
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/102960/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Hensman Moss, Davina J., Pardinas, Antonio F. , Langbehn, Douglas, Lo, Kitty, Leavitt, Blair R., Roos,
Raymund, Durr, Alexandra, Mead, Simon, Holmans, Peter , Jones, Lesley , Tabrizi, Sarah J., Coleman, A.,
Santos, R. Dar, Decolongon, J., Sturrock, A., Bardinet, E., Ret, C. Jauff, Justo, D., Lehericy, S., Marelli, C.,

Nigaud, K., Valabrègue, R., van den Bogaard, S. J. A., Dumas, E. M., van der Grond, J., t'Hart, E. P.,
Jurgens, C., Witjes-Ane, M.-N., Arran, N., Callaghan, J., Stopford, C., Frost, C., Jones, R. , Hobbs, N.,

Lahiri, N., Ordidge, R., Owen, G. , Pepple, T., Read, J., Say, M., Wild, E., Patel, A., Fox, N. C., Gibbard, C.,
Malone, I., Crawford, H., Whitehead, D., Keenan, S., Cash, D. M., Berna, C., Bechtel, N., Bohlen, S., Man,

A . Hoff, Kraus, P., Axelson, E., Wang, C., Acharya, T., Lee, S., Monaco, W., Campbell, C., Queller, S.,
Whitlock, K., Campbell, C., Campbell, M., Frajman, E., Milchman, C., O'Regan, A., Labuschagne, I., Stout,
J., Landwehrmeyer, B., Craufurd, D., Scahill, R., Hicks, S., Kennard, C., Johnson, H., Tobin, A., Rosas, H.

D., Reilmann, R., Borowsky, B., Pourchot, C., Andrews, S. C., Bachoud-Lévi, Anne-Catherine, Bentivoglio,
Anna Rita, Biunno, Ida, Bonelli, Raphael, Burgunder, Jean-Marc, Dunnett, Stephen , Ferreira, Joaquim,
Handley, Olivia, Heiberg, Arvid, Illmann, Torsten, Landwehrmeyer, G. Bernhard, Levey, Jamie, Ramos-

Arroyo, Maria A., Nielsen, Jørgen, Koivisto, Susana Pro, Päivärinta, Markku, Roos, Raymund A.C.,
Sebastián, A. Rojo, Tabrizi, Sarah, Vandenberghe, Wim, Verellen-Dumoulin, Christine, Uhrova, Tereza,

Wahlström, Jan, Zaremba, Jacek, Baake, Verena, Barth, Katrin, Garde, Monica Bascuñana, Betz, Sabrina,
Bos, Reineke, Callaghan, Jenny, Come, Adrien, Guedes, Leonor Correia, Ecker, Daniel, Finisterra, Ana

Maria, Fullam, Ruth, Gilling, Mette, Gustafsson, Lena, Handley, Olivia J., Hvalstedt, Carina, Held,
Christine, Koppers, Kerstin, Lamanna, Claudia, Laurà, Matilde, Descals, Asunción Martínez, Martinez-

Horta, Saül, Mestre, Tiago, Minster, Sara, Monza, Daniela, Mütze, Lisanne, Oehmen, Martin, Orth, Michael,
Padieu, Hélène, Paterski, Laurent, Peppa, Nadia, Koivisto, Susana Pro, Di Renzo, Martina, Rialland,

Amandine, Røren, Niini, ?a?inková, Pavla, Timewell, Erika, Townhill, Jenny, Cubillo, Patricia Trigo, da
Silva, Wildson Vieira, van Walsem, Marleen R, Whalstedt, Carina, Witjes-Ané, Marie-Noelle, Witkowski,

Grzegorz, Wright, Abigail, Zielonka, Daniel, Zielonka, Eugeniusz, Zinzi, Paola, Bonelli, Raphael M., Lilek,
Sabine, Hecht, Karen, Herranhof, Brigitte, Holl, Anna, Kapfhammer, Hans-Peter, Koppitz, Michael, Magnet,

Markus, Müller, Nicole, Otti, Daniela, Painold, Annamaria, Reisinger, Karin, Scheibl, Monika, Schöggl,
Helmut, Ullah, Jasmin, Braunwarth, Eva-Maria, Brugger, Florian, Buratti, Lisa, Hametner, Eva-Maria,
Hepperger, Caroline, Holas, Christiane, Hotter, Anna, Hussl, Anna, Müller, Christoph, Poewe, Werner,

Seppi, Klaus, Sprenger, Fabienne, Wenning, Gregor, Boogaerts, Andrea, Calmeyn, Godelinde, Delvaux,
Isabelle, Liessens, Dirk, Somers, Nele, Dupuit, Michel, Minet, Cécile, van Paemel, Dominique, Ribaï,
Pascale, Verellen-Dumoulin, Christine, Boogaerts, Andrea, Vandenberghe, Wim, van Reijen, Dimphna,

Klempír, Jirí, Majerová, Veronika, Roth, Jan, Stárková, Irena, Hjermind, Lena E., Jacobsen, Oda, Nielsen,
Jørgen E., Larsen, Ida Unmack, Vinther-Jensen, Tua, Hiivola, Heli, Hyppönen, Hannele, Martikainen, Kirsti,
Tuuha, Katri, Allain, Philippe, Bonneau, Dominique, Bost, Marie, Gohier, Bénédicte, Guérid, Marie-Anne,

Olivier, Audrey, Prundean, Adriana, Scherer-Gagou, Clarisse, Verny, Christophe, Babiloni, Blandine,
Debruxelles, Sabrina, Duché, Charlotte, Goizet, Cyril, Jameau, Laetitia, Lafoucrière, Danielle, Spampinato,
Umberto, Barthélémy, Rekha, De Bruycker, Christelle, Carette, Maryline Cabaret Anne-Sophie, Defebvre,

Eric Decorte Luc, Delliaux, Marie, Delval, Arnaud, Destee, Alain, Dujardin, Kathy, Lemaire, Marie-Hélène,
Manouvrier, Sylvie, Peter, Mireille, Plomhouse, Lucie, Sablonnière, Bernard, Simonin, Clémence, Thibault-
Tanchou, Stéphanie, Vuillaume, Isabelle, Bellonet, Marcellin, Berrissoul, Hassan, Blin, Stéphanie, Courtin,



Françoise, Duru, Cécile, Fasquel, Véronique, Godefroy, Olivier, Krystkowiak, Pierre, Mantaux, Béatrice,
Roussel, Martine, Wannepain, Sandrine, Azulay, Jean-Philippe, Delfini, Marie, Eusebio, Alexandre,

Fluchere, Frédérique, Mundler, Laura, Anheim, Mathieu, Julié, Celine, Boukbiza, Ouhaid Lagha, Longato,
Nadine, Rudolf, Gabrielle, Tranchant, Christine, Zimmermann, Marie-Agathe, Kosinski, Christoph Michael,
Milkereit, Eva, Probst, Daniela, Reetz, Kathrin, Sass, Christian, Schiefer, Johannes, Schlangen, Christiane,

Werner, Cornelius J., Gelderblom, Harald, Priller, Josef, Prüß, Harald, Spruth, Eike Jakob, Ellrichmann,
Gisa, Herrmann, Lennard, Hoffmann, Rainer, Kaminski, Barbara, Kotz, Peter, Prehn, Christian, Saft,

Carsten, Lange, Herwig, Maiwald, Robert, Löhle, Matthias, Maass, Antonia, Schmidt, Simone, Bosredon,
Cecile, Storch, Alexander, Wolz, Annett, Wolz, Martin, Capetian, Philipp, Lambeck, Johann, Zucker, Birgit,
Boelmans, Kai, Ganos, Christos, Heinicke, Walburgis, Hidding, Ute, Lewerenz, Jan, Münchau, Alexander,

Orth, Michael, Schmalfeld, Jenny, Stubbe, Lars, Zittel, Simone, Diercks, Gabriele, Dressler, Dirk, Gorzolla,
Heike, Schrader, Christoph, Tacik, Pawel, Ribbat, Michael, Longinus, Bernhard, Bürk, Katrin, Möller, Jens

Carsten, Rissling, Ida, Mühlau, Mark, Peinemann, Alexander, Städtler, Michael, Weindl, Adolf,
Winkelmann, Juliane, Ziegler, Cornelia, Bechtel, Natalie, Beckmann, Heike, Bohlen, Stefan, Hölzner, Eva,

Lange, Herwig, Reilmann, Ralf, Rohm, Stefanie, Rumpf, Silke, Schepers, Sigrun, Weber, Natalia, Dose,
Matthias, Leythäuser, Gabriele, Marquard, Ralf, Raab, Tina, Wiedemann, Alexandra, Barth, Katrin, Buck,

Andrea, Connemann, Julia, Ecker, Daniel, Geitner, Carolin, Held, Christine, Kesse, Andrea,
Landwehrmeyer, Bernhard, Lang, Christina, Lewerenz, Jan, Lezius, Franziska, Nepper, Solveig, Niess,

Anke, Orth, Michael, Schneider, Ariane, Schwenk, Daniela, Süßmuth, Sigurd, Trautmann, Sonja, Weydt,
Patrick, Cormio, Claudia, Sciruicchio, Vittorio, Serpino, Claudia, de Tommaso, Marina, Capellari, Sabina,

Cortelli, Pietro, Galassi, Roberto, Rizzo, Giovanni, Poda, Roberto, Scaglione, Cesa, Bertini, Elisabetta,
Ghelli, Elena, Ginestroni, Andrea, Massaro, Francesca, Mechi, Claudia, Paganini, Marco, Piacentini, Silvia,
Pradella, Silvia, Romoli, Anna Maria, Sorbi, Sandro, Abbruzzese, Giovanni, di Poggio, Monica Bandettini,
Ferrandes, Giovanna, Mandich, Paola, Marchese, Roberta, Albanese, Alberto, Di Bella, Daniela, Castaldo,
Anna, Di Donato, Stefano, Gellera, Cinzia, Genitrini, Silvia, Mariotti, Caterina, Monza, Daniela, Nanetti,

Lorenzo, Paridi, Dominga, Soliveri, Paola, Tomasello, Chiara, De Michele, Giuseppe, Di Maio, Luigi,
Massarelli, Marco, Peluso, Silvio, Roca, Alessandro, Russo, Cinzia Valeria, Salvatore, Elena, Sorrentino,

Pierpaolo, Amico, Enrico, Favellato, Mariagrazia, Griguoli, Annamaria, Mazzante, Irene, Petrollini, Martina,
Squitieri, Ferdinando, D'Alessio, Barbara, Esposito, Chiara, Bentivoglio, Rita, Frontali, Marina, Guidubaldi,
Arianna, Ialongo, Tamara, Jacopini, Gioia, Piano, Carla, Romano, Silvia, Soleti, Francesco, Spadaro, Maria,

Zinzi, Paola, van Hout, Monique S.E., Verhoeven, Marloes E., van Vugt, Jeroen P.P., de Weert, A. Marit,
Bolwijn, J.J.W., Dekker, M., Kremer, B., Leenders, K.L., van Oostrom, J.C.H., van den Bogaard, Simon
J.A., Bos, Reineke, Dumas, Eve M., 't Hart, Ellen P., Roos, Raymund A.C., Kremer, Berry, Verstappen,
C.C.P., Aaserud, Olaf, C, Jan Frich, Heiberg, Arvid, van Walsem, Marleen R, Wehus, Ragnhild, Bjørgo,

Kathrine, Fannemel, Madeleine, Gørvell, Per F., Lorentzen, Eirin, Koivisto, Susana Pro, Retterstøl, Lars,
Stokke, Bodil, Bjørnevoll, Inga, Sando, Sigrid Botne, Dziadkiewicz, Artur, Nowak, Malgorzata, Robowski,

Piotr, Sitek, Emilia, Slawek, Jaroslaw, Soltan, Witold, Szinwelski, Michal, Blaszcyk, Magdalena, Boczarska-
Jedynak, Magdalena, Ciach-Wysocka, Ewelina, Gorzkowska, Agnieszka, Jasinska-Myga, Barbara,

Klodowska-Duda, Gabriela, Opala, Gregorz, Stompel, Daniel, Banaszkiewicz, Krzysztof, Bocwinska,
Dorota, Bojakowska-Jaremek, Kamila, Dec, Malgorzata, Krawczyk, Malgorzata, Rudzinska, Monika,

Szczygiel, Elzbieta, Szczudlik, Andrzej, Wasielewska, Anna, Wójcik, Magdalena, Bryl, Anna, Ciesielska,
Anna, Klimberg, Aneta, Marcinkowski, Jerzy, Samara, Husam, Sempolowicz, Justyna, Zielonka, Daniel,

Gogol, Anna, Janik, Piotr, Kwiecinski, Hubert, Jamrozik, Zygmunt, Antczak, Jakub, Jachinska, Katarzyna,
Krysa, Wioletta, Rakowicz, Maryla, Richter, Przemyslaw, Rola, Rafal, Ryglewicz, Danuta, Sienkiewicz-

Jarosz, Halina, Stepniak, Iwona, Sulek, Anna, Witkowski, Grzegorz, Zaremba, Jacek, Zdzienicka, Elzbieta,
Zieora-Jakutowicz, Karolina, Ferreira, Joaquim J., Coelho, Miguel, Guedes, Leonor Correia, Mendes, Tiago,
Mestre, Tiago, Valadas, Anabela, Andrade, Carlos, Gago, Miguel, Garrett, Carolina, Guerra, Maria Rosália,

Herrera, Carmen Durán, Garcia, Patrocinio Moreno, Barbera, Miquel Aguilar, Guia, Dolors Badenes,
Hernanz, Laura Casas, Catena, Judit López, Ferrer, Pilar Quiléz, Sebastián, Ana Rojo, Carruesco, Gemma

Tome, Bas, Jordi, Busquets, Núria, Calopa, Matilde, Robert, Misericordia Floriach, Viladrich, Celia Mareca,
Idiago, Jesús Miguel Ruiz, Riballo, Antonio Villa, Cubo, Esther, Polo, Cecilia Gil, Mariscal, Natividad,
Rivadeneyra, Perez Jessica, Barrero, Francisco, Morales, Blas, Fenollar, María, García, Rocío García-

Ramos, Ortega, Paloma, Villanueva, Clara, Alegre, Javier, Bascuñana, Mónica, Caldentey, Juan Garcia,
Ventura, Marta Fatás, Ribas, Guillermo García, de Yébenes, Justo García, Moreno, José Luis López-Sendón,

Cubillo, Patricia Trigo, Alegre, Javier, Frech, Fernando Alonso, de Yébenes, Justo García, Ruíz, Pedro J



García, Martínez-Descals, Asunción, Guerrero, Rosa, Artiga, María José Saiz, Sánchez, Vicenta, Perea,
María Fuensanta Noguera, Fortuna, Lorenza, Manzanares, Salvadora, Reinante, Gema, Torres, María
Martirio Antequera, Moreau, Laura Vivancos, González González, Sonia, Guisasola, Luis Menéndez,

Salvador, Carlos, Martín, Esther Suaréz San, Ramirez, Inés Legarda, Gorospe, Aranzazú, Lopera, Mónica
Rodriguez, Arques, Penelope Navas, Rodríguez, María José Torres, Pastor, Barbara Vives, Gaston, Itziar,

Martinez-Jaurrieta, Maria Dolores, Ramos-Arroyo, Maria A., Moreno, Jose Manuel Garcia, Lucena,
Carolina Mendez, Damas, Fatima, Cortegana, Hermoso Eva Pacheco, Peña, José Chacón, Redondo, Luis,
Carrillo, Fátima, Teresa Cáceres, María, Mir, Pablo, Suarez, María José Lama, Vargas-González, Laura,

Bosca, Maria E., Brugada, Francisco Castera, Burguera, Juan Andres, Campos, Anabel, Vilaplana, Garcia
Carmen Peiró, Berglund, Peter, Constantinescu, Radu, Fredlund, Gunnel, Høsterey-Ugander, Ulrika,
Linnsand, Petra, Neleborn-Lingefjärd, Liselotte, Wahlström, Jan, Wentzel, Magnus, Loutfi, Ghada,

Olofsson, Carina, Stattin, Eva-Lena, Westman, Laila, Wikström, Birgitta, Burgunder, Jean-Marc, Stebler,
Yanik, Kaelin, Alain, Romero, Irene, Schüpbach, Michael, Weber Zaugg, Sabine, Hauer, Maria,

Gonzenbach, Roman, Jung, Hans H., Mihaylova, Violeta, Petersen, Jens, Jack, Roisin, Matheson, Kirsty,
Miedzybrodzka, Zosia, Rae, Daniela, Simpson, Sheila A, Summers, Fiona, Ure, Alexandra, Vaughan,

Vivien, Akhtar, Shahbana, Crooks, Jenny, Curtis, Adrienne, de Souza, Jenny, Piedad, John, Rickards, Hugh,
Wright, Jan, Coulthard, Elizabeth, Gethin, Louise, Hayward, Beverley, Sieradzan, Kasia, Wright, Abigail,
Armstrong, Matthew, Barker, Roger A., O'Keefe, Deidre, Di Pietro, Anna, Fisher, Kate, Goodman, Anna,

Hill, Susan, Kershaw, Ann, Mason, Sarah, Paterson, Nicole, Raymond, Lucy, Swain, Rachel, Guzman,
Natalie Valle, Busse, Monica, Butcher, Cynthia, Clenaghan, Catherine, Fullam, Ruth, Hunt, Sarah, Jones,
Lesley , Jones, Una , Khalil, Hanan, Owen, Michael , Price, Kathleen, Rosser, Anne , Edwards, Maureen,
Ho, Carrie, Hughes, Teresa, McGill, Marie, Pearson, Pauline, Porteous, Mary, Smith, Paul, Brockie, Peter,
Foster, Jillian, Johns, Nicola, McKenzie, Sue, Rothery, Jean, Thomas, Gareth , Yates, Shona, Burrows, Liz,
Chu, Carol, Fletcher, Amy, Gallantrae, Deena, Hamer, Stephanie, Harding, Alison, Klöppel, Stefan, Kraus,

Alison, Laver, Fiona, Lewis, Monica, Longthorpe, Mandy, Markova, Ivana, Raman, Ashok, Robertson,
Nicola, Silva, Mark, Thomson, Aileen, Wild, Sue, Yardumian, Pam, Chu, Carol, Evans, Carole, Gallentrae,
Deena, Hamer, Stephanie, Kraus, Alison, Raman, Ashok, Chu, Carol, Hamer, Stephanie, Hobson, Emma,
Jamieson, Stuart, Raman, Ashok, Musgrave, Hannah, Rowett, Liz, Toscano, Jean, Bourne, Colin, Clapton,

Jackie, Clayton, Carole, Dipple, Heather, Freire-Patino, Dawn, Grant, Janet, Gross, Diana, Hallam, Caroline,
Middleton, Julia, Murch, Ann, Thompson, Catherine, Alusi, Sundus, Davies, Rhys, Foy, Kevin, Gerrans,
Emily, Pate, Louise, Andrews, Thomasin, Dougherty, Andrew, Golding, Charlotte, Kavalier, Fred, Laing,

Hana, Lashwood, Alison, Robertson, Dene, Ruddy, Deborah, Santhouse, Alastair, Whaite, Anna, Andrews,
Thomasin, Bruno, Stefania, Doherty, Karen, Golding, Charlotte, Haider, Salman, Hensman, Davina, Lahiri,
Nayana, Lewis, Monica, Novak, Marianne, Patel, Aakta, Rosser, Elisabeth , Tabrizi, Sarah, Taylor, Rachel,

Warner, Thomas, Wild, Edward, Arran, Natalie, Bek, Judith, Craufurd, David, Fullam, Ruth, Hare,
Marianne, Howard, Liz, Huson, Susan, Johnson, Liz, Jones, Mary , Murphy, Helen, Oughton, Emma,

Partington-Jones, Lucy, Rogers, Dawn, Sollom, Andrea, Snowden, Julie, Stopford, Cheryl, Thompson,
Jennifer, Trender-Gerhard, Iris, Verstraelen, Nichola, Westmoreland, Leann, Armstrong, Richard, Dixon,

Kathryn, Nemeth, Andrea H., Siuda, Gill, Valentine, Ruth, Harrison, David, Hughes, Max, Parkinson,
Andrew, Soltysiak, Beverley, Bandmann, Oliver, Bradbury, Alyson, Gill, Paul, Fairtlough, Helen,

Fillingham, Kay, Foustanos, Isabella, Kazoka, Mbombe, O'Donovan, Kirsty, Peppa, Nadia, Taylor, Cat,
Tidswell, Katherine, Quarrell, Oliver, Burgunder, Jean-Marc, Lau, Puay Ngoh, Pica, Emmanul and Tan,

Louis 2017. Identification of genetic variants associated with Huntington's disease progression: a genome-
wide association study. Lancet Neurology 16 (9) , pp. 701-711. 10.1016/S1474-4422(17)30161-8 

Publishers page: http://dx.doi.org/10.1016/S1474-4422(17)30161-8 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.





1 

Identification of genetic variants associated with Huntington’s disease 

progression: a genome-wide association study 

Davina J Hensman Moss*1, MBBS, Antonio F. Pardiñas*2, PhD, Prof Douglas Langbehn3, 

PhD, Kitty Lo4, PhD, Prof Blair R. Leavitt5, MD,CM, Prof Raymund Roos6, MD, Prof 

Alexandra Durr7, MD, Prof Simon Mead8, PhD, the REGISTRY investigators and the 

TRACK-HD investigators, Prof Peter Holmans2, PhD, Prof Lesley Jones§2, PhD, Prof Sarah J 

Tabrizi§1, PhD.

* These authors contributed equally to this work 

§ These authors contributed equally to this work 

1) UCL Huntington’s Disease Centre, UCL Institute of Neurology, Dept. of Neurodegenerative 

Disease, London, UK 

2) MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK 

3) University of Iowa Carver College of Medicine, Dept. of Psychiatry and Biostatistics, Iowa, 

USA 

4) UCL Genetics Institute, Div. of Biosciences, London, UK 

5) Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, 

University of British Columbia, Vancouver, British Columbia, Canada 

6) Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands 

7) ICM and APHP Department of Genetics, Inserm U 1127, CNRS UMR 7225, Sorbonne 

Universités, UPMC Univ Paris 06 UMR S 1127, Pitié- Salpêtrière University Hospital, Paris, 

France 

8) MRC Prion Unit, UCL Institute of Neurology, London, UK 

Corresponding authors: 

Sarah J Tabrizi at s.tabrizi@ucl.ac.uk 

Lesley Jones at JonesL1@cardiff.ac.uk 



2 

ABSTRACT 

Background Huntington’s disease (HD) is a fatal inherited neurodegenerative disease, caused by a 

CAG repeat expansion in HTT. Age at onset (AAO) has been used as a quantitative phenotype in 

genetic analysis looking for HD modifiers, but is hard to define and not always available.  Therefore 

here we aimed to generate a novel measure of disease progression, and identify genetic markers 

associated with this progression measure. 

Methods  We generated a progression score based on principal component analysis of prospectively 

acquired longitudinal changes in motor, behavioural, cognitive and imaging measures in the 

TRACK-HD cohort of HD gene mutation carriers (data collected 2008 – 2011).  We generated a 

parallel progression score using 1773 previously genotyped subjects from the REGISTRY study of 

HD mutation carriers (data collected 2003 – 2013). 216 subjects from TRACK-HD were genotyped.  

Association analyses was performed using GCTA, gene-wide analysis using MAGMA and meta-

analysis using METAL.  

Findings  Longitudinal motor, cognitive and imaging scores were correlated with each other in 

TRACK-HD subjects, justifying a single, cross-domain measure as a unified progression measure in 

both studies. The TRACK-HD and REGISTRY progression measures were correlated with each 

other (r=0·674), and with AAO (r=0·315, r=0.234 respectively). A meta-analysis of progression in 

TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1.12x10-10) on chromosome 

5 spanning 3 genes, MSH3, DHFR and MTRNR2L2. The lead SNP in TRACK-HD (rs557874766) is 

genome-wide significant in the meta-analysis (p=1.58x10-8), and encodes an amino acid change 

(Pro67Ala) in MSH3.  In TRACK-HD, each copy of the minor allele at this SNP is associated with a 

0.4 (95% CI=0.16,0.66) units per year reduction in the rate of change of the Unified Huntington’s 

Disease Rating Scale (UHDRS) Total Motor Score, and 0.12 (95% CI=0.06,0.18) units per year in 
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the rate of change of UHDRS Total Functional Capacity. The associations remained significant after 

adjusting for AAO. 

Interpretation  The multi-domain progression measure in TRACK-HD is associated with a 

functional variant that is genome-wide significant in a meta-analysis. The strong association in only 

216 subjects implies that the progression measure is a sensitive reflection of disease burden, that the 

effect size at this locus is large, or both. As knock out of Msh3 reduces somatic expansion in HD 

mouse models, this highlights somatic expansion as a potential pathogenic modulator, informing 

therapeutic development in this untreatable disease.  

Funding sources  The European Commission FP7 NeurOmics project; CHDI Foundation; the 

Medical Research Council UK, the Brain Research Trust, the Guarantors of Brain.

Research in context  

Evidence before this study 

Huntington’s disease (HD) is universally caused by a tract of 36 or more CAG in exon 1 of HTT. 

Genetic modifiers of age at motor onset have recently been identified in HD that highlight pathways, 

which if modulated in people, might delay disease onset.  Onset of disease is preceded by a long 

prodromal phase accompanied by substantial brain cell death and age at motor onset is difficult to 

assess accurately and is not available in disease free at risk subjects.  We searched all of PubMed up 

to Oct 31st 2016 for articles published in English containing “Huntington* disease” AND “genetic 

modifier” AND “onset” which identified 13 studies, then “Huntington* disease” AND “genetic 

modifier” AND “progression” which identified one review article.  Amongst the 13 studies of 

genetic modification of HD onset most were small candidate gene studies; these were superseded by 

the one large genome wide genetic modifiers of HD study which identified three genome-wide 

significant loci, and implicated DNA handling in HD disease modification 
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Added value of this study 

We examined the prospective data from TRACK-HD and developed a measure of disease 

progression that reflected correlated progression in the brain imaging, motor and cognitive symptom 

domains: there is substantial correlation among these variables. We used the disease progression 

measure as a quantitative variable in a genome-wide association study and in only 216 people from 

TRACK-HD detected a locus on chromosome 5 containing three significant genes, MTRNR2L2,  

MSH3 and  DHFR. The index variant encodes an amino acid change in MSH3. We replicated this 

finding by generating a parallel progression measure in the less intensively phenotyped REGISTRY 

study and detected a similar signal on chromosome 5, likely attributable to the same variants. A 

meta-analysis of the two studies strengthened the associations. There was some correlation between 

the progression measures and AAO of disease but this was not responsible for the association with 

disease progression. We also detected a signal on chromosome 15 in the REGISTRY study at the 

same locus as that previously associated with AAO. 

Implications of all the available evidence 

The progression measures used in this study can be generated in asymptomatic and symptomatic 

subjects using a subset of the clinically relevant parameters gathered in TRACK-HD.  We use these 

measures to identify genetic modifiers of disease progression in HD.  We saw a signal in only 216 

subjects, which replicates in a larger sample, becoming genome-wide significant, thus reducing the 

chance of it being a false positive.  This argues for the power of better phenotypic measures in 

genetic studies and implies that this locus has a large effect size on disease progression. The index 

associated genetic variant in TRACK-HD encodes a Pro67Ala change in MSH3, which implicates 

MSH3 as the associated gene on chromosome 5. Notably, altering levels of Msh3 in HD mice 

reduces somatic instability and crossing Msh3 null mice with HD mouse models prevents somatic 

instability of the HTT CAG repeat and reduces pathological phenotypes. Polymorphism in MSH3 has 

been linked to somatic instability in myotonic dystrophy type 1 patients. MSH3 is a non-essential 
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neuronally expressed member of the DNA mismatch repair pathway and these data reinforce its 

candidacy as a therapeutic target in HD and potentially in other neurodegenerative expanded repeat 

disorders. 
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INTRODUCTION 

Huntington’s disease (HD) is a autosomal dominant fatal neurodegenerative condition caused by a 

CAG repeat expansion in HTT (1).  It is a movement, cognitive and psychiatric disorder, but 

symptoms, age of disease onset (AAO) and disease progression vary (2).  AAO (1, 3) reflects the 

trajectory of disease pathology up to the point of motor onset.  However, the transition from 

premanifest to manifest HD is gradual (4, 5), making clinical definition challenging, furthermore 

psychiatric and cognitive changes may not be concurrent with motor onset (6).  Despite this 

imprecision in defining onset, the  inverse correlation of HTT CAG repeat length and age at motor 

onset accounts for 50-70% of the observed variance in onset (7). Part of the remaining difference in 

onset age was recently shown to be genetically encoded, identifying genes of the  DNA damage 

response as likely to modify onset of HD (8).   

The need for clinical trials close to disease onset has motivated a raft of observational studies (5, 9, 

10).  This provides the opportunity to investigate the relationship between onset and progression, 

whether they are influenced by the same biology, and permits the study of subjects before clinical 

onset.  

TRACK-HD represents the most deeply phenotyped cohort of premanifest and symptomatic disease 

with annual visits involving clinical, cognitive and motor testing alongside detailed brain imaging (5, 

6). We used TRACK-HD (5, 6) data to generate a novel unified Huntington’s disease progression 

measure for use in a genetic association analysis.  We developed a similar measure in subjects from 

the REGISTRY study to replicate our findings (9).   
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MATERIALS AND METHODS 

Study design and participants 

All experiments were performed in accordance with the Declaration of Helsinki and approved by the 

University College London (UCL)/UCL Hospitals Joint Research Ethics Committee; ethical 

approval for the REGISTRY analysis is outlined in (8). Peripheral blood samples were donated by 

genetically-confirmed HD gene carriers, and all subjects provided informed written consent. 

TRACK-HD was a prospective observational biomarker study collecting deep phenotypic data 

including imaging, quantitative motor and cognitive assessments on adult subjects with early HD, 

premanifest HD gene carriers and controls (5, 6). It provides annually collected high quality 

longitudinal prospective multivariate data over three years (2008-2011) with 243 subjects at baseline 

(6)  (Figure 1).  Demographic details of these individuals are shown in Supplementary 

Information.   

REGISTRY(9) was a multisite prospective observational study which collected phenotypic data  

between 2003 – 2013 on over 13,000 subjects, mostly manifest HD gene carriers.  The aim is for 

annual assessments +/- 3 months, though this is variable.  The core data include: age, CAG repeat 

length, UHDRS Total Motor Score (TMS) and Total Functional Capacity (TFC); some patients have 

further assessments such as a cognitive battery (9).  1835 adult subjects from REGISTRY were 

included in this study on the basis of available genotype data (8). We obtained: TMS, symbol digit 

modality (SDMT), verbal fluency, Stroop colour reading, word reading and interference measures, 

functional assessment score, and TFC.   

Procedures 

For both studies, atypical severity scores were derived with a combination of principal component 

analysis (PCA) and regression of the predictable effects of the primary gene HTT CAG repeat length. 
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Details differed however, due to differences in nature of the two data sets. In TRACK-HD, 24 

variables were used to stratify the cohort in terms of disease progression (Supplementary 

Information). They were divided a priori into 3 broad domains: (1) brain volume measures, (2) 

cognitive variables, and (3) quantitative-motor variables. For each variable the input for analysis was 

the subject’s random longitudinal slope from a mixed effects regression model with correlated 

random intercepts and slopes for each subject. This model regressed the observed values on clinical 

probability of onset statistic (CPO) derived from CAG repeat length and age, and its interaction with 

follow-up length. The subjects' random slope estimates thus provided a measure of atypical 

longitudinal change not predicted by age and CAG length. Principal Component Analyses (PCA) of 

the random slopes was then used to study the dimensionality of these age and CAG-length corrected 

longitudinal changes. Further methodological detail, including control for potential demographic 

confounders, is given in Supplementary Methods and a flow chart is given in Figure 1.

For REGISTRY, in contrast to TRACK-HD, follow-up length and frequency was variable and 

missing data were substantial, making longitudinal progression analysis problematic. We therefore 

examined cross-sectional status at last visit, using a single unified motor-cognitive dimension of 

severity.  We performed multiple imputation to fill in missing data, derived PCA severity scores and 

regressed off the predictive effect of age, CAG length, and gender on the PCA severity scores 

derived from this data to obtain the measure of atypical severity at the last visit. This gives a single 

point “severity” score based on how advanced a subject is compared with expectations based on their 

CAG repeat and age.  1773 subjects had adequate phenotypic data to score; further detail is given in 

Supplementary Methods and a flow chart is given in Figure 1. 

Statistical and genetic analysis 

Data analyses were performed using SAS/STAT 14·0 and 14·1 primarily via the MIXED, FACTOR 

and GML procedures (11).   We occasionally used a log or inverse transform of a measure, with the 
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goal of better approximate normality of the distribution and the avoidance of inappropriate influence 

of extreme scores. 

218 TRACK-HD study participants with complete serial phenotype data were genotyped on Illumina 

Omni2.5v1·1 arrays, and quality control performed as described in Supplementary Methods. 

Imputation was carried out using the 1000 Genomes phase 3 data as a reference (Supplementary 

Methods). This yielded 9·65 million biallelic markers of 216 individuals. Genotypes for the 

REGISTRY subjects were obtained from the GeM-HD Consortium (8), where details of their 

genotyping, quality control, curation and imputation are provided.  

Association analyses were performed with the mixed linear model (MLM) functions included in 

GCTA v1·26(12). Conditional analyses were carried out using the COJO procedure included in 

GCTA. Because of the relatively small sample sizes, analyses were restricted to SNPs with minor 

allele frequency >1%. A meta-analysis of the TRACK-HD and REGISTRY association results was 

performed using METAL(13).  To test whether the association signals in TRACK-HD and 

REGISTRY could have arisen from the same causal SNPs, and whether these also influenced 

expression co-localisation analysis was carried out using GWAS-pw v0·21 (14). Gene-wide p-values 

were calculated using MAGMA v1·05, a powerful alternative to SNP-based analyses which 

aggregates the association signal inside genes while taking linkage disequilibrium (LD)  between 

SNPs into account (15), using a window of 35kb upstream and 10kb downstream of genes (16). Such 

an analysis can increase power over single-SNP analysis when there are multiple causal SNPs in a 

gene, or when the causal SNP is not typed and its signal is partially captured by multiple typed SNPs 

in LD with it. To maximise comparability with the GeM GWAS, our primary pathway analyses used 

Setscreen (17), which sums the log p-values of all SNPs in a pathway, also correcting for LD 

between SNPs. 

All of the methods and analyses mentioned in this section are described in more detail in 

Supplementary Information.  
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RESULTS 

We performed individual PCA of each domain and found that first PC scores were highly correlated 

between the domains (P < 0·0001 in all cases, Supplementary Information.) No phenotypic 

subtypes of symptom clusters in motor, cognitive or imaging domains were observed; rather, 

longitudinal change in TRACK-HD not predictable by CAG-age was distributed on a correlated 

continuum (Figure 2). We therefore repeated PCA of the measures combined across all domains. 

The first PC of this combined analysis accounted for 23.4% of the joint variance, and was at least 

moderately correlated (r>0·4) with most of the variables that contributed heavily to each domain-

specific first PC (Supplementary Tables 3 and 4). The first psychiatric PC has notably lower 

correlation with motor and cognitive domains and CPO variables, so was excluded from our 

progression measures. 

The cross-domain first principal component was used as a unified Huntington’s disease progression 

measure in the TRACK-HD cohort (Figure 1 and 2B). To confirm that our progression measure 

correlated with commonly recognised measures of Huntington’s disease severity not included in the 

progression analysis, we examined the residual change relationships between the progression score 

and UHDRS TMS change and TFC change after controlling for the CPO. We found a correlation of 

r=0·448 (p<0·0001) for the residual motor slope and r=-0·421 (p<0·0001) for the residual TFC 

slope.  One unit increase in unified Huntington’s disease progression measure corresponded to an 

increase of 0·71 (95% CI=0.34,1.08)  units per year in the rate of change of TMS, and an increase of 

approximately 0·2 (95% CI=0.12,0.30) units per year in the rate of change of TFC. The 15 fastest 

progressing subjects in TRACK-HD showed a mean annual rate of decline in the UHDRS TMS of 

2·52 more points per year than would be expected (Standard deviation =2.47, Standard Error of 

Mean =0.64); the 15 slowest progressing subjects had an annual TMS decline of 0·45 points less per 
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year than predicted by age and CAG length (Standard deviation =1.85, Standard Error of the Mean 

=0.48). 

Huntington’s disease subjects in the early stages of the disease were significantly faster progressors 

on the unified HD progression measure than those still in the premanifest phase (p < 0·0001).  

Amongst the 96 subjects who had experienced onset, the rater AAO showed the expected relation 

with predicted AAO based on CAG length (Supplementary Information), and earlier than 

predicted AAO was correlated with faster progression on our unified HD progression measure 

(r=0·315; p = 0·002). 

The unified HD progression measure developed in TRACK-HD could not be transferred directly to 

REGISTRY subjects with more limited data. Individual clinical measures in REGISTRY showed 

correlations across the motor, cognitive, and functional domains, consistent with our finding in 

TRACK-HD (Supplementary Information). PC1 accounted for 75·6% of the variance in severity; 

no other principal components explained any substantial amount of the common variance within the 

measures used (Supplementary Information). Therefore this first principal component was chosen 

as a measure of severity in the REGISTRY cohort (Figure 2C). Higher values of this measure mean 

greater severity than expected at a given time: we infer that this is the result of faster progression 

(Figure 2A) and we used this as the unified Registry progression measure. The unified REGISTRY 

progression measure and earlier than predicted AAO were modestly, but significantly, correlated (r = 

0·2338; p<0·0001) (Supplementary Information).  Atypically rapidly or slowly progressing 

subjects tend to become more atypical over time: correlation between time since disease onset and 

REGISTRY progression (-0·3074; p<0·0001) is greater than that between AAO and REGISTRY 

progression. 

In TRACK-HD, the last-visit severity scores had a correlation of 0·674 with the previously 

calculated longitudinal unified progression measure, indicating that our progression measures for 

TRACK-HD and REGISTRY reflected strongly, although not perfectly, related elements of clinical 
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phenotype. Further support for this conclusion was given by the correlation of 0·631 between the 

TRACK-HD and REGISTRY progression measures in the 14 subjects present in both studies. 

We then performed a genome-wide association analysis using the unified TRACK-HD progression 

measure as a quantitative trait, which yielded a significantly associated locus on chromosome 5 

spanning DHFR, MSH3 and MTRNR2L2.  The index SNP rs557874766 is a coding missense variant 

in MSH3 (p =5·8x10-8; G=0·2179/1091 (1000 Genomes); Figure 3A and D and Supplementary 

Information). Analyses conditioning on this SNP failed to show evidence for a second independent 

signal in this region in TRACK-HD (Supplementary Information). The genes in this locus were 

the only ones to reach genome-wide genic significance ((15, 18) (MTRNR2L2 p=2·15x10-9; MSH3

p=2·94x10-8; DHFR p=8·37x10-7, http://hdresearch.ucl.ac.uk/data-resources/ ).  

Performing a genome-wide association analysis in REGISTRY using the unified progression 

measure replicated the signal identified in TRACK-HD (lead SNP rs420522, p = 1·39 x 10-5) on a 

narrower locus (chr5:79902336-79950781), but still tagging the same three genes (Figure 3B and 

D). No genes reach genome-wide significance, though there is evidence of association 

(http://hdresearch.ucl.ac.uk/data-resources/) at DHFR (p=8·45x10-4), MSH3 (p=9·36x10-4), and 

MTRNR2L2 (p=1·20x10-3). 

The meta-analysis of TRACK-HD and REGISTRY strengthened the signal of both individual SNPs 

in this region, encompassing the first three exons of MSH3 along with DHFR and MTRNR2L2

(Figure 4C and D, Supplementary Information), and also genic associations over MSH3, DHFR, 

and MTRNR2L2 (http://hdresearch.ucl.ac.uk/data-resources/). The most significant SNP in the 

meta-analysis is rs1232027, which is genome-wide significant (p=1.12x10-10), with the p-value of 

rs557874766 being 1.58x10-8. No other regions attained genome-wide significance 

(http://hdresearch.ucl.ac.uk/data-resources/). Rs557874766 is nominally significant in 

REGISTRY (p=0.010), with a direction of effect consistent with that in TRACK-HD. Analyses 

conditional on rs1232027 largely remove the association in this region (Supplementary 
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Information), suggesting that there is only one signal. Conditioning on rs557874766 has a similar 

effect (Supplementary Information), so this SNP remains a plausible causal variant.  

As suggested by the meta-analysis, co-localisation analyses between TRACK-HD and REGISTRY 

showed this locus was likely influenced by the same SNPs in both studies (posterior probability 

74.33%), although conditioning REGISTRY on rs55787466 did not remove the association signal 

entirely (Supplementary Information). Co-localisation analyses with the GTeX expression data 

(19) showed strong evidence (posterior probability 96-99%) that SNPs influencing progression in 

TRACK-HD were also eQTLs for DHFR in brain and peripheral tissues (Supplementary 

Information). Conversely, there was strong evidence (posterior probability=97·8%) that progression 

SNPs in REGISTRY were eQTLs for MSH3 in blood and fibroblasts (Supplementary 

Information). Despite the lack of co-localisation between the TRACK GWAS and MSH3 

expression signal, several of the most significant GWAS SNPs were associated with decreased 

MSH3 expression and slower progression (Supplementary Information). Thus, the signal on 

chromosome 5 could be due to the coding change in MSH3, or to expression changes in MSH3, 

DHFR or both, and both effects may operate in disease. 

The second most significant association region in REGISTRY (Supplementary Information) tags a 

locus on chromosome 15 which has been previously associated to HD AAO (8). Five genes were 

highlighted, two of which reached genome-wide genic significance (MTMR10 p=2·51x10-7; FAN1

p=2·35x10-6, http://hdresearch.ucl.ac.uk/data-resources/).  Notably, MLH1 on chr3 contains SNPs 

approaching genome-wide significance (p = 2.2 x 10-7) in GeM-HD (8), and also shows association 

in the REGISTRY progression gene-wide analysis (p = 3·97x10-4).  

As noted earlier, both progression measures are correlated with AAO. Thus, to test whether there is 

an association with progression independent of AAO, we repeated the REGISTRY progression 

GWAS conditioning for the AAO measure previously associated with this locus in GeM in the 

individuals (N=1,314) for whom we had measures of both progression and AAO. Both MTMR10 
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(p=1·33x10-5) and FAN1 (p=1·68x10-4) remained significant (http://hdresearch.ucl.ac.uk/data-

resources/).  Furthermore, the most significant SNP (rs10611148, p=2·84x10-7) was still significant 

after conditioning on AAO (p=2·40x10-5). Notably, the genic associations at the MSH3 locus in the 

TRACK-HD sample also remain significant after correcting for AAO 

(http://hdresearch.ucl.ac.uk/data-resources/), as does the association with rs557874766 

(p=6·30x10-6). A similar pattern is observed at the MSH3 locus in the meta-analysis. Thus, the 

associations reported here are mainly due to disease progression, rather than AAO.   

Gene set analysis of the 14 pathways highlighted by the GeM-HD paper (8) show that the four most 

significant pathways in the TRACK-HD progression GWAS are related to mismatch repair, and all 

show significant enrichment of signal in REGISTRY (Table 1). This enrichment is strengthened in 

the meta-analysis (Table 1). Notably, the top two pathways in TRACK-HD are also significant in the 

MAGMA competitive gene-set analysis (GO:32300 p=0·010, KEGG:3430 p=0·00697). MSH3

(2.94x10-8) and POLD2 (7·21x10-4) show association in TRACK, with MSH3 (9·52x10-4) and MLH1

(3·97x10-4) showing association in REGISTRY (Supplementary Information). These findings are 

supported by analysis of DNA damage response pathways derived from Pearl et al. (20) (Figure 4A, 

Supplementary Information) where two mismatch repair pathways are significantly associated 

with the unified TRACK-HD progression measure after correction for multiple testing of pathways. 

Again, the meta-analysis strengthens the enrichment (Figure 4B, Supplementary Information).  

Genes from the two significant pathways in TRACK-HD are shown in the Supplementary 

Information, with the significant genes being very similar to those from the GeM pathways 

(Supplementary Information).  A complete list of genes in the Pearl et al. (20) pathways is given in 

http://hdresearch.ucl.ac.uk/data-resources/.

DISCUSSION  
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The evidence from our study suggests that MSH3 is likely to be a modifier of disease progression in 

Huntington’s disease. We undertook an unbiased genetic screen using a novel disease progression 

measure in the TRACK-HD study, and identified a significant locus on chromosome 5, which 

encompasses three genes: MTRNR2L2, MSH3 and DHFR. This locus replicated in an independent 

group of subjects from the European HD REGISTRY study using a parallel disease progression 

measure, and was genome-wide significant in a meta-analysis of the two studies. The lead SNP in 

TRACK-HD, rs557874766, is a coding variant in MSH3; it is classed of moderate impact, making it 

genome-wide significant given its annotation (21). This SNP becomes clearly genome-wide 

significant at the more widely used threshold of p=5x10-8 in a meta-analysis of TRACK-HD and 

REGISTRY. Furthermore, eQTL analyses show association of lower MSH3 expression with slower 

disease progression.   

Genetic modifiers of disease in people highlight pathways for therapeutic development; any pathway 

containing genetic variation that ameliorates or exacerbates disease forms a pre-validated relevant 

target. However, while the classical case-control design in complex disease has yielded multiple 

genetic associations highlighting relevant biology for novel treatment design (22), studies of 

potential genetic modifiers in genetically simple Mendelian diseases have been difficult to conduct. 

The diseases are rare and show gene and locus heterogeneity, thus finding genuine modifying 

associations in such a noisy background is inherently difficult.  However, variants that modify 

disease in the context of a Mendelian causative gene may not be under negative selection pressure in 

the general population.  Recent successful identifications of modifiers have been made in specific 

genetic subtypes of disease (23) or in relatively large samples with consistent clinical data (8, 24).    

One way to increase the power of genetic studies is to obtain a more accurate measure of phenotype. 

Prospective multivariate longitudinal measures such as those collected in TRACK-HD are ideal (25). 

Our analysis of Huntington’s disease progression showed that motor, cognitive and brain imaging 

variables typically progress in parallel and that patterns of loss are not sufficiently distinct to be 
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considered sub-phenotypes for genetic analysis. As psychiatric symptoms showed a different 

trajectory, we developed a single progression measure excluding the psychiatric data (Figure 2A 

and B). AAO was correlated with the unified progression measure but did not explain the genetic 

associations observed with progression. Thus, progression seems to be measuring a different aspect 

of disease to AAO, or a similar aspect of disease, but with greater precision. The data available in 

REGISTRY are less comprehensive; therefore we used a different approach by comparing cross-

sectional severity at the most recent visit with that expected based on age and CAG. The unified 

progression measures in TRACK-HD and REGISTRY are correlated and again, the genetic 

associations in REGISTRY are not completely driven by AAO, demonstrating the utility of 

retrospective composite progression scores in genetic analysis.  Prognostic indices for motor onset 

have been developed (26), and the development of progression scores for prospective use, for 

example to empower drug trials by stratifying patients by predicted rate of progression warrants 

further attention.  

However, our study has a number of limitations.  TRACK-HD has the same standardised detailed 

phenotypic information on nearly all participants, but in only 243 HD gene mutation carrying 

subjects.  The REGISTRY study is much larger but the phenotypic data are less complete 

(Supplementary Information), often not collected at regular intervals and not on everyone in the 

study, and in multiple centres which will inevitably lead to intrinsic variation. Nevertheless, the 

progression measures show the expected relationship with change in TMS and TFC in both TRACK-

HD and REGISTRY indicating their clinical relevance.  However, future development of the 

progression statistic and confirmation of the genetic association in subjects from ongoing large 

studies such as ENROLL (27), with data collected more systematically than in REGISTRY but in 

less detail than TRACK-HD, would be ideal. 

The genetic locus identified by the unified TRACK-HD progression measure association includes 

three genes, but MSH3 is the likeliest candidate. Firstly, the lead SNP is a coding variant in exon 1 of 
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MSH3, MSH3 Pro67Ala, with the potential to affect function (SNiPA(28) accessed 10/11/2016). 

Clinically, each copy of the minor allele (G) at this SNP corresponds to a decrease of approximately 

0.4 (95% CI=0.16,0.66) units per year in the rate of change of TMS, and a reduction of 

approximately 0.12 (95% CI=0.06,0.18) units per year in the rate of change of TFC (see 

Supplementary Information). Secondly, MSH3 has been extensively implicated in the pathogenesis 

of HD in both mouse and cell studies, though this is the first human study to link MSH3 to HD.  

MSH3 is a neuronally expressed member of a family of DNA mismatch repair proteins (29); it forms 

a heteromeric complex with MSH2 to form MutSβ, which recognises insertion-deletion loops of up 

to 13 nucleotides (30) (Figure 4D). There is, however, a high level of interconnectedness between 

pathways involved in the DNA damage response, and MutSβ is implicated in other processes (20). 

Changes in CAG repeat size occur in terminally differentiated neurons in several HD mouse models 

and in human patient striatum, the brain area most affected in HD, and notably, somatic expansion of 

the CAG repeat in HD patient brain predicts onset (31).  Msh3 is required for both somatic expansion 

of HTT CAG repeats and for enhancing an early disease phenotype in mouse striatum (32), Msh3 

expression level is associated with repeat instability in mouse brain, (whereas DHFR is not) (30) and 

expansion of CAG and CTG repeats is prevented by msh3Δ in Saccharomyces cerevisiae (33).  This 

gives a plausible mechanism through which variation in MSH3 could operate in HD (Figure 4C and 

D).  In patients with myotonic dystrophy type 1 (DM), somatic instability of the CTG repeat (CAG 

on the non-coding strand), is associated with age of onset and an MSH3 variant was recently 

associated with somatic instability in blood DNA of patients (34). Variants in DNA repair pathways 

including those in MSH3 contribute to age of onset modification of multiple CAG repeat expansion 

diseases (35) implicating the CAG repeat itself as the source of modification in these diseases.  

This is the first study to use a measure of progression to look for modifiers of a neurodegenerative 

Mendelian disorder.  We detected association with a coding variant on chromosome 5, reaching 

genome-wide significance given its annotation (21) in just 216 subjects, which replicated in a larger 
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independent sample and strengthened on meta-analysis. This indicates that either our progression 

measure developed in TRACK-HD is an excellent reflection of disease pathophysiological 

progression or that this is a locus with a very large effect size, or, most likely, both. While there are 

three genes at the locus, the most significant variant gives a coding change in MSH3, which together 

with the prior biological evidence makes it the most likely candidate.  Somatic expansion of the 

CAG repeat through alterations in MSH3 is a plausible mechanism for pathogenesis in HD which can 

be followed up in functional experiments in HD models. These data provide additional support for 

the therapeutic targeting of Huntingtin and the stability of its CAG repeat.  Loss of or variation in 

mismatch repair complexes can cause malignancy and thus they are not regarded as ideal drug 

targets, but MSH3 is not essential as it can tolerate loss of function variation (36) and could provide 

a therapeutic target in HD. We note that if it does operate to alter repeat expansion it may also be a 

drug target in other repeat expansion disorders. 
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Figure & Table legends 

Figure 1: Study Design.  After establishing that brain imaging, quantitative motor and cognitive 

variables are correlated and follow a similar trajectory, we scored the TRACK-HD subjects using 

principal component 1 as a Unified progression measure, and used this measure to look for genome-

wide associations with HD progression. We replicated our findings in the EHDN Registry subjects 

by looking at how far their disease had progressed compared with expectations based on CAG/Age, 

and used this progression measure to look for genome-wide associations in REGISTRY. 1835 
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Registry subjects had genotype data (8). UHDRS TMS: Unified Huntington’s Disease Rating Scale 

Total Motor Score. SDMT: symbol digit modality test. TFC: Total Functional Capacity.   

Figure 2: Assessing progression in Huntington’s disease (A) Graphical illustration of the trajectory 

of HD symptoms and signs over time, annotated to show what time period the different measures of 

onset and progression discussed in this paper cover. The TRACK-HD progression score uses 

longitudinal data over 3 years. Given limited longitudinal data in REGISTRY, cross-sectional 

severity at last visit compared to predicted severity was used as a proxy for progression. Age at onset 

occurs when a subject has unequivocal motor signs of Huntington’s disease. (B) Distribution of 

progression measure in 218 members of TRACK-HD cohort. (C) Distribution of atypical severity 

(compared to predicted severity at final visit) in in 1835 members of the REGISTRY cohort. The 

curves in (B) and (C) are the normal distribution approximations of the severity score distributions.

Figure 3: Genome-wide Association Analysis of Progression Score. Green line in A-C: 5x10-8. (A) 

Manhattan plot of TRACK-HD GWA analysis yielding a locus on chromosome 5. Significance of 

SNPs (y axis) is plotted against genomic location (x axis). (B) Manhattan plot of REGISTRY GWA 

analysis showing suggestive trails on chromosome 15 in the same area as the GeM GWAS 

significant locus (8), and chromosome 5 in the same area as the TRACK progression GWAS. (C)  

Manhattan plot of Meta-analysis of TRACK and REGISTRY progression analysis.  (D) Locus zoom 

plot of the TRACK-HD (top), REGISTRY (middle) and meta-analysis (bottom) data showing the 

structure of linkage disequilibrium (LD) and –log10(p-value)  of the significant locus on 

chromosome. The top image shows the chromosome; the red square shows the region which is 

zoomed in on in the other panels. The colours of the circles are based on r2 with the lead SNP in 

TRACK-HD as shown in the bottom of the plot; intensity of colour reflects multiple overlying SNPs. 

Dashed lines: 5x10-8
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Figure 4: Significant genes are functionally linked and may cause somatic expansion of the HTT 

CAG repeat tract.  STRING diagram showing all proteins from the Pearl et al (20) dataset with gene-

wide p-values for association with Huntington’s disease progression < 0.02 in A: the TRACK-HD 

dataset and B, the meta-analysis of TRACK-HD and REGISTRY 

(http://hdresearch.ucl.ac.uk/data-resources/).  Genes with p<0.02 coloured; 10 further interactors 

in grey, confidence of interaction is shown in the ‘Edge confidence’ box, homo sapiens protein data 

used: http://string-db.org/cgi/ accessed October 2016 and January 2017 (37).  C Schematic diagram 

showing how DNA mismatch repair proteins may be involved in somatic expansion of the CAG 

tract. Proteins with p<0.01 in the meta-analysed progression GWAS are coloured red. (i) The CAG 

repeat DNA is partly unwound by lesions,  constraints of the CAG tract structure (middle image) or 

by transcription. (ii) This unwound DNA is recognised by MutSbeta (MSH2/MSH3) which recruits 

the endonuclease MutLalpha (PMS2/MLH1) and cleaves the DNA.  (iii) Repair of the strand break 

leads to expansion of the CAG repeat. In neurones of the striatum somatic expansion is an ongoing 

process that occurs throughout life and variants in MSH3 may promote or inhibit repeat recognition, 

binding or repair. D Potential link between degree of somatic expansion over a patient’s lifespan and 

rate of Huntington’s disease progression.  

Table 1: Setscreen enrichment p-values for the 14 pathways highlighted in GeM-HD (8). 

The GO and KEGG terms in the first column refer to pathways of biologically related genes in the 

Gene Ontology Consortium(1) and Kyoto Encyclopedia of Genes and Genomes (2) databases 

respectively. The p-values in columns 2 – 4 refer to the association between the pathway indicated 

and rate of progression described in this paper (TRACK- TRACK-HD study; REGISTRY- 

REGISTRY study; META- meta-analysis).  P(GeM) refers to the association between the indicated 

pathway and age at motor onset in the GeM-HD study (8).  
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Pathway p(TRACK) p(REGISTRY) P(META) p(GeM) Description
GO:   32300 3·46E-09 8·34E-04 1.14E-11 3·82E-05 mismatch repair complex                                                                                                      
KEGG    3430 2·79E-07 4·80E-02 1.34E-16 6·65E-06 mismatch repair (KEGG)
GO:   30983 6·66E-07 4·20E-04 3.17E-11 7·43E-06 mismatched DNA binding                                                                                                       
GO:    6298 3·53E-06 4·59E-02 6.54E-09 3·25E-06 mismatch repair                                                                                                              
GO:   32407 1·82E-02 1·10E-01 6.40E-04 5·74E-05 MutSalpha complex binding                                                                                                    
GO:   32389 2·25E-02 4·69E-02 5.23E-04 1·66E-05 MutLalpha complex                                                                                                            
GO:   33683 8·01E-02 5·87E-04 6.74E-03 1·69E-06 nucleotide-excision repair, DNA incision                                                                                                

GO:   90141 3·32E-01 5·93E-02 7.87E-01 2·30E-06
positive regulation of mitochondrial 
fission                                                                                                                      

GO: 1900063 4·10E-01 7·29E-01 6.93E-01 8·39E-05 regulation of peroxisome organization                                                                                        

GO:   90200 4·58E-01 5·44E-01 5.28E-01 8·89E-08
positive regulation of release of 
cytochrome c from mitochondria                                                                                               

GO:   90140 5·39E-01 3·32E-01 8.10E-01 1·57E-05 regulation of mitochondrial fission                                                                                          

GO:   10822 6·21E-01 6·28E-01 8.53E-01 7·63E-05
positive regulation of mitochondrion 
organization                                                                                                                 

GO:    4748 9·64E-01 6·97E-01 9.79E-01 2·66E-05
ribonucleoside-diphosphate reductase 
activity, thioredoxin disulfide as acceptor                                                                                  

GO:   16728 9·64E-01 6·97E-01 9.79E-01 2·66E-05
oxidoreductase activity, acting on CH or 
CH2 groups, disulfide as acceptor                                                                                            
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Table 1: Setscreen enrichment p-values for the 14 pathways highlighted in GeM-HD (8). The GO and 
KEGG terms in the first column refer to pathways of biologically related genes in the Gene Ontology 

Consortium(1) and Kyoto Encyclopedia of Genes and Genomes (2) databases respectively. The p-values in 
columns 2 – 4 refer to the association between the pathway indicated and rate of progression described in this 
paper (TRACK- TRACK-HD study; REGISTRY- REGISTRY study; META- meta-analysis).  P(GeM) refers 

to the association between the indicated pathway and age at motor onset in the GeM-HD study (8).  

Pathway p(TRACK) p(REGISTRY) P(META) p(GeM) Description
GO:   32300 3·46E-09 8·34E-04 1.14E-11 3·82E-05 mismatch repair complex                                                                                                      
KEGG    3430 2·79E-07 4·80E-02 1.34E-16 6·65E-06 KEGG_MISMATCH_REPAIR                                                                                                         
GO:   30983 6·66E-07 4·20E-04 3.17E-11 7·43E-06 mismatched DNA binding                                                                                                       
GO:    6298 3·53E-06 4·59E-02 6.54E-09 3·25E-06 mismatch repair                                                                                                              
GO:   32407 1·82E-02 1·10E-01 6.40E-04 5·74E-05 MutSalpha complex binding                                                                                                    
GO:   32389 2·25E-02 4·69E-02 5.23E-04 1·66E-05 MutLalpha complex                                                                                                            
GO:   33683 8·01E-02 5·87E-04 6.74E-03 1·69E-06 nucleotide-excision repair, DNA incision                                                                                                

GO:   90141 3·32E-01 5·93E-02 7.87E-01 2·30E-06
positive regulation of mitochondrial 
fission                                                                                                                      

GO: 1900063 4·10E-01 7·29E-01 6.93E-01 8·39E-05 regulation of peroxisome organization                                                                                        

GO:   90200 4·58E-01 5·44E-01 5.28E-01 8·89E-08
positive regulation of release of 
cytochrome c from mitochondria                                                                                               

GO:   90140 5·39E-01 3·32E-01 8.10E-01 1·57E-05 regulation of mitochondrial fission                                                                                          

GO:   10822 6·21E-01 6·28E-01 8.53E-01 7·63E-05
positive regulation of mitochondrion 
organization                                                                                                                 

GO:    4748 9·64E-01 6·97E-01 9.79E-01 2·66E-05
ribonucleoside-diphosphate reductase 
activity, thioredoxin disulfide as acceptor                                                                                  

GO:   16728 9·64E-01 6·97E-01 9.79E-01 2·66E-05
oxidoreductase activity, acting on CH or 
CH2 groups, disulfide as acceptor                                                                                            
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Supplementary text information

Methods

Defining progression in TRACK-HD

Among the wide variety of potential cognitive and quantitative-motor variables, we analysed a subset of

those that were previously used in a 36-month predefined primary analysis(1). A small number of

quantitative-motor variables that were substantively redundant were eliminated and those with more

tractable metric properties were chosen (Supplementary Table 2).

For the Track HD study, 10 subjects were excluded because they had no follow-up data. 15 other subjects

were excluded because of missing brain MRI data there was no missing data for the other variables used in

the analysis.

Our models controlled for study site, gender, education, and their interactions with follow-up time,

consistent with the models used in the TRACK-HD standard analyses which are described elsewhere(1-4).

The dominance of the first principal component is shown in the Scree plot in Supplementary Figure 9.

Progression analysis in REGISTRY

We used a square-root transform of TMS to improve approximate multivariate normality of the data.

Missing data were considerable as documented Supplementary Table 15.

To deal with the missing data for clinical items, multiple imputation with 25 imputations was performed.

Age, gender, and CAG expansion length were auxiliary variables for the imputations. Proper methods to

account for imputation variation were used for all statistical inferences. Final parameter estimates and

statistical significance were estimated by Rubin's method(5). We performed the above using the MI and

MIANALYZE procedures of SAS/STAT 13.1(6).

In order to generate atypical severity scores, we needed to undertake three sequential procedures: (i)

Multiple imputation of missing data (ii) Principal Component Analysis (PCA) and severity scoring of the

combined imputed data replications (iii) Regression of the predictive effect of age, CAG length, and gender

on the PCA-derived severity scores so that we are left with a measure of atypical (or �unexplained�)

severity. The steps were taken in the order above; given that these steps could be done in different orders we

also confirmed that there were only minimal differences due to the order (data not shown). We also noted

some evidence of study site effects in the eventual regressions. Thus we used a random effect for site in

models adjusting for age and CAG. Atypical severity was defined as the residual between each subject's

observed and marginal predicted value. The dominance of the first principal component is shown in

Supplementary Figure 10.

The final averaged multiple imputation model used a 2 degree of freedom restricted cubic spline(7) of

cumulative probability of onset (CPO), plus main effects of gender and CAG length and a random effect for



site. Marginal effects from this model, which represent the estimated effects after accounting for site

fluctuations, were used for all predictions. The knot placement for the clinical probability of onset spline

was defined a priori using a conventional standard at the 10th, 50th, and 90th percentiles of its observed

distribution. The corresponding values were (0.131, 0.395, 0.885). Atypical severity was defined as the

residual between each subject's observed and marginal predicted value. Final parameter estimates, along

with estimates of statistical significance adjusted for the multiple imputation procedure are shown in the

Supplementary Table 16.

We inspected the potential biasing influence of the CAG repeats, by classifying the individual in short (CAG

< 41) and long (CAG > 55) repeats. We found an overrepresentation of people with larger atypical severity

scores among those with short CAG, which implies that those with a small number of repeats are more

likely to be in the study if atypically severely affected. This is likely to be due to the disease only being

partially penetrant in those with short CAG repeats, resulting in bias (8). This prompted us to exclude

subjects with short CAG from the creation of the severity scores, while retaining those with long CAG.

However, we confirmed that the age-CAG severity function predicted using CAG > 41 gave sensible

estimates for both the short and long ranges, enabling even those subjects with short CAG to be used in the

final analysis (Supplementary Figure 11).

Comparing TRACK-HD and REGISTRY progression measures

There are four common measures between TRACK-HD and REGISTRY: TMS, symbol digit score, Stroop

word reading score and TFC. We took the first principal component score from an analysis of these four

measures at the last TRACK-HD visit: this accounted for 79.4% of the variance in the PCA and correlated

approximately equally with each of the four observed variables (Supplementary Table 21). To calculate

the measure of severity unaccounted for by age and CAG length in TRACK, we regressed these principal

component scores on the same predictors used for the unified REGISTRY progression measure, to give

TRACK-HD severity scores.

As explained in the manuscript page 13, within the TRACK-HD data, the last-visit severity scores had a

Pearson correlation of 0·674 with the previously calculated longitudinal progression measure. It can be

shown that the predicted values obtained from the TRACK-HD and REGISTRY formulas are nearly linear,

hence that Pearson correlation should be an adequate descriptive statistic for the relationship

(Supplementary Figure 12).

Genotyping and quality control

DNA was obtained from blood samples of the 218 TRACK-HD study participants who had complete serial

phenotype data, using standard methods (2). Genotyping was performed in Illumina Omni2.5 v1.1 arrays at



UCL Genomics, in accordance with the Infinium LCG Assay (15023141_A, June 2010) protocol (Illumina

Inc, San Diego, USA). Standard QC procedures (9) were performed using PLINK v1.9 (10), including

controlling for coverage and call rates (5% of missing data allowed per SNP and individual), inbreeding (F <

0.2 required) and Hardy-Weinberg equilibrium (SNPs with p < 10-6 in an exact test were removed). With

these criteria, and after removing one individual of a twin pair, a total of 216 gene positive TRACK-HD

subjects were left in the sample, genotyped for 2.34 million genome-wide markers (Figure 1).

Identity-by-descent analysis showed 9 pairs of individuals with a relatedness coefficient (ොߨ) higher than
0.15, which included 6 putative first degree relatives, 2 putative second degree relatives and 1 putative pair

of third degree relatives. Additionally, an ADMIXTURE analysis with a subset of the 1000 Genomes (11)

populations revealed 6 individuals with more than 25% of non-European ancestry. All these individuals

were retained in the TRACK-HD sample, as their relatedness and admixture can be accommodated well by

using association methods based on mixed linear models (12, 13).

TRACK-HD was imputed in the Cardiff University high-performance computing cluster RAVEN(14), using

the SHAPEIT/IMPUTE2 algorithms(15, 16) and a standardised pipeline(17). The 1000 Genomes phase 3

panel provided by the IMPUTE2 authors (release October 2014), was used as the reference imputation

panel. Imputation probabilities (�dosages�) were converted to best-guess genotypes in fcGENE v1.07(18)

using a minimum probability threshold of 80% and a per-SNP missingness threshold of 5% of the sample.

After this process an INFO score cutoff of 0.8 was applied in order to select well-imputed variants, and all

monomorphic and singleton markers were excluded. With these filters 9.65 million biallelic markers

remained in the dataset.

Genotypes for the REGISTRY subjects were obtained from the GeM-HD Consortium (19), where details of

their genotyping, curation and imputation are provided. This dataset harboured 8.94 million biallelic markers

of 1,773 individuals (Figure 1).

Mixed linear model GWAS

Association analyses were performed with the mixed linear model (MLM) functions included in GCTA

v1.26(20), specifically the leave-one-chromosome-out (LOCO) procedure(21). As the genetic relationship

matrix used by MLMs can accurately account for cryptic relatedness and ancestry, and phenotypic variables

already controlled for relevant clinical covariates, no covariates were added to the analyses. In order to

transform the results into independent GWAS signals, PLINK was again used to perform linkage

disequilibrium (LD) clumping (r2 = 0.1, p < 1x10-4; window size < 3 Mb). Due to the relatively small size of

the TRACK-HD and REGISTRY samples, calculation of SNP-based heritability (h2SNP) for our tested

phenotypes was not possible using either genotyped or imputed markers(22, 23). Because of the small

sample sizes, analyses were restricted to SNPs with minor allele frequency >1%.



Meta-analysis of the GWAS summary statistics from the TRACK-HD and REGISTRY studies was carried

out using the fixed effects method with inverse-variance weights as implemented in METAL (24). The

meta-analysis of TRACK-HD and REGISTRY studies was carried out using the fixed effects method with

inverse-variance weights as implemented in METAL(24). To control for spurious results due to scale

differences between the TRACK-HD and REGISTRY progression phenotypes, effect sizes from both

summary statistics were standardised to have equal variances before meta-analysis.

QQ plots of observed log p-values (sorted by value) for each SNP versus their expected values in the

absence of association are shown for TRACK-HD, REGISTRY and the meta-analysis in Supplementary

Figure 13. If there is no association, and no systematic inflation in the test statistics (for example, from

population stratification), the observed log p-values would follow their expected values (the red line in

Supplementary Figure 13) exactly. Indeed, this is what is observed for the majority of data points, which

do not show association. The extent to which such systematic inflation exists is measured by the genomic

95% confidence interval for log p-values in the absence of association is shaded grey, and the points lying

above this in the top right corner indicate genuine associations.

Conditional analyses of GWAS summary statistics were carried out using the COJO procedure included in

GCTA v1.26(26).

Co-localisation analyses

In order to discern if our top GWAS signals were mediated by the same SNPs in both TRACK-HD and

REGISTRY, we used the co-localisation method of Giambartolomei et al.(27), as implemented in GWAS-

pw v0.21 (28). In summary, the GWAS summary statistics of our two samples were first divided into

approximately independent LD blocks(29), and each block was then scanned to estimate the probability (in a

hierarchical Bayesian framework) of harbouring an association common to the two samples. In contrast to

the original algorithm, the model priors do not need to be pre-specified in GWAS-pw, as they are estimated

directly from the summary statistics. This implementation has been thoroughly tested by simulation and

applied to real data from heterogeneous sources (28). By testing the entire genome instead of a small number

of candidate regions arising from the GWAS clumps, we follow a conservative approach towards estimating

co-localisation, which also has the desirable property of allowing us to compare our candidates (to the

resolution of single SNPs) with every other region in the genome.

A similar procedure was used to test for co-localisation between the region on chromosome 5 containing

GWAS signal in TRACK-HD and REGISTRY and SNPs influencing expression (eQTLs), since this may

indicate which gene in an association region is causal. Given that eQTLs close to the gene (cis-eQTLs) tend

to replicate more reliably than those from other parts of the genome (30), these analyses were restricted to



the regions of GWAS signal and genes within 1Mb of these regions. These analyses used expression data

from 53 tissues, accessed through GTeX (31). To minimise multiple testing, the two tissues showing the

most significant eQTLs for each gene were used for the co-localisation analysis. Additionally, for DHFR

and MSH3, analyses were performed using three brain tissues (caudate, cerebellum and cortex), since these

are the most biologically relevant to HD a priori. Co-localisation results are shown for the TRACK-HD

GWAS in Supplementary Table 8, and the REGISTRY GWAS in Supplementary Table 9. Plots of

GWAS and eQTL signals with significant co-localisation are shown in in Supplementary Figures 7 and 8.

Gene-based and gene-set analyses

Gene-wide p-values were calculated using MAGMA v1.05 (32) on the TRACK-HD and REGISTRY

summary statistics, by summing the p-values of all SNPs inside each gene. MAGMA aggregates the

association evidence across all SNPs in a gene, while correcting for LD between SNPs (using the European

data from Phase 3 of the 1000 Genomes Project as reference). This analysis increases power when a gene

contains multiple causal SNPs (e.g. as a result of allelic heterogeneity), or when the causal SNP is not typed

and its signal is partially captured by multiple genotyped SNPs in LD with it. We set a window of 35 kb

upstream and 10 kb downstream of each gene in order to capture the signal of proximal regulatory SNPs(33,

34).

To maximise comparability with the GeM GWAS, our primary gene-set analyses used Setscreen (Moskvina

et al. 2011). Setscreen sums the (log-) p-values of all SNPs in the gene set, similar to Fisher�s method, but

adjusts the distribution to allow for non-independence of SNPs due to linkage disequilibrium (Brown 1975).

Significant enrichments from the Setscreen analyses were confirmed using the competitive gene-set analysis

procedure implemented in MAGMA. This more conservative approach tests whether genes in a gene set

have more significant gene-wide p-values than other genes, correcting for gene size, SNP density and

intergenic linkage disequilibrium (de Leeuw et al. 2015), but may be less powerful than the Setscreen

analysis for small gene sets.

Initially, we performed gene set analyses on the 14 pathways found to be significantly enriched for

association signal in the GeM GWAS. Many of these pathways relate to DNA repair, so we investigated the

biological specificity of this signal further by analysing 78 gene-sets taken from a recent review of DNA

repair (Pearl et al 2015).

As a secondary analysis, to potentially uncover areas of novel disease-related biology, we tested the same

gene sets used by GeM-HD Consortium (2015). This comprises a collection of 14,706 pathways containing

between 3 and 500 genes from the Gene Ontology (GO)(35), Kyoto Encyclopedia of Genes and Genomes

(KEGG)(36), Mouse Genome Informatics (MGI)(37), National Cancer Institute (NCI)(38), Protein ANalysis

THrough Evolutionary Relationships (PANTHER)(39), BioCarta(40) and Reactome(41). Multiple testing

correction was carried out for this analysis by calculating q-values (Storey and Tibshirani, 2003).



Linking genetic variation to clinical measures

To explain how our TRACK-HD lead variant (rs557874766) affected commonly used clinical measures of

HD severity we first correlated TRACK-HD progression score with UHDRS Total Motor Score (TMS) and

UHDRS Total Functional Capacity (TFC). We defined �raw� TMS rate as TMS change divided by follow-

up years and �adjusted� TMS rate as the residual of raw TMS rate after regressing off effects of initial TMS,

age, sex, CAG. We followed the same procedure for TFC.

Regressing these measures on progression gives the following estimates of the amount of change for one

unit increase in progression (standard errors in brackets):

Raw TMS rate: 0.71(0.19)

Adjusted TMS rate: 0.57 (0.18)

Raw TFC rate: 0.21 (0.047)

Adjusted TFC rate: 0.20 (0.044)

The effect size at the top MSH3 SNP in TRACK (rs557874766) is -0.58 (s.e. =0.087) units of progression

per copy of the minor allele G (see Supplementary Table 21) � this corresponds to a change of -0.33 (95%

CI =0.10, 0.56) to -0.41 (0.16,0.66) units in TMS rate compared to the major allele C, which can be

interpreted as a reduction in the rate of TMS increase by 0.33-0.41 units per year for each copy of the G

allele. Similarly, this corresponds to a reduction in the rate of TFC change of 0.12 (0.06,0.18) units per year

per G allele.

Results

SinceMSH3 is a member of all the most significantly enriched pathways, we tested whetherMSH3 was

individually responsible for the pathway enrichments by removing it and repeating the analyses. GO:32300

and KEGG:3430 are still nominally significant in TRACK (p=0.0413, p=0.0452 respectively) but not in

REGISTRY. Neither of the two Pearl pathways is significant in TRACK or REGISTRY. The only pathways

nominally significant both in TRACK and REGISTRY are GO:32389 (MutLalpha complex) and Pearl

pathway �Repair_pathway/SSR/MMR/MutL_homologs�, neither of which contain MSH3. Thus, it appears

that the mismatch repair pathway enrichments are mainly driven byMSH3. However, in the TRACK-

REGISTRY meta-analysis, the Pearl et al. MMR pathway (p=1.27x10-4), GO:32300 (p=1.02x10-3), KEGG

3430 (1.07x10-4) and GO:30983 are at least nominally significant without MSH3. Pathway enrichments

without MSH3 are shown in Supplementary Table 18 for the 14 GeM pathways and Supplementary

Table 19 for the Pearl et al. pathways.

Setscreen gene set analysis of the large set of pathways analysed by the GeM-HD Consortium (2015) is

shown in Supplementary Table 24. There were 26 pathways showing significant (q<0.05) enrichment in
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TRACK after correction for multiple testing of pathways. These pathways mainly relate to DNA repair and

binding, and none is more significant than GO:32300 (mismatch repair complex). The genes in these 26

pathways are shown in Supplementary Table 25, and are similar to those in Tables 2 and 3, with the

exception of DHFR (however, the pathways containing DHFR tend to be less strongly associated than the

mismatch repair pathways in both TRACK and REGISTRY). Thus, analysis of the large set of pathways

does not appear to throw up any novel areas of biology outside those indicated by the GeM paper.
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Supplementary Figure 1: Observed versus Expected Age of Onset Among Those Who Have Experienced Onset in the TRACK-HD analysis: amongst these
96 subjects who had experienced onset, the rater AAO showed the expected relation with predicted AAO based on CAG length. Earlier than predicted onset
age was correlated with faster progression (using the unified HD progression measure) (r=-0·315; p = 0·002)



Supplementary Figure 2: REGISTRY progression measure and atypical onset age are modestly correlated in REGISTRY. Note bias for very late expected
onset for those with low CAG repeats. SD = Standard deviation.



Supplementary Figure 3: Regional plot of TRACK-HD
GWAS signal in the MSH3-DHFR region before(top) and
after (bottom) conditioning on the most significant SNP in
TRACK-HD (rs557874766). The lack of significant
association after conditioning on this SNP is consistent with
here being only one association signal in the region.



Supplementary Figure 4: Regional plot of TRACK-HD and REGISTRY
meta-analysis GWAS signal in the MSH3-DHFR region before(top) and
after (bottom) conditioning on the most significant SNP in the meta-
analysis (rs1232027). The lack of significant association after
conditioning on this SNP is consistent with here being only one
association signal in the region.



Supplementary Figure 5: Regional plot of TRACK-HD and REGISTRY
meta-analysis GWAS signal in the MSH3-DHFR region before(top) and
after (bottom) conditioning on the most significant SNP in TRACK-HD
(rs557874766). The lack of significant association after conditioning on
this SNP is consistent with here being only one association signal in the
region.



Supplementary Figure 6: Regional plot of REGISTRY GWAS signal in
the MSH3-DHFR region before(top) and after (bottom) conditioning on
the most significant SNP in TRACK-HD (rs557874766). The significance
of association is largely unaffected by conditioning on this SNP. This
indicates that rs557874766 does not explain the REGISTRY association
signal in this region.



Supplementary Figure 7: Regional plot of TRACK-HD
GWAS signal in the MSH3-DHFR region (top, red), along
with GTeX eQTL associations with DHFR expression in
(top-bottom) whole blood, skeletal muscle, cerebellum,
cortex.



Supplementary Figure 8: Regional plot of REGISTRY GWAS
signal in the MSH3-DHFR region (top, blue), along with GTeX
eQTL associations with MSH3 expression in (top-bottom) whole
blood, transformed fibroblasts.



Supplementary Figure 9: (A) Scree Plot and (B) Plot showing proportion of variance explained in the TRACK-HD progression principal component
analysis: the dominance of the first PC is illustrated.



Supplementary Figure 10: (A) Scree Plot and (B) Plot showing proportion of variance explained in the REGISTRY progression principal component
analysis: the dominance of the first PC is illustrated.



Supplementary Figure 11: Age-CAG severity function against clinical probability of onset (CPO) in REGISTRY. A: plot showing predicted values for all
subjects. B: plot of predicted values using only subjects in the CAG 41� 55 range. C: Plot based on extrapolating the severity model to subjects with CAG in
the 36-40 range (the appearance of two rather distinct lines are due to the gender effect, with women having lower predicted scores than men).
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Supplementary Figure 12: Linear relationship between the longitudinal atypical severity scores used for the TRACK-HD analysis and cross-sectional atypical
severity scores at the last TRACK visit when calculated using the method employed for the REGISTRY data (r = .674).



Supplementary Figure 13:
there is no systematic inflation of test statistics.
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Supplementary tables:

Supplementary Table 1: Demographic details of TRACK-HD cohort.
Further detail can be found in Tabrizi et al 2009, 2011, 2012, 2013.

Number (female) Age at baseline (years) CAG repeat length

Manifest 122 (65) 48.0 43.5

Premanifest 96 (53) 40.6 43.0

Supplementary Table 2: List of Variables to be used in TRACK-HD progression analyses. Further
detail regarding these measures can be found in Tabrizi et al 2009, 2011, 2012, 2013.
Symbol digit modality test (number correct)

Stroop word reading (number correct)

Paced Tapping 3 Hz (inverse std dev)

Spot the Change 5K

Emotion Recognition

Direct Circle (Log annulus length)

Indirect Circle (Log annulus length)

Total brain volume

Ventricular volume

Grey matter volume

White matter volume

Caudate volume

Metronome tapping, nondominant hand

Metronome tapping, nondominant hand

Speeded tapping, nondominant hand

Speeded tapping, nondominant hand

Speeded tapping, nondominant hand

Tongue force�heavy

Tongue force�light

Grip force, dom. hand, heavy condition

Grip force, dom. hand, heavy condition

Grip force, nondom. hand, heavy condition

Grip force, dom. hand, light condition

Grip force, nondom. hand, light condition

Supplementary Table 3: Correlations among Domain-Specific Residual Principal Components in
the TRACK-HD analysis, showing that the first principle components of each domain are
significantly correlated.
The prefaces �brain�, �cog�, and �mot� indicate the domain. The suffix f1, f2, etc, numbers the principal
components within each domain. Having approximated the residual longitudinal variability within each of the three
domains via principal components, we then examined cross-domain relationships among these components. For
example, after accounting for CAG-age-risk, testing whether residual longitudinal change in the brain measures
correlated with the Q-motor measures.

brainf1 brainf2 brainf3 cogf1 cogf2 cogf3 cogf4 motf1 motf2 motf3 motf4

brainf1 1 0 0 -0.355 0.077 0.146 -0.068 0.43 0.096 -0.065 -0.139

p 0 1 1 <.0001 0.26 0.03 0.32 <.0001 0.16 0.34 0.04

brainf2 0 1 0 -0.097 -0.055 0.12 -0.016 0.005 -0.149 -0.043 0.041

p 1 0 1 0.15 0.42 0.08 0.81 0.94 0.03 0.53 0.55

brainf3 0 0 1 0.016 0.064 0.12 -0.009 0.15 0.05 -0.108 -0.161



p 1 1 0 0.81 0.35 0.08 0.89 0.03 0.46 0.11 0.02

cogf1 1 0 0 0 -0.434 -0.154 0.035 0.112

p 0 1 1 1 <.0001 0.02 0.6 0.09

cogf2 0 1 0 0 0.035 0.07 -0.12 -0.163

p 1 0 1 1 0.59 0.29 0.07 0.01

cogf3 0 0 1 0 0.105 -0.017 -0.092 -0.143

p 1 1 0 1 0.11 0.8 0.16 0.03

cogf4 0 0 0 1 -0.019 -0.05 -0.011 -0.054

p 1 1 1 0 0.77 0.44 0.87 0.42

Supplementary Table 4: PCA of Residual Longitudinal Change Among Variables form All 3 Domains in
the TRACK-HD analysis showing that the variables that correlated with the domain specific analyses also
correlated with the common principal component analysis.

Measure PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Symbol Digit -0.505 -0.027 0.135 0.194 0.034 0.047 -0.394 -0.121
Stroop Word -0.391 -0.017 0.361 0.468 0.078 -0.232 0.087 0.123

Paced Tapping 3 Hz (inverse std dev) -0.054 -0.123 -0.031 -0.066 0.032 0.621 -0.420 0.233

Spot the Change 5K 0.224 -0.123 0.113 -0.223 -0.016 0.190 0.427 0.479

Emotion Recognition -0.226 0.188 0.228 0.086 -0.090 -0.415 0.098 0.264

Direct Circle (Log annulus length) -0.374 -0.101 0.419 0.199 0.488 0.258 0.060 -0.027

Indirect Circle (Log annulus length) -0.406 -0.076 0.407 0.418 0.161 0.336 0.036 0.130

Total brain volume 0.749 -0.457 0.168 0.077 -0.046 -0.100 -0.115 -0.079

Ventricular volume -0.545 0.509 -0.079 -0.125 0.094 0.131 0.274 0.043

Grey matter volume 0.631 -0.491 0.173 -0.050 -0.088 -0.137 0.038 -0.022

White matter volume 0.699 -0.409 0.252 -0.085 -0.019 -0.048 0.062 0.044

Caudate volume 0.584 -0.426 0.082 0.223 0.086 0.083 -0.055 0.046

Metronome tapping, nondominant hand 0.433 -0.033 -0.206 -0.338 0.104 0.392 0.037 -0.081

(log of tap initiation SD for all trials) 0.433 -0.033 -0.206 -0.338 0.104 0.392 0.037 -0.081

Metronome tapping, nondominant hand -0.033 -0.212 0.013 0.144 0.116 0.133 0.347 -0.705

(inv tap initiation SD for self-paced trials)

Speeded tapping, nondominant hand 0.380 -0.022 -0.483 0.315 0.554 -0.206 -0.058 0.123

(log of repetition time SD)

Speeded tapping, nondominant hand 0.594 0.028 -0.335 0.182 0.437 -0.061 0.027 0.206

(log of tap duration SD)

Speeded tapping, nondominant hand 0.316 0.373 -0.219 0.006 0.411 -0.036 -0.002 -0.120

(mean intertap time)

Tongue force�heavy 0.147 0.016 -0.332 0.586 -0.445 0.177 -0.033 0.012

(log coefficient of variation)

Tongue force�light 0.247 0.114 -0.399 0.451 -0.407 0.191 0.217 0.066

(log coefficient of variation)

Grip force, dom. hand, heavy condition 0.615 0.488 0.252 0.009 -0.078 -0.014 -0.336 -0.077

(log of mean orientation)

Grip force, dom. hand, heavy condition 0.568 0.518 0.207 0.033 -0.027 -0.051 -0.381 -0.042

(log of mean position)

Grip force, nondom. hand, heavy condition 0.516 0.400 0.213 0.108 0.003 0.122 0.231 -0.145

(log of coefficient of variation)
Grip force, dom. hand, light condition 0.681 0.311 0.250 0.034 0.016 0.140 0.188 0.114

(log of coefficient of variation)

Grip force, nondom. hand, light condition 0.647 0.430 0.293 0.071 -0.061 0.071 0.163 -0.055

(log of coefficient of variation)
Pct Variance Explained 23.4 9.5 7.1 6 5.7 5.1 4.9 4.3



Supplementary Table 5: Factor pattern of the first two principal component analysis of the REGISTRY severity score
which was used as a progression score for the Registry data. Factor 1 = 1st PC; Factor 2 = 2nd PC.

Factor Pattern

Variable Variable explanation Factor1 Factor2

sqrtmotor Square root of the UHDRS total motor score -0.84233 0.30062

verfl UHDRS verbal fluency 0.79108 0.24136

sdmt UHDRS symbol digit score 0.89833 0.1522

scnt UHDRS Stroop color naming 0.89596 0.25872

swrt UHDRS Stroop word reading 0.88978 0.2109

sit1 UHDRS Stroop interference score 0.87684 0.21789

tfc UHDRS total functional capacity 0.8746 -0.39367

fasscore UHDRS functional assessment scale 0.88355 -0.38555

Supplementary Table 6: Independent association signals from the TRACK-HD Progression GWAS (at p-value < 10-5)
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0.24
3

2.10E-
06 9

96.6
23 NRXN3

2 58253090 58774645 rs146045300 G A 0.009
0.99
9 1.940

0.41
2

2.46E-
06 5

521.
56

FANCL, LINC01122,
VRK2

3 36891939 36956117 rs146080846

A
TT
A
T A 0.014

0.95
3 1.965

0.41
8

2.54E-
06 2

64.1
79 TRANK1

19 6675794 6675794 rs183566601 G C 0.012
0.90
8 2.139

0.45
5

2.56E-
06 1

0.00
1 C3, TNFSF14

1 74500787 74665215 rs75274216 G C 0.016
1.00
0 1.551

0.33
1

2.77E-
06 2

164.
43

FPGT, FPGT-
TNNI3K, LRRIQ3

8 58860626 58860626 rs577181066 T C 0.009
1.00
0 -2.314

0.49
5

3.00E-
06 1

0.00
1 none

7 153670448 153672048 rs39153 T A 0.035
1.00
0 1.264

0.27
2

3.23E-
06 6

1.60
1 DPP6

9 107972517 107982792 rs33922537
T
A T 0.088

0.99
1 0.813

0.17
5

3.25E-
06 44

10.2
76 none

2 182396359 182396359 rs185077546 A G 0.009
1.00
0 2.344

0.50
4

3.28E-
06 1

0.00
1 CERKL, ITGA4

2 131955255 132160922 rs377754762 C G 0.009
0.97
1 2.342

0.50
4

3.44E-
06 3

205.
67

LINC01120,
LOC440910, POTEE,
WTH3DI

7 37980409 37980409 rs7798464 C T 0.478
0.99
9 -0.515

0.11
1

3.48E-
06 1

0.00
1 EPDR1

6 136578804 136578804 rs182174986 C T 0.007
1.00
0 2.694

0.58
2

3.70E-
06 1

0.00
1 BCLAF1, MTFR2

1 10849645 10849645 rs10864471 G A 0.076
0.99
6 0.798

0.17
3

3.85E-
06 1

0.00
1 CASZ1

16 84533672 85735002 rs544820106 T C 0.007
0.99
8 2.692

0.58
3

3.90E-
06 3

1201
.3

C16orf74, COTL1,
CRISPLD2,
FAM92B, GINS2,
GSE1, KIAA0513,
KLHL36,
LINC00311,
LOC400548,
MIR5093, MIR7851,
TLDC1, USP10,
ZDHHC7

9 140124101 140326510 rs576074352 T C 0.009
1.00
0 2.320

0.50
5

4.26E-
06 3

202.
41

C9orf169, C9orf173,
ENTPD8, EXD3,
FAM166A,
LOC100129722,
MIR7114, NDOR1,
NELFB, NOXA1,
NRARP, NSMF,
RNF208, RNF224,
SLC34A3, TOR4A,
TUBB4B

3 147917 147917 rs190854428 T C 0.014
0.99
0 1.920

0.41
8

4.29E-
06 1

0.00
1 none

7 20723109 20725291 rs78036476 G T 0.024
1.00
0 1.515

0.33
0

4.44E-
06 2

2.18
3 ABCB5

10 6409502 6409502 rs7915166 C T 0.308
1.00
0 0.496

0.10
8

4.80E-
06 1

0.00
1 none

4 178648851 178648851 rs191350537 A G 0.014
0.99
9 1.882

0.41
3

5.15E-
06 1

0.00
1 LINC01098

2 121177685 121177685 rs542948395 T C 0.009
1.00
0 2.291

0.50
4

5.37E-
06 1

0.00
1 none

19 40114782 40248603 rs544526021 T G 0.009
1.00
0 2.301

0.50
6

5.42E-
06 3

133.
82

CLC, LEUTX,
LGALS13,
LGALS14,
LGALS16,
LGALS17A,
LOC100129935

8 15256069 15266930 rs11203702 A T 0.118 0.99 0.680 0.15 5.56E- 3 10.8 none



6 0 06 62

7 126436990 126497288 rs139456699 A G 0.019
1.00
0 -1.608

0.35
4

5.74E-
06 3

60.2
99 GRM8

4 144227742 144227742 rs185067403 A G 0.009
1.00
0 2.294

0.50
6

5.80E-
06 1

0.00
1 none

13 20224902 20377448 rs35231784
G
C G 0.260

0.99
5 -0.495

0.11
0

6.11E-
06 36

152.
55 MPHOSPH8, PSPC1

3 71536485 71536485 rs139096029 A G 0.019
1.00
0 1.603

0.35
5

6.26E-
06 1

0.00
1 FOXP1

2 6216990 6265656 rs13017659 A C 0.068
0.97
5 0.818

0.18
1

6.28E-
06 4

48.6
67 none

8 141293251 141293251 rs186776689 T C 0.009
1.00
0 2.277

0.50
4

6.30E-
06 1

0.00
1 TRAPPC9

6 117738434 117812254 rs143087465 T C 0.009
1.00
0 2.289

0.50
7

6.42E-
06 3

73.8
21 DCBLD1, ROS1

1 71806741 71806741 rs615589 C T 0.017
0.95
3 1.772

0.39
3

6.45E-
06 1

0.00
1 none

1 34835613 34886817 rs10753307 C G 0.146
1.00
0 0.646

0.14
4

6.94E-
06 35

51.2
05 none

13 73610584 73624638 rs13378884 G A 0.280
1.00
0 0.500

0.11
1

7.28E-
06 2

14.0
55 KLF5, PIBF1

3 21479214 21521820 rs73045437 A G 0.131
0.99
6 0.683

0.15
2

7.32E-
06 2

42.6
07 ZNF385D

6 24188337 24301530 rs138968896 A C 0.047
0.99
8 1.058

0.23
6

7.39E-
06 21

113.
19 DCDC2

18 64640322 64640322 rs11663556 T C 0.009
0.99
7 2.246

0.50
5

8.55E-
06 1

0.00
1 none

16 21651427 21706726 rs139057628 C T 0.012
0.88
1 1.999

0.45
2

9.82E-
06 2 55.3

IGSF6, METTL9,
OTOA

11 122679684 122679684 rs5795348 G
G
A 0.201

0.98
7 0.587

0.13
3

9.91E-
06 1

0.00
1 UBASH3B

10 51520713 51520713 rs74922941 C T 0.016
1.00
0 1.701

0.38
5

9.92E-
06 1

0.00
1 TIMM23B

Supplementary Table 7: Independent association signals from the meta-analysis of TRACK-HD and
REGISTRY Progression GWAS (at p-value < 10-5)

Index SNP P-value Clump coordinates
Clump
size (KB) Gene(s) tagged

rs1232027 1.12E-10 chr5:79895438..80198404 302.967 DHFR, MSH3, MTRNR2L2
rs73786719 8.53E-07 chr6:147034576..147037984 3.409 ADGB

rs114688092 1.51E-06 chr3:47026101..47315538 289.438
CCDC12, KIF9, KIF9-AS1, KLHL18, NBEAL2,
NRADDP, SETD2

rs79029191 1.67E-06 chr18:8053863..8080538 26.676 PTPRM
rs932428 1.79E-06 chr20:37518361..37876772 358.412 DHX35, FAM83D, LOC339568, PPP1R16B
rs3889139 2.13E-06 chr11:6885429..6917038 31.61 OR2D2, OR10A2, OR10A4, OR10A5
rs114643193 2.65E-06 chr4:2844682..2939191 94.51 ADD1, MFSD10, NOP14, NOP14-AS1, SH3BP2
rs6882169 2.72E-06 chr5:167668230..167668230 0.001 CTB-178M22.2, TENM2
rs80260687 2.92E-06 chr8:97232364..97304966 72.603 MTERFD1, PTDSS1, UQCRB
rs28406206 3.13E-06 chr14:105680474..105688082 7.609 BRF1
rs4736525 3.37E-06 chr8:132924474..133030989 106.516 EFR3A, OC90
rs78621558 4.44E-06 chr5:80012735..80012735 0.001 MSH3
rs72715653 4.80E-06 chr4:178641337..178730329 88.993 LINC01098, LINC01099
rs4720024 4.94E-06 chr7:30941255..30942312 1.058 AQP1, FAM188B, INMT-FAM188B
rs117933444 5.75E-06 chr6:167362873..167410443 47.571 FGFR1OP, MIR3939, RNASET2
rs116220136 5.82E-06 chr5:23353255..23436446 83.192 none
rs8031584 8.15E-06 chr15:31185616..31292023 106.408 FAN1, MTMR10, TRPM1
rs3013648 9.10E-06 chr13:85296644..85374146 77.503 none
rs11197481 9.12E-06 chr10:117708803..117708803 0.001 ATRNL1
rs117440785 9.15E-06 chr10:17411451..17531334 119.884 ST8SIA6, ST8SIA6-AS1
rs111258354 9.87E-06 chr2:60823224..60883232 60.009 none

Supplementary Table 8: Co-localisation between TRACK-HD GWAS signal on chromosome 5 and
GTeX eQTLs for MSH3, DHFR

Dataset
Dataset
source

Most significant eQTL
p-value N Overlapping SNPs

COLOC probability (of
shared variants)

MSH3 (Blood) GTEx 1.70E-28 647 1.76%

MSH3 (Fibroblasts) GTEx 3.10E-39 646 1.76%



MSH3 (Cerebellum) GTEx 1.10E-06 592 8.83%

MSH3 (Caudate) GTEx 1.65E-05 588 25.20%

MSH3 (Cortex) GTEx 5.53E-05 582 53.10%

DHFR (Blood) GTEx 5.20E-45 647 98.10%

DHFR (Skeletal muscle) GTEx 1.30E-68 655 99.20%

DHFR (Cerebellum) GTEx 7.60E-13 592 28.30%

DHFR (Caudate) GTEx 2.60E-12 588 99.00%

DHFR (Cortex) GTEx 4.90E-15 582 96.10%

Supplementary Table 9: Co-localisation between REGISTRY GWAS signal on chromosome 5 and
GTeX eQTLs for MSH3, DHFR

Dataset
Dataset
source

Most significant eQTL
p-value N Common SNPs

COLOC probability (of
shared variants)

MSH3 (Blood) GTEx 1.70E-28 3289 97.80%

MSH3 (Fibroblasts) GTEx 3.10E-39 3224 97.80%

MSH3 (Cerebellum) GTEx 1.10E-06 2888 12.50%

MSH3 (Caudate) GTEx 1.65E-05 2866 10.40%

MSH3 (Cortex) GTEx 5.53E-05 2853 23.10%

DHFR (Blood) GTEx 5.20E-45 3289 36.40%

DHFR (Skeletal muscle) GTEx 1.30E-68 3336 34.10%

DHFR (Cerebellum) GTEx 7.60E-13 2888 0.88%

DHFR (Caudate) GTEx 2.60E-12 2866 43.30%

DHFR (Cortex) GTEx 4.90E-15 2853 23.10%

Supplementary Table 10: Co-localisation between TRACK-HD GWAS signal on chromosome 5 and
GTeX eQTLs for MSH3, DHFR

Dataset
Dataset
source

Most significant eQTL
p-value N Overlapping SNPs

COLOC probability (of
shared variants)

MSH3 (Blood) GTEx 1.70E-28 647 1.76%

MSH3 (Fibroblasts) GTEx 3.10E-39 646 1.76%

MSH3 (Cerebellum) GTEx 1.10E-06 592 8.83%

MSH3 (Caudate) GTEx 1.65E-05 588 25.20%

MSH3 (Cortex) GTEx 5.53E-05 582 53.10%

DHFR (Blood) GTEx 5.20E-45 647 98.10%

DHFR (Skeletal muscle) GTEx 1.30E-68 655 99.20%

DHFR (Cerebellum) GTEx 7.60E-13 592 28.30%

DHFR (Caudate) GTEx 2.60E-12 588 99.00%

DHFR (Cortex) GTEx 4.90E-15 582 96.10%

Supplementary Table 11: Independent association signals from the REGISTRY Progression GWAS (at p-value < 10-5)

Chr
omo
som
e Start (BP) End (BP)

Index SNP
(dbSNP b146)

Ref
ere
nce
Alle
le
(A1
)

Altern
ate
Allele
(A2)

Minor
Allele
Frequ
ency
(MAF
)

INFO
score Beta

Stand
ard
Error P-value

Nu
mb
er
of
SN
Ps

Length
(KB) Gene(s) tagged (+/- 20 KB)

10 117708803 117708803 rs11197481 A G
0.17
6

0.99
7 0.193

0.03
7 2.14E-07 1 0.001 ATRNL1

15 30996093 31314317 rs10611148 A
AAG
TT

0.27
4

0.99
9 0.160

0.03
1 2.84E-07 72

318.22
5

FAN1, HERC2P10,
LOC100288637,
MTMR10, TRPM1

6 67807895 67905502 rs75695330 C T
0.26
8

0.52
2 0.176

0.03
4 2.88E-07 12 97.608 none



12 117967637 117989548 rs10774933 C T
0.19
7

0.99
2 0.171

0.03
5 1.08E-06 10 21.912 KSR2

3 86317394 86321260 rs78656706 A G
0.02
5

0.61
0 -0.440

0.09
1 1.15E-06 2 3.867 none

1 151576174 151614297
rs76171298

0 A

AAT
AAA
T

0.08
9

0.85
8 -0.231

0.04
9 2.21E-06 3 38.124 SNX27

3 93566149 93725515 rs62266135 T G
0.01
5

0.50
0 0.542

0.11
6 2.77E-06 2

159.36
7

ARL13B, PROS1,
STX19

5 23353255 23436446 rs72754785 G A
0.04
5

0.90
8 0.316

0.06
7 2.87E-06 4 83.192 none

5 36704641 36954077 rs62356368 T G
0.01
6

0.98
5 0.531

0.11
4 2.92E-06 4

249.43
7

LOC646719, NIPBL,
SLC1A3

20 13209795 13245958
rs75990141

6 T
TCT
CTT

0.15
6

0.85
7 0.183

0.03
9 3.33E-06 3 36.164 ISM1, ISM1-AS1

10 6403262 6407737 rs2387399 T C
0.35
8

0.99
7 0.136

0.02
9 3.42E-06 2 4.476 none

14 33262946 33284981 rs991550 G A
0.07
7

0.99
6 -0.248

0.05
4 3.60E-06 3 22.036 AKAP6

10 85432343 85432343
rs14055051

0 G C
0.01
4

0.84
9 0.549

0.11
9 4.00E-06 1 0.001 none

15 92882676 92897269
rs14527168

3 T C
0.02
1

0.90
8 -0.450

0.09
8 4.65E-06 4 14.594 none

4 3860844 3863228 rs28501173 T G
0.27
0

0.99
7 0.145

0.03
2 4.66E-06 15 2.385 none

12 117075057 117079318
rs14485439

6 T TC
0.33
1

0.89
0 0.135

0.03
0 6.01E-06 8 4.262 none

16 6945437 6945437
rs18873831

6 A G
0.11
8

0.65
2 0.205

0.04
5 6.22E-06 1 0.001 RBFOX1

5 81062170 81062170 rs4703843 G T
0.16
5

0.91
5 0.172

0.03
8 6.27E-06 1 0.001 SSBP2

11 62532798 62614506 rs41542313 T C
0.03
1

0.99
9 0.367

0.08
1 6.31E-06 3 81.709

MIR6514, MIR6748,
NXF1, POLR2G,
SLC3A2, SNHG1,
SNORD22, SNORD25,
SNORD26, SNORD27,
SNORD28, SNORD29,
SNORD30, SNORD31,
STX5, TAF6L,
TMEM179B,
TMEM223, WDR74,
ZBTB3

21 45715620 45734831 rs3746965 A G
0.23
5

1.00
0 0.150

0.03
3 6.75E-06 4 19.212 AIRE, C21orf2, PFKL



3 49451639 52028491 rs28587738 A C
0.01
4

0.56
3 0.555

0.12
4 7.54E-06 5

2576.8
5

ABHD14A,
ABHD14A-ACY1,
ABHD14B, ACY1,
AMIGO3, AMT,
APEH, BSN, BSN-
AS2, C3orf18,
CACNA2D2, CAMKV,
CDHR4, CISH,
CYB561D2, DAG1,
DOCK3, FAM212A,
GMPPB, GNAI2,
GNAT1, GPR62,
GRM2, HEMK1,
HYAL1, HYAL2,
HYAL3, IFRD2,
IP6K1, IQCF1, IQCF2,
IQCF3, IQCF4, IQCF5,
IQCF5-AS1, IQCF6,
LSMEM2, MANF,
MAPKAPK3,
MIR4787, MIR5193,
MIR5787, MIR6872,
MON1A, MST1,
MST1R, NAT6,
NICN1, NPRL2,
PARP3, PCBP4,
RAD54L2, RASSF1,
RASSF1-AS1, RBM5,
RBM5-AS1, RBM6,
RBM15B, RHOA,
RNF123, RPL29,
RRP9, SEMA3B,
SEMA3B-AS1,
SEMA3F, SLC38A3,
TCTA, TEX264,
TMEM115, TRAIP,
TUSC2, UBA7,
VPRBP, ZMYND10

15 31126401 31276476 rs7180337 G T
0.02
0

0.62
1 -0.442

0.09
9 7.77E-06 22

150.07
6

FAN1, HERC2P10,
MTMR10, TRPM1

15 31345498 31367837 rs28632121 C T
0.24
7

0.99
8 -0.144

0.03
2 7.96E-06 8 22.34 MIR211, TRPM1

5 158949420 158950938
rs11555336

5 G T
0.02
0

0.79
9 0.450

0.10
1 8.58E-06 2 1.519 none

19 17164401 17164401 rs73022346 T G
0.01
3

0.64
9 -0.550

0.12
4 8.93E-06 1 0.001 HAUS8

7 70111666 70238809 rs80237739 C T
0.02
5

0.85
0 -0.405

0.09
2 9.80E-06 4

127.14
4 AUTS2

Supplementary Table 12: Gene-wide p-values in TRACK-HD, REGISTRY, the TRACK-REGISTRY meta-analysis and
GeM for all genes in the top 14 pathways from GeM

Pathway
Entr
ez

Gene
Symbol

Ch
r Start End

p(TRAC
K)

p(REGI
STRY)

p(META
) p(GeM) Description

GO:32300 4437 MSH3 5 79950467 80172634 2.94E-08 9.52E-04 8.88E-11 2.03E-02 mismatch repair complex

GO:30983 4437 MSH3 5 79950467 80172634 2.94E-08 9.52E-04 8.88E-11 2.03E-02 mismatched DNA binding

GO:6298 4437 MSH3 5 79950467 80172634 2.94E-08 9.52E-04 8.88E-11 2.03E-02 mismatch repair
KEGG
3430 4437 MSH3 5 79950467 80172634 2.94E-08 9.52E-04 8.88E-11 2.03E-02 KEGG_MISMATCH_REPAIR
KEGG
3430 5425 POLD2 7 44154279 44163169 7.21E-04 3.12E-01 2.75E-03 5.20E-01 KEGG_MISMATCH_REPAIR
KEGG

3430 3978 LIG1 19 48618703 48673560 1.65E-02 8.28E-02 5.35E-04 6.51E-02 KEGG_MISMATCH_REPAIR
KEGG

3430
2703
0 MLH3 14 75480467 75518235 1.69E-02 6.69E-01 1.47E-01 6.59E-03 KEGG_MISMATCH_REPAIR

GO:6298
2703
0 MLH3 14 75480467 75518235 1.69E-02 6.69E-01 1.47E-01 6.59E-03 mismatch repair

GO:32407
2703
0 MLH3 14 75480467 75518235 1.69E-02 6.69E-01 1.47E-01 6.59E-03 MutSalpha complex binding

GO:32300
2703
0 MLH3 14 75480467 75518235 1.69E-02 6.69E-01 1.47E-01 6.59E-03 mismatch repair complex

GO:30983
2703
0 MLH3 14 75480467 75518235 1.69E-02 6.69E-01 1.47E-01 6.59E-03 mismatched DNA binding

GO:10822 5534 PPP3R1 2 68405989 68479651 1.82E-02 4.76E-01 6.12E-01 8.40E-01
positive regulation of
mitochondrion organization



GO: 33683 2068 ERCC2 19 45854649 45873845 2.03E-02 8.83E-01 3.45E-01 7.45E-01
nucleotide-excision repair, DNA
incision

GO: 90200
8433
4 APOPT1 14 104029299 104057236 2.51E-02 8.19E-01 4.40E-01 8.18E-01

positive regulation of release of
cytochrome c from mitochondria

GO: 10822
8433
4 APOPT1 14 104029299 104057236 2.51E-02 8.19E-01 4.40E-01 8.18E-01

positive regulation of
mitochondrion organization

GO: 32389 5395 PMS2 7 6012870 6048737 2.58E-02 3.66E-01 8.84E-03 1.91E-05 MutLalpha complex

GO: 32300 5395 PMS2 7 6012870 6048737 2.58E-02 3.66E-01 8.84E-03 1.91E-05 mismatch repair complex

GO: 30983 5395 PMS2 7 6012870 6048737 2.58E-02 3.66E-01 8.84E-03 1.91E-05 mismatched DNA binding
KEGG

3430 5395 PMS2 7 6012870 6048737 2.58E-02 3.66E-01 8.84E-03 1.91E-05 KEGG_MISMATCH_REPAIR

GO: 6298 5395 PMS2 7 6012870 6048737 2.58E-02 3.66E-01 8.84E-03 1.91E-05 mismatch repair

GO: 32407 5395 PMS2 7 6012870 6048737 2.58E-02 3.66E-01 8.84E-03 1.91E-05 MutSalpha complex binding

GO: 30983 4439 MSH5 6 31707725 31730455 4.35E-02 8.54E-01 7.73E-01 5.14E-01 mismatched DNA binding

GO: 6298 4439 MSH5 6 31707725 31730455 4.35E-02 8.54E-01 7.73E-01 5.14E-01 mismatch repair
KEGG

3430 5982 RFC2 7 73645832 73668738 4.80E-02 5.91E-01 2.02E-02 4.46E-01 KEGG_MISMATCH_REPAIR

GO: 30983 7508 XPC 3 14186647 14220172 5.52E-02 1.04E-01 2.77E-02 5.53E-01 mismatched DNA binding
KEGG

3430 6119 RPA3 7 7676575 7758238 6.55E-02 7.22E-01 9.17E-02 4.40E-01 KEGG_MISMATCH_REPAIR

GO: 32300 4292 MLH1 3 37034841 37092337 6.98E-02 3.97E-04 1.28E-04 4.13E-04 mismatch repair complex

GO: 6298 4292 MLH1 3 37034841 37092337 6.98E-02 3.97E-04 1.28E-04 4.13E-04 mismatch repair
KEGG

3430 4292 MLH1 3 37034841 37092337 6.98E-02 3.97E-04 1.28E-04 4.13E-04 KEGG_MISMATCH_REPAIR

GO: 30983 4292 MLH1 3 37034841 37092337 6.98E-02 3.97E-04 1.28E-04 4.13E-04 mismatched DNA binding

GO: 32407 4292 MLH1 3 37034841 37092337 6.98E-02 3.97E-04 1.28E-04 4.13E-04 MutSalpha complex binding

GO: 32389 4292 MLH1 3 37034841 37092337 6.98E-02 3.97E-04 1.28E-04 4.13E-04 MutLalpha complex

GO: 33683 2067 ERCC1 19 45910591 45927177 7.32E-02 3.96E-01 2.69E-01 3.30E-01
nucleotide-excision repair, DNA
incision

GO: 32407 545 ATR 3 142168077 142297668 7.62E-02 7.94E-01 2.71E-01 2.97E-01 MutSalpha complex binding

GO: 90140
7959
4 MUL1 1 20825941 20834674 8.94E-02 5.22E-01 5.27E-01 4.68E-01

regulation of mitochondrial
fission

GO: 90141
7959
4 MUL1 1 20825941 20834674 8.94E-02 5.22E-01 5.27E-01 4.68E-01

positive regulation of
mitochondrial fission

GO: 10822
7959
4 MUL1 1 20825941 20834674 8.94E-02 5.22E-01 5.27E-01 4.68E-01

positive regulation of
mitochondrion organization

GO: 90200
2635
5

FAM162
A 3 122103023 122128961 1.32E-01 7.57E-01 6.93E-01 8.40E-01

positive regulation of release of
cytochrome c from mitochondria

GO: 10822
2635
5

FAM162
A 3 122103023 122128961 1.32E-01 7.57E-01 6.93E-01 8.40E-01

positive regulation of
mitochondrion organization

GO:190006
3

5694
7 MFF 2 228192228 228222549 1.52E-01 9.63E-01 5.92E-01 3.29E-01

regulation of peroxisome
organization

GO: 10822
5694
7 MFF 2 228192228 228222549 1.52E-01 9.63E-01 5.92E-01 3.29E-01

positive regulation of
mitochondrion organization

GO: 90200
5694
7 MFF 2 228192228 228222549 1.52E-01 9.63E-01 5.92E-01 3.29E-01

positive regulation of release of
cytochrome c from mitochondria

GO: 32389 7486 WRN 8 30890778 31031277 1.66E-01 5.59E-01 6.60E-01 3.60E-01 MutLalpha complex

GO: 32300 7486 WRN 8 30890778 31031277 1.66E-01 5.59E-01 6.60E-01 3.60E-01 mismatch repair complex

GO: 10822 637 BID 22 18216906 18257431 1.77E-01 2.99E-02 7.33E-02 2.11E-01
positive regulation of
mitochondrion organization

GO: 90200 637 BID 22 18216906 18257431 1.77E-01 2.99E-02 7.33E-02 2.11E-01
positive regulation of release of
cytochrome c from mitochondria

GO: 90141
5470
8

MARCH
_5 10 94050920 94113721 1.81E-01 8.26E-03 4.51E-01 5.33E-02

positive regulation of
mitochondrial fission

GO: 10822
5470
8

MARCH
_5 10 94050920 94113721 1.81E-01 8.26E-03 4.51E-01 5.33E-02

positive regulation of
mitochondrion organization

GO: 90140
5470
8

MARCH
_5 10 94050920 94113721 1.81E-01 8.26E-03 4.51E-01 5.33E-02

regulation of mitochondrial
fission

KEGG
3430

2993
5 RPA4 23 96138907 96140466 1.81E-01 N/A N/A N/A KEGG_MISMATCH_REPAIR

GO: 10822 572 BAD 11 64037300 64052176 1.87E-01 2.48E-01 4.16E-01 1.79E-01
positive regulation of
mitochondrion organization

GO: 90200 572 BAD 11 64037300 64052176 1.87E-01 2.48E-01 4.16E-01 1.79E-01
positive regulation of release of
cytochrome c from mitochondria

GO: 33683 2071 ERCC3 2 128014866 128051752 1.97E-01 4.27E-01 8.61E-01 7.39E-03
nucleotide-excision repair, DNA
incision



GO:
10822 708 C1QBP 17 5336099 5342471 2.05E-01 8.72E-01 2.59E-01 5.99E-01

positive regulation of
mitochondrion organization

GO:190006
3

5750
6 MAVS 20 3827446 3856770 2.13E-01 7.14E-02 2.31E-01 8.82E-01

regulation of peroxisome
organization

GO: 10822 5366 PMAIP1 18 57567192 57571538 2.38E-01 1.05E-01 2.58E-02 1.10E-01
positive regulation of
mitochondrion organization

GO: 90200 5366 PMAIP1 18 57567192 57571538 2.38E-01 1.05E-01 2.58E-02 1.10E-01
positive regulation of release of
cytochrome c from mitochondria

GO: 90200
2910
8

PYCAR
D 16 31212807 31214097 2.44E-01 4.42E-01 1.57E-01 N/A

positive regulation of release of
cytochrome c from mitochondria

GO: 10822
2910
8

PYCAR
D 16 31212807 31214097 2.44E-01 4.42E-01 1.57E-01 N/A

positive regulation of
mitochondrion organization

GO: 30983 2956 MSH6 2 48010221 48034092 2.46E-01 3.15E-01 1.58E-01 9.36E-02 mismatched DNA binding

GO: 32300 2956 MSH6 2 48010221 48034092 2.46E-01 3.15E-01 1.58E-01 9.36E-02 mismatch repair complex
KEGG

3430 2956 MSH6 2 48010221 48034092 2.46E-01 3.15E-01 1.58E-01 9.36E-02 KEGG_MISMATCH_REPAIR

GO: 6298 2956 MSH6 2 48010221 48034092 2.46E-01 3.15E-01 1.58E-01 9.36E-02 mismatch repair

GO: 10822
5110
0

SH3GLB
1 1 87170253 87213867 2.55E-01 7.63E-01 2.92E-01 5.27E-01

positive regulation of
mitochondrion organization

GO: 90141 664 BNIP3 10 133781204 133795435 2.63E-01 1.17E-01 7.70E-01 7.19E-01
positive regulation of
mitochondrial fission

GO: 90140 664 BNIP3 10 133781204 133795435 2.63E-01 1.17E-01 7.70E-01 7.19E-01
regulation of mitochondrial
fission

GO:
10822 664 BNIP3 10 133781204 133795435 2.63E-01 1.17E-01 7.70E-01 7.19E-01

positive regulation of
mitochondrion organization

GO: 90200 664 BNIP3 10 133781204 133795435 2.63E-01 1.17E-01 7.70E-01 7.19E-01
positive regulation of release of
cytochrome c from mitochondria

GO: 32407 4595 MUTYH 1 45794914 45806142 2.75E-01 4.31E-01 1.97E-01 1.97E-01 MutSalpha complex binding

GO: 6298 4595 MUTYH 1 45794914 45806142 2.75E-01 4.31E-01 1.97E-01 1.97E-01 mismatch repair

GO: 10822 2810 SFN 1 27189633 27190947 2.78E-01 4.30E-01 2.23E-01 7.65E-01
positive regulation of
mitochondrion organization

KEGG
3430 5424 POLD1 19 50887580 50921275 2.84E-01 6.48E-01 6.86E-01 2.11E-01 KEGG_MISMATCH_REPAIR
KEGG

3430 6118 RPA2 1 28218049 28241236 2.94E-01 2.04E-02 1.18E-01 7.45E-01 KEGG_MISMATCH_REPAIR

GO: 6298 2072 ERCC4 16 14014014 14046205 3.00E-01 5.58E-01 2.66E-01 6.21E-01 mismatch repair

GO: 33683 2072 ERCC4 16 14014014 14046205 3.00E-01 5.58E-01 2.66E-01 6.21E-01
nucleotide-excision repair, DNA
incision

KEGG
3430 5983 RFC3 13 34392206 34540695 3.15E-01 7.80E-01 7.18E-01 6.12E-01 KEGG_MISMATCH_REPAIR

GO: 90200 7157 TP53 17 7571720 7590868 3.21E-01 5.79E-01 2.20E-01 2.47E-01
positive regulation of release of
cytochrome c from mitochondria

GO: 10822 7157 TP53 17 7571720 7590868 3.21E-01 5.79E-01 2.20E-01 2.47E-01
positive regulation of
mitochondrion organization

GO: 10822 207 AKT1 14 105235686 105262080 3.62E-01 4.10E-01 5.64E-01 3.96E-01
positive regulation of
mitochondrion organization

KEGG
3430 5981 RFC1 4 39289069 39368001 3.64E-01 6.29E-01 7.60E-01 6.19E-01 KEGG_MISMATCH_REPAIR

GO: 90200 581 BAX 19 49458117 49465055 3.65E-01 1.25E-01 2.47E-01 8.13E-01
positive regulation of release of
cytochrome c from mitochondria

GO: 10822 581 BAX 19 49458117 49465055 3.65E-01 1.25E-01 2.47E-01 8.13E-01
positive regulation of
mitochondrion organization

GO: 90200
9042
7 BMF 15 40380091 40401075 3.71E-01 5.25E-02 3.21E-02 5.08E-01

positive regulation of release of
cytochrome c from mitochondria

GO: 10822
9042
7 BMF 15 40380091 40401075 3.71E-01 5.25E-02 3.21E-02 5.08E-01

positive regulation of
mitochondrion organization

GO: 10822
1089
1

PPARGC
1A 4 23793644 23891700 3.79E-01 1.49E-01 1.47E-01 3.43E-01

positive regulation of
mitochondrion organization

GO: 10822
6501
8 PINK1 1 20959948 20978004 3.83E-01 8.71E-01 5.33E-01 4.83E-01

positive regulation of
mitochondrion organization

GO: 90200
6501
8 PINK1 1 20959948 20978004 3.83E-01 8.71E-01 5.33E-01 4.83E-01

positive regulation of release of
cytochrome c from mitochondria

GO: 90200
1096
2 MLLT11 1 151032151 151040973 3.90E-01 7.62E-01 9.23E-01 4.75E-01

positive regulation of release of
cytochrome c from mitochondria

GO: 10822
1096
2 MLLT11 1 151032151 151040973 3.90E-01 7.62E-01 9.23E-01 4.75E-01

positive regulation of
mitochondrion organization

GO: 32300 4436 MSH2 2 47630206 47710367 3.98E-01 3.10E-01 7.03E-01 5.49E-01 mismatch repair complex

GO: 30983 4436 MSH2 2 47630206 47710367 3.98E-01 3.10E-01 7.03E-01 5.49E-01 mismatched DNA binding

GO: 6298 4436 MSH2 2 47630206 47710367 3.98E-01 3.10E-01 7.03E-01 5.49E-01 mismatch repair



KEGG
3430 4436 MSH2 2 47630206 47710367 3.98E-01 3.10E-01 7.03E-01 5.49E-01 KEGG_MISMATCH_REPAIR

GO: 10822 841 CASP8 2 202098166 202152434 4.15E-01 8.81E-01 4.49E-01 3.35E-01
positive regulation of
mitochondrion organization

GO: 10822 7533 YWHAH 22 32340479 32353590 4.25E-01 7.16E-01 2.86E-01 6.25E-01
positive regulation of
mitochondrion organization

GO: 10822 8655 DYNLL1 12 120907660 120936298 4.50E-01 3.11E-01 4.07E-01 4.21E-01
positive regulation of
mitochondrion organization

GO: 32407 5378 PMS1 2 190648811 190742355 4.57E-01 8.23E-01 3.36E-01 7.24E-02 MutSalpha complex binding

GO: 32389 5378 PMS1 2 190648811 190742355 4.57E-01 8.23E-01 3.36E-01 7.24E-02 MutLalpha complex

GO: 32300 5378 PMS1 2 190648811 190742355 4.57E-01 8.23E-01 3.36E-01 7.24E-02 mismatch repair complex

GO: 30983 5378 PMS1 2 190648811 190742355 4.57E-01 8.23E-01 3.36E-01 7.24E-02 mismatched DNA binding

GO: 6298 5378 PMS1 2 190648811 190742355 4.57E-01 8.23E-01 3.36E-01 7.24E-02 mismatch repair

GO: 33683 2073 ERCC5 13 103498191 103528351 4.73E-01 7.10E-01 3.43E-01 2.62E-01
nucleotide-excision repair, DNA
incision

GO: 10822 7755 ZNF205 16 3162563 3170518 4.74E-01 9.01E-01 7.24E-01 9.47E-01
positive regulation of
mitochondrion organization

GO:90200 8743
TNFSF1
0 3 172223298 172241297 4.77E-01 6.95E-01 6.77E-01 6.09E-01

positive regulation of release of
cytochrome c from mitochondria

GO:10822 8743
TNFSF1
0 3 172223298 172241297 4.77E-01 6.95E-01 6.77E-01 6.09E-01

positive regulation of
mitochondrion organization

KEGG
3430 6742 SSBP1 7 141438121 141450288 4.81E-01 8.18E-01 8.67E-01 5.17E-01 KEGG_MISMATCH_REPAIR

GO:10822
2895
8 COA3 17 40949652 40950704 4.87E-01 1.75E-03 5.11E-01 N/A

positive regulation of
mitochondrion organization

GO:6298
1127
7 TREX1 3 48506919 48509044 4.91E-01 4.76E-01 7.94E-01 4.11E-01 mismatch repair

GO:32407
1127
7 TREX1 3 48506919 48509044 4.91E-01 4.76E-01 7.94E-01 4.11E-01 MutSalpha complex binding

GO:33683
2290
9 FAN1 15 31196055 31235311 5.30E-01 2.16E-06 1.15E-04 2.10E-09

nucleotide-excision repair, DNA
incision

GO:10822
1057
2 SIVA1 14 105219470 105225996 5.32E-01 1.48E-01 6.74E-01 8.89E-01

positive regulation of
mitochondrion organization

GO:6298 9156 EXO1 1 242011493 242053241 5.56E-01 9.35E-01 9.03E-01 2.23E-01 mismatch repair
KEGG

3430 9156 EXO1 1 242011493 242053241 5.56E-01 9.35E-01 9.03E-01 2.23E-01 KEGG_MISMATCH_REPAIR

GO: 90200
1010
5 PPIF 10 81107220 81115090 5.62E-01 2.02E-01 4.28E-01 4.88E-01

positive regulation of release of
cytochrome c from mitochondria

GO: 10822
1010
5 PPIF 10 81107220 81115090 5.62E-01 2.02E-01 4.28E-01 4.88E-01

positive regulation of
mitochondrion organization

GO: 6298 7161 TP73 1 3569129 3652765 5.69E-01 3.18E-01 4.40E-01 5.54E-01 mismatch repair

GO:10822 7531 YWHAE 17 1247834 1303556 5.70E-01 8.16E-01 4.96E-01 5.15E-01
positive regulation of
mitochondrion organization

GO: 10822 7532 YWHAG 7 75956108 75988342 5.78E-01 4.82E-01 9.74E-01 8.36E-02
positive regulation of
mitochondrion organization

GO: 10822 7534 YWHAZ 8 101930804 101965623 5.89E-01 1.51E-01 1.89E-01 5.93E-02
positive regulation of
mitochondrion organization

GO: 90140
6442
3 INF2 14 105155943 105185947 5.93E-01 2.11E-01 2.83E-01 5.52E-01

regulation of mitochondrial
fission

GO: 10822 578 BAK1 6 33540323 33548070 5.98E-01 7.98E-01 7.78E-01 3.03E-01
positive regulation of
mitochondrion organization

GO: 90200 578 BAK1 6 33540323 33548070 5.98E-01 7.98E-01 7.78E-01 3.03E-01
positive regulation of release of
cytochrome c from mitochondria

GO: 33683 4913 NTHL1 16 2089816 2097867 6.25E-01 5.50E-01 4.66E-01 6.35E-01
nucleotide-excision repair, DNA
incision

GO: 90200
1001
8

BCL2L1
1 2 111878491 111926022 6.27E-01 8.58E-01 8.05E-01 1.51E-02

positive regulation of release of
cytochrome c from mitochondria

GO: 10822
1001
8

BCL2L1
1 2 111878491 111926022 6.27E-01 8.58E-01 8.05E-01 1.51E-02

positive regulation of
mitochondrion organization

GO: 10822 4836 NMT1 17 43138680 43186384 6.37E-01 9.42E-01 9.35E-01 4.65E-01
positive regulation of
mitochondrion organization

GO: 10822
1097
1 YWHAQ 2 9724106 9771106 6.38E-01 1.92E-01 6.28E-01 7.69E-01

positive regulation of
mitochondrion organization

GO: 10822 7529 YWHAB 20 43514344 43537161 6.50E-01 2.53E-01 4.98E-01 8.31E-01
positive regulation of
mitochondrion organization

GO: 6298
1071
4 POLD3 11 74303575 74354105 6.51E-01 8.79E-01 6.36E-01 1.52E-01 mismatch repair

KEGG
3430

1071
4 POLD3 11 74303575 74354105 6.51E-01 8.79E-01 6.36E-01 1.52E-01 KEGG_MISMATCH_REPAIR

GO: 30983 6996 TDG 12 104359593 104382656 6.84E-01 1.83E-01 2.10E-01 4.78E-01 mismatched DNA binding



GO: 6298 6996 TDG 12 104359593 104382656 6.84E-01 1.83E-01 2.10E-01 4.78E-01 mismatch repair

GO: 90140 1723 DHODH 16 72042643 72059316 6.96E-01 9.59E-01 7.30E-01 4.85E-01
regulation of mitochondrial
fission

GO: 6298 25 ABL1 9 133589268 133763062 6.97E-01 6.47E-01 9.21E-01 1.81E-01 mismatch repair

GO: 30983 4438 MSH4 1 76262556 76378923 7.24E-01 2.05E-01 2.13E-01 1.40E-01 mismatched DNA binding
KEGG

3430 5985 RFC5 12 118454506 118470044 7.38E-01 1.15E-01 2.33E-01 3.95E-01 KEGG_MISMATCH_REPAIR

GO:190006
3

1005
9 DNM1L 12 32832137 32898584 7.55E-01 8.32E-01 6.94E-01 1.36E-03

regulation of peroxisome
organization

GO: 90141
1005
9 DNM1L 12 32832137 32898584 7.55E-01 8.32E-01 6.94E-01 1.36E-03

positive regulation of
mitochondrial fission

GO: 90200
1005
9 DNM1L 12 32832137 32898584 7.55E-01 8.32E-01 6.94E-01 1.36E-03

positive regulation of release of
cytochrome c from mitochondria

GO: 10822
1005
9 DNM1L 12 32832137 32898584 7.55E-01 8.32E-01 6.94E-01 1.36E-03

positive regulation of
mitochondrion organization

GO: 90140
1005
9 DNM1L 12 32832137 32898584 7.55E-01 8.32E-01 6.94E-01 1.36E-03

regulation of mitochondrial
fission

KEGG
3430 6117 RPA1 17 1733273 1802848 7.75E-01 2.96E-01 5.51E-01 4.76E-01 KEGG_MISMATCH_REPAIR

GO: 10822 5533 PPP3CC 8 22298483 22398657 7.99E-01 4.58E-01 7.29E-01 3.38E-01
positive regulation of
mitochondrion organization

KEGG
3430 5984 RFC4 3 186507681 186524484 8.08E-01 7.04E-01 7.95E-01 3.01E-01 KEGG_MISMATCH_REPAIR

GO: 4748 6240 RRM1 11 4115924 4160106 8.20E-01 6.60E-01 9.85E-01 3.40E-01

ribonucleoside-diphosphate
reductase activity, thioredoxin
disulfide as acceptor

GO: 16728 6240 RRM1 11 4115924 4160106 8.20E-01 6.60E-01 9.85E-01 3.40E-01

oxidoreductase activity, acting
on CH or CH2 groups, disulfide
as acceptor

GO: 30983 5111 PCNA 20 5095599 5107268 8.29E-01 2.76E-01 6.40E-01 3.55E-01 mismatched DNA binding
KEGG

3430 5111 PCNA 20 5095599 5107268 8.29E-01 2.76E-01 6.40E-01 3.55E-01 KEGG_MISMATCH_REPAIR

GO: 6298 5111 PCNA 20 5095599 5107268 8.29E-01 2.76E-01 6.40E-01 3.55E-01 mismatch repair

GO: 90200 638 BIK 22 43506754 43525718 8.52E-01 6.42E-01 8.52E-01 1.19E-01
positive regulation of release of
cytochrome c from mitochondria

GO: 10822 638 BIK 22 43506754 43525718 8.52E-01 6.42E-01 8.52E-01 1.19E-01
positive regulation of
mitochondrion organization

GO: 10822 596 BCL2 18 60790579 60986613 8.65E-01 5.93E-01 4.81E-01 6.54E-01
positive regulation of
mitochondrion organization

GO: 10822 3002 GZMB 14 25100160 25103432 8.84E-01 8.26E-01 8.18E-01 6.33E-01
positive regulation of
mitochondrion organization

GO: 10822
2711
3 BBC3 19 47724079 47736023 8.89E-01 4.98E-01 7.87E-01 2.78E-01

positive regulation of
mitochondrion organization

GO: 90200
2711
3 BBC3 19 47724079 47736023 8.89E-01 4.98E-01 7.87E-01 2.78E-01

positive regulation of release of
cytochrome c from mitochondria

GO: 16728 6241 RRM2 2 10262695 10271546 8.96E-01 3.35E-01 3.69E-01 2.65E-01

oxidoreductase activity, acting
on CH or CH2 groups, disulfide
as acceptor

GO: 4748 6241 RRM2 2 10262695 10271546 8.96E-01 3.35E-01 3.69E-01 2.65E-01

ribonucleoside-diphosphate
reductase activity, thioredoxin
disulfide as acceptor

GO: 10822 8398 PLA2G6 22 38507502 38577836 9.01E-01 2.91E-01 6.64E-01 1.80E-01
positive regulation of
mitochondrion organization

GO: 90200 8398 PLA2G6 22 38507502 38577836 9.01E-01 2.91E-01 6.64E-01 1.80E-01
positive regulation of release of
cytochrome c from mitochondria

GO: 90200 8739 HRK 12 117299027 117319232 9.10E-01 6.48E-01 8.21E-01 4.30E-01
positive regulation of release of
cytochrome c from mitochondria

GO: 10822 8739 HRK 12 117299027 117319232 9.10E-01 6.48E-01 8.21E-01 4.30E-01
positive regulation of
mitochondrion organization

GO: 10822 5599 MAPK8 10 49609687 49643183 9.32E-01 7.42E-01 8.49E-01 7.87E-01
positive regulation of
mitochondrion organization

GO: 4748
5048
4 RRM2B 8 103216729 103251346 9.38E-01 6.29E-01 8.45E-01 6.44E-06

ribonucleoside-diphosphate
reductase activity, thioredoxin
disulfide as acceptor

GO: 16728
5048
4 RRM2B 8 103216729 103251346 9.38E-01 6.29E-01 8.45E-01 6.44E-06

oxidoreductase activity, acting
on CH or CH2 groups, disulfide
as acceptor

GO: 10822
1407
35 DYNLL2 17 56160780 56167618 9.58E-01 8.08E-01 8.19E-01 8.93E-01

positive regulation of
mitochondrion organization

KEGG
3430

5780
4 POLD4 11 67118236 67121067 9.59E-01 6.48E-01 9.21E-01 3.74E-01 KEGG_MISMATCH_REPAIR

GO: 10822
8470
9 MGARP 4 140187317 140201492 9.78E-01 8.81E-01 8.98E-01 1.51E-01

positive regulation of
mitochondrion organization



Supplementary Table 13: Setscreen enrichment p-values for the Pearl et al. (2015) pathways in TRACK-HD,
REGISTRY, the TRACK-HD meta-analysis and GeM

Gene Set
p(TRAC
K)

p(REGI
STRY)

p(META
) p (GeM) Description1 Description2 Description3 Description4

2071015 9.05E-07 4.43E-03 2.93E-11 2.01E-02 Repair_pathway SSR MMR
Mismatch_and_loop_
recognition_factors

2071000 2.43E-06 6.85E-02 1.49E-14 5.15E-04 Repair_pathway SSR MMR

2070000 5.77E-03 4.76E-02 3.32E-07 1.42E-02 Repair_pathway SSR

2071017 1.95E-02 2.44E-02 5.84E-05 8.92E-08 Repair_pathway SSR MMR MutL_homologs

2111513 4.71E-02 2.55E-01 8.12E-01 2.86E-03 Repair_pathway Associated_process TLS DNA_polymerases

2070600 5.02E-02 7.99E-01 1.10E-01 2.92E-01 Repair_pathway SSR NER

2070607 5.18E-02 7.61E-01 3.02E-02 2.26E-01 Repair_pathway SSR NER
TCR_(Transcription_
coupled_repair)

2071104 5.35E-02 3.90E-01 2.07E-02 5.37E-02 Repair_pathway SSR BER
LONG_PATCH-
BER_factors

2022100 6.69E-02 3.19E-02 7.21E-04 7.29E-02 Repair_pathway DSR Alt-NHEJ
1100000 7.52E-02 6.14E-01 1.94E-01 6.13E-01 Associated_process DNA_replication

1080700 8.99E-02 8.35E-01 2.82E-01 4.92E-01 Associated_process Checkpoint_factors S-CC_phase

1051930 1.02E-01 5.68E-01 1.30E-01 7.62E-01 Associated_process Ubiquitin_response

Ubiquitin-
_conjugating_enz
ymes_(E2)

UBL-
conjugating_enzymes

2000000 1.13E-01 2.60E-01 1.03E-03 1.11E-02 Repair_pathway

2070605 1.14E-01 5.00E-01 8.14E-01 4.64E-01 Repair_pathway SSR NER
DNA_polymerase_ep
silon

1030000 1.59E-01 1.90E-01 3.59E-01 2.63E-01 Associated_process
Telomere_maintena
nce

2070606 1.60E-01 9.56E-01 6.55E-01 5.49E-01 Repair_pathway SSR NER
DNA_polymerase_ka
ppa

2071020 1.73E-01 3.14E-01 9.86E-03 7.97E-02 Repair_pathway SSR MMR Other_MMR_factors

1051900 1.97E-01 7.69E-01 1.71E-01 8.19E-01 Associated_process Ubiquitin_response

Ubiquitin-
_conjugating_enz
ymes_(E2)

2071023 2.15E-01 1.73E-01 7.67E-02 5.90E-01 Repair_pathway SSR MMR
RPA_(replication_fac
tor_A)

1081300 2.15E-01 8.71E-01 4.25E-01 6.96E-01 Associated_process Checkpoint_factors
HRAD17(Rad24)-
_RFC_complex

1051208 2.41E-01 2.50E-01 3.12E-01 5.81E-01 Associated_process Ubiquitin_response
Ubiquitin_ligases
_(E3)

single_Ring-
finger_type_E3

1080900 2.50E-01 4.77E-01 9.41E-01 2.74E-01 Associated_process Checkpoint_factors G1-S_checkpoint

2071003 2.58E-01 8.68E-01 3.40E-01 1.57E-01 Repair_pathway SSR MMR
DNA_polymerase_de
lta

1051222 2.87E-01 2.82E-01 1.50E-01 6.61E-01 Associated_process Ubiquitin_response
Ubiquitin_ligases
_(E3) Riddle_syndrome!

1080800 2.87E-01 3.88E-01 7.69E-01 2.52E-01 Associated_process Checkpoint_factors G1-CC_phase

2070603 2.92E-01 8.34E-01 5.37E-01 4.50E-01 Repair_pathway SSR NER
DNA_polymerase_de
lta

2071010 2.92E-01 7.60E-01 6.37E-01 7.12E-01 Repair_pathway SSR MMR
RFC_(replication_fac
tor_C)

1051221 3.18E-01 1.56E-01 1.06E-02 2.79E-01 Associated_process Ubiquitin_response
Ubiquitin_ligases
_(E3)

Other_single_Ring-
_finger_type_E3

1010000 3.23E-01 4.39E-01 3.23E-01 8.30E-01 Associated_process
Chromatin_remodell
ing

1051829 3.28E-01 5.91E-01 5.58E-01 9.17E-01 Associated_process Ubiquitin_response

Ubiquitin-
_activating_enzy
mes_(E1)

UBL-
activating_enzymes

1051800 3.29E-01 5.91E-01 5.58E-01 9.17E-01 Associated_process Ubiquitin_response

Ubiquitin-
_activating_enzy
mes_(E1)

1051927 3.31E-01 7.89E-01 4.15E-01 6.74E-01 Associated_process Ubiquitin_response

Ubiquitin-
_conjugating_enz
ymes_(E2)

Ubiquitin-
conjugating_enzymes

3060000 3.41E-01 1.70E-01 3.61E-01 7.39E-01
Genes_with_probabl
e_DDR_role

Direct_Repair_(not_
in_humans)



1031600 3.86E-01 8.44E-01 5.12E-01 6.69E-01 Associated_process
Telomere_maintena
nce

Alternative_mech
anism

1031616 3.86E-01 8.44E-01 5.12E-01 6.69E-01 Associated_process
Telomere_maintena
nce

Alternative_mech
anism MRN_Complex

2020200 4.09E-01 6.98E-01 5.00E-01 4.77E-01 Repair_pathway DSR
HR_(Homologous
_Recombination)

1052000 4.20E-01 3.11E-01 4.35E-01 8.24E-01 Associated_process Ubiquitin_response

Ubiquitins_and_U
biquitin-
like_proteins

1052028 4.20E-01 3.11E-01 4.35E-01 8.24E-01 Associated_process Ubiquitin_response

Ubiquitins_and_U
biquitin-
like_proteins Ubiquitins

1000000 4.26E-01 4.38E-01 5.76E-01 3.21E-01 Associated_process

1082500 4.29E-01 1.79E-01 5.65E-01 6.91E-01 Associated_process Checkpoint_factors
FPC_(fork_protec
tion_complex)

2111531 4.30E-01 2.91E-01 2.99E-01 7.84E-01 Repair_pathway Associated_process TLS

Y-
family_DNA_polyme
rases

2071018 4.44E-01 2.64E-01 2.34E-01 1.12E-01 Repair_pathway SSR MMR
MutS_homologs_spe
cialized_for_meiosis

2110000 4.48E-01 4.49E-01 5.96E-01 4.80E-02 Repair_pathway Associated_process

2111500 4.48E-01 4.49E-01 5.96E-01 4.80E-02 Repair_pathway Associated_process TLS

2020000 4.71E-01 4.39E-01 8.35E-02 4.20E-02 Repair_pathway DSR

1050500 4.76E-01 8.55E-01 8.56E-01 7.18E-01 Associated_process Ubiquitin_response
Deubiquitinating_
enzyme_(DUB)

1050501 4.76E-01 8.55E-01 8.56E-01 7.18E-01 Associated_process Ubiquitin_response
Deubiquitinating_
enzyme_(DUB)

UBL-
specific_proteases_(U
LPs)

1080000 4.86E-01 4.50E-01 8.20E-01 2.85E-01 Associated_process Checkpoint_factors

2072800 4.97E-01 5.82E-01 7.02E-02 3.98E-02 Repair_pathway SSR Other_SSR_genes

2020400 5.07E-01 7.84E-01 8.18E-01 5.80E-01 Repair_pathway DSR NHEJ

2071100 5.18E-01 1.14E-01 2.76E-01 1.65E-01 Repair_pathway SSR BER

1082600 5.20E-01 5.64E-01 6.17E-01 5.95E-01 Associated_process Checkpoint_factors G2-CC_phase

1090000 5.70E-01 5.67E-01 6.15E-01 6.62E-01 Associated_process p53_pathway

1050000 5.88E-01 3.44E-01 2.17E-01 7.47E-01 Associated_process Ubiquitin_response

2070602 5.93E-01 1.61E-01 3.08E-01 5.35E-01 Repair_pathway SSR NER
GGR_(Global_genom
e_repair)

2020300 6.05E-01 5.24E-01 6.24E-01 8.22E-01 Repair_pathway DSR Other_DSR_genes

2071119 6.09E-01 6.72E-02 9.07E-01 2.64E-01 Repair_pathway SSR BER Other_BER_factors

2071111 6.11E-01 2.27E-01 5.24E-01 9.70E-01 Repair_pathway SSR BER AP_endonucleases

1082700 6.14E-01 6.85E-01 9.25E-01 1.51E-01 Associated_process Checkpoint_factors G2-M_checkpoint

2021400 6.22E-01 4.96E-02 1.45E-01 9.20E-01 Repair_pathway DSR
HR_(Homologous
Recombination)

1051700 6.42E-01 4.61E-01 5.63E-01 1.52E-01 Associated_process Ubiquitin_response

Ubiquitin-
like_proteins_(UB
Ls)

1051725 6.42E-01 4.61E-01 5.63E-01 1.52E-01 Associated_process Ubiquitin_response

Ubiquitin-
like_proteins_(UB
Ls) SUMO

1051200 6.61E-01 7.44E-02 5.58E-02 3.70E-01 Associated_process Ubiquitin_response
Ubiquitin_ligases
_(E3)

1082900 6.63E-01 8.72E-01 8.87E-01 4.58E-01 Associated_process Checkpoint_factors
Rad17-Mec3-
_Ddc1_complex

1082200 6.69E-01 8.04E-02 2.30E-01 2.61E-01 Associated_process Checkpoint_factors
damage_in_S_pha
se

2111514 7.20E-01 5.25E-01 7.10E-01 4.37E-01 Repair_pathway Associated_process TLS epistasis_group



2020100 7.23E-01 5.41E-01 5.70E-01 2.93E-04 Repair_pathway DSR
FA_(Fanconi_ane
mia_pathway)

1040000 7.46E-01 5.93E-01 6.62E-01 3.78E-01 Associated_process
Chromosome_segre
gation

3000000 7.86E-01 6.19E-01 3.00E-01 7.39E-01
Genes_with_probabl
e_DDR_role

2072300 7.97E-01 3.24E-01 8.88E-01 8.75E-01 Repair_pathway SSR Direct_Repair

2072400 8.27E-01 3.89E-03 6.87E-02 2.76E-01 Repair_pathway SSR DNA_replication

2071124 8.39E-01 8.94E-01 8.19E-01 3.16E-01 Repair_pathway SSR BER
SHORT_PATCH-
BER_factors

2071112 9.02E-01 1.67E-01 3.58E-01 5.51E-01 Repair_pathway SSR BER DNA_glycosylases

1051209 9.25E-01 1.38E-02 5.59E-02 7.56E-01 Associated_process Ubiquitin_response
Ubiquitin_ligases
_(E3)

single_Ring-
finger_type_E4

1120000 9.58E-01 6.23E-01 9.97E-01 6.78E-05 Associated_process
Modulation_of_nucl
eotide_pools

1083000 9.62E-01 7.83E-01 9.16E-01 8.57E-01 Associated_process Checkpoint_factors
RAD9-Hus1-
Rad1_complex

Supplementary Table 14: Gene-wide p-values for the most significant genes in the two Pearl et al. pathways showing
significant enrichment in TRACK

Entre
z

Gene
Symb
ol

Ch
r Start End p(TRACK) p(REG) p(META) p(GeM) Pathways

4437 MSH3 5 79950467 80172634 2.94E-08 9.52E-04 8.88E-11 1.98E-02
Repair_pathway/SSR/MMR/Mismatch_and_l
oop_recognition_factors

5425
POLD
2 7 44154279 44163169 7.21E-04 3.12E-01 2.75E-03 5.17E-01 Repair_pathway/SSR/MMR

3978 LIG1 19 48618703 48673560 1.65E-02 8.28E-02 5.35E-04 6.39E-02 Repair_pathway/SSR/MMR
27030 MLH3 14 75480467 75518235 1.69E-02 6.69E-01 1.47E-01 6.39E-03 Repair_pathway/SSR/MMR
5395 PMS2 7 6012870 6048737 2.58E-02 3.66E-01 8.84E-03 1.76E-05 Repair_pathway/SSR/MMR
4439 MSH5 6 31707725 31730455 4.35E-02 8.54E-01 7.73E-01 5.11E-01 Repair_pathway/SSR/MMR
5982 RFC2 7 73645832 73668738 4.80E-02 5.91E-01 2.02E-02 4.44E-01 Repair_pathway/SSR/MMR
6119 RPA3 7 7676575 7758238 6.55E-02 7.22E-01 9.17E-02 4.37E-01 Repair_pathway/SSR/MMR
4292 MLH1 3 37034841 37092337 6.98E-02 3.97E-04 1.28E-04 3.91E-04 Repair_pathway/SSR/MMR

Supplementary Table 15: Summary of missing data in REGISTRY

Variable N
Missing Values

Count Percent
Motor 1744 91 4.96

Verbal Fluency 1145 690 37.6

Stroop Color 1052 783 42.67
Stroop Color 1116 719 39.18
Stroop Word 1104 731 39.84

Stroop Interference 1092 743 40.49

TFC 1758 77 4.2
FAS score 1616 219 11.93

Supplementary Table 16: Parameter estimates of variables in the model used to generate the REGISTRY cross
sectional severity score. Multiple imputation adjusted estimates of statistical significance are given. CPO_1: clinical
probability of onset; CPO_2: single transformation of clinical probability of onset. DF: degrees of freedom.

Parameter Estimates
Parameter gender Estimate Std Error 95% Confidence Limits DF t for H0: P Val
Intercept 2.075589 0.267283 1.55102 2.60016 897.01 7.77 <.0001
cpo_1 -0.9142 0.21009 -1.32638 -0.50201 1191.6 -4.35 <.0001
cpo_2 -7.00283 0.911001 -8.79025 -5.2154 1141.5 -7.69 <.0001
cag -0.01919 0.005133 -0.02927 -0.00912 862.96 -3.74 0.0002
gender F -0.13631 0.042605 -0.21992 -0.05271 1030.1 -3.2 0.0014
gender M 0 0 . . . . .



Supplementary Table 17: Proportion of variance among variables present in TRACK-HD and
REGISTRY which are accounted for by the first PC in the combined analysis.

Factor Pattern

Factor1

sqrtMotRaw -0.91567

SDMT_correct 0.90797

SWR_correct 0.87904

tfc 0.86045

Supplementary Table 18: Effect of removing MSH3 on the Setscreen enrichment p-values for the top 14 GeM pathways
in TRACK-HD, REGISTRY and the TRACK-REGISTRY meta-analysis.

Pathway p(TRACK)
p(TRACKno
MSH3) p(REGISTRY)

p(REGISTRY
noMSH3) p(META)

p(METAn
oMSH3) Description

GO:
32300 3.455E-09 0.04127 0.0008336 0.07162 1.13E-11 0.001024 mismatch repair complex
KEGG
3430 2.794E-07 0.04521 0.04795 0.1471 1.34E-16 0.000107 KEGG_MISMATCH_REPAIR
GO:
30983 6.661E-07 0.1001 0.0004195 0.009264 3.17E-11 0.000274 mismatched DNA binding
GO:
6298 0.000003533 0.2446 0.04589 0.1839 6.54E-09 0.0729 mismatch repair
GO:
32407 0.01818 0.01818 0.1101 0.1101 0.000640 0.000640 MutSalpha complex binding
GO:
32389 0.02249 0.02249 0.04688 0.04688 0.000523 0.000523 MutLalpha complex
GO:
33683 0.08014 0.08014 0.0005874 0.0005874 0.00675 0.00675

nucleotide-excision repair, DNA
incision

GO:
90141 0.3318 0.3318 0.05934 0.05934 0.7872 0.7872

positive regulation of mitochondrial
fission

GO:
1900063 0.4103 0.4103 0.7287 0.7287 0.6926 0.6926 regulation of peroxisome organization
GO:
90200 0.4582 0.4582 0.544 0.544 0.5280 0.5280

positive regulation of release of
cytochrome c from mitochondria

GO:
90140 0.5385 0.5385 0.3316 0.3316 0.8098 0.8098 regulation of mitochondrial fission
GO:
10822 0.621 0.6228 0.6276 0.6276 0.8527 0.8527

positive regulation of mitochondrion
organization

GO:
4748 0.9639 0.9639 0.6974 0.6974 0.9792 0.9792

ribonucleoside-diphosphate reductase
activity, thioredoxin disulfide as
acceptor

GO:
16728 0.9639 0.9639 0.6974 0.6974 0.9792 0.9792

oxidoreductase activity, acting on CH
or CH2 groups, disulfide as acceptor

Supplementary Table 19: Effect of removing MSH3 on the Setscreen enrichment p-values for the Pearl et al. (2015)
pathways in TRACK-HD, REGISTRY and the TRACK-REGISTRY meta-analysis.

Gene
Set

p(TRACK
)

p(TRA
CKnoM
SH3)

p(REGIS
TRY)

p(REGI
STRYn
oMSH3
)

p(MET
A)

p(MET
A
noMSH
3) Description1 Description2 Description3 Description4

2071
015

9.051E-
07 0.3308 0.00443 0.2821

2.93E-
11 0.5436 Repair_pathway SSR MMR

Mismatch_and_l
oop_recognition_
factors

2071
000

0.000002
43

0.0822
5 0.06854 0.2285

1.49E-
14

0.0001
27 Repair_pathway SSR MMR

2070
000 0.005767 0.2506 0.04762 0.1713

3.32E-
07 0.0549 Repair_pathway SSR

2071
017 0.01947

0.0194
7 0.02442

0.0244
2

5.84E-
05

5.84E-
05 Repair_pathway SSR MMR MutL_homologs

2111
513 0.04707

0.0470
7 0.2549 0.2549 0.8123 0.8123 Repair_pathway

Associated_pro
cess TLS

DNA_polymeras
es

2070
600 0.05024

0.0502
4 0.7989 0.7989 0.1098 0.1098 Repair_pathway SSR NER



2070
607 0.05177

0.0517
7 0.7606 0.7606 0.0302 0.0302 Repair_pathway SSR NER

TCR_(Transcript
ion_coupled_rep
air)

2071
104 0.05345

0.0534
5 0.3895 0.3895 0.0207 0.0207 Repair_pathway SSR BER

LONG_PATCH-
BER_factors

2022
100 0.0669 0.0669 0.03188

0.0318
8

0.0007
2

0.0007
2 Repair_pathway DSR Alt-NHEJ

1100
000 0.07519

0.0751
9 0.6138 0.6138 0.1939 0.1939 Associated_process

DNA_replicatio
n

1080
700 0.08987

0.0898
7 0.8346 0.8346 0.2817 0.2817 Associated_process

Checkpoint_fact
ors S-CC_phase

1051
930 0.1015 0.1015 0.5677 0.5677 0.1303 0.1303 Associated_process

Ubiquitin_respo
nse

Ubiquitin-
_conjugating_e
nzymes_(E2)

UBL-
conjugating_enzy
mes

2000
000 0.1126 0.4184 0.2602 0.3906 0.0010 0.2586 Repair_pathway

2070
605 0.1144 0.1144 0.4998 0.4998 0.8140 0.8140 Repair_pathway SSR NER

DNA_polymeras
e_epsilon

1030
000 0.1588 0.1588 0.1897 0.1897 0.3588 0.3588 Associated_process

Telomere_maint
enance

2070
606 0.1596 0.1596 0.9556 0.9556 0.6550 0.6550 Repair_pathway SSR NER

DNA_polymeras
e_kappa

2071
020 0.1726 0.1726 0.3142 0.3142 0.0099 0.0099 Repair_pathway SSR MMR

Other_MMR_fac
tors

1051
900 0.1973 0.1973 0.7689 0.7689 0.1711 0.1711 Associated_process

Ubiquitin_respo
nse

Ubiquitin-
_conjugating_e
nzymes_(E2)

2071
023 0.2149 0.2149 0.1725 0.1725 0.0767 0.0767 Repair_pathway SSR MMR

RPA_(replication
_factor_A)

1081
300 0.215 0.215 0.8705 0.8705 0.4249 0.4249 Associated_process

Checkpoint_fact
ors

HRAD17(Rad2
4)-
_RFC_complex

1051
208 0.2409 0.2409 0.25 0.25 0.3120 0.3120 Associated_process

Ubiquitin_respo
nse

Ubiquitin_ligas
es_(E3)

single_Ring-
finger_type_E3

1080
900 0.2499 0.2499 0.4774 0.4774 0.9412 0.9412 Associated_process

Checkpoint_fact
ors

G1-
S_checkpoint

2071
003 0.258 0.258 0.8678 0.8678 0.3397 0.3397 Repair_pathway SSR MMR

DNA_polymeras
e_delta

1051
222 0.2873 0.2873 0.2823 0.2823 0.1495 0.1495 Associated_process

Ubiquitin_respo
nse

Ubiquitin_ligas
es_(E3)

Riddle_syndrome
!

1080
800 0.2874 0.2874 0.3878 0.3878 0.7688 0.7688 Associated_process

Checkpoint_fact
ors G1-CC_phase

2070
603 0.292 0.292 0.8344 0.8344 0.5370 0.5370 Repair_pathway SSR NER

DNA_polymeras
e_delta

2071
010 0.2921 0.2921 0.7597 0.7597 0.6366 0.6366 Repair_pathway SSR MMR

RFC_(replication
_factor_C)

1051
221 0.3184 0.3184 0.1559 0.1559 0.0106 0.0106 Associated_process

Ubiquitin_respo
nse

Ubiquitin_ligas
es_(E3)

Other_single_Rin
g-
_finger_type_E3

1010
000 0.3225 0.3225 0.4385 0.4385 0.3231 0.3231 Associated_process

Chromatin_rem
odelling

1051
829 0.3284 0.3284 0.5913 0.5913 0.5578 0.5578 Associated_process

Ubiquitin_respo
nse

Ubiquitin-
_activating_enz
ymes_(E1)

UBL-
activating_enzym
es

1051
800 0.329 0.329 0.5913 0.5913 0.5578 0.5578 Associated_process

Ubiquitin_respo
nse

Ubiquitin-
_activating_enz
ymes_(E1)

1051
927 0.3313 0.3313 0.7885 0.7885 0.4152 0.4152 Associated_process

Ubiquitin_respo
nse

Ubiquitin-
_conjugating_e
nzymes_(E2)

Ubiquitin-
conjugating_enzy
mes

3060
000 0.3405 0.3405 0.1703 0.1703 0.3608 0.3608

Genes_with_probable_
DDR_role

Direct_Repair_(
not_in_humans)

1031
600 0.3856 0.3856 0.8438 0.8438 0.5119 0.5119 Associated_process

Telomere_maint
enance

Alternative_me
chanism

1031
616 0.3856 0.3856 0.8438 0.8438 0.5119 0.5119 Associated_process

Telomere_maint
enance

Alternative_me
chanism MRN_Complex

2020
200 0.4086 0.4086 0.6981 0.6981 0.5004 0.5004 Repair_pathway DSR

HR_(Homologo
us_Recombinati
on)



1052
000 0.42 0.42 0.3114 0.3114 0.4350 0.4350 Associated_process

Ubiquitin_respo
nse

Ubiquitins_and
_Ubiquitin-
like_proteins

1052
028 0.42 0.42 0.3114 0.3114 0.4350 0.4350 Associated_process

Ubiquitin_respo
nse

Ubiquitins_and
_Ubiquitin-
like_proteins Ubiquitins

1000
000 0.426 0.426 0.4378 0.4378 0.5759 0.5759 Associated_process

1082
500 0.4288 0.4288 0.1787 0.1787 0.5650 0.5650 Associated_process

Checkpoint_fact
ors

FPC_(fork_prot
ection_complex
)

2111
531 0.43 0.43 0.2914 0.2914 0.2994 0.2994 Repair_pathway

Associated_pro
cess TLS

Y-
family_DNA_pol
ymerases

2071
018 0.4438 0.4438 0.2644 0.2644 0.2335 0.2335 Repair_pathway SSR MMR

MutS_homologs
_specialized_for_
meiosis

2110
000 0.4479 0.4479 0.4485 0.4485 0.5960 0.5960 Repair_pathway

Associated_pro
cess

2111
500 0.4479 0.4479 0.4485 0.4485 0.5960 0.5960 Repair_pathway

Associated_pro
cess TLS

2020
000 0.471 0.471 0.4388 0.4388 0.0835 0.0835 Repair_pathway DSR

1050
500 0.4757 0.4757 0.8548 0.8548 0.8561 0.8561 Associated_process

Ubiquitin_respo
nse

Deubiquitinatin
g_enzyme_(DU
B)

1050
501 0.4757 0.4757 0.8548 0.8548 0.8561 0.8561 Associated_process

Ubiquitin_respo
nse

Deubiquitinatin
g_enzyme_(DU
B)

UBL-
specific_protease
s_(ULPs)

1080
000 0.4863 0.4863 0.4497 0.4497 0.8204 0.8204 Associated_process

Checkpoint_fact
ors

2072
800 0.4971 0.4971 0.5818 0.5818 0.0702 0.0702 Repair_pathway SSR

Other_SSR_gen
es

2020
400 0.5069 0.5069 0.7838 0.7838 0.8179 0.8179 Repair_pathway DSR NHEJ
2071
100 0.5175 0.5175 0.1144 0.1144 0.2760 0.2760 Repair_pathway SSR BER
1082
600 0.5196 0.5196 0.5642 0.5642 0.6168 0.6168 Associated_process

Checkpoint_fact
ors G2-CC_phase

1090
000 0.5699 0.5699 0.567 0.567 0.6151 0.6151 Associated_process p53_pathway
1050
000 0.5879 0.5879 0.3435 0.3435 0.2168 0.2168 Associated_process

Ubiquitin_respo
nse

2070
602 0.593 0.593 0.1607 0.1607 0.3081 0.3081 Repair_pathway SSR NER

GGR_(Global_ge
nome_repair)

2020
300 0.6054 0.6054 0.5235 0.5235 0.6240 0.6240 Repair_pathway DSR

Other_DSR_ge
nes

2071
119 0.6093 0.6093 0.06716

0.0671
6 0.9067 0.9067 Repair_pathway SSR BER

Other_BER_fact
ors

2071
111 0.6105 0.6105 0.2266 0.2266 0.5242 0.5242 Repair_pathway SSR BER

AP_endonucleas
es

1082
700 0.6144 0.6144 0.6852 0.6852 0.9253 0.9253 Associated_process

Checkpoint_fact
ors

G2-
M_checkpoint

2021
400 0.6216 0.6216 0.04964

0.0496
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