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Abstract
A brief survey is provided of common designs for medical studies and
important issues in their implementation. The designs discussed
include those for laboratory studies, clinical trials, cohort studies,
case-control and related studies, and diagnostic studies.
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Introduction

The value of a medical study, which we take to be any human

health related investigation, depends primarily on the value of

the question or questions the study aims to answer and the

informativeness of the available data for answering these ques-

tions. Both these criteria are strongly influenced by study design.

This article aims to provide an overview of the design of medical

studies, excluding sample surveys, and of some important issues

in planning such studies. There are often overarching consider-

ations of ethics and simplicity that limit what is possible and

therefore make it difficult to be prescriptive about what is a good

study. Nevertheless, an understanding of general aspects of study

design should underlie the planning of any study.

Distinction can be made between clinical and epidemiological

studies. The former would often be concerned with the treatment

of patients and the latter with “the variation in disease occur-

rence and the reasons for that variation”.1 However, this

distinction can become blurred and, in recent years, the field of

clinical epidemiology has also emerged, defined by Weiss2 as

“the study of variation in the outcome of illness and of the rea-

sons for that variation”. In addition, some laboratory studies may

not be felt to fall in any of these categories. Another helpful and

important distinction is between observational and experimental

studies but there are many possible study types that fall between

these categories. For the purposes of this article, we will consider

only the most common types of studies. For each, we describe

the nature of data collection, which will largely make the

observational and experimental distinction, and the type of

questions being addressed.

The primary designs to be discussed will be for:

1. Laboratory studies

2. Clinical trials

3. Cohort studies
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4. Case-control and related studies

5. Diagnostic studies

Types of outcomes and regression models
Outcomes

For any study, there is usually a primary outcome, or response,

of interest. These may take a variety of forms but common types

are:

a. A continuous measurement, e.g. blood pressure, antibody

level

b. A yes/no (binary) indicator, e.g. disease versus no disease,

relapse versus no relapse

c. The time to an event, e.g. time to death, time to disease

d. A count variable, e.g. number of cells, number of

metastases.
Regression models

For a continuous measurement, it is often assumed that the

outcome, Y, follows a normal distribution, perhaps after a

transformation of some kind. Analysis will focus on modelling

the average or expected value of Y, E(Y), under different condi-

tions. The most common basis is a regression model which as-

sumes that

E(Y) ¼ a þ b1X1 þ b2X2 þ . þ bkXk

where the Xis represent explanatory variables that code infor-

mation on study subjects such as treatment or exposure received,

age, etc. and the b values are to be estimated and represent the

effect of the factor coded by the X variable on Y, all else being

equal. In the simple case where (say) X1 takes the value 0 for a

subject receiving treatment T1 and 1 for a subject receiving T2,

and there are no other explanatory variables, then b1 will esti-

mate the difference in E(Y) between a subject receiving T2 and

one receiving T1. If there are other explanatory variables in the

model, then b1 has the same interpretation but under the addi-

tional assumption that all other explanatory variables are the

same for the two subjects.

When Y is binary (either 0 or 1), then the regression

approach can model the logarithm of the odds of Y ¼ 1 versus

Y ¼ 0, [Pr(Y ¼ 1)/Pr(Y ¼ 0)], and, in the case of a binary

treatment/exposure indicator X1, b1 will represent the loga-

rithm of a ratio of the odds of Y ¼ 1 for treatment T2 with the

odds for treatment T1, a so-called odds ratio. This methodology

is termed logistic regression.

When interest is in a time to event outcome, a regression

model will typically be developed for a rate or risk function, r(t),

which may depend on time in some fashion. Typically log[r(t)] is

modelled and then b1 will represent a relative rate function

comparing, for example, the rate for subjects receiving T2 with

those receiving T1. This is a comparison, for the two treatments,

of the probability of an event occurring at time t given that it has

not occurred previously. For more details, see the paper on

survival analysis in this issue.3

A regression model for a count variable will typically model

the logarithm of the average count per unit of time or space

which is also a form of rate function. The coefficient b1 would

then be the logarithm of a relative rate comparing the count rate

in subjects receiving T2 with those receiving T1. The most
� 2016 The Authors. Published by Elsevier Ltd. This is an open access article
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frequently used model is termed Poisson; the name refers to the

distribution assumed for the count variable. Further discussion of

these methods can be found in the article on Regression in this

issue.4
Confounding

Regression models, and related analyses, that allow explanatory

variables for more than one factor are particularly valuable in

dealing with confounding. Confounding arises when an additional

factor is related both to an outcome variable and an explanatory

factor of primary interest, i.e. treatment or exposure. If this addi-

tional factor is not adjusted for in an analysis, often by inclusion in

a regression model, then any estimate of the relationship between

the outcome and the primary factor may be biased.

Laboratory studies

The amount of investigator control possible strongly influences

study design. Substantial control is often possible in laboratory

studies in terms of the number of observations taken and the

experimental conditions. An extensive literature on ‘experi-

mental design’ assumes this control and considers quite complex

designs. Here, only basic structures are presented to introduce

some concepts relevant to many study designs.

For concreteness, assume a study is to compare two treatments,

T1 andT2, and that there is an outcomeof interest, e.g. ameasure of

cell growth, denoted Y. The primary focus of the study will be to

compare the expected or average value of Y for cells receiving T1

with those receiving T2. Additionally, assume that there may be

another factor of importance that might influence Y, and, again for

concreteness, assume this is a simple two way classification, S1
and S2, for example, two laboratory technicians.

Table 1 displays two rather idealised study designs, I and II,

assuming the use of 100 well test plates. The first plate of design I

itself represents a simple design. If interest is restricted to ob-

servations in class S1, then a comparison of T1 and T2 could be

based on comparing Y values for the 50 wells on Plate 1 receiving

T1 and the 50 wells receiving T2. The precision with which the

averages, or expected values, of Y for wells receiving T1 and T2

can be determined will depend on the number of wells receiving

each treatment. This is often termed replication and is a central

feature of any study design. The observed average values in the

two groups will be compared and the replication will provide a

measure of the variation in Y against which any difference in the

averages can be assessed.

More generally in a study of design I, there will be separate

groups of observations in the same class, either S1 or S2, and
Observation numbers in two basic design structures

I II

T1 T2 T1 T2

S1 Plate 1 50 50 100 0

Plate 2 50 50 0 100

S2 Plate 3 50 50 100 0

Plate 4 50 50 0 100

Table 1
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within these groups there will be two sets of replicate observa-

tions receiving T1 and T2. Within a class, a comparison of Y

values for the two treatments can be made and the information

from these comparisons is combined across the different classes

to give an overall estimate of how Y depends on the treatment

received. The simplest design of this type would be represented

by the observations from Plates 1 and 3 of design I. The four rows

of design I represent a situation that also allows estimation of the

dependence of Y on the S1/S2 classification. This would be ach-

ieved by averaging the Y values for each plate and evaluating the

average of these averages in the two rows corresponding to each

class in light of the variation of the averages in plates with the

same classification.

Design II represents the situation when a study design re-

quires that all subjects in a defined group receive the same

treatment. In our example, this might correspond to radiation or

no radiation of plates. The comparison of T1 and T2 must then be

made between plates. Thus the average value of Y in Plate 1 can

be compared with the average value in Plate 2, both being

observed in class S1, and similarly the average values in Plates 3

and 4 can be compared. The replication in this design comes

from having multiple plates for which an average value of Y can

be determined.

Table 1 is idealised and the simple averaging of Y values dis-

cussed is only generally appropriatewith highly ‘balanced’ designs

as in Table 1. However, the general principles are applicable to

more complicated situations through the use of regression models

which also provide suitable measures of variability. A more

comprehensive discussion of measures of variability, and how

they are reflected in designs such as I and II, is provided in the

paper on Components of Variance in this issue.5

Clinical trials
General background

The usual aim of a clinical trial is to evaluate a new treatment for

some disease or compare alternative treatments or treatment

strategies. Obviously, a good clinical trial should seek to answer

an interesting question. The choice of treatments to be compared

and the patients on whom they are to be compared largely

characterize this. Strict entrance requirements that generate a

homogeneous patient population facilitate precise treatment

comparisons. However, the use of a more heterogeneous popu-

lation may be more practically relevant and convincing. The

comparison of two highly divergent treatments is simple and

likely to produce a result more quickly than a comparison of two

similar treatments, or a trial involving more than two treatments.

However, more complex designs may allow a more compre-

hensive set of questions to be addressed. Of course, treatments

must also be acceptable to clinicians who must enter their pa-

tients into the trial.

Traditionally, clinical trials have been classified in terms of

their developmental stage as phase I, II, III or IV; these labels

derive primarily from drug development. In this context, phase I

trials are primarily dose-finding, phase II studies provide a pre-

liminary investigation of efficacy, phase III designs compare new

treatments with standard therapy or no therapy, and phase IV

investigations relate to post-marketing surveillance. We focus on

comparative trials here.
� 2016 The Authors. Published by Elsevier Ltd. This is an open access article
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Sample size

The size of a study determines the precision with which ques-

tions can be answered. This section is relevant to all studies but

sample size is particularly important in clinical trials because it

also has ethical implications. Formal sample size calculations

will typically address one of two design questions:

a. How many subjects are needed?

b. Is the study worth doing if only a specific number of subjects

are available?

Such calculations are, it must be remembered, almost always

approximate and may not reflect the entire complexity of a

design. However, they will be typically based on some primary

effect measure such as an estimate of a difference in means, a

relative risk or an odds ratio. The variance of this estimated

measure will typically be of a form s2/n, where n is the number

of subjects in the study and s2 is determined by the particular

effect measure of interest and the variability expected in the

outcome measure of interest, the latter usually based on prior

data and/or publications. Thus precision will increase, i.e. the

variance will decrease, as n is increased.

It is often reasonable, and simplest, to determine a planned

sample size based on this measure of precision. However, the

concept of the power of a study is also widely used. Statistical

power is defined as the probability of detecting a designated ef-

fect when testing at a specific significance level. Significance

testing is discussed in a paper in this issue.6 Briefly, a signifi-

cance test will assess whether there is a non-zero effect of a

treatment or exposure on the outcome of interest and will be

associated with a particular level of significance, often 5%. This

stipulates that an investigator will accept no more than a 5%

chance of concluding an effect exists when, in fact, there is no

effect, i.e. the false positive rate. Power can be viewed as one

minus the false-negative rate for a statistical test.

A power calculation thus requires specification of a signifi-

cance testing level, together with two of (1) the effect size of

medical importance, (2) the power desired and (3) the sample

size, the remaining element then being the result of the calcu-

lation. The convention, that failure to reject the null hypothesis

of no effect is equivalent to concluding that the null hypothesis is

true, is inappropriate at the time of analysis but this decision

making structure is convenient for power calculations.

It has recently been encouraged, or required, to specify power

calculations when reporting study results. One motivation is to

consider the magnitude of effect that might have been missed in a

‘negative’ study. However, this is better addressed through confi-

dence intervals that reflect theuncertainty attached toanyestimated

effect. For example, if an effect of interest lies outside a 95% con-

fidence interval for the estimated effect, then it is unlikely to exist

whereas if it is in the interval then it cannot be ruled out. As Cox7

writes, power is “quite irrelevant in the actual analysis of data”.
Treatment assignment

Treatment assignment in a trial is often stratified to guarantee

demonstrable balance across one or more known prognostic

factors. These factors are used to define separate groups of pa-

tients within each of which a balance of treatment assignments is

desired. Since this balance ensures these factors are not related to

treatment assignment, they cannot confound any estimated

treatment effect. However, excessive stratification can be
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complex and even lead to poor balance if strata are too small. So

it is sensible to stratify on only a few major factors. Approximate

balance on other factors is maintained through random treatment

assignment, crucially also providing protection against unmea-

sured confounding factors.

An alternative to stratification is minimization. Minimization

avoids the potential problems of stratification with a large

number of factors, provided cross-classification of the factors is

not thought important. Rather than aiming for balance in each

stratum defined by the combination of the prognostic factors,

minimization ensures, when each prognostic factor is examined

individually, that there is appropriate balance between treatment

assignments. Unlike stratification, treatment allocation rules

cannot be determined in advance of the study and therefore

practical procedures for allocation are more complicated.

When designing a trial, it is increasingly required to specify

the statistical procedures intended for the analysis of the trial

through a‘statistical analysis plan’. This ensures that in-

vestigators think about the primary and secondary outcomes of

interest and the specific treatment comparisons of interest. This

also avoids a‘search for significance’ by examining many

different comparisons based on a variety of outcomes and

various subsets of the patient population. However, as argued by

Cox and Donnelly,8 the trial data, when available, may suggest

that additional or alternative analyses could be appropriate and

informative. If this leads to a radical change in trial objectives

then confirmatory studies will likely be needed. However, as Cox

and Donnelly write, “while an initial plan of analysis is highly

desirable, keeping at all cost to it alone may well be absurd”

because it unduly limits the information available from the

study.
Intention to treat

All patients in a trial should ideally be followed, even if they

abandon the treatment protocol. Exclusion of these patients can

introduce bias if their failure to complete the protocol is linked to

the outcome of treatment. Similarly, the primary analysis should

usually compare groups based on originally assigned treatments

to assess how they will perform in general use. This is termed an

‘intention to treat’ analysis. It may be of interest to restrict a

comparison to those patients receiving and tolerating treatment

regimens, addressing the question of ‘the effect of the treatment

on the treated’, but the case for such comparisons should be

carefully argued (See Matthews and Farewell,9 Chapter 18). Note

that, in order to avoid bias, treatment assignment should only

occur after informed consent procedures. Otherwise, the treat-

ment assigned may influence whether a patient agrees to enter

the trial making the treatment groups less comparable.
Randomization

A randomized clinical trial, in which a patient’s treatment is

randomly chosen and not therefore predictable, is generally

regarded as the best form of evidence. The advantages of a

randomized comparison are summarized by Cox7 as:

(a) an assurance that in a large experiment it is very unlikely

that the estimated treatment effects will be appreciably in

error; and

(b) an assurance that the random error of the estimated treat-

ment effects can be measured.
� 2016 The Authors. Published by Elsevier Ltd. This is an open access article
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The first assurance, (a), is of primary importance. The fact

that a group of patients on one treatment is observed to do

better than a corresponding group on an alternative treatment is

of value only if it can then be declared that the observed dif-

ference is attributable solely to the two treatments and not to

something else. Thus, randomization can be seen as the means

to establish that treatment caused the difference observed. In

this regard, approaches such as alternating treatment assign-

ment might be equally effective; however, randomization

additionally prevents deliberate or accidental interference in

treatment assignments.

A proposed alternative to randomization is the use of ‘his-

torical controls’ from previous studies of the same population of

patients. The use of these might be of value in some settings, say

in early stage trials, but the arguments for their use are much

more complex for comparative trials. Deeks et al.10 reviewed this

question and concluded:

“Results of non-randomized studies sometimes, but not al-

ways, differ from results of randomized studies of the same

intervention. Non-randomized studies may still give serious

misleading results when treated and control groups appear

similar in key prognostic factors. Standard methods of case-mix

adjustment do not guarantee removal of bias. .
The inability of case-mix adjustment methods to compensate

for selection bias and our inability to identify non-randomized

studies that are free of selection bias indicate that non-random-

ized studies should only be undertaken when randomized

controlled trials are infeasible or unethical.”
Factorial designs

Many clinical trials are designed, primarily, to answer a single

question. This may be an unnecessary or even unhelpful re-

striction. For example, for diseases that require multi-modal

therapy, a trial may compare alternative treatments within

each mode. This represents a factorial design and may make

better use of resources or even be essential to appropriately

evaluating treatment choices.
Sequential clinical trials

During a clinical trial, it is common, and often ethically

mandated, to prepare interim analyses of accrued data. If one

treatment can be shown to be superior, then it is necessary to

stop the trial so that all patients may receive the optimal

treatment. Unfortunately, the more frequently the study data

are examined, the more likely it is that a ‘statistically signifi-

cant’ result will be observed even if there is no difference be-

tween the treatments. For example a single test may have a 5%

chance of a false-positive result. However, if five such tests are

done, then the chance of at least one of the tests being positive

is 14.2%.

This phenomenon has led to specialized techniques to

‘monitor’ clinical trials. Fleming et al.11 argue that treatment

differences observed in the early stages of a trial may occur for a

variety of reasons, and that the primary purpose of a sequential

design is to protect against unexpectedly large treatment dif-

ferences. Therefore, Fleming et al. advocate using group

sequential designs based on scheduled repeated analyses that do

this but preserve sensitivity to late-occurring survival

differences.
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Equivalence trials

A trial to test the equivalent efficacy of two treatments, say

because a new treatment is expected to have lower toxicity or

cost than a current treatment, cannot be based on a failure to

reject a significance test because this does not establish equiva-

lence. Thus, equivalence trials are generally designed to establish

that the relative efficacy between two treatments does not exceed

some specific, usually clinically unimportant, level.

Essentially, the trial will be designed to provide a confidence

interval for the relative efficacy that is small enough to rule out

unacceptably large differences. If it is only knowledge that a new

treatment is no worse than a standard that is of interest, then the

term ‘non-inferiority trial’ is used.
Other designs

The most common design for a clinical trial is the so-called

parallel group design where patients are individually random-

ized. Two more complex designs are cross-over trials and cluster

randomized studies.

Cross-over designs can be used when patients can be treated

sequentially with more than one treatment. For example,

different symptomatic treatments for asthma could be made

available to a patient during successive months. If two treat-

ments, say A and B, are under study and two time periods will be

used, then the classic two-period cross-over design would enrol

patients and then randomly assign them to receive treatments in

the order AB or BA.

The potential advantage of a cross-over design is that treat-

ments can be compared within patients rather than between

patients, usually leading to more precise comparisons. However,

if the effect of treatments might ‘carry-over’ from one period to

the next, then a cross-over design is not recommended. Exten-

sions to more than two periods are possible.

Cluster randomized trials, or group randomized trials, arise

when randomization of individual patients is not possible or

inconvenient. For example, varying the treatment provided from

patient to patient within the same medical centre or practice

might be difficult or an educational intervention may be designed

for a classroom setting. In such cases, a group of study subjects

are effectively randomized together to the same intervention.

In such trials, the analysis must compare treatments at the

level of randomization and allow for correlation between out-

comes for subjects randomized together, arising because these

outcomes will be more similar than those for patients in different

clusters. A common approach to the analysis of such trials is to

use random effects models. (See paper on components of vari-

ance in this issue5). It is critical not to ignore the clustering

because this design will provide less precise estimates of treat-

ment effects than those available from a comparably sized indi-

vidually randomized trial.

Cohort studies

In a cohort study, a population or random sample of a population is

monitored longitudinally for a period of time. Important character-

istics of each cohortmember are ascertained at the start of the study,

or when a subject ‘enters’ the cohort, and during the period of

follow-up. This information is used to define the explanatory vari-

ables or ‘risk factors’ that may be related to outcomes of interest.
� 2016 The Authors. Published by Elsevier Ltd. This is an open access article
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A key feature is that potential risk factors are measured pro-

spectively, that is, before the outcome is observed. However,

some or all risk factor information, or indeed outcome informa-

tion, may not necessarily be acquired at the time of measure-

ment. A distinction is therefore sometimes made between

retrospective, or historical, cohort studies and prospective cohort

studies. A prospective cohort follows each individual and ac-

quires information after the individual agrees to enter the study.

In the classical historical cohort study, the period of follow-up

has usually occurred before the study is undertaken. Essen-

tially the study is a reconstruction of past events. This may be

cheaper and faster than a prospective cohort study but depends

on having accurate exposure data on subjects during the past,

avoiding issues such as recall bias, and accurate follow-up data

on virtually all subjects. Of course, there can be a range of

variation between these two extremes when some information is

acquired retrospectively and other prospectively. However, once

appropriate data are acquired, by whatever means, the analysis

would proceed as if the data were acquired prospectively.
Epidemiological cohort studies

The cohort study is a primary tool for the study of disease inci-

dence, importantly providing a direct estimate of the rate of

disease incidence in population subgroups defined by the

explanatory variables.

As well as through the prospective/retrospective data collec-

tion distinction, epidemiological cohort studies can also be

distinguished by whether they have an internal or external con-

trol group who do not experience an exposure of interest. An

internal control group arises when study subjects include unex-

posed individuals. If such a group is not present, for example in a

study of workers with a common occupational exposure, then

study subjects may be compared with an external standard. This

might be derived from national mortality or morbidity data, but

may not be appropriate for all purposes. For example, the so-

called ‘healthy worker effect’ suggests that employed in-

dividuals will be, on average, healthier than the general working

age population and thus there is a bias against detecting adverse

conditions when comparing an occupational cohort to national

age-specific data. Comparisons within the cohort are generally to

be preferred and an important design criterion is to ensure there

is sufficient detail on individual exposures to allow detailed

analysis of differential exposure levels.

Prospective epidemiological cohort studies are subject to the

limitation that the information collected is determined when the

study is initiated. Typically there will be a few major outcomes

that will be monitored and the explanatory variable information

will reflect what is known about possible disease risks. During

the course of the study, other information may suggest other

outcomes or other risk factors might be of interest. It is generally

difficult to compensate for this by additional retrospective data

collection.
Clinical cohort studies

A clinical cohort typically derives from longitudinal follow-up of

patients with a specific disease. Much more commonly than in

epidemiological cohorts, patients will enter the cohort over a

considerable period of time, the recruitment period. The basic

data structure is the same as that for an epidemiological cohort
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but the outcomes of interest will now typically be disease related

outcomes. Also, the risk factors of interest will generally be based

on clinical/laboratory/genetic information as well as de-

mographic factors. For example, based on a clinical cohort of

carefully followed rheumatoid arthritis patients, a question of

interest might be whether pain in joints leads to permanent

damage in those joints or, alternatively, what aspects of the

disease course are most related to a patient’s quality of life.

Often a clinical cohort will aim to begin to follow patients as

soon as they are diagnosed with a condition. This would create

an ‘inception cohort’. For some diseases, it may be quite

straightforward to contact patients at this point. For example,

this is often the case with cancer diagnoses. However, in other

cases, such as rheumatological diagnoses, it may be much more

difficult. Many cohorts are based on patients referred to tertiary

treatment centres and these patients may come for treatment at

any stage of disease. Nevertheless, important information on

disease course can derive from non-inception cohorts. In addi-

tion, an inception sub-cohort can sometimes be identified from a

larger cohort.

Case-control and related studies

The collection of cohort data is time-consuming and expensive.

This is particularly true in the case of epidemiological in-

vestigations of rare diseases and, therefore, a very important

study design in epidemiology is the case-control study, which

might equally be termed a case-noncase study. This involves the

selection of a random sample of incident cases of the study dis-

ease in a defined population during a specified case accession

period. Corresponding comparison individuals (the noncases or

controls) are randomly selected from those members of the same

population, or a specified subset of it, who are disease-free

during the case accession period. Information on the values of

explanatory variables during the time period prior to case or

control ascertainment is obtained at the time of ascertainment.

These retrospective data are usually subject to more error in

measurement than the prospective data of a cohort study; how-

ever, a case-control study can be completed more quickly. The

case-control design facilitates comparisons of disease rates in

different subsets of the study population but, since the numbers

of cases and controls sampled are fixed by the design, it cannot

provide an estimate of the actual disease rates. Case-control de-

signs vary in the degree of matching of cases to controls with

respect to disease risk factors other than the exposure under

study.

Most frequently, the analysis of case-control studies is based

on logistic regression with a binary outcome, Y, specifying dis-

ease status. If case-control data are analysed using a logistic

regression model, then although the estimate of the parameter a

has no practical value because disease incidence can not be

estimated, the estimation of odds ratios, through the b parame-

ters, can proceed in the usual fashion.

More recently, variations on the cohort and case-control de-

signs are being used. Some of these designs involve case-control

sampling, perhaps matched on time, from a prospective cohort.

In such a study, some data on risk factors may not be collected

until an individual is sampled. For example, if blood samples are

collected from all individuals in the cohort, blood tests or genetic
� 2016 The Authors. Published by Elsevier Ltd. This is an open access article
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typing need only to be done on sampled individuals. When

matching on time, individuals may be sampled as controls at one

time point but become a case at a later time point. This is often

referred to as a nested case-control study.

A second type of study involves specifying a cohort within

which events of interest, such as disease diagnoses, may occur.

Then a random sample of cohort members is selected, and data

from these individuals are acquired. This data collection may be

done prospectively or retrospectively, depending on the ques-

tions of interest and the availability of data on this ‘subcohort’.

This subcohort provides the controls in the analysis, but may

include individuals who develop the disease of interest at some

point. Also collected are data on all, or a random sample of,

remaining individuals in the cohort who develop the disease.

This type of study is known as a case-subcohort study or simply

as a case-cohort study.

Some care is required in choosing and carrying out an

appropriate analysis of data collected during a nested case-

control design, case-cohort or other similar studies. However,

regression models remain the basis of the analysis.

A case-control or similar design can also address clinical

questions related to patients with particular medical conditions.

No additional methodological issues arise.

Diagnostic studies

To consider designs to look at the performance of a diagnostic

test, Table 2 provides some illustrative numbers to highlight the

main features. Assume that 200 individuals are sampled and that

40 of these are found to have a disease D through‘gold-standard’

testing or observation which is assumed to be completely accu-

rate. These 200 individuals are tested with a diagnostic test T of

interest and 32 of the 40 diseased and 40 of the 160 non-diseased

individuals test positive.

Two key calculations would be an estimate of the sensitivity,

which is the probability that a diseased individual tests positive,

and the specificity which is the probability that a non-diseased

individual tests negative. From Table 2, the estimate of sensi-

tivity is 32/40 ¼ 80% and that of specificity is 120/160 ¼ 75%.

While these two probabilities specify aspects of the diagnostic

test’s performance, the test’s usefulness is also influenced by the

prevalence of the disease in the population on which it is used.

Two quantities that reflect this are termed the predictive value of

a positive test, the probability that an individual with a positive

test has the disease, and the predictive value of a negative test,

the probability that an individual with a negative test does not

have the disease. Estimates of these quantities from Table 2

would be 32/72 ¼ 44.4% and 120/128 ¼ 93.8% respectively. It
Illustrative example of a study of diagnostic testing

DD DL

Tþ 32 40 72

T� 8 120 128

40 160 200

Table 2
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can be seen that high sensitivity and specificity values do not

necessarily translate into uniformly good predictive performance.

It follows that the value of the test may differ depending on the

population of interest and the relative importance of false positive

and false negative tests.

A study to assess a diagnostic test will generally aim to esti-

mate sensitivity and specificity to a required accuracy. Thus,

unlike the scenario of Table 2 where it was assumed that 200

individuals from the population of interest are sampled, it would

generally be better, if possible, to recruit separate samples of

diseased and non-diseased individuals of a required size.

A study of 100 diseased individuals and 100 non-diseased

individuals from the population reflected in Table 2 might

generate results as given in Table 3.

Based on a simple logistic regression model, the estimated

specificity from Table 2 would be 75% with a 95% confidence

interval (CI) of (67.7%, 81.1%). From Table 3 it would be 75%

with CI (65.6%, 82.5%). Similarly, the estimated sensitivity from

Table 2 would be 80% with CI (64.8%, 89.7%), whereas from

Table 3 it would be 80% with CI (71.0%, 86.7%). The common

total number of individuals in Tables 2 and 3 is simply for

illustration and in general the numbers of diseased and non-

diseased individuals can be specified independently. However,

it can be seen that while Table 3 generates a slightly wider CI for

specificity (because the number of non-diseased individuals is

slightly smaller) there is a considerable narrowing of the CI for

sensitivity.

The design of a diagnostic study should therefore be driven by

a desired accuracy for the estimated sensitivity and specificity.

Given an expected prevalence, the corresponding predictive

values of positive and negative tests can then be calculated. The

variation in predictive performance with prevalence can then be

seen or predictive performance can be assessed for an individual

from a population for which the prevalence is determined from

other sources.

The above discussion has presumed that the diagnostic test of

interest provides a simple yes/no test result. An alternative is that

the diagnostic test provides a continuousmeasurement, say X, and

a value c is to be chosen such that, if X is greater than c, the test will

be deemed positive and otherwise negative. Then the sensitivity

and specificity vary with the choice of c where as c increases,

specificity increases but sensitivity decreases. A plot of sensitivity

versus specificity as c varies is termed, for historical reasons, a

receiver-operator-characteristic (ROC) curve and the performance

of the diagnostic measure is sometimes defined in terms of the

shape of this curve. From a design perspective, the key factor will

still be the accuracy of sensitivity and specificity estimates.
Second example of a study of diagnostic testing

DD DL

Tþ 80 22 102

T� 20 78 98

100 100 200

Table 3
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