1−1 f0000 f0011
√
2 f00−10

√
2 f0001

√
2 f001−1

f11−1−1 f1100 f1111
√
2 f11−10

√
2 f1101

√
2 f111−1√

2 f−10−1−1
√
2 f−1000

√
2 f−1011 2 f−10−10 2 f−1001 2 f−101−1√

2 f01−1−1
√
2 f0100

√
2 f0111 2 f01−10 2 f0101 2 f011−1√

2 f1−1−1−1
√
2 f1−100

√
2 f1−111 2 f1−1−10 2 f1−101 2 f1−11−1

⎞
⎟⎟⎟⎟⎠ ,

see [16, Eq. (44)]. It is possible to prove the following. Thematrix τ fi jkl(0) lies in the interval
C1 with extreme points C1 and C2, where the nonzero elements of the symmetric matrix C1

lying on and over the main diagonal are as follows:

C1
11 = C1

12 = C1
13 = C1

22 = C1
23 = C1

33 = 1

3
,

while those of the matrix C2 are

C2
11 = C2

22 = C2
33 = 2

15
, C2

44 = C2
55 = C2

66 = 1

5
,

C2
12 = C2

13 = C2
23 = − 1

15
.

The matrix τ fi jkl(λ, 0, 0) with λ > 0 lies in the convex compact set C0. The set of extreme
points of C0 contains three connected components. The first component is the one-point set
{D1} with

D1
44 = D1

66 = 1

2
.
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The second component is the one-point set {D2} with

D2
11 = D2

33 = 1

4
, D2

55 = 1

2
, D2

13 = −1

4
.

The third component is the ellipse { Dθ : 0 ≤ θ < 2π } with

Dθ
11 = Dθ

33 = Dθ
13 = 1

2
sin2(θ/2), Dθ

22 = cos2(θ/2),

Dθ
12 = Dθ

23 = 1

2
√
2
sin(θ).

Choose three points D3, D4, D5 lying on the above ellipse. If we allow the matrix
τ fi jkl(λ, 0, 0) with λ > 0 to take values in the simplex with vertices Di , 1 ≤ i ≤ 5,
then the two-point correlation tensor of the random field ε(x) is the sum of five integrals.
The more the four-dimensional Lebesgue measure of the simplex in comparison with that of
C0, the wider class of random fields is described.

Note that the simplex should contain the set C1. The matrix C1 lies on the ellipse and
corresponds to the value of θ = 2 arcsin(

√
2/3). It follows that one of the above points,

say D3, must be equal to C1. If we choose D4 to correspond to the value of θ = 2(π −
arcsin(

√
2/3)), that is,

D4
11 = D4

33 = D4
13 = 1

6
, D4

22 = 2

3
, D4

12 = D4
23 = −1

3
,

then

C2 = 2

5
(D1 + D2) + 1

5
D4,

and C2 lies in the simplex. Finally, choose D5 to correspond to the value of θ = π , that is

D5
11 = D5

33 = D5
13 = 1

2
.

The constructed simplex is not the one with maximal possible Lebesgue measure, but the
coefficients in formulas are simple.

Theorem 3 Let ε(x) be a random field that describes the stress tensor of a deformable body.
The following conditions are equivalent.

1. The matrix τ fi jkl(λ, 0, 0) with λ > 0 takes values in the simplex described above.
2. The correlation tensor of the field has the spectral expansion

〈ε(x), ε(y)〉 =
5∑

n=1

∫ ∞

0

5∑
q=1

Ñnq(λ, ‖r‖)Lq
i jkl(r) dΦn(λ),

where the non-zero functions Ñnq(λ, r) are given in Table 1, and where Φn(λ) are five finite
measures on [0,∞) with

Φ1({0}) = Φ2({0}) = 2Φ4({0}), Φ5({0}) = 0.

Assume that all measures Φn are absolutely continuous and their densities are either the
Matérn or the dual Matérn densities. The two-point correlation tensors of the corresponding
random fields can be calculated in exactly the same way as in Example 7.
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Table 1 The functions
Ñnq (λ, r)

n q Nnq (λ, r)

1 1 − 1
15 j0(λr) − 2

21 j2(λr) − 1
35 j4(λr)

1 2 1
10 j0(λr) + 1

14 j2(λr) − 1
35 j4(λr)

1 3 − 3
28 j2(λr) + 1

7 j4(λr)

1 4 1
7 j2(λr) + 1

7 j4(λr)

1 5 − j4(λr)

2 1 − 1
15 j0(λr) + 4

21 j2(λr) + 1
140 j4(λr)

2 2 1
10 j0(λr) − 1

7 j2(λr) + 1
140 j4(λr)

2 3 3
14 j2(λr) − 1

28 j4(λr)

2 4 − 2
7 j2(λr) − 1

28 j4(λr)

2 5 1
4 j4(λr)

3 1 1
3 j0(λr)

4 1 − 1
135 j0(λr) − 4

21 j2(λr) + 3
70 j4(λr)

4 2 1
90 j0(λr) + 1

7 j2(λr) + 3
70 j4(λr)

4 3 − 3
14 j2(λr) − 3

14 j4(λr)

4 4 2
7 j2(λr) − 3

14 j4(λr))

4 5 3
2 j4(λr)

5 1 1
5 j0(λr) − 2

7 j2(λr) + 1
70 j4(λr)

5 2 1
30 j0(λr) + 2

21 j2(λr) + 1
70 j4(λr)

5 3 1
14 j2(λr) − 1

14 j4(λr)

5 4 5
21 j2(λr) − 1

14 j4(λr)

5 5 1
2 j4(λr)

Introduce the following notation:

T0,1
i jkl = 1

3
δi jδkl ,

T0,2
i jkl = 1√

5

2∑
n=−2

gn[i, j]
2[1,1]g

n[k,l]
2[1,1],

T2,1,m
i jkl = 1√

6
(δi j g

m[k,l]
2[1,1] + δkl g

m[i, j]
2[1,1] ), −2 ≤ m ≤ 2,

T2,2,m
i jkl =

2∑
n,q=−2

gm[n,q]
2[2,2] g

n[i, j]
2[1,1]g

q[k,l]
2[1,1], −2 ≤ m ≤ 2,

T4,1,m
i jkl =

4∑
n,q=−4

gm[n,q]
4[2,2] g

n[i, j]
2[1,1]g

q[k,l]
2[1,1], −4 ≤ m ≤ 4,

where gn[n1,n2]
N [N1,N2] are the so called Godunov–Gordienko coefficients described in [14]. Intro-

duce the following notation:

G�′′m′′m
�′m′ p = √

(2�′ + 1)(2�′′ + 1)gm[m′,m′′]
p[�′,�′′] g0[0,0]m[�′,�′′].
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Consider the five nonnegative-definite matrices An , 1 ≤ n ≤ 5, with the following matrix
entries:

a�′′m′′kl,1
�′m′i j =

(
1√
5
T0,2
i jklG

�′′m′′0
�′m′0 − 1

5
√
14

2∑
m=−2

T2,2,m
i jkl G�′′m′′m

�′m′2 − 2
√
2

9
√
35

4∑
m=−4

T4,1,m
i jkl G�′′m′′m

�′m′4

)
,

a�′′m′′kl,2
�′m′i j =

(
1√
5
T0,2
i jklG

�′′m′′0
�′m′0 +

√
2

5
√
7

2∑
m=−2

T2,2,m
i jkl G�′′m′′m

�′m′2 + 1

9
√
70

4∑
m=−4

T4,1,m
i jkl G�′′m′′m

�′m′4

)
,

a�′′m′′kl,3
�′m′i j = T0,1

i jklG
�′′m′′0
�′m′0 ,

a�′′m′′kl,4
�′m′i j =

(
1

9
√
5
T0,2
i jklG

�′′m′′0
�′m′0 −

√
2

5
√
7

2∑
m=−2

T2,2,m
i jkl G�′′m′′m

�′m′2 +
√
2

3
√
35

4∑
m=−4

T4,1,m
i jkl G�′′m′′m

�′m′4

)
,

a�′′m′′kl,5
�′m′i j =

((
2

3
T0,1
i jkl + 1

3
√
5
T0,2
i jkl

)
G�′′m′′0

�′m′0 +
(
2

9

2∑
m=−2

T2,1,m
i jkl −

√
2

9
√
7

2∑
m=−2

T2,2,m
i jkl

)
G�′′m′′m

�′m′2

+
√
2

9
√
35

4∑
m=−4

T4,1,m
i jkl G�′′m′′m

�′m′4

)
,

and let Ln be infinite lower triangular matrices from Cholesky factorisation of the matrices
An .

Theorem 4 The following conditions are equivalent.

1. The matrix τ fi j�m(λ, 0, 0) with λ > 0 takes values in the simplex described above.
2. The field ε(x) has the form

εi j (ρ, θ, ϕ) = Cδi j + 2
√

π

5∑
n=1

∞∑
�=0

�∑
m=−�

∫ ∞

0
j�(λρ) dZn′

�mi j (λ)Sm� (θ, ϕ),

where
Zn′

�mi j (A) =
∑

(�′,m′,k,l)≤(�,m,i, j)

Zn
�′m′kl(A),

and where Zn
�′m′kl is the sequence of uncorrelated scattered random measures on [0,∞)

with control measures Φn.

The idea of proof is as follows. Write down the Rayleigh expansion for ei(p,x) and for
e−i(p,y) separately,substitute both expansions into (10) and use the following result, known
as the Gaunt integral:

∫
S2

Sm1
�1

(θ, ϕ)Sm2
�2

(θ, ϕ)Sm3
�3

(θ, ϕ) sin θ dϕ dθ =
√

(2�1 + 1)(2�2 + 1)

4π(2�3 + 1)

× gm3[m1,m2]
�3[�1,�2] g0[0,0]�3[�1,�2].

This theorem can be proved exactly in the same way, as its complex counterpart, see, for
example, [34]. Then apply Karhunen’s theorem, see [19].

In order to simulate such fields numerically, one can use simulation algorithms based on
spectral expansions. One of such algorithms is described in [21] and realised using MAT-
LAB®, see also references herein. Other software, like R,may be used as well. In comparison
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with [21], only one newproblemappears, that is, calculation of theGodunov–Gordienko coef-
ficients gn[n1,n2]

N [N1,N2]. An algorithm for calculation of the above coefficients is given in [41]. It
was realised by the second named author using MATLAB and used for calculation of the
syzygies and spectral expansions.

The significance of the Matérn class of tensor-valued random fields follows from the fact
that scalar randomfields with such a correlation structures are solutions of the fractional anal-
ogous of the stochastic Helmholtz equations and hence they are widely used in applications
of isotropic random fields on Euclidean space as well spherical random fields obtained as
the restriction of isotropic random fields onto the sphere, see [26, Example 2]. For an appli-
cation of spherical tensor random fields to estimation of parameters of Cosmic Microwave
Background one can also propose an analogous of the Matérn class tensor-valued correlation
structure, a paper by the authors is currently in preparation.
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Appendix A: Tensors

There are several equivalent definitions of tensors. Surprisingly, the most abstract of them is
useful in the theory of random fields.

Let r be a nonnegative integer, and let V1, . . . , Vr be linear spaces over the same field
K. When r = 0, define the tensor product of the empty family of spaces as K1, the one-
dimensional linear space over K.

Theorem 5 (The universalmapping property)There exist a unique linear space V1⊗· · ·⊗Vr
and a unique linear operator τ : V1×V2×· · ·×Vr → V1⊗· · ·⊗Vr that satisfy the universal
mapping property: for any linear space W and for any multilinear map β : V1 × V2 × · · · ×
Vr → W, there exists a unique linear operator B : V1 ⊗· · ·⊗Vr → X such that β = B ◦ τ :

In other words: the construction of the tensor product of linear spaces reduces the study
of multilinear mappings to the study of linear ones.

Remark 1 In mathematical jargon, the above diagram is commutative: all directed paths with
the same start and endpoints lead to the same result by composition. That is: β = B ◦ τ .

The tensor product v1 ⊗ · · · ⊗ vr of the vectors vi ∈ Vi , 1 ≤ i ≤ r , is defined by

v1 ⊗ · · · ⊗ vr = τ(v1, . . . , vr ).
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Let V1, . . . , Vr , W1, . . . ,Wr be finite-dimensional linear spaces, and let Ai ∈ L(Vi ,Wi ) for
1 ≤ i ≤ r . The tensor product of linear operators, A1 ⊗ · · · ⊗ Ar , is a unique element of the
space L(V1 ⊗ · · · ⊗ Vr ,W1 ⊗ · · · ⊗ Wr ) such that

(A1 ⊗ · · · ⊗ Ar )(v1 ⊗ · · · ⊗ vr ) := A1(v1) ⊗ · · · ⊗ Ar (vr ), vi ∈ Vi .

If all the spaces Vi , 1 ≤ i ≤ r , are copies of the same space V , then we write V⊗r for the
r -fold tensor product of V with itself, and v⊗r for the tensor product of r copies of a vector
v ∈ V . Similarly, for A ∈ L(V, V ) we write A⊗r for the r -fold tensor product of A with
itself. Note that A⊗0 is the identity operator in the space K1.

Appendix B: Group Representations

Let G be a topological group. A finite-dimensional representation of G is a pair (ρ, V ),
where V is a finite-dimensional linear space, and ρ : G → GL(V ) is a continuous group
homomorphism. Here GL(V ) is the general linear group of order n, or the group of all
invertible n × n matrices. In what follows, we omit the word “finite-dimensional” unless
infinite-dimensional representations are under consideration.

In a coordinate form, a representation ofG is a continuous group homomorphism ρ : G →
GL(n,K) and the space Kn .

Let W ⊆ V be a linear subspace of the space V . W is called an invariant subspace of the
representation (ρ, V ) if ρ(g)w ∈ W for all g ∈ G and w ∈ W . The restriction of ρ to W is
then a representation (σ,W ) of G. Formula

τ(g)(v + W ) := ρ(g)v + W

defines a representation (τ, V/W ) of G in the quotient space V/W .
In a coordinate form, take a basis for W and complete it to a basis for V . The matrix of

ρ(g) relative to the above basis is

ρ(g) =
(

σ(g) ∗
0 τ(g)

)
. (13)

Let (ρ, V ) and (τ,W ) be representations of G. An operator A ∈ L(V,W ) is called an
intertwining operator if

τ(g)A = Aρ(g), g ∈ G. (14)

The intertwining operators form a linear space LG(V,W ) over K.
The representations (ρ, V ) and (τ,W ) are called equivalent if the space LG(V,W ) con-

tains an invertible operator. Let A be such an operator. Multiply (14) by A−1 from the right.
We obtain

τ(g) = Aρ(g)A−1, g ∈ G.

In a coordinate form, τ(g) and ρ(g) are matrices of the same presentation, written in two
different bases, and A is the transition matrix between the bases.

A representation (ρ, V ) with V �= {0} is called reducible if there exists an invariant
subspace W /∈ {{0}, V }. In a coordinate form, all blocks of the matrix (13) are nonempty.
Otherwise, the representation is called irreducible.

Example 9 Let G = O(3). The mapping g �→ g⊗r is a representation of the group G in
the space (R3)⊗r . When r = 0, this representation is called trivial, when r = 1, it is called
defining. When r ≥ 2, this representation is reducible.
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From now on we suppose that the topological group G is compact. There exists an inner
product (·, ·) on V such that

(ρ(g)v, ρ(g)w) = (v, w), v, w ∈ V .

In a coordinate form, we can choose an orthonormal basis in V . If V is a complex linear
space, then the representation (ρ, V ) takes values inU(n), the group of n×n unitarymatrices,
and we speak of a unitary representation. If V is a real linear space, then the representation
(ρ, V ) takes values in O(n), and we speak of an orthogonal representation.

Let (π, V ) and (ρ,W ) be representations of G. The direct sum of representations is the
representation (π ⊕ ρ, V ⊕ W ) acting by

(π ⊕ ρ)(g)(v ⊕ w) := π(g)v ⊕ ρ(g)w, g ∈ G, v ∈ V, w ∈ W.

In a coordinate form, we have

π ⊕ ρ(g) =
(

π(g) 0
0 ρ(g)

)
. (15)

Consider the action π ⊗ ρ of the group G on the set of tensor products v ⊗ w defined by

(π ⊗ ρ)(g)(v ⊗ w) := π(g)v ⊗ ρ(g)w, g ∈ G, v ∈ V, w ∈ W.

This actionmay be extended by linearity to the tensor product of representations (π ⊗ρ, V ⊗
W ). In a coordinate form, (π ⊗ ρ)(g) is a rank 4 tensor with components

Ti jkl(g) = πi j (g)ρkl(g), g ∈ G.

A representation (σ, V ) of a groupG is called completely reducible if for every invariant sub-
spaceW ⊂ V there exists an invariant subspaceU ⊂ V such that V = W⊕U . In a coordinate
form, any basis {w1, . . . , wp} for W can be completed to a basis {w1, . . . , wp, u1, . . . , uq}
for V such that the span of the vectors u1, . . . , uq is invariant. The matrix σ(g) in the above
basis has the form (15). Any representation of a compact group is completely reducible.

Let (ρ, V ) be an irreducible representation of a group G. Denote by [ρ] the equivalence
class of all representations ofG equivalent to (ρ, V ) and by Ĝ the set of all equivalence classes
of irreducible representations of G. For any finite-dimensional representation (σ, V ) of G,
there exists finitely many equivalence classes [ρ1], . . . , [ρk] ∈ Ĝ and uniquely determined
positive integers m1, . . . ,mk such that (σ, V ) is equivalent to the direct sum of m1 copies
of the representation (ρ1, V1), . . . ,mk copies of the representation (ρk, Vk). The direct sum
miVi of mi copies of the linear space Vi is called the isotypic subspace of the space V
that corresponds to the representation (ρi , Vi ). The numbers mi are called the multiplicities
of the irreducible representation (ρi , Vi ) in (σ, V ). The decompositions V = ∑

miVi and
σ = ∑

miρi are called the isotypic decompositions.
Assume that a compact groupG is easy reducible. Thismeans that for any three irreducible

representation (ρ, V ), (σ,W ), and (τ,U ) of G the multiplicity mτ of τ in ρ ⊗ σ is equal
to either 0 or 1. For example, the group O(3) is easy reducible. Assume mτ = 1. Let
{ eρ

i : 1 ≤ i ≤ dim ρ } be an orthonormal basis in V , and similarly for σ and τ . There are two
natural bases in the space V ⊗ W . The coupled basis is

{ eρ
i ⊗ eσ

j : 1 ≤ i ≤ dim ρ, 1 ≤ j ≤ dim σ }.
The uncoupled basis is

{ eτ
k : mτ = 1, 1 ≤ k ≤ dim τ }.
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In a coordinate form, the elements of the space V⊗W arematriceswith dim ρ rows and dim σ

columns. The coupled basis consists of matrices having 1 in the i th row and j th column, and
all other entries equal to 0. Denote by ck[i, j]τ [ρ,σ ] the coefficients of expansion of the vectors of
uncoupled basis in the coupled basis:

eτ
k =

dim ρ∑
i=1

dim σ∑
j=1

ck[i, j]τ [ρ,σ ]e
ρ
i ⊗ eσ

j . (16)

The numbers ck[i, j]τ [ρ,σ ] are called the Clebsch–Gordan coefficients of the group G. In the

coupled basis, the vectors of the uncoupled basis are matrices ckτ [ρ,σ ] with matrix entries

ck[i, j]τ [ρ,σ ], the Clebsch–Gordan matrices.

Example 10 (Irreducible unitary representations of SU(2)) Let � be a non-negative integer
or half-integer (the half of an odd integer) number. Let (ρ0,C1) be the trivial representation,
and let (ρ1/2,C

2) be the defining representation of SU(2). The representation (ρ�,C
2�+1)

with � = 1, 3/2, 2, . . . , is the symmetric tensor power ρ� = S2�(ρ1/2). No other irreducible
unitary representations exist.

We may realise the representations ρ� in the space P2�(C2) of homogeneous polynomials
of degree 2� in two formal complex variables ξ and η over the two-dimensional complex
linear space C2. The group SU(2) consists of the matrices

g =
(

α β

−β α

)
, α, β ∈ C, |α|2 + |β|2 = 1. (17)

The representation ρ� acts as follows:

(ρ�(g)h)(ξ, η) = h(αξ − βη, βξ + αη), h ∈ P2�(V ).

Note that ρ�(−E) = E if and only if � is integer.
TheWigner orthonormal basis in the space P2�(V ) is as follows:

em(ξ, η) := (−1)�+m

√
(2� + 1)!

(� + m)!(� − m)!ξ
�+mη�−m, m = −�,−� + 1, . . . , �. (18)

The matrix entries of the operators ρ�(g) in the above basis are called Wigner D functions
and are denoted by D�

mn(g). The tensor product ρ�1 ⊗ ρ�2 is expanding as follows

ρ�1(g) ⊗ ρ�2(g) =
�1+�2∑

�=|�1−�2|
⊕ρ�(g).

Example 11 (Irreducible unitary representations of SO(3) and O(3)) Realise the linear space
R
3 with coordinates x−1, x0, and x1 as the set of traceless Hermitian matrices over C2 with

entries (
x0 x1 + ix−1

x1 − ix−1 −x0

)
.

The matrix (17) acts on the so realised R3 as follows:

π(g)

(
x0 x1 + ix−1

x1 − ix−1 −x0

)
:= g∗

(
x0 x1 + ix−1

x1 − ix−1 −x0

)
g.

The mapping π is a homomorphism of SU(2) onto SO(3) . The kernel of π is ±E . Assume
that (ρ, V ) is an irreducible unitary representation of SO(3). Then (ρ◦π, V ) is an irreducible
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unitary representation of SU(2) with kernel ±E . Then we have ρ ◦ π = ρ� for some integer
�. In other words, every irreducible unitary representation (ρ�, V ) of SU(2) with integer �

gives rise to an irreducible unitary representation of SO(3), and no other irreducible unitary
representations exist. We denote the above representation of SO(3) again by (ρ�, V ).

Let SO(2) be the subgroup of SO(3) that leaves the vector (0, 0, 1)� fixed. The restriction
ofρ� to SO(2) is equivalent to the direct sumof irreducible unitary representations (eimϕ,C1),
−� ≤ m ≤ � of SO(2). Moreover, the space of the representation (eimϕ,C1) is spanned by
the vector em(ξ, η) of the Wigner basis (18).This is where their enumeration comes from.

The group O(3) is the Cartesian product of its normal subgroups SO(3) and {I,−I }. The
elements of SO(3) are rotations, while the elements of the second component are reflections.
Therefore, any irreducible unitary representation of O(3) is the outer tensor product of
some (ρ�, V ) by an irreducible unitary representation of {E,−E}. The latter group has
two irreducible unitary representation: trivial (ρ+,C1) and determinant (ρ−,C1). Denote
ρ�,+ := ρ�⊗̂ρ+ and ρ�,− := ρ�⊗̂ρ−. These are all irreducible unitary representations of
O(3).

Introduce the coordinates on SO(3), the Euler angles. Any rotation g may be performed
by three successive rotations:

– rotation g0(ψ) about the x0-axis through an angle ψ , 0 ≤ ψ < 2π ;
– rotation g−1(θ) about the x−1-axis through an angle θ , 0 ≤ θ ≤ π ,
– rotation g0(ϕ) about the x0-axis through an angle ϕ , 0 ≤ ϕ < 2π .

The angles ψ , θ , and ϕ are the Euler angles. The Wigner D functions are D�
mn(ϕ, θ, ψ).

The Wigner D functions D�
m0 do not depend on ψ and may be written as D�

m0(ϕ, θ). The
spherical harmonics Ym

� are defined by

Ym
� (θ, ϕ) :=

√
2� + 1

4π
D�
m0(ϕ, θ). (19)

Let (r, θ, ϕ) be the spherical coordinates in R
3:

x−1 = r sin θ sin ϕ,

x0 = r cos θ,

x1 = r sin θ cosϕ. (20)

The measure d� := sin θ dϕ dθ is the Lebesgue measure on the unit sphere S2 := { x ∈
R
3 : ‖x‖ = 1 }. The spherical harmonics are orthonormal:

∫
S2
Ym1

�1
(θ, ϕ)Ym2

�2
(θ, ϕ) d� = δ�1�2δm1m2 .

Example 12 (Expansions of tensor representations of the group O(3)) Let r ≥ 2 be a non-
negative integer, and let �r be the permutation group of the numbers 1, 2, . . . , r . The action

σ · (v1 ⊗ · · · ⊗ vr ) := vσ−1(1) ⊗ · · · ⊗ vσ−1(r), σ ∈ �r ,

may be extended by linearity to an orthogonal representation of the group �r in the space
(R3)⊗r , call it (ρr , (R3)⊗r ). Consider the orthogonal representation (τ, (R3)⊗r ) of the group
O(3) × �r acting by

τ(g, σ )(T) := ρ⊗r (g)ρr (σ )(T), T ∈ (R3)⊗r .

123



1298 N. Leonenko, A. Malyarenko

The representation (τ, (R3)⊗2) of the groupO(3)×�2 is the direct sumof three irreducible
components

τ = [ρ0,+(g)τ+(σ )] ⊕ [ρ1,+(g)ε(σ )] ⊕ [ρ2,+(g)τ+(σ )],
where τ+ is the trivial representation of the group�2, while ε is its non-trivial representation.
The one-dimensional space of the first component is the span of the identity matrix and
consists of scalars. The three-dimensional space of the second component is the space�2(R3)

of 3×3 skew-symmetricmatrices. Its elements are three-dimensional pseudo-vectors. Finally,
the five-dimensional space of the third component consists of 3 × 3 traceless symmetric
matrices (deviators). The second component is (�2(g),�2(R3)), and the direct sum of the
first and third components is (S2(g),S2(R3)).

In general, the representation (τ, (R3)⊗r ) is reducible andmay be represented as the direct
sum of irreducible representations as follows:

τ(g, σ ) =
r∑

�=0

N �
r∑

q=1

⊕U �x (g)ρq(σ ),

where q is called the seniority index of the component U �x (g)ρq(σ ), see [1], and where
x = g for even r and x = u for odd r . The number N �

r of copies of the representation U �x

is given by

N �
r =

�(r−�)/3�∑
k=0

(
r

k

)(
2r − 3k − � − 2

r − 2

)
.

Appendix C: Classical Invariant Theory

Let V and W be two finite-dimensional linear spaces over the same field K. Let (ρ, V ) and
(σ,W ) be two representations of a group G. A mapping h : W → V is called a covariant or
form-invariant or a covariant tensor of the pair of representations (ρ, V ) and (σ,W ), if

h(σ (g)w) = ρ(g)h(w), g ∈ G.

In other words, the diagram

is commutative, as explained in Remark 1.
If V = K

1 and ρ is the trivial representation of G, then the corresponding covariant
scalars are called absolute invariants (or just invariants) of the representation (σ,W ), hence
the name Invariant Theory. Note that the setK[W ]G of invariants is an algebra over the field
K, that is, a linear space over K with bilinear multiplication operation and a multiplication
identity 1. The product of a covariant h : W → V and an invariant f ∈ K[W ]G is again
a covariant. In other words, the covariant tensors of the pair of representations (ρ, V ) and
(σ,W ) form a module over the algebra of invariants of the representation (σ,W ).

A mapping h : W → V is called homogeneous polynomial mapping of degree d if for
any v ∈ V the mapping w �→ (h(w), v) is a homogeneous polynomial of degree d in dimW
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variables. The mapping h is called a polynomial covariant of degree d if it is homogeneous
polynomial mapping of degree d and a covariant.

Let (σ,W ) be the defining representation of G, and (ρ, V ) be the r th tensor power of
the defining representation. The corresponding covariant tensors are said to have an order r .
The covariant tensors of degree 0 and of order r of the group O(n) are known as isotropic
tensors.

The algebra of invariants and the module of covariant tensors were an object of intensive
research. The first general result was obtained by [15]. The author proved that for any finite-
dimensional complex representation of the group G = SL(2,C) the algebra of invariants
and the module of covariant tensors are finitely generated. In other words, there exists an
integrity basis: a finite set of invariant homogeneous polynomials I1, . . . , IN such that every
polynomial invariant can be written as a polynomial in I1, . . . , IN . An integrity basis is called
minimal if none of its elements can be expressed as a polynomial in the others. A minimal
integrity basis is not necessarily unique, but all minimal integrity bases have the same amount
of elements of each degree.

The algebra of invariants is not necessarily free. Some polynomial relations between
generators, called syzygies may exist.

The importance of polynomial invariants can be explained by the following result. Let
G be a closed subgroup of the group O(3), the group of symmetries of a material. Let
(ρ,V), (ρ1,V1), . . . , (ρN ,VN ) be finitely many orthogonal representations of G in real
finite-dimensional spaces. Let T : V1 ⊕ · · · ⊕ VN → V be an arbitrary (say, measurable)
covariant of the pair ρ and ρ1 ⊕ · · · ⊕ ρN . Let { Ik : 1 ≤ k ≤ K } be an integrity basis for
polynomial invariants of the representation ρ, and let {Tl : 1 ≤ l ≤ L } be an integrity basis
for polynomial covariant tensors of the pair ρ and ρ1 ⊕ · · · ⊕ ρN . Following [45], we call Tl
basic covariant tensors.

Theorem 6 [45] A function T : V1 ⊕ · · · ⊕ VN → V is a measurable covariant of the pair
ρ and ρ1 ⊕ · · · ⊕ ρN if and only if it has the form

T(T1, . . . ,TN ) =
L∑

l=1

ϕl(I1, . . . , IK )Tl(T1, . . . ,TN ),

where ϕl are real-valued measurable functions of the elements of an integrity basis.

In 1939 in the first edition of [44] Weyl proved that any polynomial covariant of degree d
and of order r of the group O(n) is a linear combination of products of Kronecker’s deltas
δi j and second degree homogeneous polynomials xi x j .
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