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Abstract. Agglutinated foraminifera are marine protists that show apparently complex behaviour in construct-
ing their shells, involving selecting suitable sedimentary grains from their environment, manipulating them in
three dimensions, and cementing them precisely into position. Here we illustrate a striking and previously un-
described example of complex organisation in fragments of a tube-like foraminifer (questionably assigned to
Rhabdammina) from 1466 m water depth on the northwest Australian margin. The tube is constructed from
well-cemented siliciclastic grains which form a matrix into which hundreds of planktonic foraminifer shells are
regularly spaced in apparently helical bands. These shells are of a single species, Turborotalita clarkei, which
has been selected to the exclusion of all other bioclasts. The majority of shells are set horizontally in the matrix
with the umbilical side upward. This mode of construction, as is the case with other agglutinated tests, seems to
require either an extraordinarily selective trial-and-error process at the site of cementation or an active sensory
and decision-making system within the cell.

1 Introduction

Agglutinated foraminifera are unicellular organisms that
construct their shells from sedimentary grains gathered from
the sea-floor environment and cement them together to form
what are sometimes intricate three-dimensional construc-
tions (Brady, 1879; Gooday, 1990). To do this they must
select, orientate and secure the grains in ways that are, at
present, poorly understood (Allen et al., 1988; Hemleben
and Kaminski, 1990; Makled and Langer, 2010; Rothe et
al., 2011). The use of grain type can seem relatively hap-
hazard (Armynot du Châtelet et al., 2013) or it can be
highly selective of both size and composition. Examples of
selectivity include foraminifera that gather specific miner-
als, sometimes heavy ones, such as ilmenite (Makled and
Langer, 2010), rutile (Cole and Valentine, 2006) and gar-
net (Allen et al., 1999), or particular biological clast types
such as sponge spicules (Brady, 1879), echinoderm plates
(Heron-Allen and Earland, 1909), or coccoliths (Holbourn
and Kaminski, 1997; Thomsen and Rasmussen, 2008). It
is also common for some agglutinated foraminifera to re-

use the shells of dead planktonic foraminifera from the sur-
rounding sediment in constructing their tubes (Brady, 1879;
Cartwright et al., 1989).

Tube-like agglutinated foraminifera that use planktonic
foraminifer shells in their construction are common in
bathyal and abyssal environments worldwide, where they
live either as suspension or deposit feeders (Gooday, 1990).
Fragments are difficult to assign to genus level if the pro-
loculus is absent and the branching pattern unclear, as is
the case with the pieces described here. The most important
genera that secrete such tubes are Rhabdammina Sars (for
thick-walled, inflexible, generally branching tubes), Rhiza-
mmina Brady (for thinner-walled, more elastic tubes which
form mat-like clumps), Hyperammina Brady (with an en-
larged proloculus) and Bathysiphon Sars for slowly ex-
panding tubes. The tubes can include mineral grains and
foraminifer shells of various species, sizes and orientations
that are attached along their length (Brady, 1879; Gooday,
1983; Cartwright et al., 1989).
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Figure 1. Rhizammina algaeformis Brady: (a, b) modified from Brady 1884, pl. 28, fig. 3 (scales approximately 200 µm and 1 mm); (c,
d) specimen from IODP Sample U1482B-mudline. Note the large variation in the size, species, and orientation of the planktonic foraminifer
shells along the tube, and the siliciclastic matrix. Foraminifera included in the construction include various species of Globigerinita, Glo-
bigerinoides, Globorotalia, Globoturborotalita, Tenuitella, Trilobatus, and Turborotalita (scales = 100 µm).

2 Description

Here we illustrate four fragments of what was probably a sin-
gle tube, which are remarkable because the individual grains
belong to a single species of planktonic foraminifer and oc-
cur in an organised arrangement. We also show one speci-
men of Rhizammina from the same sample for comparison.
The specimens are from International Ocean Discovery Pro-
gram (IODP) Site U1482 on the northwest Australian margin
at 15◦3.32′ S, 120◦26.10′ E and 1466 m below sea level, from

the “mudline”, that is, from unconsolidated seawater and sed-
iment slurry from the top of the first piston core taken from
the hole (Sample 363-U1482B-1H-mudline).

The Rhizammina in the sample is of a type commonly
encountered in deep-sea sediments, similar to a paratype
of Rhizammina algaeformis Brady (Fig. 1). The tube is
constructed above an internal organic layer with very fine
siliciclastic grains glued together with an organic cement
that is not visible in scanning electron microscopy (SEM)
but has been described as a probable mucopolysaccha-
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Figure 2. A fragment of Rhabdammina sp. that uses planktonic foraminifera of a single species in its construction. (a, b) Light microscope
and SEM images of the whole specimen. (c) Broken end of tube. (d) Detail of broken end of tube showing wall in cross section. (e) Other
broken end of tube. (f, g) Details of external surface. Specimen from IODP Sample U1482B-mudline (all scales = 100 µm).

ride (Cartwright et al., 1989). The shells of planktonic
foraminifera, which have been gathered from the surround-
ing sediment, are set into this siliciclastic matrix. As is nor-
mal in Rhizammina, the planktonic foraminifer tests are of
a wide range of sizes and species. The illustrated example
contains a variety of adult and juvenile shells belonging to
various genera and species, much as occur in the surround-

ing sediment, although other types of grain such as radiolaria
have been avoided. The planktonic foraminifer shells are ce-
mented in apparently random orientations, as has previously
been illustrated in this species (Brady, 1879; Cartwright et
al., 1989).

The four fragments of ?Rhabdammina (illustrated as
Fig. S1 in the Supplement) are all broken at both ends. The
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Figure 3. Particles from the sediment in IODP Sample U1482B-mudline. (a) Unattached Turborotalita clarkei specimen imaged in umbilical,
edge, and spiral views. The umbilical side is distinguished by a deep groove into which the aperture opens. (b) General view of the > 63 µm
size fraction showing various species of planktonic foraminifer and radiolarians. Three specimens of T. clarkei are highlighted with arrows.
One other species of Turborotalita (T. quinqueloba) and many Tenuitella, Globigerinita, Globoturborotalita, and other genera are present
(scales = 100 µm).

largest fragment is a very regular tube, nearly perfectly cir-
cular in internal cross section and about 1 mm long with a
fairly constant external diameter of about 250 µm and an in-
ternal diameter of 150 µm (Fig. 2). Although polychaetes,
nematodes, and crustaceans are all known to construct ag-
glutinated tubes (Gooday, 1990; Finger et al., 2008), the
specimens described here can be securely identified as a
foraminifer because of the small size and mode of construc-
tion which is similar to other agglutinated foraminifera in-
cluding Rhizammina from the same sample. As in Rhizam-
mina (see Fig. 1), the tube has a matrix of angular siliciclastic
grains into which planktonic foraminifer shells are set.

A total of 123 planktonic foraminifer shells are cemented
along the tube of the largest fragment, all of which belong
to the single species, Turborotalita clarkei (Rögl and Bolli,
1973) (as do the > 100 shells in the smaller fragments). This
species is one of the smallest living planktonic foraminifera,
spinose in life, with a cosmopolitan distribution (Hemleben
et al., 1989). All specimens on the tube appear to be adult,
with a diameter of about 100 µm and a thick external cortex,
which is not always the case in the sediment. The sediment
itself contains over 20 species of planktonic foraminifer,
among which T. clarkei is a relatively frequent but not dom-
inant component among its size class, which also includes
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Figure 4. Four SEM images of the tube successively rotated forward by approximately 70◦. The apparent sinistral helical arrangement of
the planktonic foraminifer shells is highlighted by colour coding in bands A–H. Each specimen is given a unique identifier according to its
position on a band. Orientation data for each specimen are available in Table S1 in the Supplement (scale = 100 µm).

abundant radiolarians (Fig. 3). Hence the exclusive use of
T. clarkei in shell construction appears highly selective. It
may have been preferred because of its relatively high den-
sity, small size and simple, elliptical outline.

The construction of the matrix also implies considerable
selectivity because detrital grains are a relatively minor com-
ponent of the very fine fraction sediments recovered at this
location, compared to biogenic grains such as coccoliths,
which are entirely excluded (although they can be seen ad-
hering to the specimen in places, which was only gently
cleaned). The binding cement appears to be very strong be-
cause planktonic foraminifer shells at both broken ends of
the tube are fractured through the middle rather than having
been detached at their edges (see Fig. 2c, e).

The most notable feature of the specimen is the regular
way in which T. clarkei shells are attached along the outside
of the tube, which contrasts strongly with the more haphaz-
ard pattern seen in Rhizammina (see Fig. 1). The arrangement
appears to be roughly helical, because it is possible to trace a
series of sinistrally coiled helical bands along all or most of
the length of the tube (Fig. 4). The T. clarkei shells are regu-
larly spaced and oriented, with the great majority having their
equatorial peripheries set into the matrix rather than being
edge-on or at an oblique angle as is frequently seen in Rhiza-
mmina (see Fig. 1d). The T. clarkei shells generally just touch
the inner surface but project above the outer surface, giving
the tube a beaded appearance. For the larger, more oval spec-
imens, the long axis is generally along the line of the helix.
Most remarkable of all, the majority of shells are umbilical

www.j-micropalaeontol.net//37/97/2018/ J. Micropalaeontology, 37, 97–104, 2018



102 P. N. Pearson et al.: A deep-sea agglutinated foraminifer tube

side up, with the umbilical groove in which the aperture is
set visible on the outside (104 specimens are umbilical side
up versus 14 that are spiral side up and 5 which are on their
side). The umbilical-side-up orientation may have been pre-
ferred because it avoids having the umbilical groove on the
inside, making it easier to construct a smooth inner surface.
(The three smaller fragments of tube are also exclusively
made of T. clarkei with a strong preference for umbilical side
upward orientation although the helical pattern is less clear
because of the narrower tube diameters; see Supplement.)

Although to our knowledge Rhabdammina has not been
observed alive, it presumably locates and moves sedimentary
grains with its pseudopodial network similar to many other
foraminifera. The high degree of grain-type selectivity ex-
hibited by this and other agglutinated foraminifera must be
time- and energy-expensive. Once in position at the growing
tip of the tube, the grains are presumably cemented in place
with an admixture of fine siliciclastic material and secreted
polysaccharide cement. The helical arrangement may reflect
the growth sequence, in which generally five or six T. clarkei
shells were located around the growing tip (or fewer when the
diameter was narrower), with each new shell being cemented
to the left (looking from the outside) of a pre-existing one.
Clues to the construction mode come from instances where
unusually large or small shells were included, for which there
may have been subsequent compensation (e.g. the large spec-
imen D7 in Fig. 4b may have been compensated for by the
smaller specimens C8 and E1, moving left to right, and caus-
ing a new helical band to start).

3 Discussion

The apparently complex behaviour of agglutinated
foraminifera has attracted attention since it was discov-
ered in the 1860s and described by W. B. Carpenter
(Carpenter, 1873, p. 784) as “most distinct evidence of selec-
tive power; and the question forces itself upon us, – by what
instrumentality is it exercised” (italics and punctuation as in
original). Charles Darwin wrote to Carpenter describing it as
“almost the most wonderful fact I ever heard of. One cannot
believe that they have mental power enough to do so, and
how any structure or kind of viscidity can lead to this result
passes all understanding” (Charles Darwin letter to W. B.
Carpenter, 1873, transcribed in Burkhardt et al., 2014, item
DAR 261.6:7). The issue was debated again in 1916, when
the foraminifer specialist Edward Heron-Allen claimed it as
an example of “intelligence”, which was robustly disputed
by the physiologist Edward Ray Lankester in an exchange
that quickly became a semantic argument (as described by
Hemleben and Kaminski, 1990). But while terms such as
“mental power” and “intelligence” remain jarring, the basic
problem of how a single cell effects this kind of behaviour
remains almost entirely unresolved and the debate has hardly

moved on (Allen et al., 1988; Hemleben and Kaminski,
1990; Makled and Langer, 2010; Rothe et al., 2011).

The phenomenon seems to belong to a different category
from cases in which unicellular organisms such as other
foraminifera, radiolaria, and diatoms secrete intricate skele-
tons of silica or carbonate as part of their life cycle (see,
for instance, Fig. 3). In those cases the biomineralisation se-
quence is presumably under genetic and epigenetic control in
which information is stored in genes which switch on or off
in response to internal triggers. In the case of complex agglu-
tinating behaviour, the correct grain type must be discovered
by the pseudopodial network, transported to the precise lo-
cation required, and then manipulated in three dimensions
before being cemented into place. At some point in the pro-
cess it must be discriminated from other similar grains. We
suggest two possible models for how this discrimination oc-
curs. Either (1) it occurs via a highly specific trial-and-error
process at the site of cementation to which many grains are
brought and rejected, and only T. clarkei grains in the cor-
rect orientation are accepted, presumably because of having
the correct affinity to the binding site, or (2) it occurs in the
pseudopodial network wherein only the correct grain type is
selected from the sediment and is then moved into position.
Both these mechanisms are difficult to envisage, however.
The former would be extremely costly and time-consuming
whereas the latter demands a sensory system capable of con-
tinuously monitoring grain position and orientation plus an
information processing ability with decision-making capac-
ity. If such behaviour was exhibited by a metazoan, it would
naturally be attributed to the functioning of the nervous sys-
tem. Observation of living agglutinated foraminifera may
help distinguish between these models.

Much behaviour in protists is apparently highly stereo-
typed and involves chemosensory responses to environmen-
tal cues in relation to feeding, predator avoidance, and dis-
criminating clones and potential mates (Vandromme et al.,
2010; Harvey et al., 2013). However recent work on partner
recognition in some ciliates has concluded that they are able
to actively encode, process and respond to information from
external pheromone signals which in turn produces planned
“courtship strategies” and “social decision making” (Clark,
2013). In the agglutinated foraminifer cell discussed here, the
decision-making must also, presumably, have a specialised
molecular basis, whether it occurs at the site of cementa-
tion or distributed in the pseudopodial network. As far as we
know, such processes are obscure, but if they can occur in one
type of cell, they could occur in others, so the phenomenon
could be more than just a curiosity.

4 Methods

Seawater and sediment slurry from the top of the first pis-
ton core at IODP Hole U1482B was collected in a bucket,
treated with rose bengal biological stain for 24 h to detect
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living cells and washed over 150 and 63 µm sieves. The sam-
ple residues were dried on a warm plate at 40 ◦C. Foraminifer
specimens including shells of Turborotalita clarkei and frag-
ments of Rhabdammina sp. and Rhizammina algaeformis
were picked by brush and transferred to conductive adhesive
discs on metal pedestals for microscopic investigation. Spec-
imens were photographed using a Zeiss Discovery V8 light
microscope (LM) and a Hitachi TM 3000 tabletop scanning
electron microscope (SEM) in various orientations without
conductive coating.

Data availability. The data to this paper can be found in the Sup-
plement.

The Supplement related to this article is available online
at https://doi.org/10.5194/jm-37-97-2018-supplement.
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