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Background 

Appeals have been made for eye care professionals to start prescribing anti-myopia therapies as part of 

their routine management of myopic children1-3. These calls are fuelled by two key considerations. 

Firstly, that interventions to slow myopia progression have shown success in randomized controlled 

trials (RCTs)4-7, and secondly, appreciation that the risk of sight-threatening complications rises dose-

dependently with the level of myopia8, 9. Notwithstanding existing gaps in knowledge regarding the 

efficacy of current treatments (see below), these considerations argue that myopia control interventions 

should be widely adopted, and that they should be instigated at an early age – especially in children 

most at risk – in order to reduce the final level of myopia. Therefore in managing a child with myopia, an 

eye care professional would have to decide not only which therapy to recommend, but at what age to 

start treatment. In this review we discuss the future role of genetic prediction in helping clinicians treat 

myopia.  

 

When might genetic prediction be useful? 

We envisage three situations when genetic prediction might be helpful to clinicians; the “personalized 

medicine” scenario, the “prophylactic intervention” scenario, and the “prevention of high myopia” 

scenario. 

 

While the average response to the best anti-myopia therapy reported is approximately 40-50%, there is 

typically a wide variability in response between patients5, 7. If a child’s genetic profile makes them a 

better responder to one type of therapy compared to another, e.g. orthokeratology vs. atropine, then 

clinicians could tailor treatments to individual patients who would benefit the most. This concept of 

personalized medicine has been around for a long time outside the field of myopia yet has only recently 

started to make a difference to clinical practice – most notably in cancer care10. To date there is no 

research evidence supporting the use of genetic testing in choosing the most suitable anti-myopia 

therapy for an individual child, but one study has shown how a specific myopia risk allele and a specific 

environmental risk factor (time spent reading) can interact to markedly elevate susceptibility11, hinting 

that the personalized medicine approach may have merit. A comprehensive evidence base for 

personalizing anti-myopia therapy is unlikely to be forthcoming in the short to medium term because to 

achieve the necessary statistical power such studies would need to enrol thousands of patients and, 

ideally, follow highly standardized treatment protocols. If future intervention trials routinely genotyped 

subjects, then such data could be derived through individual patient meta-analysis. 
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What is the case for prophylactic intervention? Here again there is a lack of research evidence showing 

that the currently-available treatment options work when initiated prior to myopia onset – with the 

single exception of increased time outdoors, which has been shown in 2 rigorous, RCTs to reduce 

incident myopia by a clinically significant degree12, 13. So should eye care professionals be “prescribing” 

more time outdoors to children at high risk of developing myopia? Any benefit of genetic prediction for 

such a simple intervention appears minimal; after all, spending more time outdoors provides health 

benefits for a child beyond refractive development and poses minimal adverse effects (if the dangers of 

excessive sun exposure are mitigated by recommending that children wear appropriate sunglasses, sun 

cream, and a hat). This argues that prescribing extra time outdoors should be done routinely, though in 

the real world, prescribing extra time outdoors may not work as effectively as other possible 

interventions, since spending the (currently unknown) necessary number of hours outdoors every day 

may not fit with many families’ lifestyles. However, knowing that a child has a high genetic 

predisposition to myopia might give parents an extra incentive to increase their child’s time outdoors. 

Ultimately such interventions are likely to be worthwhile if they result in a lower degree of myopia, but 

final refraction was not significantly altered in the largest randomized trial to date of additional outdoor 

time12. 

 

The two types of intervention that have shown the most impact on myopia progression so far are 

pharmacological (atropine at various doses) and optical (multifocal contact lenses and orthokeratology) 

approaches4-7. Therefore, if new research emerges showing that one or more of the known 

pharmacological or optical treatment interventions for myopia is effective when used prophylactically, 

then identifying children at high risk of myopia would become useful to clinicians and parents in making 

decisions about who to treat. Since pre-myopic subjects would not require optical correction, 

pharmacological treatments might appear more suitable for this application. Such an approach currently 

lacks appropriate clinical evidence, but securing research evidence about the efficacy or otherwise of 

prescribing existing anti-myopia therapies prophylactically could be readily achieved by means of small-

scale clinical trials designed to address this specific issue. 

 

The other plausible scenario where genetic prediction may play a useful role is in the avoidance of high 

myopia. In later life, eyes with longer axial lengths (>26 mm) have a significantly higher risk of 

uncorrectable visual loss14. The strongest case for treatment of myopia progression therefore exists in 
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patients destined to have a final refraction more myopic than -6.00 D or an axial length > 26 mm. 

Enhanced genetic prediction of final refraction in a progressing myope may be very valuable in deciding 

whether treatment over many years with pharmacological or optical means is worthwhile in terms of 

both potential risks and costs. 

 

Is genetic prediction any better than prediction based on existing known risk factors? 

Researchers from the CLEERE study group15 recently evaluated which risk factors were most useful in 

predicting children at-risk of incident myopia, using data from a large, multi-centre longitudinal study of 

U.S. children. They considered 13 potential predictive factors, including spherical equivalent refractive 

error at baseline and parentally-reported number of myopic parents. Spherical equivalent at baseline 

was the single best predictive factor, and indeed this predictive factor alone performed as well, 

essentially, as any other combination of predictive factors. Notably, parental myopia (i.e. having 0, 1 or 2 

myopic parents) was not a useful predictor once spherical equivalent refractive error at baseline was 

known. A predictive model for incident myopia using current refractive error and parental myopia as risk 

factors performed with a sensitivity and specificity of 62.5% and 81.9% in CLEERE participants16.  

 

At first glance the CLEERE study’s findings15 would seem to imply that genetic prediction is probably not 

worth the trouble, as it would offer no benefit over-and-above measuring cycloplegic refractive error in 

early childhood. However, there are 3 reasons to expect that – at least in theory – genetic prediction will 

be a better predictive factor for myopia than number of myopic parents. Firstly, for a highly polygenic 

trait such as refractive error, parental myopia is only a good predictor of the refractive error of the 

parents’ children on average, not the refractive error of any individual child. Secondly, parental myopia 

uses a binary scale, which means that parents’ actual levels of myopia are ignored in the predictive 

modelling process. Thirdly, parental myopia is not well suited to predicting the future severity of 

refractive error in an individual, which means that the risk of future pathological complications will 

remain uncertain. While this limitation could be mitigated by predicting the risk of high myopia rather 

than myopia, there would still be benefits to knowing whether an individual was likely to attain a 

refractive error in adulthood of, for example, -6.50 D or -20.00 D. 

 

To illustrate the first point mentioned above, Figure 1 shows the relationship between the refractive 

error of parents and their children using computer simulations performed under the assumption that 

refractive error is a purely polygenic trait (details of the simulation parameters are available from the 
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authors on request). For heritability values across the range 25% to 75%, which is typical of the range 

reported for refractive error and myopia17-19, it is evident that while the mean refractive error of parents 

is a good predictor of the average refractive error of their children (blue line of best fit in the graphs) it is 

only a crude guide to the refractive error of individual children. To illustrate the second point mentioned 

above, we generated simulations of a larger sample of 2-parent-plus-1-child families and evaluated the 

efficacy of 3 different predictive factors: (a) number of myopic parents, (b) the average refractive error 

of the parents (called the “midparent” value in the genetics literature), and (c) the precise genetic risk of 

the child. The results are shown in Figures 2 and 3. It is apparent that the loss of information inherent 

when simply counting the number of myopic parents adversely impacts the ability to predict the 

refractive error of children – at least under the conditions used in the computer simulation. However, it 

is also clear that “perfect” genetic prediction is a very much better predictive factor than the midparent 

value, capturing essentially all of the available variability (as governed in the simulation by the level of 

heritability). In reality it is not possible to predict the genetic risk of an individual with 100% precision, 

and in this sense the results of genetic prediction shown in Figure 2 are misleading. However, as we 

discuss further below, they do offer a glimpse of what genetic prediction has to offer. 

 

How effective is the genetic prediction of refractive error currently? 

Very few studies have tested the current efficacy of genetic prediction for refractive error. In those that 

have, the variance in refractive error explained – i.e. the coefficient of determination (r2 value) from a 

linear regression of “true” refractive error (y-axis) on “predicted” refractive error (x-axis) – was used as 

the measure of predictive performance. R2 values are well-suited to quantifying the efficacy of 

continuous traits compared to statistics such as the positive/negative predictive value or area under the 

receiver-operating curve (AUC) commonly used for classifying individuals as either affected or 

unaffected by a disorder20. The CREAM consortium21 identified 26 genetic variants associated with 

refractive error in a genome-wide association study (GWAS) and reported that a “polygenic risk score” 

(PGRS) comprised of these variants explained 3.4% of the phenotypic variation in refractive error. Fan et 

al.22 used a simpler approach – an “allele score” calculated by counting the number of “high risk” alleles 

carried by individuals for 39 genetic variants identified from the GWAS studies of the CREAM 

consortium21 and Kiefer et al.23 – and were able to explain 2.3% of the variation in refractive error for a 

sample of 15-year old children. Thus, using a PGRS or allele score comprised of the small numbers of 

genetic variants that meet the extremely stringent threshold of “genome-wide significance” in a current 

GWAS provides poor predictive performance (r2<0.05). 
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As shown in Figure 4, the performance of a genetic prediction algorithm varies primarily depending on 

(1) a property of the trait known as the SNP-heritability (h2
SNP), which is closely related to other 

measures of heritability, and (2) the sample size of the genome-wide association study (GWAS) used to 

build the predictive model20. For refractive error, h2
SNP has been estimated24 at 0.35 and the largest 

GWAS for refractive error to date21, 23 had a sample size of  approximately 45,000 participants. This 

suggests that including a greater number of genetic variants in a PGRS than the 26-39 that have hitherto 

been used should yield a PGRS model with a predictive accuracy of approximately 10% (if the 

assumptions relating to Figure 4 hold).  

 

Refraction is the end result of a complex growth process25, and the value of GWAS data may be 

enhanced by asking more specific questions related to different aspects of refractive development. 

Evaluating genetic associations with factors known to be associated with higher rates of final myopia 

(i.e. age of onset, initial rate of progression and duration of progression), or looking for genetic 

associations with a final axial length in excess of 26 mm may further enhance the genetic predictability 

of final refraction. 

 

How effective will genetic prediction of refractive error be in the future? 

Figure 4 gives an indication of the prospects for genetic prediction of refractive error in the future. As 

GWAS meta-analysis sample sizes approach 500,000 – 1,000,000 it should be possible to estimate the 

parameters in a PGRS or an equivalent Bayesian model with sufficient precision that prediction accuracy 

(r2) in independent samples approaches h2
SNP. Thus, for refractive error, prediction accuracy should 

approach 35% (r2=0.35). (Note from Figure 3 that, by contrast, number of myopic parents has a 

maximum predictive accuracy of approximately r2=0.05 if the true heritability of refractive error is 

h2=0.5). An important caveat here, however, is that prediction accuracy is likely to be population-

specific, like heritability estimates themselves. Thus, prediction accuracy would be expected to be worse 

when a prediction model is developed and tested in individuals of differing ancestry26. For refractive 

error prediction this could be highly disadvantageous, since most large GWAS analyses are carried out in 

individuals of European ancestry (due to high investment in population-based genetics research in 

Europe and the United States) whereas the most urgent need for genetic prediction of myopia is in 

South-East Asia27. It may also be the case that genetic prediction may be suboptimal when the 

prediction model is developed and tested in individuals born in differing generations. Suppose one 
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generation grew up in an environment with limited exposure to environmental risk factors for myopia, 

whereas for a younger generation these risk factors had become pervasive, then major influences from 

gene-environment interactions could impair genetic prediction models28.  

 

What about the environment? 

The extent to which genetic risk factors for myopia are deterministic, i.e. act independently of 

environmental exposures such as near work, education or time outdoors, is largely unknown. To date, 

just a handful of genetic variants have been reported to confer a greater risk in children who spend 

relatively more time than average engaged in near work or in full-time education (and of these, only one 

such gene-environment interaction has been replicated)11, 22, 29, 30. No gene-environment (G x E) 

interactions involving time outdoors have been discovered. If G x E interactions turn out to be 

commonplace, then genetic predictions might benefit from taking lifestyle factors into account, e.g. 

given a particular child’s genetic profile, their risk may be different if they leave full-time education at 

age 18 compared to if they go on to University. This could improve the accuracy of genetic prediction 

above the likely h2
SNP-based limit of approximately 35%, at the expense of a parents being given a more 

complicated message about their child’s risk of myopia.  

 

Some of the effects of the environment and some G x E interactions affecting refractive development 

are likely to operate via epigenetics, i.e. modifications to the chemical nature of specific regions of the 

genome that alter gene expression patterns without changing the genome sequence. No such epigenetic 

changes with effects on myopia are known currently, and, at least according to theory, the utility of 

epigenetics for genetic prediction is likely to be low, since the changes in chemistry and gene expression 

may be restricted to particular ocular tissues, making them unavailable for analysis (in marked contrast 

to the readily-captured and decoded genome sequence). 

 

The research literature currently suggests that for levels of time reading and time outdoors within the 

normal range, spending more time outdoors or less time on near work than average has limited impact 

on refractive error (e.g. time reading and time outdoors ascertained at age 8 years-old together 

explained <2% of the variation in refractive error at age 15 years-old24). Therefore unless future research 

finds that spending much greater time outdoors than is commonly the case has a far larger benefit than 

this, then augmenting genetic predictions with pure (non-GxE) lifestyle-related risks will not be 

worthwhile15. In contrast, there may be benefits in combining genetic risk scores with information about 
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parental myopia, under the assumption that myopic parents pass on not only their genes, but also their 

relatively myopiagenic environment to their children. As a precedent for this approach, a recent study31 

suggested the genetic risk for heart disease was independent of self-reported family history, making a 

strong case for combining these sources of information. 

 

Questions for society 

Is it better to know or not to know one’s risk of Alzheimer’s disease, coronary artery disease, major 

depression, and myopia? Routine genetic testing/genome sequencing of every person in the population 

is now within reach for rich societies, potentially providing every individual with a personalized 

assessment of their risk of myopia and a multitude of other diseases and disorders. However, the 

American Society for Human Genetics’ 2015 position statement32 on “Genetic Testing in Children and 

Adolescents” argued against routine genetic sequencing of newborn babies and children (although the 

position statement did accept the legitimate case for testing specific candidate genes in children 

suffering from a likely genetic disease). The main obstacles arguing against routine genetic testing were 

deemed to be (i) the limited precision of current tests for the majority of diseases and disorders, (ii) a 

lack of evidence about how probabilistic information is best communicated to parents and children, and 

(iii) issues surrounding stigma and discrimination. Research aiming to address these issues is currently 

on-going, for instance, evaluating the pros and cons of using genome sequencing to diagnose the cause 

of intellectual disability, and how best to communicate this information to parents and those affected33. 

As regards common eye disorders such as myopia, the American Academy of Ophthalmology’s 2014 

“Recommendations for Genetic Testing of Inherited Eye Diseases” advised against routine testing until 

treatment strategies have been shown in published prospective clinical trials to benefit individuals with 

“specific disease-associated genotypes.” 

 

Some individuals have taken steps to investigate their risk of genetic disorders themselves. For instance, 

the consumer genetics testing company 23andMe provided its one millionth customer with genetic 

predictions for a range of disorders, in 2015. (Most of these customers are from the United States, and 

paid around US$100 for the test)34. Questions surrounding the use, and possible misuse, of genetic 

testing are important topics for debate that will become ever more important as prediction accuracy 

continues to improve.  
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Unanswered Clinical Questions 

Although good evidence exists for the short term effectiveness of interventions to slow myopia 

progression, such approaches are not in routine use. Alongside developing predictive tests to help 

decide who might benefit from treatment, it is important to recognise that many treatment-related 

questions have yet to be addressed. These include the long term safety of pharmacological treatments, 

risks of keratitis in contact lens treatment modalities in young children, appropriate duration of 

treatment, decreased efficacy of treatments when used over several years, optimal age of treatment, 

and the potential for later rebound effects. Due to the time delay of many years between myopia onset 

and the manifestation of myopia-related ocular pathologies (cataract, glaucoma, retinal detachment and 

myopic maculopathy), the most challenging evidence to collect will be the impact of reduction in myopia 

progression on such ocular pathology in later life.  

 

Concluding remarks 

In the longer term, genetic prediction has the potential to enhance the detection of children who would 

benefit from treatment to slow, or ideally prevent, myopia progression. Based on current knowledge of 

the aetiology of refractive error, genetic prediction has the potential to perform better than existing 

methods (the best of which – using baseline refractive error and number of myopic parents as predictors 

– has a sensitivity and specificity of 62.5% and 81.9%). Compared to the use of baseline refractive error 

as a predictor, genetic prediction has the advantages that it can be employed at a very young age and 

does not rely on cooperation by the child being tested. Therefore, it is likely to be most effective when 

employed prior to the development of myopia – although, at present there is no research evidence 

supporting the prophylactic use of anti-myopia interventions other than time outdoors. Current genetic 

prediction models perform very poorly (explaining <5% of the variance in refractive error). To reach 

their full potential – explaining  up to approximately 35% of the variance in refractive error – will require 

genetic prediction models to leverage information from GWAS involving 10-20 times larger sample sizes 

than those performed to date, carried out in participants with a range of ancestries/ethnicities. 

Incorporating the collection of information on genetic and other identifiable risk factors into the design 

of future myopia interventions trials will maximise the prospects for predicting myopia. 

 

  



Page 10 of 16 
 

===================================================================================== 

Glossary 

Additive effects A polymorphism has an additive effect if the phenotype in heterozygotes is midway 

between that in the two homozygous genotype classes. This is not the case with dominant or recessive 

effects. 

Allele score A simpler alternative to a polygenic risk score, in which equal weight is assigned to each of 

the predictors (polymorphisms) in the regression model. See polygenic risk score. 

Allele The genome sequence of an individual chromosome at a particular polymorphic site. See also 

genotype. 

Genetic variant A polymorphism. 

Genome-wide association study (GWAS) A systematic search through the genome for polymorphisms 

associated with a phenotype.  

Genotype The genome sequence of each of the chromosomes carried by an individual at a particular 

polymorphic site. Apart from polymorphisms on the sex chromosomes, genotypes comprise of 2 alleles in 

humans. 

Heritability The genetic contribution to variation in a phenotype between individuals in a specific 

population. 

Negative predictive value The probability that a patient with a negative screening result truly does not 

have the disorder. 

Phenotype An observed trait or disease, e.g. height or refractive error. 

Polygenic A phenotype caused by a large number of separate polymorphisms, each typically having only 

a subtle effect. 

Polygenic risk score A metric used to predict an individual’s future phenotype. It is derived using a linear 

regression model that includes the average phenotype in the sample as the intercept, and sums the 

number of risk alleles carried by an individual multiplied by their corresponding phenotypic effect. The 

regression coefficients needed for the above linear regression model are found using a genome-wide 

association study in a reference sample. 

Polymorphism A difference in the genome sequence between individuals at a specified position. The 

most abundant class comprise single nucleotide polymorphisms (SNPs). 

Positive predictive value The probability that a patient with a positive screening result really does have 

the disorder. 

SNP heritability The variation in a phenotype between individuals in a specific population that can be 

explained (i.e. accounted for in a regression model) by the genotype of commonly-occurring 

polymorphisms in the genome. 
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Figure 1. Refractive error in parents and the diversity of refractive error in their children. Computer 

simulations were carried out assuming a purely polygenic mode of inheritance for refractive error, at 

three different levels of heritability (25%, 50% and 75%).  Results are shown for 8 separate families, each 

consisting of 2 parents and 3 children, with each family labelled using a different colour. The line of best 

fit is shown in blue. Note the wide range of refractive errors for the children in each family, even when 

the heritability is high. 
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Figure 2. Predicting refractive error in children using parental information or genetic prediction. 

Computer simulations were carried out assuming a purely polygenic mode of inheritance for refractive 

error, at three different levels of heritability (25%, 50% and 75%).  The refractive error of children is 

plotted as a function of either: (a) the number of myopic parents, (b) the average refractive error of the 

parents, or (c) the genetic risk of the child evaluated assuming perfect precision. For each graph the line 

of best fit is shown in blue and the r-squared value quantifies predictive efficacy (how much of the 

variation in children’s refractive error can be explained by the predictive factor).  
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Figure 3. Predicting refractive error in children using parental information or genetic prediction. 

Computer simulations were carried out as in Figure 2 assuming a purely polygenic mode of inheritance 

for refractive error with heritability varying from 0–100%.  The accuracy (r2) of predicting refractive error 

in children is plotted as a function of either: (a) the number of myopic parents, (b) the average refractive 

error of the parents, or (c) the genetic risk of the child evaluated assuming perfect precision. The error 

bars show the 95% confidence intervals from 100 replicate simulations.  
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Figure 4. Accuracy (r2) of genetic prediction for polygenic traits varies with SNP-heritability (h2
SNP) and 

the sample size of the GWAS used to select predictor regression coefficients. The curves show fits to 

equation 1 of Wray et al.20 at different heritability levels.  
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