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We present an analytical formulation for the normalization of resonant states at oblique incidence in one- and
two-dimensional periodic structures with top and bottom boundaries to homogeneous space, such as photonic
crystal slabs and arrays of nanoantennas. The normalization is validated by comparing the resonant state expansion
using one and two resonant states with numerically exact results. The predicted changes of resonance frequency
and linewidth due to perturbations of refractive index or geometry can be used to study resonantly enhanced
refractive index sensing as well as the influence of disorder. In addition, the normalization is essential for the
calculation of the Purcell factor.
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I. INTRODUCTION

Micro- and nanophotonic structures have attracted signif-
icant interest in recent years. Their unique optical properties
allow for realizing thin lenses [1,2], negative index materials
[3,4], perfect absorbers [5,6], and photonic band gaps [7,8], to
name a few.

The optical properties of micro- and nanophotonic struc-
tures are governed by their resonant states, also known
as quasinormal or quasiguided modes. Resonant states in
plasmonic nanoantennas and dielectric resonators modify the
spontaneous emission rate of quantum emitters in their vicinity
[9,10], also known as the Purcell effect [11]. The control
of the relative phase induced by resonant states in adjacent
nanoantennas is the key element of metasurfaces [1,12].
Furthermore, resonant states can be used to enhance weak
effects such as circular dichroism in chiral materials [13,14]
and Faraday rotation in magneto-optical systems [15,16]. The
reason is that small modifications in the dielectric surrounding
can have a significant influence on the resonant states, which is
also exploited in resonantly enhanced refractive index sensing
[17,18].

Resonant states can be tailored by modification of size and
shape of the involved constituents [19,20], as well as by con-
trolling the coupling of resonant states in different structures
[21–25]. Planar periodic systems and other guiding geometries
exhibit Rayleigh-Wood anomalies [26] that determine the
optical properties of such systems in combination with
the photonic band structure formed by the mutual coupling
of the unit cells [27–32].
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In general, resonant states are solutions of homogeneous
Maxwell’s equations, i.e., in the absence of sources or external
fields, that fulfill outgoing boundary conditions and have
discrete eigenfrequencies on the complex frequency plane.
Thus, the resonant field distribution is only determined up to a
scalar factor. Therefore, it is required to normalize the resonant
states correctly in order to assign to each resonant state its
appropriate weight in the optical response of the system.

The main difficulty in the normalization of the resonant
states is encountered for resonant states that emit light to the
far field, in contrast to bound or guided modes. The emission
to the far field provides a radiative decay channel that is
described by outward propagating waves due to causality. The
corresponding imaginary part of the wave vector results in
an amplitude of the resonant electromagnetic field that grows
exponentially with the distance to the structure [see Fig. 1(b)].
The growing amplitude is reflecting the radiative decay: Light
further away from the structure has left the system at an earlier
time, at which more energy was stored in the resonator.

In order to normalize the resonant states, several approaches
have been suggested [9,10,34–46]. This includes approximate
formulations for high-quality modes [44–46], the utilization
of perfectly matched layers [9] or, equivalently, complex
coordinates [34] in the exterior, as well as numerical ap-
proaches [42,43]. A fully analytical form of normalization has
been derived in Ref. [37] and applied to circular waveguides
[38] as well as single particles [40]. In this approach, the
normalization consists of a volume integral over an arbitrary
volume V enclosing the structure of interest and a surface
term on the surface ∂V of V . The divergence of the fields
in the volume contribution is compensated by the surface
term. Recently, we have shown that this approach also results
in the correct normalization for resonant states in periodic
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FIG. 1. (a) Schematic of the considered one-dimensional pho-
tonic crystal slab defining the relevant geometrical parameters. All
parameters have been chosen following Ref. [33]. The periodic layer
consists of materials with refractive indices of 1.5 and 2.5, with
the former being also the refractive index of the substrate. The
superstrate is vacuum. (b) Photonic crystal slabs exhibit resonances
that decay radiatively by emission to the far field. Consequently,
the resonant field distribution grows exponentially to the exterior, as
depicted here for the square of the electric field Em of a transverse-
electric (TE) mode at kx = 5.236 μm−1 and a resonance energy of
1891.4 − 12.6i meV integrated over one unit cell in the x direction.

arrays of nanoantennas and photonic crystal slabs at normal
incidence [42].

The analytical normalization has been used to develop the
so-called resonant state expansion [37–41] for deriving the
influence of both weak and strong modifications of a given
system on its resonant states. Furthermore, it provides closed
expressions for the Purcell factor in open resonators [10] as
well as the sensitivity of resonant states in structures used for
refractive index sensing [42].

In this article, we provide an analytical normalization for
resonant states in periodic systems at oblique incidence. We
validate it by comparing predictions based on the resonant
state expansion with one and two modes with numerically
exact results that are obtained using the Fourier modal method
with adaptive coordinates [47], including the calculation of the
resonant states [42,48,49].

The resonant state expansion with a single mode determines
the influence of refractive index changes on the resonance
frequency and linewidth in a first-order perturbation theory
[42,50], which allows for efficient optimization of refractive
index sensing geometries. In the case of the two-mode resonant
state expansion, we consider geometrical modifications, where
the periodicity of the system is broken by introducing a
perturbation in every second unit cell. Thus, we show that
the resonant state expansion allows predicting the eigenfre-
quencies in systems with twice the period of the original
system, while the computational domain is defined by the
original unit cell. This approach can be easily extended to
larger supercells in order to investigate the influence of disorder
on the optical properties in periodic micro- and nanostructures

[51,52]. Furthermore, it has been shown that controlling the
superperiodicity allows for tailoring the optical properties of
photonic crystal slabs [53].

II. EXAMPLE GEOMETRY

Our analytical results are derived for two-dimensional
periodic systems that are finite in the third direction. However,
it is trivial to reformulate our theory to one- and three-
dimensional periodic systems. In the case of the latter, the
normalization is trivial due to the absence of any surface terms,
and only the volume contributions remain, with the volume of
interest being the three-dimensional unit cell. In the case of the
former, the system is periodic in one direction and translation
invariant in the second, i.e., has an arbitrary periodicity in the
second direction and is thus included in our treatment.

We consider henceforth a one-dimensional photonic crystal
slab as example geometry [see Fig. 1(a)], consisting of a
periodic layer 80 nm in thickness with period P = 300 nm,
in which 200 nm ZnO (n = 2.5) alternate with 100 nm
quartz (n = 1.5). The substrate is quartz; the superstrate is air.
Such systems exhibit transverse-electric (TE) and transverse-
magnetic (TM) quasiguided modes [28], which correspond to
waveguide modes in the high-index material in the absence of
periodicity. Due to the periodicity, the dispersion lines of the
waveguide modes repeat periodically in reciprocal space with
a period of 2π/P . The crossing of these dispersion lines is
partially lifted, because the corresponding modes can couple
depending on the symmetry of the electromagnetic fields and
of the structure, forming so-called stop bands. Additionally,
the periodicity allows coupling of the modes to the far field,
resulting in a finite linewidth, and, thus, the quasiguided
character of the modes.

We use Cartesian coordinates with x along the direction
of periodicity, y along the direction of translation invariance,
and z along the finite extension of the structure, as shown in
Fig. 1(a). Without the loss of generality, we choose ky = 0,
so that the transverse-magnetic polarization corresponds to
an electric field in the xz plane, whereas transverse-electric
polarization corresponds to an electric field along the y

direction.

III. WAVE EQUATION IN PERIODIC SYSTEMS

The starting point for our considerations is the wave
equation, which follows from Maxwell’s equations. For
nonmagnetic systems (μ = 1) with the spatially dependent
permittivity tensor ε(r; ω) in the frequency domain [time
dependence exp(−iωt)], the wave equation reads

L(ω)E ≡ −∇ × ∇ × E + ω2

c2
ε(r; ω)E = −i

4πω

c2
j, (1)

where L is defined as the corresponding operator acting on the
electric field E, and j is a current as the source of E.

In the case of two-dimensional periodic structures, we can
define the lattice vectors as

R = P1n1â1 + P2n2â2 (n1,2 ∈ Z), (2)

such that ε(r + R; ω) = ε(r; ω). The directions of periodicity
are in general not orthogonal and are specified by the unit
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vectors â1 and â2 with periods P1 and P2, respectively. The
corresponding reciprocal lattice vectors are

G = 2π

P1
n1b̂1 + 2π

P2
n2b̂2 (n1,2 ∈ Z), (3)

with âα · b̂β = δα,β (δα,β denotes the Kronecker δ).
Owing to the periodicity, we can apply Bloch’s theorem,

i.e., a solution of the wave equation (1) can be split into
an exponential factor, exp(ik · r), and a periodic part. Here,
k defines the in-plane momentum that is preserved apart
from Umklapp processes throughout the whole structure.
Henceforth, we consider a fixed k and its conjugate counterpart
−k in our derivations. Note that in an experimental setup,
k = 0 is associated with normal incidence, while k �= 0
corresponds to oblique incidence.

The top and bottom regions in the one- and two-dimensional
periodic structures consist of homogenous and isotropic space.
The permittivity values in the exterior are denoted by εtop and
εbot, respectively. In addition, εtop and εbot can be dispersive,
but are assumed to be real.

A complete set of solutions in homogeneous space above
and below the structure is given by the plane waves

Ep,α

K (r; ω) = ψα
K(r; ω) Êp,α

K (ω), (4)

where

K = k+G, (5)

α = {top,bot}, and p = {TE,TM} denotes the linear polariza-
tion states. Furthermore,

ψα
K(r; ω) = 1√

Su
eiK·r+iκα

K(ω)�zα

(6)

is a solution of the scalar wave equation in the top and bottom
layers, respectively, with the area of one unit cell Su and �zα =
|z − zα| specifying the distance to the xy plane through the
outermost interfaces between the periodic structure and the
exterior at zα . The z component of the corresponding wave
vector is given by

κα
K(ω) = ±

√
ω2

c2
εα(ω) − |K|2. (7)

Note that we define the sign in front of the square root
to be positive for outgoing plane waves, while its negative
counterpart denotes incoming plane waves. This requires
that the branch cut for taking the complex square root
has to be chosen such that Eq. (7) provides values on the
positive (negative) real or imaginary axis for εαω2/c2 ∈ R
and outgoing (incoming) boundary conditions. The normalized
polarization vectors are

ÊTE,α
K = êz × iK

|K| , (8)

ÊTM,α
K = −i√(

κα
K

)2 + |K|2

(
sακα

K
K
|K| − |K|êz

)
, (9)

with Êp,α

−K · Êp,α

K = 1, s top = −1, and sbot = 1. The scalar waves
obey the following orthonormality relation when integrating

over one unit cell:∫
Su

dxdyψα
−Kψα

K′ = δK,K′ . (10)

This immediately results in an orthogonality relation for the
vector waves in Eq. (4), given by∫

Su

dxdyEp,α

−K · Ep′,α
K′ = δK,K′δp,p′ . (11)

A. Green’s dyadic and resonant states

The derivation of the solution of the wave equation (1) is in
general nontrivial. Using the Green’s dyadic G(r,r′; k; ω) of a
system, which is defined by the property

L(ω)G(r,r′; k; ω) =
∑

R

1δ(r − r′ − R), (12)

the electric field E generated by a source j can be calculated
as

E(r; k; ω)=−i
4πω

c2

∫
V
dV ′G(r,r′; k; ω) j(r′; k; ω). (13)

In the following, we extend the derivations in Ref. [42] to
oblique incidence and show how we can express the Green’s
dyadic of one- and two-dimensional periodic systems in terms
of the resonant states.

Resonant states are solutions of the wave equation (1) in
the absence of sources (i.e., j = 0) with outgoing boundary
conditions in the z direction as defined according to Eqs. (6)
and (7):

L[ωm(k)]Em(r; k) = 0. (14)

The eigenfrequencies ωm(k) are in general complex with the
real part denoting the resonance frequency and −2 Im(ωm)
being the resonance linewidth. Owing to reciprocity, ωm(k) =
ωm(−k). Furthermore, for every resonant state at the eigenfre-
quency ωm, there exists a resonant state with the electric field
distribution E∗

m at the eigenfrequency −ω∗
m.

Let us introduce the field Ẽm(r; k; ω) as a solution of the
differential equation

L(ω)Ẽm(r; k; ω) = ω2 − ω2
m

c2
σm(r; k). (15)

The vector of the periodic source σm is proportional to the
current j localized inside the periodic structure, i.e., is zero
above and below it. In the limit ω → ωm, this results in
the eigenvalue equation (14) for the resonant state Em. In
combination with Eq. (13), we obtain

Em(r; k) = lim
ω→ωm

Ẽ(r; k; ω)

= lim
ω→ωm

∫
V
dV ′G(r,r′; k; ω)

ω2−ω2
m

c2
σm(r; k). (16)

Note that the source term in Eq. (15) has a rather simple
form. In principle, the main requirement is that the right-hand
side of Eq. (15) vanishes in the limit ω → ωm with the
frequency behavior ∝ (ω − ωm). Hence, we assume that the
eigenfrequencies ωm must be simple poles of G. In addition,
the behavior of G on the complex frequency plane is deter-
mined by cuts arising from the two branches of κα

K in Eq. (7),
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one pair for each reciprocal lattice vector G. For nonabsorbing
media in the exterior half spaces, these cuts start at branch
points on the real frequency axis at the Rayleigh anomalies
ωK. Furthermore, the cuts must not cross the real frequency
axis. We choose them to extend to the half plane with a negative
imaginary part, which is suited also for absorbing media. At
the Rayleigh anomalies, certain solutions of the homogeneous
wave equation in the exterior change their character from
evanescent to propagating in the z direction. This opening
or closing of far-field channels occurs for κα

K = 0, and it
influences the spectral line shape [26].

In summary, the behavior of G is determined by a countable
number of poles and cuts on the complex frequency plane, so
that we can use the Mittag-Leffler theorem [39,54,55] and
write

G(r,r′; k; ω) =
∑
m

Rm(r,r′; k)

ω − ωm

+
∑
ωK

GωK (r,r′; k; ω). (17)

The first term on the right-hand side arises from the poles with
residues Rm, the second term denotes the cut contributions
[38,39,55]:

GωK (r,r′; k; ω) = 1

2πi

∫ ωK

ωK−i∞
dω′ �GωK (r,r′; k; ω′)

ω − ω′ . (18)

The integrand contains the difference in the Green’s dyadic
when approaching the cut from opposite sides; i.e., for ω on
the cut, we have

�GωK (r,r′; k; ω) = lim
ε→0

G(r,r′; k; ω + ε) − G(r,r′; k; ω − ε).

(19)

Note that the cut is not defined uniquely on the complex
frequency plane [55], and Eq. (18) just provides an example
of cut contributions.

If we assume the normalization condition∫
V

dV Em(r; −k) · σm(r; k) = 1 + δωm,0, (20)

the application of Eq. (17) in Eq. (16) results due to reciprocity
(see Appendix C) in

G(r,r′; k; ω) = c2
∑
m

Em(r; k) ⊗ Em(r′; −k)

2ωm(k)[ω − ωm(k)]

+
∑
ωK

GωK (r,r′; k; ω), (21)

where ⊗ denotes the outer vector product. It is worth mention-
ing that Eq. (21) is only valid up to the outermost interfaces
in z direction; i.e., it cannot be used in the homogeneous
top and bottom half spaces above and below the spatially
inhomogeneous structure of interest. From a physical point of
view, this is clear, because the Green’s dyadic must not grow
exponentially in the exterior. Mathematically, it is a direct
consequence of the applicability of the Mittag-Leffler theorem,
which requires for Eq. (21) that the Green’s dyadic remains
finite and analytical in the whole complex frequency plane
except for a countable number of poles and the cuts [54]. This
condition, however, cannot be fulfilled in the exterior regions
due to the outgoing boundary conditions.

The condition in Eq. (20) is similar to that provided in
Ref. [40], but it contains the conjugated resonant electric
field at −k. In the case of degenerate resonant states, the
source terms σm have to be chosen such that they ensure that∫
V

dV Em(r; −k) · σm′ (r; k) = δm,m′ .
One can formulate the cut contributions in a way similar to

that of the poles:

GωK (r,r′; k; ω)

= c2
∫ ωK

ωK−i∞
dω′ EωK (r; k; ω′)⊗EωK (r′; −k; ω′)

2ω′(ω − ω′)
. (22)

Here, the fields EωK are eigensolutions of Eq. (14) without the
requirement of outgoing boundary conditions.

B. Normalization

Equation (21) contains electric field distributions Em as
solutions of Eq. (14). However, in Eq. (14), the fields Em are
only fixed up to an arbitrary scalar factor. Therefore, one has
to determine the correct factor for Em in Eq. (21), i.e., the
correct normalization of the resonant states. Similarly to the
derivations in Ref. [10] and references therein, this can be
achieved by substituting σm from Eq. (15) into Eq. (20) and
subtracting a zero in the form of an integrand based on Eq. (14),
which yields

1 + δωm,0 = lim
ω→ωm

c2

ω2 − ω2
m

×
∫
V

dV
[
E−

m · L(ω)Ẽ+
m(ω) − Ẽ+

m(ω) · L(ωm)E−
m

]
. (23)

For brevity of notations, we introduce here

E±
m ≡ Em(±k), Ẽ±

m(ω) ≡ Ẽm(±k; ω). (24)

After some algebra (see Appendix B), one obtains the
normalization condition

1 + δωm,0 = IV
m + ∂S∂V

m

∂(ω2)

∣∣∣∣
ωm

, (25)

with the volume term

IV
m ≡

∫
V

dV E−
m · ∂(ω2ε)

∂(ω2)

∣∣∣∣
ωm

E+
m (26)

and the surface term

S∂V
m (ω)≡ c2

∮
∂V

dS
[
E−

m · ∂sẼ+
m(ω) − Ẽ+

m(ω) · ∂sE−
m

]
. (27)

Here, ∂s denotes the derivative in the direction of the surface
normal.

The field distribution Ẽm depends on the source σm in
Eq. (15), so that it seems to be difficult to evaluate Eq. (27)
and its derivative with respect to ω2 at ωm. However, due to
the periodicity of the fields, the surface contributions at the
periodic boundaries vanish, and only the contributions at the
surfaces in the homogeneous top and bottom regions remain.

The fields in the exterior (indicated by rα
> with α =

{top,bot}) can be decomposed into plane waves:

Ẽm(rα
>; k; ω) =

∑
K,p

ã
p,α

K (ω)Ep,α

K (rα
>; ω). (28)
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Note that we omitted the mode index m in the expansion
coefficient ã

p,α

K for the sake of brevity. The exact form of the
source σm influences the frequency dependence of ã

p,α

K , while

a
p,α

K ≡ ã
p,α

K (ωm) (29)

is solely determined by the resonant field distribution. As
shown in Appendix B, it is sufficient to know a

p,α

K for the
evaluation of Eq. (27), because the derivative of S∂V

m with
respect to ω2 only depends on ã

p,α

K (ωm).
The resulting surface contribution in Eq. (25) can in

principle be evaluated for arbitrary surfaces in the exterior
(see Appendix B). The simplest expressions are found when
assuming that the surfaces are planes normal to the z direction.
In this case, the correct analytical normalization can be written
as

1 + δωm,0 = IV
m + S top

m + Sbot
m , (30)

with the top and bottom surfaces being located at relative
positions �zα in the exterior:

Sα
m= i

2

∂(ω2εα)

∂(ω2)

∣∣∣∣
ωm

∑
K,p

e2iκα
K(ωm)�zα

κα
K(ωm)

a
p,α

−Ka
p,α

+K. (31)

Note that the surface contributions vanish for guided modes
with Im(κα

K) > 0 ∀ K in the limit �zα → ∞, providing the
expected result that the normalization of guided modes can
be obtained by integrating the volume term in the z direction
from −∞ to ∞. Furthermore, Eq. (31) results in Eq. (5) of
Ref. [42] when considering normal incidence and �zα = 0,
but at oblique incidence, it requires knowing also the conjugate
form of the resonant electric field.

In the case of resonances that emit light to the far field,
the exponentially growing contribution in the volume term
is exactly compensated by the surface term. Intuitively, the
volume and surface integrals are related to the energy stored in
the volume and the energy flux through the surface. The part
of the volume term corresponding to emission, which should
not be used for the normalization, increases exponentially
with distance and is removed by the surface term. Figure 2
illustrates this behavior for the transverse-electric resonance
of the example structure at kx = π/2P ≈ 5.236 μm−1 and
a resonance energy of 1891.4 − 12.6i meV. As indicated in
Fig. 2(a), we extend the volume of integration to the substrate
region starting from the minimum volume V0 containing
the outermost interface of the structure, i.e., the minimum
volume containing all the inhomogeneities of the permittivity
within the unit cell. The resonant electric field distribution
depicted in Fig. 2(b) has been normalized using Eq. (30)
based on this minimum volume. In Fig. 2(c), we show how the
additional volume contribution in the substrate diverges for
increasing volume of integration using the normalized fields
(black solid line, left axis). The red solid curve demonstrates
the cancellation of the additional volume contribution by the
modification of the surface term in Eq. (30) based on our
numerical calculations. The cancellation within the range of
10−12 shows the validity of the normalization, with the nonzero
value being due to limitations of the accuracy of our numerical
scheme [47].

FIG. 2. The normalization of radiative resonances contains a
volume and a surface contribution. The normalization volume spans
in a lateral direction over one unit cell and contains at least the
outermost interfaces to the homogenous top and bottom half spaces,
as indicated by V0 in panel (a). Increasing the volume of integration
for the normalization, e.g., by adding a volume of height �z in
the substrate region, results in an additional volume contribution
I�V
m that diverges for �z → ∞. Panel (b) displays the magnitude

of the correctly normalized resonant electric field distribution in one
unit cell for the same resonance as in Fig. 1(b). For this normalized
field, the black solid line in panel (c) depicts |I�V

m |. This divergence
is compensated by the modification �Sm of the surface term, as
indicated by the red solid line.

IV. RESONANT STATE EXPANSION

For the sake of simplicity, we provide here the derivation of
the resonant state expansion for nondispersive media, although
the resonant state expansion is not limited to such systems [41].
Following the derivations in Ref. [40] and references therein,
we can rewrite the Green’s dyadic as (see Appendix D)

G(r,r′; k; ω) = c2
∑∫

m

Em(r; k)⊗Em(r′; −k)

2ω[ω − ωm(k)]
, (32)

where Em and ωm denote either the resonant field distribution
and the frequency at a pole or their continuous values on
a cut. Similarly, we define by the symbol

∑∫
the combined

contribution of a discrete sum over the resonant states and
integrals along the cuts.

Next, we may consider the perturbations �ε(r) of our initial
system. In the case of periodic structures, �ε is supposed to
be periodic, and it must not exceed the region of the spatial
inhomogeneities of the unperturbed system in the z direction,
where Eq. (21) is no longer applicable. Then, the modified
eigenvalue equation (14) can be written in the following
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manner:

L(ωμ)Eμ = −ω2
μ�ε(r)

c2
Eμ. (33)

Here, Eμ denotes the resonant electric field distribution of the
modified system with the eigenfrequency ωμ. Using Eqs. (13)
and (32), we can set up an integral equation for the new
eigensolutions:

Eμ(r; k) = −
∑∫

m

ωμEm(r; k)

2(ωμ − ωm)
Vm,μ. (34)

Here, we introduce the overlap integrals

Vm,μ =
∫
V

dV Em(r; −k) · �ε(r)Eμ(r; k). (35)

Equation (34) motivates the ansatz

Eμ(r; k) =
∑∫

m

bmEm. (36)

Substituting this ansatz into Eqs. (34) and (35) and comparing
the coefficients for each resonant state Em yields

ωmbm = ωμ

∑∫
m′

(
δ̂m,m′ + 1

2
Vm,m′

)
bm′ , (37)

where δ̂m,m′ denotes a Dirac δ for continuous contributions
and a Kronecker δ for discrete states, and the matrix element
Vm,m′ contains the resonant electric field distributions of two
unperturbed resonant states. Equation (37) is a generalized
linear eigenvalue problem for eigenvalues ωμ and expansion
coefficients bm that can be straightforwardly transformed into
a standard linear eigenvalue equation [37]. Furthermore, in
numerical implementations, the number of resonant states is
limited to a finite number, and the cut contributions can be
replaced by a discrete set of cut poles [38].

A. First-order perturbation theory

For small permittivity changes �ε, it is often sufficient to
take only one resonant state in Eq. (37) into account. This
results in

�ω ≡ ωμ − ωm ≈ −ωm

2
Vm,m. (38)

If the permittivity change �ε is constant in a certain analyte
volume Va, the integral Vm,m is proportional to �ε. In this
case, we can easily consider the limit �ε → 0. Using the
refractive index instead of the permittivity, we then obtain the
sensitivity of the eigenfrequency ωm with respect to changes
of the refractive index in Va for k �= 0:

∂ωm

∂n
= −ωmn

∫
Va

dV E−
m · E+

m. (39)

Figure 3 depicts resonance energy (c) and linewidth (d) as
a function of the refractive index in the high-index material of
the periodic layer in the example geometry for two transverse
magnetic resonances at kx = 0.2 μm−1. Black solid and
blue dashed lines have been derived from Eq. (39) for a
reference index of n = 2.5 as ωμ ≈ ωm + �n∂ωm/∂n, with
black solid lines for the resonance at 2736.6 − 0.2i meV
and blue dotted lines for that at 2737.5 − 5.2i meV. The
corresponding resonant electric field distributions are shown

FIG. 3. Comparison of first-order perturbation theory (black solid
and blue dashed lines) and numerically exact results (blue squares
and black dots) for two transverse-magnetic (TM) resonances at
kx = 0.2 μm−1. The resonance energies are 2736.6 − 0.2i meV and
2737.5 − 5.2i meV; the corresponding normalized resonant electric
field distributions can be seen in panels (a) and (b), respectively.
Panels (c) and (d) show the resulting resonance energy and linewidth
as a function of the refractive index in the high-index material of the
periodic layer. The results of the first-order perturbation theory have
been derived for a reference index of 2.5.

in panels (a) and (b), respectively. Blue squares and black
dots are the exact results of full numerical simulations of
resonance energy and linewidth for the given refractive index
values. For small changes of the refractive index, the exact
results agree well with the first-order perturbation theory, thus
justifying its applicability for predicting the dependence of the
eigenfrequencies on the refractive index within the considered
range of refractive index values.

Note that the electric field distributions of the two resonant
states in Fig. 3 are rather similar. Both modes possess a nonzero
resonance linewidth; i.e., they have a finite lifetime due to
radiative losses. The main difference between these two modes
is the behavior of the (−1) diffraction order in the substrate.
The resonant state in Fig. 3(a) exhibits exponential decay in
this diffraction order, while the resonant state in Fig. 3(b) grows
exponentially in the exterior, thus emitting light to the far field
via this channel. Both modes grow exponentially in the zeroth
order, i.e., radiate to the far field, and decay in all remaining
orders. In Fig. 4, we show the dispersion of these two modes
from the center of the first Brillouin zone to kx = 0.21 μm−1.
The black dotted line in Fig. 4(a) denotes the position of the
(−1) Rayleigh anomaly, at which the (−1) diffraction order
changes its character on the real frequency axis from decaying
to propagating when increasing ω or kx . As we can see, the two
resonant states from Fig. 3 can be traced continuously over the
entire range.

In the first place, it might seem counterintuitive that there
are regions in the first Brillouin zone in which both resonant
states from Fig. 3 contribute simultaneously. In fact, the mode
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FIG. 4. Resonance energy (a) and linewidth (b) of the resonances
depicted in Fig. 3 as a function of the in-plane momentum kx . The
black dotted line in panel (a) denotes the Rayleigh anomaly (RA) due
to the opening of the (−1) diffraction order in the substrate. As seen
in panels (c) and (d), the predictions from the first-order perturbation
theory (black solid and blue dashed lines) for the real and imaginary
parts of ∂E/∂n (E = h̄ω) agree well with the numerically calculated
derivatives �E/�n (blue squares and black dots) for changes of the
refractive index in the high-index material of the periodic layer.

labeled TM 1 (TM 2) determines the optical properties below
(above) the opening of the (−1) diffraction order on the real
frequency axis. If the Rayleigh anomaly is far away from the
real part of the resonance frequency of mode TM 1 (TM 2), the
far-field spectra below (above) the Rayleigh anomaly exhibit
the typical Lorentzian or Fano line shape of a single resonance.
However, while the Rayleigh anomaly separates two regions
on the real frequency axis, the behavior of the analytical
continuation to complex frequencies is more sophisticated.
As shown in Ref. [33], both resonant states do contribute
equivalently to the shape of the far-field spectra if kx and ω

are close to the Rayleigh anomaly and both eigenfrequencies
are nearby. In our example geometry, this happens around
kx = 0.17 μm−1 and 2730 meV [see Fig. 4(a)]. In that region,
the spectral behavior significantly deviates from the typical
Lorentzian or Fano line shape (see Fig. 3 in Ref. [33]).
Considering the functional dependence of the Green’s dyadic
in terms of complex κbot

(−1) instead of ω, it is even possible
to remove the contribution of the cut [33,39]. Alternatively,
the cut for the square root in Eq. (7) that starts at the (−1)
Rayleigh anomaly can be chosen such that both resonances
are on the same Riemann sheet in the complex ω plane, so that
both modes have to be taken into account in the expansion
of the Green’s dyadic, while the influence of the cut is
reduced [55].

As Eq. (39) requires the correct normalization of the
resonant electric field distributions, we can use the comparison
of Eq. (39) with the numerical derivative �ω/�n for small
�n in order to validate Eq. (30) at inclined incidence. Figure 4
shows the resulting real (c) and imaginary parts (d) of the
slopes for the same modes as in panels (a) and (b). The
perturbation theory (black solid and blue dashed lines) is
in excellent agreement with the numerical derivative (blue
squares and black dots).

It is worth mentioning that the sensitivity of the eigen-
frequencies on the refractive index change in the high-index
dielectric is rather large. The values of the figure of merit as
|∂ωm/∂nIm(ωm)| exceed the values of the plasmonic antennas
in Ref. [42]. This is because the quality factor of the modes is
high and the refractive index change takes place in a region of
high field intensities, thus rendering photonic crystal slabs as
a good candidate for refractive index sensing if it is possible
to realize the refractive index changes in the periodic layer.

B. Two-mode resonant state expansion

If there are resonant states with close eigenfrequencies
on the complex frequency plane, or if the perturbation �ε

becomes larger, the first-order perturbation theory is no longer
accurate for describing the influence of the perturbation on the
resonant states. Consequently, one has to use the resonant state
expansion with several modes.

The simplest case is the two-mode resonant state expansion
that is well suited to describe mode hybridization due to
geometrical modifications. In this case, the resonant state
expansion of Eq. (37) simplifies to the eigenvalue equation

ωμ

(
b1

b2

)
= 1

D

[
ω1(2+V22) −ω2V12

−ω1V21 ω2(2+V11)

](
b1

b2

)
, (40)

with

D = 2 + V11 + V22 + V11V22 − V12V21

2
. (41)

The analytical solutions of Eq. (40) are

ω±
μ = ω+ ±

√
ω2− + �, (42)

with

ω± = ω1(2 + V22) ± ω2(2 + V11)

2D
, (43)

� = ω1ω2V12V21

D2
. (44)

Notably, these solutions contain corrections to the unperturbed
eigenfrequencies that do not vanish for V12 = V21 = 0, provid-
ing the first-order result of Eq. (38) for weak perturbations. In
standard coupled mode theory, e.g., the well-known plasmon
hybridization [23], these contributions are not described.

Furthermore, the coupling terms in Eq. (40) are complex
numbers with nonzero imaginary parts. Hence, the hybridized
eigenfrequencies derived from Eq. (42) can exhibit a more
diverse behavior than the simple hybridization in the weak-
and strong-coupling limits with avoided crossing in either
the real or the imaginary part. To illustrate such behavior
and to validate Eq. (42), we compare the results of Eq. (42)
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FIG. 5. (a) The geometry of Fig. 1(a) is modified by shifting the
low-index region of the periodic layer in every second unit cell by
a distance s. Thus, a superperiodicity is introduced, which allows
coupling of the (−2′) and the (1′) fundamental transverse-electric
resonances (thin black dotted lines) at the border of the first Brillouin
zone of the superperiodic system at kx = π/2P ≈ 5.236 μm−1.
Using the resonant state expansion (black solid and dashed lines) for
these two resonances taken at s = 0 allows for predicting the behavior
of the resonance energies [panels (c) and (d)] and linewidths [panels
(c) and (e)] of the coupled modes (red dots), shown here as a function
of shift s for kx = π/2P [panels (b) and (c)] and in-plane momentum
kx for s = 5 nm [panels (d) and (e)].

with exact numerical solutions when introducing geometrical
modifications in our example geometry. In particular, we
modified every second unit cell by shifting the low-index
region by a certain distance s [see Fig. 5(a)]. Thus, we
introduce a superlattice with period P ′ = 2P . Consequently,
the first Brillouin zone is downsized by a factor of 2, and
additional bands of quasiguided modes occur. For instance,
there is a new mode of order (1′) that is created by diffracting
the mode with order (1) by 2π/P ′ = π/P , i.e., ω(1′)(kx) =
ω(1)(kx − π/P ). At the border of the first Brillouin zone, this
mode crosses the mode with order (−2′) when neglecting
interaction between these modes. Equation (42) allows us to
predict the mode hybridization due to the interaction.

Figure 5 shows a comparison between numerical calcula-
tions (red dots) and the results of Eq. (42) (black solid and
dashed lines) for the transverse-electric mode at the crossing

of the (1′) and (−2′) lines. Figures 5(b) and 5(c) depict the
dependence of the resonance frequency and the linewidth,
respectively, on the shift parameter s at the border of the first
Brillouin zone (kx = π/P ′). Even for shifts on the order of
50 nm, the differences between exact results and the two-mode
resonant state expansion are small. Figures 5(d) and 5(e)
show the resonance frequency and the resonance linewidth,
respectively, as a function of in-plane momentum kx for a
constant shift of s = 5 nm. The black dotted lines indicate the
results in the uncoupled case with s = 0 nm. It can be seen that
Eq. (42) resembles well the behavior obtained by numerical
simulations over the entire range. In particular, the two-mode
resonant state expansion reproduces accurately the observed
avoided crossing for both the resonance frequency and the
resonance linewidth.

V. SUMMARY

We have derived an analytical mode normalization for one-
and two-dimensional planar periodic structures. Our results
have been validated by comparing full numerical simulations
with the resonant state expansion for one and two modes. Our
work will be relevant for designing advanced geometries for
refractive index sensing and for obtaining a deeper understand-
ing of the influence of geometrical perturbations on the optical
properties of micro- and nanostructures including arrays of
plasmonic nanoantennas as well as photonic crystal slabs. Due
to the high sensitivity of the resonance frequencies and the high
quality factor of the modes in the investigated photonic crystal
slab, such structures seem to be promising candidates for re-
fractive index sensing devices [56]. In addition, the correct nor-
malization is necessary for calculating the Purcell factor, for es-
timating the changes of the spontaneous emission rate of quan-
tum emitters located inside the micro- and nanostructures [10].
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APPENDIX A: RELATIONS IN
HOMOGENEOUS EXTERIOR

The following relations are valid in the exterior homo-
geneous layers. Consider ψ−K(r; ω) and ψK′ (r; ω) being
solutions of the scalar wave equation. Here, we take −K =
−k − G and K′ = k + G′, i.e., having opposite in-plane
momentum k, which corresponds to the usual field conjugation
in our theory [see, e.g., Eqs. (23) and (27)]. In this case,

0 = ψ−K

(
∇2+ ω2ε

c2

)
ψK′ − ψK′

(
∇2+ ω2ε

c2

)
ψ−K

= ψ−K∇2ψK′ − ψK′∇2ψ−K. (A1)
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Integrating over an arbitrary volume and using Green’s second
identity results in

0 =
∫
V

dV (ψ−K∇2ψK′ − ψK′∇2ψ−K)

=
∮

∂V
dS(ψ−K∂sψK′ − ψK′∂sψ−K). (A2)

If we chose a volume that spans in lateral directions over
one unit cell, the surface integrals at the boundary of the unit
cell vanish due to the periodicity of ψ−K∂sψK′ and ψK′∂sψ−K.
Furthermore, if we select the top or bottom surface to be a plane
normal to the z direction, we can derive from the orthogonality
relation (10) that

∫
Su

dxdy

(
ψ−K

∂ψK′

∂�z
−ψK′

∂ψ−K

∂�z

)

= i(κK′ −κK)δK,K′ = 0. (A3)

Thus, without any restrictions on the remaining top or bottom
surface, we obtain from Eqs. (A2) and (A3) that any surface
integral over one unit cell must vanish:

∫
Su

dS(ψ−K∂sψK′ − ψK′∂sψ−K) = 0. (A4)

As the polarization vectors Êp,α

K (ω) are independent of r,
Eq. (A4) also holds for solutions of the vector wave equation:

∫
Su

dS
(
Ep,α

−K · ∂sE
p′,α
K′ − Ep′,α

K′ · ∂sE
p,α

−K

) = 0. (A5)

APPENDIX B: INTEGRAL RELATIONS
FOR NORMALIZATION

This section is devoted to deriving Eqs. (25) to (27) as
well as Eq. (31) from Eq. (23). Equation (23) can be written
as

1 + δωm,0 = lim
ω→ωm

(I1 + I2), (B1)

with

I1 ≡
∫
V
dV

E−
m · ω2ε(ω)Ẽ+

m(ω) − Ẽ+
m(ω) · ω2

mε(ωm)E−
m

ω2 − ω2
m

, (B2)

which immediately provides Eq. (26) in the limit ω → ωm, and

I2 ≡c2
∫
V
dV

Ẽ+
m(ω) · ∇ × ∇ × E−

m − E−
m · ∇ × ∇ × Ẽ+

m(ω)

ω2 − ω2
m

.

(B3)

The following vector relation [40] can be used in order to trans-
form the volume integral in Eq. (B3) into a surface integral:

A · ∇ × ∇ × B − B · ∇ × ∇ × A

= ∇ ·
⎡
⎣A(∇ · B) − B(∇ · A) +

∑
j=x,y,z

Bj∇Aj − Aj∇Bj

⎤
⎦.

(B4)

When being in the homogeneous exterior, we can use that
∇ · Em(rα

>; k) = 0 and ∇ · Ẽm(rα
>; k; ω) = 0, which yields

I2 = S∂V
m (ω)

ω2 − ω2
m

. (B5)

The term S∂V
m (ω) is defined in Eq. (27) and contains an inte-

gration over the surface ∂V of the normalization volume V . As
the surface contributions at the periodic boundaries vanish, we
only have to consider the top and bottom surfaces, for which we
deduce from the plane wave expansion (28) and Eq. (A5) that
S∂V

m (ωm) = 0. Hence, adding this zero to Eq. (B5), we obtain
that I2 has the form of a difference quotient, which results in
the ω2 derivative at ωm when taking the limit ω → ωm:

lim
ω→ωm

I2 = lim
ω→ωm

S∂V
m (ω)−S∂V

m (ωm)

ω2−ω2
m

= ∂S∂V
m

∂(ω2)

∣∣∣∣
ωm

. (B6)

To calculate the derivative in Eq. (B6), i.e., the surface
contribution in Eq. (25), we may now use the plane wave
expansions of Em and Ẽm. Equations (28) and (29) then provide

∂S∂V
m

∂(ω2)

∣∣∣∣
ωm

= c2
∑
p,α

∑
K,K′

a
p,α

−K

∂c
p,α

K,K′S
α
K,K′

∂(ω2)

∣∣∣∣∣
ωm

, (B7)

with α = {top,bot}, p = {TE,TM},
c
p,α

K,K′(ω) = ã
p,α

K′ (ω)Êp,α

−K(ωm) · Êp,α

K′ (ω), (B8)

and

Sα
K,K′(ω) =

∫
Su

dS
[
ψα

−K(ωm)∂sψ
α
K′ (ω) − ψα

K′ (ω)∂sψ
α
−K(ωm)

]
.

(B9)

Note that a
p,α

−K originates from the plane wave expansion
of Em, so that it does not depend on ω. In contrast,
c
p,α

K,K′ (ω) ∝ ã
p,α

K′ (ω), so that it is in general frequency
dependent. Therefore, the derivative on the right-hand side of
Eq. (B7) can be expressed as

∂c
p,α

K,K′S
α
K,K′

∂(ω2)

∣∣∣∣∣
ωm

= Sα
K,K′ (ωm)

∂c
p,α

K,K′

∂(ω2)

∣∣∣∣∣
ωm

+ c
p,α

K,K′ (ωm)
∂Sα

K,K′

∂(ω2)

∣∣∣∣
ωm

. (B10)

Owing to Eq. (A4), Sα
K,K′(ωm) = 0, so that we obtain

∂S∂V
m

∂(ω2)

∣∣∣∣
ωm

=c2
∑
p,α

∑
K,K′

a
p,α

−Kc
p,α

K,K′ (ωm)
∂Sα

K,K′

∂(ω2)

∣∣∣∣
ωm

, (B11)

with

∂Sα
K,K′

∂(ω2)

∣∣∣∣
ωm

= i
∂κα

K′

∂(ω2)

∣∣∣∣
ωm

∫
Su

dS
[
ψα

−K(ωm)∂s�zαψα
K′(ωm)

−�zαψα
K′(ωm)∂sψ

α
−K(ωm)

]
. (B12)

In summary, the surface contribution to Eq. (25) can be cal-
culated from Eq. (B11), which only depends on the expansion
coefficients a

p,α

±K of the resonant field distributions. Hence, the
normalization in Eq. (25) does not depend on the spatial profile
of the underlying source term σm, because both the volume and
the surface term do depend only on limω→ωm

Ẽm(ω) = Em;
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i.e., they are independent of the actual frequency dependence
of Ẽm, determined by the source term σm, and can be directly
calculated from the resonant field distributions. Furthermore,
the surface contribution can be derived for arbitrary surfaces.
Using Eq. (7) and choosing Su to be a plane normal to the z

axis straightforwardly results in Eq. (31).

APPENDIX C: GREEN’S DYADIC AND RECIPROCITY

Consider two currents, j+1 (r) ≡ j1(r; k; ω) and
j−2 (r) ≡ j2(r; −k; ω), that are the sources of the fields
E+

1 and E−
2 . Taking the wave equation (1) for j+1 , multiplying

it with E−
2 , and subtracting the wave equation for j−2 multiplied

with E+
1 provides

4πiω

c2

(
E−

2 · j+1 − E+
1 · j−2

)
= E−

2 · (∇ × ∇ × E+
1

) − E+
1 · (∇ × ∇ × E−

2

)
. (C1)

When integrating this equation over a volume V that extends
to the exterior homogeneous regions, we can use the vector
relations of Eq. (B4) to transform the right-hand side into a
surface integral:

4πiω

c2

∫
V

dV
(
E−

2 · j+1 − E+
1 · j−2

)

=
∮
∂V

dS
(
E+

1 · ∂sE−
2 − E−

2 · ∂sE+
1

)
. (C2)

If the volume of integration spans over one unit cell in the
lateral direction, the right-hand side of this equation equals
zero due to the periodicity of the fields and Eq. (A5).

We can now replace the fields in Eq. (C2) using the Green’s
dyadic:

0 =
∫∫

V
dV dV ′[j+1 (r) · G(r,r′; −k; ω)j−2 (r′)

−j−2 (r) · G(r,r′; k; ω)j+1 (r′)
]
. (C3)

Because this relation has to be fulfilled for arbitrary j+1 and j−2 ,
it immediately follows that

G(r,r′; k; ω) = [G(r′,r; −k; ω)]T, (C4)

where the superscript denotes the matrix transpose.
Let us now derive the representation of the Green’s dyadic

in terms of resonant states. Formally, the cut contributions
in Eq. (17) can be considered as a series of integrals, each

denoting a continuous amount of poles on the cut. Therefore,
we may define the tensor Rm(r,r′; k) such that

G(r,r′; k; ω) =
∑∫

m

Rm(r,r′; k)

ω − ωm(k)
. (C5)

Accordingly, Eq. (16) becomes

Em(r; k) = lim
ω→ωm

∑∫
m′

1

c2

ω2 − ω2
m

ω − ωm′

×
∫
V

dV ′Rm′(r,r′; k) · σm(r′; k). (C6)

This relation must be fulfilled independently of the exact
form of σm, which requires that Rm has the form of an outer
vector product [38], i.e., Rm(r,r′; k) ∝ Em(r; k) ⊗ Fm(r′; k),
with fields Fm(r′; k) that have to be determined from the
properties of the Green’s dyadic. If we consider reciprocal
systems, the reciprocity principle requires that Rm(r,r′; k) =
[Rm(r′,r; −k)]T, so that Fm(r′; k) = Em(r′; −k). There-
fore, we can deduce the ansatz Rm(r,r′; k) = c2Em(r; k) ⊗
Em(r′; −k)/2ωm, which results in Eq. (12). Similar consider-
ations for the cut contributions lead to Eq. (22).

APPENDIX D: SUM RULE AND CLOSURE RELATION

In this section, we follow the derivations in Ref. [10] for
obtaining the sum rule and closure relations for the resonant
states in periodic structures with nondispersive permittivity
functions. Substituting G from Eqs. (21) and (22) into Eq. (12)
and using that Em and EωK obey Eq. (14), we obtain

ε(r)

2

∑∫
m

ω2−ω2
m

ωm(ω−ωm)
E+

m ⊗ E−
m =

∑
R

1δ(r − r′ − R). (D1)

The second fraction on the left-hand side of Eq. (D1) reduces
to 1 + ω/ωm, and since the right-hand side does not depend
on the frequency ω, this splits into the closure relation

ε(r)

2

∑∫
m

E+
m ⊗ E−

m =
∑

R

1δ(r−r′−R) (D2)

and the sum rule
∑∫

m

E+
m ⊗ E−

m

ωm

= 0. (D3)

Using this sum rule, we can rewrite the Green’s dyadic of
Eq. (21) in the compact form of Eq. (32).
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