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Abstract 

In the decades since the genes and mutations associated with the commoner Mendelian disorders 

were first discovered, technological advances in genetic analysis have made finding genomic 

variation a much less onerous task.  Recently, the global efforts to collect subjects with Mendelian 

disorders, to better define the disorders and to empower appropriate clinical trials, along with 

improved genetic technologies, have allowed the identification of genetic variation that does not 

cause disease, but substantially modifies disease presentation.  The advantage of this is it identifies 

biological pathways and molecules, that, if modified in people, might alter disease presentation.  In 

Huntington’s disease (HD), caused by an expanded CAG repeat tract in HTT, genetic variation has 

been uncovered that is associated with change in the onset or progression of disease.  Some of this 

variation lies in genes that are part of the DNA damage response, previously suggested to be 

important in modulating expansion of the repeat tract in germline and somatic cells. The genetic 
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evidence implicates a DNA damage response-related pathway in modulating the pathogenicity of the 

repeat tracts in HD, and possibly, in other trinucleotide repeat disorders. These findings offer new 

targets for drug development in these currently intractable disorders.   

Introduction 

Why look for genetic modifiers? 

Diseases caused by Mendelian mutations tend to be rare, but together form a substantial cause of 

morbidity and mortality.  Most rare diseases are genetic and life-limiting. By definition a disease 

must have prevalence lower than 1/2000 to be accounted rare, though this varies across different 

countries (the International Rare Diseases Consortium: www.irdirc.org; Rare Diseases Clinical 

Research Network in the USA www.rarediseasesnetwork.org).  The causative genetic lesions are 

known for many such diseases, often for several decades (1). However, finding novel disease 

modifying therapies for such diseases has been slow, partly because in many cases identifying 

genetic lesions did not give obvious clues about the underlying disease biology, and partly because 

targeting drugs to specific tissues, particularly within the central nervous system (CNS), is 

challenging.  New antisense oligonucleotide technologies, that target the mutated mRNA products of 

the relevant genes directly, have shown early promise. For example, the antisense oligonucleotide 

(ASO) drug nusinersen has recently been approved by the FDA and EMA in spinal muscular atrophy 

(2, 3). Trials using similar ASO technologies are ongoing in HD and other currently intractable 

disorders.  However, such direct therapies are not appropriate in all diseases, are currently difficult 

to deliver, especially to the brain, expensive, may not be allele specific and may well need 

supplementing with therapeutics addressing other aspects of disease. 
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 In the more common of these rare Mendelian diseases, where substantial numbers of subjects can 

be assembled, it is possible to gain novel insights into disease biology by looking for variation in the 

rest of the genome that modifies aspects of the disease phenotype. The advantage of such 

approaches are their unbiased nature – no a priori knowledge of disease biology is required - and 

the ability to shed light on the biology of inaccessible tissues such as those of the CNS. If such 

variation identifies specific biological pathways then this highlights relevant pathophysiological 

processes in people with the disease that are by default target pathways for therapeutics, since their 

modulation can alter the way the disease presents in people.  In a disease like HD, where many 

pathways have been implicated in the pathogenesis caused by the expanded CAG tract (4), this is 

likely to assist in decisions about which of those pathways are critical in manifestation of disease 

symptoms and therefore could form ideal avenues for the development of new therapeutics (or 

repurposing of existing therapeutics). It is important in this context to note that drug targets 

underpinned by genetic evidence have a higher chance of progressing into clinical use (5).   

Finding genetic modifiers  

Before conducting any genetic study it is necessary to test whether the modifier phenotype has a 

genetic component by performing a segregation analysis in families. For example: Wexler et al. (6) 

found that about 40% of the variation in age at onset of Huntington’s disease was heritable, after 

correcting for CAG repeat length. The age at onset of motor symptoms in HD is inversely correlated 

with the CAG repeat length, but this is strongest between 41 and 56 CAG and the exact relationship 

outside these repeat numbers remains to be determined (7).  It is likely that there is incomplete 

penetrance and therefore under-ascertainment of people below these repeat numbers as they do 

not come to clinical attention (8). Above 56 CAG repeats the disease onsets below the age of 20 

years and there are many fewer cases (Figure 1). This demonstrates that understanding the 

distribution of the phenotypic variables is critical, and this in turn implies that a minimum sample 
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size is likely to be necessary. One of the issues in Mendelian diseases is that they are by their nature 

rare, and therefore collecting the necessary numbers of subjects for genetic modifier studies in such 

diseases can be difficult. In HD the substantial efforts over the past several decades of studies such 

as COHORT (9), PREDICT (10), REGISTRY (11), TRACK (12), ENROLL (13)(https://www.enroll-hd.org/) 

have provided large cohorts of subjects at risk of disease and with manifest disease, with the 

relevant systematically collected clinical information and DNA samples. 

Initial studies of genetic modifiers used linkage analysis on pedigrees containing multiple affected 

individuals (e.g., (14)). However, linkage studies have low power to detect common modifier variants 

of small effect (15). Therefore, studies testing association between individual genetic variants and 

modifier phenotypes have become more widespread. Initially, technical limitations restricted these 

to studies of candidate genes in relatively small samples, resulting in lack of replicability (16), as in 

other areas of human genetics (17, 18).  

Recently, genotyping advances have made it possible to perform genome-wide association studies 

(GWAS) for genetic modifiers in large samples (19), an approach that has been used successfully in 

studies of complex genetic disorders (20). It should be noted that in all cases GWAS have limited 

power to detect rare variation, which requires the use of sequencing (see (21) for a review of the 

design and analysis of sequencing studies). 

Increasing the power of genome-wide analyses for modifier detection 

There are a number of ways that the power of genetic modifier studies can be increased.  Most of 

these also apply to common complex genetic disorders and include: increasing sample size; 

collecting more accurate and more directly genetically encoded phenotypes; using the underlying 

biology to resolve non-genome-wide significant signal from noise and using information from other 

diseases.  The power to detect genetic modifiers will, of course, depend upon their genetic 

architecture. Typically, susceptibility to complex genetic traits is largely due to common variants of 
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small effect (e.g. (22)), but this may not be the case for genetic modifiers of a single-gene disorder, 

which require a particular genetic background to operate and are therefore not subject to 

evolutionary constraint in the general population (23).   

Genetic and statistical considerations 

The usual considerations that apply to any GWAS also apply to modifier studies. GWAS typically test 

association between the phenotype and the number of copies of the minor (rarer) allele via 

regression (linear for quantitative phenotypes, logistic for binary phenotypes), although other tests 

are available to measure deviations from additive effects of the alleles. The resulting (-log) p-values 

for each variant can then be plotted against genomic position – a “Manhattan plot” (Figure 2). There 

are many software packages available for performing GWAS, notably PLINK (24, 25). For a more 

detailed review of the design, analysis and interpretation of GWAS see (26) . 

Given that GWAS usually contain several million variants, stringent multiple testing correction must 

be applied to minimise the chance of false-positive associations. This procedure is complicated by 

non-independence of individual association tests due to linkage disequilibrium (LD) between SNPs. A 

p-value criterion of 5x10-8 is often used to determine genome-wide significance (27). However, this 

was derived for European populations – African populations show less LD and thus require a more 

stringent criterion. If both common and rare variants are analysed (for example, in a whole-genome 

sequencing study), the criterion for genome-wide significance is even more stringent – about 1x10-8

(28). 

Since a stringent p-value is required to declare significance, it follows that large sample sizes are 

needed to achieve power. Chapman et al. (29) showed that the parameter determining power for 

additive association to a quantitative trait  is equal to (N-1)r 2h2, where N is the sample size, r is the 

correlation between the trait and test alleles, and h2 is equal to the narrow-sense heritability. Figure 

3 shows how power varies with sample size (and h2). Narrow-sense heritability is equal to Va/(Vg+Ve), 
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where Va, Vg, Ve are the components of trait variance attributable to additive effects at the test locus 

(that is, the effect of the locus on the phenotype due to the sum of the individual effects of each of 

the two alleles), other genetic effects, and environmental factors unrelated to genetics. To maximise 

h2, it is necessary (as far as possible) to minimise Vg and Ve, and this is typically done by regressing 

off known effects on the phenotype, both genetic (e.g. the CAG repeat for age at onset of 

Huntington’s disease) and environmental. Ve may also be reduced by more accurate phenotyping as 

exemplified in our recent study using a composite prospective HD progression score as a phenotype 

(30). 

Power may also be improved by increasing the correlation r between test variant and the untyped 

causal variant. This may be achieved by using a densely-genotyped reference panel, such as the large 

Haplotype Reference Consortium dataset (31) to estimate the correlation structure between the 

untyped variant and nearby variants from the GWAS SNP panel (see (32) for a review) or sequenced 

subjects (33). This structure can then be applied to the GWAS dataset to impute the missing 

genotypes, which can then be tested for association with the phenotype, as described by de Bakker 

et al (34). However, the ability of imputation methods to capture rare variation (frequency <0.1%) is 

limited, and sequencing is preferred. 

The power to detect associations to individual rare variants is generally low. For these, it is usual to 

combine variants across a region (typically a gene). For example, the relationship between 

phenotype and the total burden of rare variants may be tested (35). This method assumes that all 

rare variants act in the same direction on phenotype, which is reasonable for a disease, but less so 

for a modifier acting on a disease, which will not be under the same evolutionary constraint. To 

avoid this assumption, a commonly used alternative is SKAT-O (36, 37). A cost-effective way to 

increase the power of rare-variant studies is to sequence people from the extremes of the 

phenotype distribution (38). Higher orders of analysis unit, such as biological pathways, can also be 

used in such analyses, as outlined below. 
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There are a number of issues affecting the power of GWAS for modifiers of Mendelian disease.

Relatively rare diseases may require subjects from geographically widespread populations and 

unless suitably accounted for, population stratification can cause false-positive associations in 

GWAS. Typically, this manifests itself as a systematic inflation of association test statistics when 

plotted against their expected value (Figure 4). The degree of inflation can be quantified by the 

genomic inflation factor λ, defined as the median of the observed test statistics divided by its 

expected value (39). Genomic inflation due to stratification can be reduced by including principal 

components that capture the genotypic variation across the sample as covariates in the association 

analysis (40). It should be noted that the value of λ depends on sample size (41). Inflated values of λ 

may also arise if the phenotype has a polygenic component – this can be disentangled from 

stratification using LDscore (42). In HD analysis was restricted to those with European ancestry to 

avoid this problem though the principal components that covaried with population were even then 

taken into account in analysis (19).  In rare diseases where subjects from multiple different 

populations are genotyped this will be more difficult to account for. 

Even in the absence of stratification, failure to account for relatedness among individuals will result 

in false positive associations. Studies in most Mendelian disorders are likely to include related 

people. If the relatedness is known in advance, family-based association methods can be used (e.g.  

(43)): relatedness will not always be obvious to the researchers but can be inferred from the 

genotyping using linear mixed models (LMMs). LMMs are becoming the preferred method for 

GWAS, since they correct for population stratification in addition to cryptic relatedness. LMMs, and 

their software implementation, are reviewed in (44). It should be noted that LMMs can lose power 

relative to standard methods when applied to a binary phenotype.  
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Using biology to improve power 

Pathway analyses are often used to infer disease-relevant biology in genome-wide studies. These 

involve testing whether pre-specified sets of biologically-related genes (“pathways”) are more 

significantly associated with the phenotype than other genes, and can overcome issues of 

heterogeneity in associated genes. Pathway analysis methods for GWAS are reviewed in more detail 

in (45) and (46). Currently, the preferred pathway analysis for GWAS data is MAGMA, since this has 

superior statistical properties to other methods (47). 

While pre-specified gene sets, such as those from the Gene Ontology, are a useful initial analytical 

set, they are limited by prior biological knowledge – poorly studied (but biologically relevant) genes 

will not be included in the analysis, and poorly annotated and assigned genes will increase noise. 

One way to extend coverage of these genes is to use other types of genomic data (such as gene-

expression) to form networks of correlated genes (48), thereby indicating genes for future study. 

This approach has been used to show that a co-expression module of immune-related genes were 

enriched for signal in an AD GWA study (49, 50) and this same module was enriched for 

commonality in expression signature between HD blood and brain and Alzheimer’s disease (51). 

While the GeM-HD GWA study revealed three statistically genome-wide significant signals, it also 

revealed a substantial underlying signal in the DNA repair pathways, implicating the DNA damage 

response as an important modifier of HD (19).  This finding focussed attention on the repeat 

polymorphism in the DNA as a modifier of disease rather than the huntingtin protein and its 

downstream effects.  If true, then one would expect the same modifiers to operate in other diseases 

caused by the same trinucleotide repeat expansion mechanism. A candidate gene study (52) 

demonstrated that this was indeed the case, consistent with modifiers acting on the expanded CAG 

repeat.  Notably, members of the DNA damage response pathways had previously been shown to 
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affect repeat dynamics and stability in several of these diseases in animal models (53, 54), with hints 

that they might be important also in people (55).   

Other types of genome-wide data such as expression data can also be integrated with GWAS data to 

indicate relevant genes under association peaks by looking for co-localisation of SNPs associated 

with the modifier phenotype and expression level (56). Other types of “omics” data, such as Hi-C, 

can also be used for this purpose (57), and it is likely that many such integrative studies will be used 

to enhance the power and biological prediction available from such studies. 

Enhancing the phenotype 

As with common complex disorders, using more accurate phenotypes is likely to enhance the power 

of genetic analyses (58, 59).  In addition, it might well provide endophenotypes that can be 

measured in everyone at risk of disease, whether currently symptomatic or not.  Quantitative 

phenotypes are ideal - in cystic fibrosis, lung function is a measureable quantitative phenotype and 

has proven relatively powerful (60).  Although the background mutations in CFTR vary, they all 

ablate some or all of CFTR function, so the genotype-phenotype relationship does not all reside in 

the different mutations in the CFTR gene.  Pegoraro et al. (61) examined candidate modifiers of 

disease severity in in Duchenne muscular dystrophy and detected a variant in the promoter of the 

SPP1 gene which replicated in a second cohort and further studies have used the objective measure 

of loss of ambulation as a modifier phenotype to partially confirm these data (62, 63). In HD and 

other adult onset neurological diseases this is not as straightforward as objective quantitative 

phenotypes are less easy to capture.  In HD, age at onset, even when defined as age at onset of 

motor symptoms specifically, is not ideal.  It is subjective and has often been collected 

retrospectively.  One way to overcome this is to collect prospective multivariate phenotypes and to 

use these to create quantitative measures that reflect disease burden.  Our recent study, generating 

a multivariate quantitative phenotype using the extensively longitudinally and prospectively clinically 



10 

assessed TRACK-HD study (12), was powerful enough to give an almost genome-wide significant 

signal in 216 subjects, just over half of whom had manifest HD.  This signal replicated in the less well 

phenotyped Registry study using a parallel, but not identical, quantitative phenotype, and gave a 

genome-wide significant signal on chromosome 5 after meta-analysis (51). This study also 

highlighted the DNA repair pathways, as the lead SNP was a coding variant in MSH3.  The 

interpretation of this finding, in concert with previous functional experimentation provides 

substantial clues about the nature of one class of modifiers in HD, and by extrapolation, in the other 

repeat disorders. 

Genetic modifiers and trinucleotide repeat disease biology 

The GeM-HD GWAS identified three chromosomal loci with genome-wide significance for altered 

age at motor onset: one on chromosome 8 and tow on chromosome 15. Pathway analyses 

highlighted DNA repair processes as likely modifiers of phenotype. How do these findings fit 

together into a model of somatic (non-germline) CAG repeat expansion that might underpin HD 

pathogenesis?  While the genetic evidence is not yet conclusive that FAN1 is the gene in the 

chromosome 15 locus, there are a number of pieces of suggestive evidence.  FAN1 is a 5’-exo/endo-

nuclease involved in interstrand DNA crosslink repair which was identified as interacting with a 

number of mismatch repair proteins including MLH1, encoded at the chromosome 3 locus in the 

GeM-HD GWAS (64, 65).  In addition, the signal in chromosome 15 has a coding mutation in FAN1, 

pArg507His (rs150393409; p = 9.34x10
-18

), which is close in significance to the index SNP 

(rs146353869; p = 4.30x10
-20

) giving 6 years earlier onset of disease (19).  The change is predicted to 

be at the C-terminal end of the DNA binding domain of FAN1 (66).  Note that both SNPs were 

imputed and deciding which of the significant SNPs at a locus is the functional SNP driving the 

genetic signal is difficult but may be addressed by using larger samples and direct genotyping. 
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Substantial biological evidence also links DNA mismatch repair with trinucleotide repeat disorders. 

Mice carrying an expanded CAG repeat in HTT/Htt crossed with knock-out mice for mismatch repair 

genes Msh2 and Msh3 show no somatic expansion of the repeat locus and improved phenotype  (67, 

68): this is also seen in mice modelling the non-CAG repeat expansions underlying Fragile X 

syndrome and Friedreich’s ataxia (69, 70). MSH3, which has a coding SNP associated with HD 

progression (30), encodes a protein that forms a heterodimer (MutSβ) with MSH2 that can bind 

specifically to abnormal DNA structures to direct their repair. Usually this activity is involved with 

repair of mismatches in the nascent DNA of dividing cells but recent evidence has shown that MMR 

functions in non-replicating cells, and that MutSβ can bind and stabilise CAG-containing DNA 

hairpins (71–73). Such hairpin binding could be a precursor to downstream CAG repeat expansion, 

and hence pathology. MSH3 is expressed in neurons and upregulated in HD mouse model brain (71, 

74), where it is associated with somatic CAG repeat instability (68). In humans, increased somatic 

expansions of the CAG repeat tract in HTT are associated with earlier onset of HD (75).  

Although the evidence from human genetics and cellular/animal models of HD implicates mismatch 

repair processes most strongly in pathogenesis, there are also numerous studies showing that other 

pathways within the DNA damage response are involved. For example, knockout of base-excision 

repair or transcription-coupled repair pathways in specific animal or cellular models of CAG repeat 

diseases can inhibit repeat expansions and ameliorate phenotype (76–79). In reality, the DNA 

damage response consists of multiple overlapping pathways which are at least partially redundant so 

that genomic integrity is preserved (80). Given the evidence emerging from studies of genetic 

modifiers in the trinucleotide repeat diseases, we propose that there is a repeat expansion DNA 

damage response (REDD) pathway that acts to prevent repeat expansions in the genome (Table 

1)(81, 82).  Expansions may arise at susceptible genomic loci (e.g. a HTT gene with >35 CAG repeats) 
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through aberrant processing of repeats by DNA repair pathways such as mismatch repair but the 

REDD pathway could act either to prevent expansion in the first place, or to repair expansions after 

they have occurred. Similar homeostatic mechanisms exist in cells to maintain repeat structures at 

crucial genomic loci such as centromeres and telomeres (79, 83, 84). The precise mechanism and 

implications for repeat disorders and normal cellular function require further work. 

Future work 

Analysis techniques for complex traits (e.g. large-scale GWAS) are showing promise for detecting 

modifying loci for single-gene disorders. To improve the power of such studies, as in common 

complex disorders, collecting larger sample sizes is necessary and in HD and the other trinucleotide 

repeat disorders, quite feasible. Including other diseases with similar mutational mechanisms, such 

as the spinocerebellar ataxias (SCAs) (52), myotonic dystrophy, Friedreich’s ataxia and Fragile X, in 

meta-analyses, may also increase detection power.  Challenges for the future are to collect more 

subjects, to develop more informative phenotypes and to efficiently integrate different types of 

genome wide data: the latter is likely to be led by studies in common disease and large international 

consortia generating such data.  

Such phenotype improvements will also augment sequencing studies, targeted, exome and whole 

genome, that will be increasingly used to highlight rare loss of function and coding variation, as in 

common diseases.  Here sample sizes are currently an important consideration in which type of 

sequencing to deploy.  In most of these diseases the sample sizes that can be achieved are well 

below 100,000.  Hence rare variants will need to show substantial effect sizes to be detected (21).  

This in turn means that most such effects will ablate gene function by substantially altering gene 

expression, splicing or causing functionally important amino acid changes.  
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These genetic studies highlight new hypotheses of disease causation.  This can generate targets for 

drug development with the advantage that they are based on disease modification in people. 

However, to understand the detailed mechanisms through which such modifiers and potential drug 

targets operate, the genetic information will need to be used to power novel biological studies in 

appropriate model systems in cells and animals.  This may well allow the definition of new 

mechanisms and pathways operating in disease and in turn, the generation of assays with disease-

relevant outcomes. Much of this is in the future - but relatively feasible - and these initial studies 

demonstrate the potential power of searching for genetic modifiers in Mendelian disease to shed 

light on fundamental disease biology and open up new pathways for therapeutic intervention.   
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Table 1 Parallels between the mismatch repair pathway and the proposed repeat expansion DNA 

damage response pathway 

Proteins implicated by genetics in the Repeat expansion DNA damage response are in bold where 

they are in genome-wide significant loci and in normal font where implicated by pathway analyses 

(19, 30, 52).  After Brown et al. (82). 

Figure Legends 

Figure 1. Plot of motor age at onset vs. CAG length in the REGISTRY sample, showing the expected 

age of onset predicted by (7). Note that below 41 CAG repeats, the model tends to overestimate age 

at onset, whereas the opposite is true over 56 CAG repeats. These differences are likely due to 

ascertainment bias.   

Figure 2. Manhattan plot of the results of the GeM GWAS of motor age at onset. Physical location is 

plotted on the x-axis by chromosome and –log (association p-value) on the y-axis. Each data point 

corresponds to an individual SNP. The horizontal dotted line corresponds to the criterion for 

genome-wide significance (p=5x10
-8

). From ref 19, © Elsevier Inc., with permission. 

Figure 3. Power to detect variants at genome-wide significance (p=5x10
-8

) depends on sample size 

(N) and the proportion of phenotypic variance accounted for by additive effects of the variant 

alleles, denoted by h
2 

(heritability).  

Figure  4. Example of a q-q plot, taken from the GeM GWAS of motor AAO. Observed –

log(association p-values) plotted on the y-axis, expected –log(p-values) in the absence of association 

plotted on the x-axis. The divergence of the observed p-values above their expected values (red line) 

indicates the presence of true associations. Inflation factor gives the extent of systematic inflation of 

test statistics (1=no inflation). From ref 19, © Elsevier Inc., with permission. 
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Figure 1. Plot of motor age at onset vs. CAG length in the REGISTRY sample, showing the expected age of 
onset predicted by (7). Note that below 41 CAG repeats, the model tends to overestimate age at onset, 

whereas the opposite is true over 56 CAG repeats. These differences are likely due to ascertainment bias.   



Figure 2. Manhattan plot of the results of the GeM GWAS of motor age at onset. Physical location is plotted 
on the x-axis by chromosome and –log (association p-value) on the y-axis. Each data point corresponds to 

an individual SNP. The horizontal dotted line corresponds to the criterion for genome-wide significance 
(p=5x10-8). From ref 19, © Elsevier Inc., with permission.  
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Figure 3. Power to detect variants at genome-wide significance (p=5x10-8) depends on sample size (N) and 
the proportion of phenotypic variance accounted for by additive effects of the variant alleles, denoted by h2 

(heritability).  
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Figure  4. Example of a q-q plot, taken from the GeM GWAS of motor AAO. Observed –log(association p-
values) plotted on the y-axis, expected –log(p-values) in the absence of association plotted on the x-axis. 
The divergence of the observed p-values above their expected values (red line) indicates the presence of 
true associations. Inflation factor gives the extent of systematic inflation of test statistics (1=no inflation). 

From ref 19, © Elsevier Inc., with permission.  
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