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Summary  

Communication between cancer cells and the microenvironment is a complex yet crucial 

issue in disease progression. Recent studies highlight an important role for small extracellular 

vesicles (exosomes) secreted by cancer cells, as modulators of cancer-associated stroma, 

angiogenesis and metastatic priming. The intrinsic factors regulating exosome biogenesis 

and secretion in cancer cells are, therefore, highly relevant in studies of cross-

communication in the cancer milieu. 

We generated prostate cancer cells bearing stable knockdown of putative exosome-

regulating factors (CD9, Rab5a, Rab11b, Rab35, VAMP7 and VPS25); and examined the 

impact on cell health, vesicle secretion and on communication with fibroblastic stromal cells. 

We highlight that Rab11b or Rab35 regulate phenotypically distinct exosome subpopulations 

each accounting for only around 20% of the total. Depleting Rab11b or Rab35 leaves a vesicle 

population insufficient for driving fibroblast to myofibroblast differentiation, leading to 

diminished angiogenesis and attenuated invasive behaviours in 3D in vitro models. 

Correcting for differences in vesicle quantity revealed that perturbed differentiation due to 

loss of Rab11b-dependent vesicles, could be restored by normalising quantity. This, however, 

was not the case for Rab35-dependent vesicles.  Co-implantation of tumour cells with 

stromal fibroblasts in xenografts similarly showed that Rab11b knockdown had little effect 

on growth rates in vivo. In contrast, significant attenuation was evident when using Rab35-

knockdown cells. 

The study concludes that a Rab35 regulated exosome sub-population is particularly 

important for communication between cancer and stromal cells; and is required for 

generating a microenvironment conducive for disease promotion.    
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1.1 Prostate Cancer 

1.1.1 Aetiology and Risk Factor 

Prostate cancer is the most common cancer to affect men in the UK, where more than 46,700 

cases are diagnosed each year (CRUK, 2015). The risk factors for developing prostate cancer 

are complex and remain incompletely understood (Karan et al., 2008). The risk of developing 

prostate cancer increases exponentially over the age of 50 years (Farmer, 2008). Similarly, a 

positive family history of prostate cancer can result in an increased risk of prostate cancer 

diagnosis (Madersbacher et al., 2011), accounting for 5 - 10% of all prostate cancer cases. 

Other cohort-based and meta-analysis based studies have revealed patients who have 2 or 

more relatives with prostate cancer, have a greater than 3-fold risk of developing prostate 

cancer, compared to men with no family history (Carter et al., 1992, Kicinski et al., 2011). The 

basis for this risk remains unclear, but possible reasons have included recessive or X-linked 

inheritance. 

Furthermore, there is a link between ethnicity and prostate cancer incidence. In a 

population-based study of men with newly diagnosed prostate cancer, it was shown that 

African-Americans and Hispanics were more likely to present with clinically aggressive 

advanced-stage prostate cancer, than non-Hispanic Caucasian men (Hoffman et al., 2001). 

They reported a 3-fold relative risk for prostate cancer in African-Americans, compared with 

Caucasian men. A comprehensive cohort study on ethnicity and prostate cancer in the UK, 

found similar findings with the highest incidence rate for prostate cancer in Caribbean men, 

followed by Caucasian and Asian men (Ben-Shlomo et al., 2008). In contrast, the lowest risk 

was found among native Asian men (Chinegwundoh et al., 2006). Although the lack of 

systemic prostate cancer screening in Asian countries may explain part of that difference 

(Bunker et al., 2002), this alone cannot fully explain the lower incidence in Asian migrants in 

the UK and US (Odedina et al., 2009). These differences may arise due to a combination of 

inherited genes and environmental factors. As one environmental factor example, soy food 

consumption is typically common in Asian populations and is associated with a 25 - 30% 

reduced risk of prostate cancer (Kurahashi et al., 2007). Taken together, along with major 

risk factors such as age and family history, a combination of ethnicity and environmental 

factors, such as diet, may contribute to prostate cancer development. 
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1.1.2 Diagnosis and Treatment 

Diagnosis 

Currently, prostate cancer frequently has no clinical symptoms that distinguishes itself from 

similar problems to the prostate, such as benign prostate hyperplasia (BPH) and prostatitis. 

It remains difficult to rely on symptoms to discriminate between these diseases (Young et 

al., 2015). Patients that are suspected of prostate cancer will undergo diagnosis procedures, 

which may include digital rectal examination (DRE) and examining levels of prostate specific 

antigen (PSA).  

One of the current methods for prostate cancer detection is analysing abnormally high levels 

of PSA in serum. PSA is a protein secreted by prostate epithelial cells (Webber et al., 1995), 

which increases with age (Catalona et al., 1991). Typically, men under the age of 60 have a 

PSA level of 3ng/ml, which increases to 4ng/ml by the age of 60 and further increases to 

>5ng/ml in men over the age of 70 (Punglia et al., 2003). Elevated PSA levels are also seen in 

BPH or prostatitis (Cannon and Getzenberg, 2008), hence PSA has poor specificity for 

prostate cancer. Though, elevated PSA levels (>10ng/ml), are likely to be caused by prostate 

cancer and occasionally BPH (Punglia et al., 2003). The variability of PSA testing within an 

individual can often complicate detection. PSA testing can be misleading, as a study revealed 

60% of men with abnormally high levels of PSA do not have prostate cancer, compared to 

15% of men who has prostate cancer have normal PSA levels (Thompson et al., 2004). 

Despite these issues, the PSA test is a commonly used approach for aiding diagnosis, but 

there remains controversy for solely relying on PSA, as other prostate related problems, such 

as BPH, prostatitis or infections of the prostate (Selley et al., 1997, Cannon and Getzenberg, 

2008, Serretta et al., 2008) may be present and cannot be discriminated. 

DRE is often used in combination together with PSA testing to screen for prostate cancer, 

involving the back surface of the prostate being felt for any hard, lumpy or abnormal areas 

which may indicate prostate cancer. It appears that DRE has a high specificity for prostate 

cancer, as false negative results are rare (Hoogendam et al., 1999); and including DRE with 

PSA testing give a significantly higher predictive accuracy, compared to DRE alone for 

prostate cancer diagnosis (Bretton et al., 1994, Chu et al., 2011). DRE has a limited positive-

predictive value in men with a low PSA value and should not necessarily be recommended 

as a sole screening tool; as it remains insensitive and may miss the early disease stage. 

Furthermore, patients often undergo trans-rectal ultrasound (TRUS) and then a needle 

biopsy for a further definitive diagnosis (Lopes et al., 2015). This procedure involves inserting 

a needle with an ultrasound probe through the rectum, that guides the needle to the 
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prostate for tissue sample collection (Harvey et al., 2012). Samples can be histologically 

examined and if positive, the cancer is staged using the Gleason Scoring System. This 

separates the cancer diagnosis into five different histological grades (Grade 1 tissues are well 

differentiated and carry the best prognosis; Grade 5 tissues are poorly differentiated and 

have a poor prognosis). Tissue samples obtained from two different sites with the graded 

tissue score are added together to give a Gleason score between 2 - 10. A higher score 

indicates an aggressive cancerous tissue, that has poor prognosis compared to a lower 

Gleason score (Humphrey, 2004, Chen and Zhou, 2016). There still remains difficulty in 

precisely locating the tumour, as needle biopsy may be extracted from a non-cancerous 

region of a cancer-positive prostate resulting in false negatives (Quon et al., 2015). 

Nonetheless, false negatives should not completely rule out prostate cancer. Using TRUS as 

a primary screening test is not recommended as it has low sensitivity. Prostatic biopsy is 

considered when results from PSA or DRE indicates possible prostate cancer. Overall, a 

combination of PSA testing, DRE and TRUS would give a clearer indication of prostate cancer, 

compared to performing these tests alone. 

Treatment 

Men with localised disease can have very different prognosis and face a wide variety of 

treatment options to minimise intervention-related complications. Prostate cancer 

treatment is based on risk assessments that often combine patient age, clinical tumour stage, 

serum PSA, Gleason score and number of positive prostate biopsies. Many low-score 

(Gleason score of 6 or less) localised (small and organ confined) prostate cancers are typically 

treated with radical prostatectomy (removal of prostate), external-beam radiotherapy, or 

brachytherapy (Kupelian et al., 2004), whereas metastatic prostate cancer require different 

treatments. Radical prostatectomy is normally performed in men with good health and 

localised prostate cancer (Pierorazio et al., 2010), as surgical risks such as blood loss or 

infections can arise post-operation that may be detrimental to men with poor health (Gao et 

al., 2014). After surgery, impotency is one problem that can occur and the patient’s quality 

of life should be considered. Radical prostatectomy may, therefore, only cater to a subset of 

prostate cancer patients. Low PSA levels can be measured to ensure surgical removal was 

successful. However, if PSA levels start to rise again, other forms of treatment may be 

required, such as radiotherapy or hormone therapy. 

Radiotherapy is the best alternative for men who do not meet the surgical criteria. Radiation 

is administered to treat localised prostate cancer, but may be suitable for advanced prostate 

cancer. External beam radiotherapy is used to treat patients, which involves exposure of high 
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energy X-rays to target the prostate (Zelefsky et al., 2002), to damage tumour cells and 

attenuate tumour growth. There are different types of external beam radiotherapy, such as 

3D Conformal Radiotherapy (3D CRT), that utilises imaging software to shape the radiation 

beam closely around the prostate (Fiveash et al., 2000). This minimises damage to the 

surrounding tissues. An improved approach to 3D CRT, is to use Intensity Modulated 

Radiotherapy (IMRT), where the radiation beam matches the shape, size and position of the 

prostate in greater detail (Teh et al., 2001). But importantly, it gives precise controlled doses 

of radiation beams to cancer cells, whilst minimising damage to outer regions of the prostate 

compared to 3D CRT. Similarly, brachytherapy (Nickers et al., 1997), involves implanting a 

small radioactive source at the tumour or metastatic sites. These radioactive sources include 

small metal implants (radioactive gold or iodine) or radioactive seeds, administered at high 

doses to kills tumour cells (Langley and Laing, 2004). The side effects that arise with 

radiotherapy treatment, include bowel, erection and urinary problems (Zelefsky et al., 2002, 

Gill et al., 2011). In patients with advanced prostate cancer, radiation is applied for palliative 

purposes to either shrink or slow tumour growth, or to control symptoms such as severe 

bone pain. 

Testosterone is an androgen hormone with multiple functions, playing a role for the 

development and function of the male reproductive system. Testosterone is converted into 

dihydrotestosterone (DHT) in the testis, binding with the androgen receptor (AR) that is 

expressed in most prostate cancer cells (Wu et al., 2013). In aggressive prostate cancer, 

testosterone activates androgen-responsive genes, playing roles in cell proliferation to 

accelerate tumour growth (Xiao et al., 2003). Therefore, androgen deprivation by medical or 

surgical castration (orchiectomy), to remove the testicles could supress testosterone. 

Orchiectomy was a common method used for reducing testosterone levels (by 60%), whilst 

the remaining 40% is considered to be produced by the adrenal glands (Labrie et al., 1997). 

This procedure is irreversible and often associated with significant psychological impact. 

Alternatively, androgen deprivation therapy (ADT) using anti-androgen agents was 

developed to maintain low testosterone levels. Diethylstilbestrol (DES) was initially used to 

treat prostate cancer (Malkowicz, 2001). This mechanism inhibits luteinising hormone 

releasing-hormone (LHRH) release from the hypothalamus with a subsequent suppression of 

luteinising hormone (LH) and thus, testosterone suppression. Side effects included 

significant cardiovascular and thromboembolic toxicity (Malkowicz, 2001). Otherwise, 

introducing LHRH agonists, such as leuprolide and goserelin, provided an effective treatment 

for advanced prostate cancer. After an initial surge of LH/follicle stimulating hormone (FSH), 
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a constant exposure to LHRH agonists results in receptor downregulation in the pituitary 

gland (Kovacs and Schally, 2001). This cascade decreases testosterone production, as 

inhibition of LH and FSH is observed. Treatment demonstrated a 90% decline in testosterone, 

whilst 10% remains. This is due to the peripheral conversion of circulating adrenal steroids 

into testosterone. ADT in combination with surgery was shown to prolong survival, 

compared to patients with surgery and no hormone therapy, over 5 years of assessment in 

randomised trials (Schmitt et al., 2001, Demir et al., 2014). Adverse side effects can arise 

from ADT, such as metabolic and cardiovascular events (Saylor and Smith, 2009), cognitive 

function (Mohile et al., 2010) and urinary function (Axcrona et al., 2012). ADT is effective in 

tumour regression, yet some prostate cancers are androgen independent. Such cancers 

cannot be treated with ADT and are difficult to treat (Isaacs and Coffey, 1981, Hotte and 

Saad, 2010). 

Androgens have been pivotal in the pathogenesis of prostate cancer and ADT treatment gives 

a good response to prostate cancer, which leads to remission for 18 – 24 months. After this 

time, patients receiving ADT often experience a rise in PSA levels, signifying resistance to ADT 

(Eisenberger et al., 1998), leading to recurrence and alternative forms of treatments. This led 

the generation of several cytotoxic chemotherapeutic drugs to be used in advanced prostate 

cancer (Scher et al., 2008). 5-fluorouracil and cyclophosphamide was initially utilised to 

palliate some advanced prostate cancer patients in earlier clinical trials. Though, 

mitoxantrone was the first chemotherapeutic drug approved by the FDA to show a significant 

palliative response in combination with prednisone (Tannock et al., 1996). Docetaxel was the 

first drug that showed an overall survival benefit in prostate cancer patients, leading to 

reduced tumour size and slowing tumour progression (Serpa Neto et al., 2011, Miyake et al., 

2012). It was clear that docetaxel was the standard of care in advanced prostate cancer 

patients in combination with prednisone, as multiple small phase 2 trials could not improve 

the current standard of care. Other treatments include using cabazitaxel in combination with 

prednisone to show an overall survival benefit to metastatic patients compared to 

chemotherapy alone (de Bono et al., 2010). Administering these chemotherapeutic drug 

treatments are not the primary form of treatment for patients with early stage prostate 

cancer. It is offered to patients with advanced or metastatic prostate cancer, who are not 

responding to ADT (Stein et al., 2012, Recine and Sternberg, 2015). More often, a 

combinational treatment of ADT, radiotherapy and chemotherapy is given that can prolong 

the remission duration for many months, but many side effects are present from this. 

Toxicity with the docetaxel or cabazitaxel treatment always resulted in side effects that were 
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exclusively haematologic, such as neutropenia, anaemia or thrombocytopenia (Tannock et 

al., 1996, de Bono et al., 2010). Therefore, recommended patients considered for 

chemotherapy must be otherwise in good health. Despite the medical advances in diagnosis 

and treatment, patients with metastatic prostate cancer remain incurable. Therefore, it 

remains pivotal to understand the molecular mechanisms involved in tumour growth and 

metastasis that may allow us to identify new targets to halt or slow down disease 

progression.  
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1.2 Cancer-Associated Stroma 

1.2.1 The Reactive Stroma 

The prostate gland is composed of two distinctive compartments: epithelial (including 

secretory exocrine glands) and the surrounding connective tissue stroma. The stroma of the 

prostate is heterogeneous and is composed of smooth muscle cells, fibroblasts, endothelial 

cells, mesenchymal stem cells (MSCs) and various immune cells. The smooth muscle cells are 

the major stromal cell type in the normal prostate (Grossfeld et al., 1998). The mutual 

interaction between epithelia and stroma via androgen receptors, is vital for prostate 

development and differentiation (Hayward et al., 1997). After peak reproductive age, the 

histological architecture of the prostate begins to undergo age-related changes. Although 

key mechanisms are not fully understood, these changes might be attributed to altered 

androgen action and a persistent effect on the prostate gland. 

The normal stromal compartment has an intrinsic flexibility to respond quickly to developing 

situations, such as wound healing and disrupted homeostasis. Stromal compartments within 

the microenvironment adjacent the epithelium act co-ordinately when the epithelium 

sustains damage. The genotypic or phenotypic alterations that occur during this damage 

response have been referred to as the “reactive stroma”. This altered stroma is like that 

found in a generic wound healing scenario and includes matrix remodelling and altered 

expression of repair-associated growth factors and cytokines (Gabbiani, 2003, Desmoulière 

et al., 2005). As an example, the interstitial smooth muscle cells are displaced by α-smooth 

muscle actin and vimentin positive myofibroblasts (Tuxhorn et al., 2002b), as shown in Figure 

1.1. These changes within the tissue architecture indicates an expanding interstitium, 

accompanied largest by alpha-smooth muscle actin (α-SMA) positive cells. This leads to 

tissue remodelling and gradual collapse and it is the tissue with greatest stromal changes 

that we believe to be proactively involved in this progressive aggressive disease state. 

These similar observations are often described in prostatic intraepithelial neoplasia (PIN), 

where the histological changes are reminiscent of cancer, evidence by loss of cellular 

polarity, increased proliferative potential and genetic instability (Ayala and Ro, 2007, 

Bettendorf et al., 2008). With increasing levels of PIN, nuclear aberration and basal cell 

disruption are observed. This aligns with an increased frequency and incidence that is found 

in men with prostate cancer than without, consequently, PIN is often considered a precursor 

for prostate cancer (Sakr, 1999). Though, these changes in the reactive stroma are suggested 

to be key in the initiation of other prostatic diseases, such as BPH. In prostate cancer, these 
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interactions are proposed to play a role in the development prostate cancer and metastasis 

(Tuxhorn et al., 2002a, Cano et al., 2007). These types of reactions are well-documented for 

breast and colorectal cancer (Orimo et al., 2005, Bendardaf et al., 2007). Therefore, these 

stromal changes are not secondary to tumour development, but remain an important early 

event during carcinogenesis and go hand in hand with the development of the disease. 
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Figure 1.1: Myofibroblasts replace smooth muscle cells in diseased prostate stroma. 

Normal and cancerous prostate samples were obtained from radical prostatectomy 

specimens and analysed by immunohistochemistry with α-SMA (green), vimentin (red) 

and DAPI (blue). Co-localisation was only observed in the blood vessel walls. Enhanced 

expression of both α-SMA and vimentin double positive cells with the interstitium, 

indicative of a myofibroblastic phenotype in the prostate cancer. Source: (Tuxhorn et al., 

2002b). 



Chapter 1. Introduction 
 

11 
 

1.2.2 Tumour-Associated Myofibroblasts 

The origins of myofibroblasts with cancerous prostate tissues have been suggested to derive 

from either fibroblasts (Desmoulière et al., 1993), smooth muscle cells (Xie et al., 2011), 

pericytes (Hosaka et al., 2016), epithelial cells (Radisky et al., 2007), endothelial cells 

(Zeisberg et al., 2007), adipose tissue-derived cells (Desai et al., 2014) and MSCs (Mishra et 

al., 2008), or perhaps all cells above. During tissue repair, fibroblasts undergo a phenotype 

change from their normal quiescent state, to a proliferative and contractile phenotype 

termed myofibroblasts. In normal conditions, fibroblasts exhibit homeostatic function, in 

maintaining an appropriate matrix and tissue structure. First, fibroblasts can differentiate 

into proto-myofibroblasts, which are characterised by the formation of β- and γ- cytoplasmic 

actins (Vyalov et al., 1993). The stimuli to trigger this phenotypic transition remains poorly 

understood, however, mechanical tension has been shown to generate proto-myofibroblasts 

from fibroblasts (Tomasek et al., 2002), characterised by the formation of stress fibres. These 

proto-myofibroblasts can generate mechanical tension in the extracellular matrix (ECM), 

which activates transforming growth factor-β1 (TGF-β1) (Wipff et al., 2007). TGF-β1 can 

cause differentiation of proto-myofibroblasts into myofibroblasts, characterised by the 

expression of α-SMA (Darby et al., 1990), ultimately providing contractile capacity akin to a 

muscle cell. 

These differentiated myofibroblasts are morphologically and functionally distinct from their 

resting and quiescent counterparts (Hinz et al., 2001). These features are shown by a higher 

organisation of α-SMA stress fibres, connected to the extracellular fibronectin fibrils via focal 

adhesion complexes (Clark, 1990, Hinz et al., 2001), as shown in Figure 1.2. This connection 

allows the myofibroblasts to possess a mechanotransduction system, where these actin 

fibres can generate contractile force to be transmitted to the surrounding ECM 

(Chrzanowska-Wodnicka and Burridge, 1996). Once induced, myofibroblasts deposit 

increasing amounts of stiff fibrillar ECM composed of collagen and fibronectin splice variants. 

This enables the contraction of ECM, activating TGF-β, triggering downstream Smad2/3 

phosphorylation, as shown in Figure 1.3. This allows the secretion of other soluble factors 

released by myofibroblasts allowing further differentiation and growth, thus allowing this 

positive feedback and remodelling mechanism to occur. Once the original structure of the 

ECM is repaired at the injury site, the myofibroblasts may undergo apoptosis (Darby et al., 

2014); when the wound is eventually fully restored. Though in cancer, restoration does not 

occur and a persistent ‘tissue-repair’ state exists in a chronic fashion exacerbating the 

disease (Schafer and Werner, 2008, Ohlund et al., 2014). 
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Figure 1.2: Fibroblast differentiation into myofibroblasts during wound healing. The 

interstitial fibroblasts are characterised by the production of fibronectin and the 

absences of filamentous actin, α-SMA and ED-A fibronectin. Under mechanical stress, 

fibroblast can differentiate into proto-myofibroblast, which form actin-containing stress 

fibres that connects to focal adhesion complexes. Under the control of TGF-β1 and other 

regulating factors, proto-myofibroblasts can increase the expression of α-SMA and ED-A 

fibronectin, along with mechanical stress, to differentiate into myofibroblasts and a 

contractile phenotype. Once wound healing is completed, myofibroblasts may undergo 

apoptosis, but this remodulation is slow or does not happen in cancer. Source: (Falke et 

al., 2015). 
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Figure 1.3: TGF-β/Smad and other signalling pathways involved in myofibroblast 

activation. Once TGF-β1 is released from the latency associated peptide (LAP)-latent 

TGF-β binding protein (LTBP) complex, the active homodimer form of TGF-β1 binds to 

TGF-β receptor 2 (TGFR2), which recruits and activates TGFR1. The activate TGFR1 

phosphorylates Smad2 and Smad3, which complex with Smad4 and translocate with the 

nucleus. In addition, other pathways such as EGF/EGFR and CD44/HA interaction can 

contribute to Smad phosphorylation. This promotes the transcription of α-SMA, collagen 

type I, fibronectin which induces fibroblast activation and matrix deposition. Source: 

(Meng et al., 2016) 
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1.2.3 Tumour-Associated Myofibroblasts Promote Cancer Progression 

During tumourigenesis, differentiation of fibroblasts to myofibroblasts has been studied 

since the 1970s (Ryan et al., 1973, Ryan et al., 1974). Such activated “fibroblasts” often 

termed tumour-associated myofibroblasts, have been assessed for their role in stromal-

epithelial interactions regarding tumour progression. In one elegant example, fibroblastic 

stromal cells isolated from BPH or prostate cancer are added to immune-deficient mice co-

implanted with epithelial cells as xenografts (Olumi et al., 1999). It was demonstrated that 

tumour-associated myofibroblasts could make a non-tumourigenic prostate epithelial cell 

line tumourigenic, whereas normal tissue fibroblasts were not able to elicit tumourigenesis, 

as shown in Figure 1.4. We can observe that the prostate cancer tissue with myofibroblasts 

exhibits greater number of blood vessels, appearing to play a role in promoting angiogenesis, 

compared to the tissue containing normal fibroblasts. Similarly, myofibroblasts isolated from 

patients with aggressive breast cancer enhanced the growth rate of breast carcinomas in 

vivo, then that of normal mammary fibroblasts taken from the same patients (Orimo et al., 

2005). Tumour-associated myofibroblasts enhanced the aggressive phenotype of breast 

cancer cells (Yu et al., 2014). There is a consensus that tumour development is not solely 

determined by malignant cancer cells; and that tumour-associated myofibroblast have a 

major influence on dictating tumour progression and outcome.   

As tumour-associated myofibroblasts play significant roles in the tumour stroma and during 

tumour progression, they are viewed as good predictors for cancer prognosis in various 

cancers. In one study, isolated stroma from prostate cancer patients after radical 

prostatectomy, showed significant differences between the myofibroblast phenotype and 

progression free-survival. Patients with identical Gleason score, but changes in increased 

stroma intensity by immunohistochemical (IHC) staining, could identify patients with greater 

risk of prostate cancer relapse (Tomas et al., 2010). It was also shown in metastatic breast 

cancer samples to be abundant in α-SMA positive myofibroblasts, compared to non-invasive 

breast cancer patient samples (Yamashita et al., 2012). In multiple studies, the identification 

of stromal markers, often myofibroblasts, associate robustly with disease relapse across 

various cancer types (Moorman et al., 2012, Huang et al., 2014, Calon et al., 2015, Luksic et 

al., 2015), highlighting the role of tumour stroma in treatment response. Also, the tumour-

associated myofibroblasts can promote tumour-supporting functions, by stimulating cancer 

cell proliferation and progression through the secretion of various cytokines, chemokines or 

ECM. For example, hepatocyte growth factor (HGF) or vascular endothelial growth factor 

(VEGF) can enhance tumour progression, by promoting tumour invasion and angiogenesis. 



Chapter 1. Introduction 
 

15 
 

 

  

Figure 1.4: Tumour-associated myofibroblast promotes tumour growth. Image of 

prostate cancer-derived myofibroblast grown with prostate epithelial cells (Left Side), 

compared to normal fibroblasts with prostate epithelial cells (Right Side). Tissue 

recombinants were harvested after 85 days of growth in nude mice. The tissue containing 

tumour-associated myofibroblasts weighed 1250mg, with dramatically stimulated 

growth and altered histology of the epithelial population and clear macroscopic 

involvement of angiogenic support. In contrast, the normal fibroblasts weighed 10mg 

under identical conditions halting endothelial vascularisation. Scale bar: 1cm. Source: 

(Olumi et al., 1999). 

 



Chapter 1. Introduction 
 

16 
 

Angiogenesis 

Angiogenesis, or the formation of new blood vessels from the pre-existing vasculature, is a 

vital component in numerous physiological and pathological responses. In normal 

physiological responses, a variety of angiogenic signals induces endothelial cells to detach 

their junctional adhesion from their neighbouring cells, sprout near gradients of pro-

angiogenic factors, proliferate to form provisional tubes, recruit perivascular cells to provide 

stability and maturation, re-organise with vascular smooth muscle cells and pericytes to form 

a functional blood vessel network (Carmeliet and Jain, 2000). Monolayer of endothelial cells 

often form capillaries, creating a semi-permeable barrier between the surrounding tissue 

and blood, allowing nutrient and waste product exchange to and from surrounding cells 

(McDonald and Baluk, 2002, Nagy et al., 2010). 

In cancer, multiple sources of pro-angiogenic factors contribute to vascular remodelling, that 

aids tumour growth and progression (Adams and Alitalo, 2007). Once a tumour lesion grows 

beyond the capacity for nutrient, waste and O2 to diffuse passively, it experiences hypoxia or 

nutrient deprivation. Thus, angiogenesis is initiated and tumour cells exploit this process for 

tumour growth. The secretion of growth factors activates normal surrounding quiescent 

cells, to initiate a cascade of events that become quickly dysregulated. This involves an 

‘angiogenic’ switch, that is regulated between anti- and pro-angiogenic cytokines and 

examples of pro-angiogenic growth factors include: fibroblast growth factor (FGF), platelet 

derived growth factor (PDGF), HGF and VEGF (Ferrara, 1993, Boccaccio et al., 1998, Dunn et 

al., 2000). VEGF stimulates the migration, sprouting and proliferation of endothelial cells. 

However, this may initially provide the tumour with more nutrients and oxygen, the ultimate 

response is poor, as the continuously remodelled tumour vasculature is leaky, causing 

irregular blood flow (Hoeben et al., 2004). Tumour tissues often exhibit abnormally high 

blood vessel densities, in comparison to normal tissues (Olumi et al., 1999). These differences 

in blood vessels were documented to increase during early tumour formation, indicating 

their role in tumour growth (Kamoun et al., 2010). 

Tumour-associated myofibroblasts have been documented to secrete these pro-angiogenic 

growth factors, such as HGF and VEGF, that can promote angiogenesis at primary tumour 

sites (Xin et al., 2001, Zhang et al., 2003). In a tumour:fibroblast xenograft model, tumour-

associated myofibroblasts extracted from invasive breast carcinomas, promoted tumour 

growth of breast carcinoma cells significantly more than those with normal mammary 

fibroblasts (Orimo et al., 2005). They promoted tumour growth by secreting stromal cell-

derived factor 1 (SDF-1), promoting angiogenesis by mobilising endothelial cells into 
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carcinomas; and gives rise to highly vascularised tumours. In an oesophageal carcinoma 

model, the presence of tumour-associated myofibroblasts was essential for efficient human 

microvascular endothelial cell network formation; selective VEGF inhibition blocked the 

formation of a vascular network in this model (Noma et al., 2008). Furthermore, co-culturing 

diseased stromal cells from prostate cancer with endothelial cells, promoted vessel-like 

structure formation in vitro (Webber et al., 2015). The diseased stromal cells were IHC 

stained to be α-SMA positive, indicating a myofibroblastic-like phenotype. These studies give 

evidence that myofibroblasts are important components of the tumour microenvironment 

that may enhance endothelial vessel formation. 

Tumour Invasion and Metastasis 

Tumour cells can migrate and invade, escaping from the primary tumour site to a new 

secondary distant site to form a new secondary tumour. It has been reported that 

myofibroblasts are present at the invasive leading edge of primary tumours, such as 

colorectal cancer in vivo (Illemann et al., 2004); and proposed to play a role in supporting 

tumour invasion. In one study, tumour-associated myofibroblasts are commonly found in the 

stroma of oral squamous cell carcinomas and are often concentrated at the leading edge of 

the tumour (Lewis et al., 2004). Furthermore, cell conditioned media (CM) obtained from 

tumour-associated myofibroblasts derived from colorectal cancer, were found to promote 

invasion of colorectal cells in a collagen gel matrix (Cat et al., 2006). In contrast, cell CM from 

normal fibroblasts derived from healthy patients, failed to support tumour cell invasion, 

compared to tumour-associated myofibroblasts. In contrast to fibroblasts, myofibroblasts 

secrete elevated levels of HGF and VEGF resulting in a significant increase in the invasive 

capacity of tumour cells through collagen/matrigel matrices (Lewis et al., 2004, Cat et al., 

2006). Blocking the HGF and VEGF levels, decreased the invasive capacity of tumour cell 

invasion (De Wever et al., 2004). Other growth factors, such as epidermal growth factor 

(EGF), FGF, HGF, insulin-like growth factor (IGF), PDGF and VEGF, are secreted at elevated 

levels in tumour-associated myofibroblasts, compared to normal fibroblasts (Dunn et al., 

2000, Orimo et al., 2005, Weigel et al., 2014, Webber et al., 2015).  

Other soluble factors such as matrix metalloproteinases (MMPs) may be involved in 

enhancing tumour cell’s invasive capacity. MMPs are matrix degrading enzymes that 

breakdown the components of the basement membrane and ECM, such as collagen, elastin, 

fibronectin and laminin (Sang, 1998, Lu et al., 2011). Expression of MMP-1 is detected in 

areas of ECM remodelling and has been described in a wide variety of advanced cancer 

(Bendardaf et al., 2007, Pulukuri and Rao, 2008). Similarly, cell CM from tumour-associated 
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myofibroblasts derived from aggressive breast cancer cells contained elevated levels of 

MMP-1, compared to normal mammary fibroblasts (Boire et al., 2005). Furthermore, 

elevated levels of MMP-13 have been associated with decreased overall survival and lymph 

node metastasis in breast cancer (Shah et al., 2012), bone metastasis in renal cell carcinoma 

(Kominsky et al., 2008); and invasive capacity in lung cancer (Hsu et al., 2006) and colorectal 

cancer (Leeman et al., 2002). Also, administration of a selective MMP-13 inhibitor in mice 

significantly inhibited primary tumour growth and breast cancer-associated bone 

remodelling in xenografts (Shah et al., 2012). Inhibition of MMP-1 activity demonstrated a 

reduction in the motility of both breast and prostate cancer cells in a Boyden transwell 

invasion chamber (Boire et al., 2005, Giannoni et al., 2010). In the same prostate cancer 

model, spontaneous metastasis was not observed when administering prostate cancer cells 

alone or with fibroblasts from healthy stroma into mice (Giannoni et al., 2010). Yet, the ability 

for prostate cancer cells to metastasise to the lung was obvious, when co-cultured with 

tumour-associated myofibroblasts in vivo. 

In prostate and other carcinomas, the interstitial stroma contains an abnormally high 

amount of tumour-associated myofibroblasts, capable of supporting tumour growth, partly 

through encouraging angiogenesis, invasion and metastasis. An assortment of factors has 

been proposed to be involved in triggering fibroblast differentiation. Though, it has been 

shown that tumour-derived, nanometre sized extracellular vesicles (EVs) can trigger 

fibroblast differentiation. More specifically, tumour-derived exosomes can generate this 

response to produce distinct tumour-associated myofibroblasts, supporting angiogenesis 

and tumour growth. 
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1.3 Exosome Biology 

1.3.1 Different Types of Extracellular Vesicles (EVs) 

Cells can secrete different types of membrane-bound vesicles, collectively termed as EVs; 

and these have been given many names throughout the literature: membrane vesicles, 

membrane particles, nanoparticles, ectosomes, microvesicles (MVs) and exosomes. We may 

categorise secreted EVs in terms of their intracellular origin or based on their size (Théry et 

al., 2009). More commonly characterised vesicles such as exosomes, are formed in 

endosomal compartments and released upon fusion with the plasma membrane. Other 

vesicles, however, may be released directly from the plasma membrane by budding and 

shedding. These include microvesicles or membrane particles (Heijnen et al., 1999). Dying 

cells can release vesicles, referred to as apoptotic bodies, which are distinct from exosomes 

(Théry et al., 2001). 

Currently there is no consensus in the field as to a proper nomenclature and the precise 

definition of each type of EVs, because different research groups utilise different methods to 

isolate, purify and characterise EVs. More recently, one of the position statements published 

by the International Society of Extracellular Vesicles (ISEV) created minimal experimental 

requirements for defining EV characterisation and function (Lotvall et al., 2014). To define 

EVs, researchers firstly must report several proteins or lipids expected to be present in the 

EVs of interest, including quantitation of contaminants not necessarily expected present on 

EVs. Furthermore, characterisation of single vesicles within a mixture should be performed, 

such as low magnification images showing a broad description of the state and morphology 

of the entire isolated EV population and high magnification to define structural depth of 

individual vesicles; as well as size distribution measurements providing diameters of many 

EVs to give an indication of heterogeneity of the EV preparation studied. Some of these 

requirements may allow us to distinguish vesicles secreted by the plasma membrane from 

those derived from endocytic compartments, such as exosomes. 

1.3.2 Exosome Characterisation 

One of the first studies to observe the presence of EVs was by electron microscopy (EM), 

demonstrating these EVs were involved in calcifying matrix within newly formed bone 

(Anderson and Reynolds, 1973). Following studies described exosomes during the 

maturation of red blood cells, as reticulocyte purge cellular mass and the transferrin receptor 

(Harding et al., 1983, Pan et al., 1985). In the first instance, utilising either gold particles or 

anti-transferrin antibodies, an EM approach was used to monitor the process of the 
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endocytosed receptor during trafficking in the cell and following release. The transferrin 

receptor was detected in early endosomes, before being trafficked to multi-vesicular 

endosomes (MVEs). Many of the gold particles were located on smaller nanometre sized 

‘bodies’ (around 50nm in diameter), which were released upon MVE fusion with the plasma 

membrane. Following on, one study demonstrated that secreted vesicles could be isolated 

and analysed by ultracentrifugation at 100,000 x g, normally present on the plasma 

membrane (Johnstone et al., 1987). The term ‘exosome’ was first reported used to categorise 

secreted EVs of heterogeneous sizes, including one population with diameters between 500 

and 1000 nm; and a smaller population of around 40nm (Trams et al., 1981).  

Later, this nomenclature was adopted for vesicles, as their secretion and presence inside 

multivesicular endocytic compartments was reported in reticulocytes (Harding et al., 1983, 

Pan et al., 1985). Exosome are formed by budding of the limiting membrane of ‘sorting’ 

vacuolar endosomes towards the lumen of these compartments, thus forming intraluminal 

vesicles (ILVs), the endosomes are referred as MVEs. The fusion of MVEs with the plasma 

membrane enables the release of ILVs into the extracellular space and these secreted ILVs 

are referred to as exosomes. Due to their endosomal origin, exosomes possess several 

hallmarks of ILVs of the MVEs, such as their size, which ranges from 30 to 150 nm in diameter, 

reflecting exosome heterogeneity (Colombo et al., 2013).  

Molecular Composition of Exosomes 

Since their initial description of exosomes, many efforts have been made to further 

characterise the protein composition of exosomes. Many studies of EVs biochemical 

composition involved analysis of bulk populations obtained by ultracentrifugation, that often 

provides a heterogeneous EV population. The development of proteomic analysis soon 

allowed identification of non-determined proteins in isolated EVs. Mass spectrometry was 

used for peptide mapping on exosomes derived from dendritic cell (DC) mouse cultures 

(Théry et al., 1999) and similarly, on exosomes isolated from various cell types (Théry et al., 

2001, Lamparski et al., 2002). By characterising exosomes from numerous studies, these 

results were assembled in a database called ExoCarta (Mathivanan and Simpson, 2009), 

which was refined into a more comprehensive database called Vesiclepedia (Kalra et al., 

2012) and EVpedia (Kim et al., 2015), that incorporates data from other EV types and 

additional data on lipids and nucleic acid. 

Initial proteomic studies showed exosomes contain a specific subset of cellular proteins, 

some found in all cell types, whereas others are specific to the cell type. These include 
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proteins from the plasma membrane, endosomes or cytosol, although proteins from the 

endoplasmic reticulum, mitochondria or nucleus are often absent. For example, the 

apoptosis-linked gene 2-interacting protein (ALIX) and tumour susceptibility gene 101 

(TSG101) are known components of the endosomal complex required for transport 

machinery (ESCRT) (Morita et al., 2007). The function of the ESCRT complex is involved in 

forming MVEs, loading and sorting of cargo proteins into ILVs, working at the MVE membrane 

and recognising ubiquitinylated proteins that are incorporated into the vesicles. Tetraspanins 

such as cluster of differentiation (CD)9, CD63, CD81 or CD82, are often enriched on the 

exosome’s surface. CD9 was first identified in DC-derived exosomes (Théry et al., 1999); and 

several studies describe CD63 and CD81 as frequently identified proteins and are considered 

classical “markers”. CD9 is often found enriched in exosomes derived from prostate cancer 

cell lines (DU145) (Liu et al., 2014, Webber et al., 2014). Also, exosomes express major 

histocompatibility molecules class I (MHC-I) and II (MHC-II), playing roles in immune-

regulation by presenting antigenic peptides (Lamparski et al., 2002). Other common 

exosomal-associated proteins include heat shock protein 70 (HSP-70) and 90 (HSP-90), which 

assists in protein folding and trafficking, acting as chaperones (Clayton and Tabi, 2005, Mayer 

and Bukau, 2005), accelerating peptide loading onto MHC-I and -II and playing roles in the 

cellular response to environmental stresses (Cho et al., 2005). Also, a subset of the 

endosomal/lysosomal proteins are found in exosomes, such as the lysosomal associated 

membrane protein 1 (LAMP1) and 2 (LAMP2). Some examples show exosomes from tumour 

cells contain LAMP1 (Wolfers et al., 2001) and LAMP2 is detected from DC-derived exosomes 

(Escola et al., 1998). Moreover, the presence of proteins, such as calnexin or GP96, derived 

from the endoplasmic reticulum are mostly absent in exosomes (Wolfers et al., 2001, Cho et 

al., 2005). This highlights some proteins present on the exosome’s surface or inside the 

lumen that differs between cell types, representing a specific subcellular compartment and 

not an array of random cell fragments. 

Fewer studies have analysed the lipid composition of exosomes, but it differs from the 

plasma membrane. The exosomal membrane does not have an asymmetrical distribution of 

the lipid phosphatidylethanolamine (PE), compared to asymmetrical distribution in the inner 

leaflet of the plasma membrane. This may be due to a lack of flippase in exosomes, which 

actively maintains phospholipid asymmetry in the plasma membrane and possible MVEs 

(Laulagnier et al., 2004). It was reported exosomes are enriched in ceramide, which was 

linked to vesicle biogenesis and release from oligodendrocytes (Trajkovic et al., 2008). Cargo 

was shown to be segregated into distinct subdomains on the endosomal membrane and that 
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the transfer of exosome-associated domains into the lumen did not depend on the ESCRT 

machinery, but required ceramide; therefore, an ESCRT-independent mechanism. Also, 

nucleic acids are often confined within exosomes and reports highlighted that messenger 

ribonucleic acid (mRNA) or micro ribonucleic acid (miRNA) can be present in exosomes from 

biological fluids (Valadi et al., 2007, Kosaka et al., 2010). This suggests the expression 

patterns of these nucleic acids may act as markers for the diagnosis and prognosis of 

different pathologies. Other reports have revealed possible functions for secreted EVs 

carrying nucleic acid in tumour cell migration and growth (Skog et al., 2008, Zhang et al., 

2010). These studies highlight the complexity behind the molecular composition of 

exosomes, as there remains no universal marker as shown in Figure 1.5. The use of compiling 

multiple studies into a main database, such as Vesiclepedia, will contribute to the 

harmonisation of the nomenclature of different EVs.
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Figure 1.5: Molecular composition often found on exosomes. Schematic representation 

of the composition and membrane orientation of exosomes, encompassing families of 

proteins, lipids and nucleic acid. Commonly found are tetraspanins include CD9, CD63 

and CD81; and many others such as MHC-I, heat shock proteins (HSP70 and HSP90), 

LAMP proteins (LAMP1 and LAMP2), ESCRT components (ALIX and TSG101), Rab proteins 

(Rab5a, Rab11b, Rab27a, Rab35), growth factors, cytokines, mRNA/miRNA and lipids. 

Adapted from source: (Colombo et al., 2014). 
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1.3.3 Methods for Exosome Isolation and Purification 

Exosome Isolation and Purification 

The general protocol used in earlier studies to isolate and purify exosomes (Johnstone et al., 

1987, Raposo et al., 1996) is based on ultracentrifugation. It involves numerous successive 

steps (Théry et al., 2006), where a centrifugation spin at 400 x g is aimed at removing cell 

pellets. The remaining supernatant is centrifuged again at 400 x g and subsequently at 2000 

x g, to remove dead cells and larger cellular debris. A subsequent ultracentrifugation step at 

10,000 x g is used to pellet other types of EVs, such as microvesicles, which are larger in size 

and sediment easier. Alternatively, some variations are implemented in practice, for example 

serial filtration through 0.22µm filters will eliminate contaminating vesicles or debris, prior 

to exosome pelleting. The final ultracentrifugation step at 100,000 – 200,000 x g is used to 

pellet the exosomes as shown in Figure 1.6. It is important to take into consideration that 

this only enables an enrichment of exosomes and not a proper purification, since other EVs 

of similar size, as well as protein aggregates, are likely to sediment at the same speed. 

Ultracentrifugation remains commonly used to isolate or enrich a certain EV type and 

variations of this protocol can considerable vary from one laboratory to another. Different 

protocols have been developed to purify the exosomes, which will be discussed in the 

following paragraphs. 

Other protocols have been developed using antibody-coated magnetic beads (Clayton et al., 

2001) or latex beads (Lamparski et al., 2002, Caby et al., 2005). These rely on the expression 

of specific surface proteins, which are used to capture exosomes on beads, which can be 

analysed by flow cytometry. However, this protocol is limited, requiring their further use in 

additional experiments, as it remains difficult in extracting exosomes from beads requiring 

extra steps for functional studies and remains predominantly used to identify molecular 

signature markers. 

Another method to purify exosomes from other contaminants can be performed by using a 

continuous sucrose density gradient (Raposo et al., 1996, Escola et al., 1998). Exosomes have 

a biochemical property allowing floatation at a density of 1.1 – 1.2g/ml, compared to vesicles 

from the golgi apparatus floating at 1.05 – 1.1g/ml (Théry et al., 2006) and the density of 

protein aggregates at 1.22g/ml (Quillin and Matthews, 2000). The differing density of the 

potential contaminants (protein aggregates) of exosomes make the sucrose gradient an 

approach to purify exosomes from crude vesicle concentrates. The exosomes will be 

obtained in different fractions of the sucrose gradient and the remaining fractions can either 

be pooled together for analysis or examined independently. An alternative to sucrose density 
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gradients is to involve ultracentrifugation of the cell CM in sucrose deuterium oxide (D2O) 

cushions. This protocol was commonly used to isolate clinical grade exosomes (Lamparski et 

al., 2002); and is more reproducible as a daily preparative method, compared to gradients.
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Figure 1.6: Flowchart for isolating and purifying exosomes based on ultracentrifugation 

and 30% sucrose/D2O cushion method. Flow chart showing the steps involved for 

removal of viable cells, dead cells, cellular debris and larger EVs, to obtain a crude 

exosome pellet. Alternatively, the filtered supernatant is ultracentrifuged with a sucrose 

cushion to present exosomes from pelleting. The cushion is washed thereafter to obtain 

a purified exosome pellet. Adapted from source: (Lamparski et al., 2002, Théry et al., 

2006). 
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More recently, commercially available methods to promote quick and simple exosome 

purification protocols, such as Total Exosome Isolation Reagent (TEI), ExoQuick™ or 

ExoSpin™, have been released (Sunkara et al., 2016). These easy-to-use precipitation 

solutions have many disadvantages present with these kits. They do not specifically enrich 

exosomes, but also co-precipitate non-exosomal impurities, showing background 

contamination in cryo-EM images (Van Deun et al., 2014). There have been suggestions that 

using density gradient-based isolation method, such as iodixanol (OptiPrep™) can be applied 

to obtain a purer exosome preparation compared to sucrose-based gradients. A study has 

encouraged the use of an iodixanol-based gradient, which improves the separation of 

exosomes from viruses and small apoptotic bodies (Cantin et al., 2008). Though, using the 

OptiPrep™ gradient is a complex and time-consuming process.  

As there are multiple protocols used to isolate exosomes, each technique must be validated 

for any given cell type or biological fluids as a source of exosomes, to confirm the identify for 

the given purified exosome. This often requires a combination of multiple assays, which are 

described in further detail below. 

Exosome Detection 

As exosomes are small nanometre sized EVs, cryo-EM allows the direct visualisation of the 

morphology and size of exosomes. Pelleted vesicles, resuspended in a small volume of buffer 

are normally adsorbed onto glow-discharged holey carbon grids. Exosome samples are 

vitrified in liquid ethane, to prevent the formation of crystal structures and preserve the 

native vesicle structure (Conde-Vancells et al., 2008). Furthermore, the presence of selected 

proteins on the surface of exosomes can be detected by immuno-EM (Théry et al., 2006). 

Using specific antibodies, gold particles can identify a few proteins in the same sample 

simultaneously, whilst determining the purity of the exosome preparation to assess if the 

debris/contaminants are present (Bobrie et al., 2012). Though, it would remain difficult to 

separate these exosomes for functional based experiments. 

Classical biochemistry methods, such as Western blotting, can provide information on the 

enrichment of proteins present on exosomes. The protein content can be compared 

between cell lysates and the exosomal pellet. A different pattern often reveals a good purity, 

since it rules out the presence of cell compartments not usually represented in exosomes, 

such as the endoplasmic reticulum. Western blotting is routinely used to investigate the 

presence of specific exosomal-associated proteins and compared to cell lysates (Raposo et 

al., 1996, Théry et al., 1999). As some examples, exosomes are enriched in ALIX or TSG101 
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(dependent on the cell type), but does not contain proteins from cell compartments, such as 

calnexin or GP96 (endoplasmic reticulum marker). 

Similarly, another technique that allows the quantitative analysis of protein content is flow 

cytometry. There are limitations, as a typical flow cytometer detection limit is 500nm and as 

exosomes are between 30 – 150nm, they would appear as background noise. Beads have 

been coated with antibodies against proteins, typically found on the exosome’s surface that 

will increase the chances of investigating exosomes exclusively. Alternatively, a microplate 

immuno-phenotyping assay can also provide a quantitative analysis, as exosomes are bound 

onto enzyme-linked immunosorbent assay (ELISA) strip plates. Primary antibodies can be 

used to target proteins of interest typically found on the surface of exosomes; and time-

resolved fluorescent can be determined by using a microplate reader. Though, a bulk assay 

like an ELISA plate would have difficulty in distinguishing sub-population of vesicles, which 

flow cytometry might be able to accomplish. 

Another technique used to give an indication of how heterogeneous the exosome sample is 

using Nanoparticle Tracking Analysis (NTA) (Nanosight™). NTA is used to measure size 

distribution and concentration of nanoparticles (Dragovic et al., 2011). Quantification of 

nanoparticles by NTA are predominantly based on two principles: the movement of particles 

in suspension under Brownian motion and their movement, which will scatter light that can 

be individually tracked by the NTA software. This software will calculate the exosome’s 

diameter by using the Stokes Einstein equation. One main advantage of using NTA compared 

to other technologies, such as resistive pulse sensing or dynamic light scattering (DLS), is the 

speed and simplicity of analysing many particles simultaneously; and the suitability of the 

method for particles of heterogeneous sizes. Though, multiple parameters, such as the 

sample dilution, camera shutter speed and gain, length and number of videos, and detection 

threshold, must be set by the user to acquire reproducible results. One downfall for NTA, is 

it does not discriminate the morphology of different EVs (cannot distinguish an exosome and 

microvesicle of similar sizes) and the results are less accurate when samples are 

polydispersed; however, this approach is better than using DLS.  

There is no consensus on a ‘gold standard’ method to isolate and/or purify; and subsequently 

characterise exosomes. There are multiple techniques that can provide different 

information, in terms of morphology, size and molecular composition about the isolated 

exosome preparation. It is, therefore, important to use these techniques in an informed 

fashion and stipulate clearly the method used to characterise the isolated EVs in question. 
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1.3.4 The Functions of Exosomes in Cancer 

Since the 1980s, numerous diverse functions have been attributed to exosomes. Exosomes 

are known to exhibit functions like their parent cell. For example, initial studies described 

the release of the transferrin receptor during reticulocyte maturation. It was suggested that 

these membranous structures (exosomes) were used by cells to remove obsolete molecules 

(Harding et al., 1983, Pan et al., 1985), a process key for differentiation into erythrocytes. 

However, this role as cellular waste may not have done the EV field much favour as for a long 

time, the fate of EVs was amounted with waste and nothing more. Though, seminal work 

from the Institut Curie groups, identified cell-activating roles for exosomes. Exosomes from 

antigen presenting cells such as B cells, are enriched in MHC-II and have shown to be 

functional in antigen presentation, leading to T cell stimulation (Raposo et al., 1996). It was 

shown that exosomes secreted from DCs bear antigen and MHC-peptide complexes, 

participating in immune responses (Théry et al., 1999). Other studies have also highlighted 

that exosomes secreted by intestinal epithelial cells are involved in humoral responses and 

transfer antigenic information from the apical domain to the immune cells in the gut (Van 

Niel et al., 2003). Additional reports support the concept that exosomes from one cell may 

fulfil a function on the recipient cell. The findings that exosomes carry protein, lipid and 

nucleic acids such as mRNA and miRNA, that are functional in recipient cells (Valadi et al., 

2007), strengthens this notion. In cancer, these discoveries suggest exosomes may play roles 

in cell-to-cell communication and contribute through varied mechanisms for the pathological 

processes of cancer. 

Exosomes and the Immune Response 

Many studies have investigated the function of exosomes derived from tumour cells. It has 

been reported exosomes can carry tumour antigens to induce an efficient anti-tumour 

response. Melanoma-derived exosomes has been reported to be presented to antigen 

presenting DCs for cross presentation to cytotoxic T lymphocytes (CD8+ T Cells) via MHC-I 

molecules (André et al., 2002). These activated T cells can trigger an anti-tumour response 

that suppresses tumour growth in vivo (Wolfers et al., 2001). Although the potential here for 

immune responses against murine viruses contaminating the EV preparations is high and 

may explain the specific potent immune response generated by exosomes in mice. Additional 

studies demonstrated HSP70-enriched exosomes from pancreas and colorectal cancer can 

stimulate natural killer (NK) cell activity, resulting in NK-mediated apoptosis of tumour cells 

(Gastpar et al., 2005, Lv et al., 2012). The data suggests that tumour-derived exosomes can 

inhibit tumour progression by promoting these immunological responses. 
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On the other hand, tumour exosomes have been described to exert immunosuppressive 

functions, such as tumour cells escaping from CD8+ T-cells. Some studies have reported that 

melanoma and prostate cancer cell-derived exosomes express CD95L (Fas-Ligand), inducing 

apoptosis of Fas positive CD8+ T cells in a dose-dependent manner (Andreola et al., 2002, 

Abusamra et al., 2005). This apoptotic effect was abrogated by blocking FasL on the tumour 

exosomes. Also, in another study, tumour-derived exosomes can inhibit myeloid 

differentiation into DCs and trigger differentiation of myeloid cells into immunosuppressive 

cells (Yu et al., 2007, Xiang et al., 2009). It was demonstrated the cytotoxic function of NK 

cells was impaired following tumour exosome treatment (Clayton et al., 2007). But, 

CD4+CD25+ Treg cells remained interleukin (IL)-2 responsive through induction of Foxp3 

expression and their inhibitory function was enhanced by tumour exosomes, showing this 

appears to be contributed by TGF-β-associated exosomes. In one study, a CD8+ T cell line pre-

incubated with tumour exosomes bearing NKG2D ligands had significantly decreased the 

CD8+ T cell capacity to kill target cells (Clayton and Tabi, 2005). NKG2D is an activating 

receptor for NK or CD8+ T cells, whose aberrant loss in cancer appears key for immune 

evasion. The follow-up study demonstrated that TGF-β positive exosomes appear to have a 

role in downregulating NKG2D expression by NK and CD8+ T cells, impairing effector immune 

function (Clayton et al., 2008). Furthermore, it was reported that cancer exosomes 

expressing CD39 and CD73 can suppress T cells through adenosine production (Clayton et al., 

2011). These exosomes are capable of dephosphorylating exogenous adenosine 

triphosphate (ATP) and 5’AMP to form adenosine, which are due to the functional CD39 and 

CD73 by exosomes. The mechanisms behind these actions remain poorly understood, 

however, these are some examples how cancer-derived exosomes may direct escape from 

immune surveillance. 

From numerous studies, tumour exosomes may play different contrasting roles in cancer. 

Exosomes may exert an anti-tumour response, as well as triggering an immunosuppressive 

function. These differences in the role of tumour exosomes may possess different 

phenotypes from different cancer types and thus, the differences in function is observed. 

Exosomes and Drug Resistance 

Cancer exosomes may have other functions that involve the support for drug resistance. One 

study demonstrated that ovarian cancer cells resistant to the chemotherapeutic drug, 

cisplatin, were secreting elevated levels of exosomes, compared to cells sensitive to 

chemotherapy (Safaei et al., 2005). It is proposed that once the chemotherapeutic drugs 

reach cancer cells, the secreted exosomes can expel these drugs away from the cancer cells. 
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Similarly, manipulated breast cancer cell lines that became insensitive to chemotherapeutic 

drugs, such as adriamycin or docetaxel, were found to transfer mRNA/miRNA traits that were 

linked to drug resistant traits via exosomes (Levchenko et al., 2005, Chen et al., 2014). It was 

shown that ribonucleic acid (RNA) is retained within the exosome (Valadi et al., 2007), which 

can give sufficient protection from RNAse degradation, which may transferred to recipient 

cells. These observations suggest that cells may also acquire drug resistance traits from 

exosomal RNA. From multiple studies, cancer cells may acquire drug resistant traits from 

surviving cells treated with chemotherapy. These surviving cells may carry genes resistant to 

drug treatment, allowing a small proportion of cancer cells to survive, which may ultimately 

lead to a positive feedback mechanism to occur that may allow cancer to relapse. 

Exosomes and the Stromal Response (Angiogenesis) 

Studies have demonstrated tumour exosomes can directly support angiogenesis by 

interacting with endothelial cells. Murine multiple myeloma-derived exosomes carried 

multiple angiogenesis-related proteins, such as angiogenin, FGF and VEGF, enhancing 

angiogenesis and directly promoting endothelial cell growth by modulating pathways such 

as PI3K/Akt and p120/signal transducer and activator of transcription (STAT) 3 pathway 

(Wang et al., 2016a). Tspan8 was often overexpressed in pancreatic and prostate cancer 

(Uhlen et al., 2010), correlating with increasing levels of angiogenesis in vivo. These Tspan8-

positive exosomes promoted endothelial cell branching and elevated pro-angiogenic growth 

factor levels in vitro, thus promoting angiogenesis (Gesierich et al., 2006). Elevated 

transcription levels of urokinase-type plasminogen activator (uPA), VEGFR and von 

Willebrand Factor (vWF) was found in endothelial cells, when treated with Tspan8 positive 

exosomes from rat adenocarcinoma cells. These observations overlapped with enhanced 

endothelial cell migration, branching and proliferation (Nazarenko et al., 2010). It was 

reported that the mRNA content of glioblastoma EV demonstrates an enrichment of 

transcripts related to pro-angiogenic function; and provided evidence that EV delivers mRNA 

that is subsequently translated into proteins in recipient cells (Skog et al., 2008). Similar 

observations have shown an enhanced proliferative impact on endothelial cells and 

enhanced tubule formation shown in 3D in vitro culture (Hong et al., 2009). In one study, 

exosomes from colorectal cancer were found to promote endothelial proliferation and 

tubule formation in vitro (Huang and Feng, 2016); and the transfer of exosomal miRNA (such 

as miRNA-92a) may play a role in this process (Umezu et al., 2013). Such alterations in miRNA 

can enhance endothelial cell migration and tube formation. Similarly, this was shown in 

squamous carcinoma and colorectal cancer cells secreting exosomes enriched in proteins 
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and cell cycle-related mRNAs, that can facilitate angiogenesis and metastasis (Thompson et 

al., 2013). Tumour exosomes, therefore, may play roles in supporting angiogenesis in vitro 

and in vivo, possibly due to the transfer of genetic information to recipient endothelial cells. 

Stromal Myofibroblasts 

Stromal myofibroblasts have been known to support tumour growth and progression 

(Tuxhorn et al., 2002a, Kalluri and Zeisberg, 2006), but the first report of an exosomal role 

was documented in a prostate cancer model (Webber et al., 2015). Specifically, TGF-β1 

positive cancer exosomes from mesothelioma and prostate (DU145 or PC3) cells have been 

shown to trigger fibroblast differentiation to myofibroblasts, as characterised by α-SMA 

onset into stress fibres (Webber et al., 2010). Exosomes from breast (MCF-7), prostate 

(LNCAP) or colorectal (CaCO2) cancer cell lines with low/undetectable levels of TGF-β1 failed 

to trigger fibroblast differentiation into α-SMA positive myofibroblasts (Webber et al., 2010). 

Blocking TGF-β1 signalling revealed fibroblast differentiation into myofibroblasts to be 

reliant on TGF-β1 associated exosomes, that triggered the SMAD-dependent pathway. 

Similarly, it was shown that TGF-β1 positive exosomes can modulate MSCs, skewing towards 

an α-SMA positive myofibroblastic cell, but recombinant human TGF-β1 (rhTGF-β1) could not 

generate the same phenotype (Chowdhury et al., 2015). So, vesicles containing TGF-β1 is a 

potent stimulus driving myofibroblast onset irrespective of the precursor type. 

Phenotypic analysis discovered major differences in myofibroblasts generated from soluble 

rhTGF-β1 or TGF-β1 positive exosomes. These differences are highlighted by a significant 

elevation in secreted pro-angiogenic growth factors, such as FGF-2, HGF, uPA and VEGF, in 

exosomal-induced myofibroblasts and these effects were inhibited by blocking TGF-β1 

signalling (Webber et al., 2015). The myofibroblast type was sufficient to support migration 

of endothelial cells and formation of vessel-like structures. Myofibroblasts generated from 

rhTGF-β1-treated conditions failed to recapitulate this pro-angiogenic function (Webber et 

al., 2015). Similarly, exosome-differentiated MSCs supported the proliferation, motility and 

organisation of endothelial cells and heightened invasive behaviour (Chowdhury et al., 

2015). Exosomes as a stimulus, therefore, provided a myofibroblast type that cannot be 

generated by soluble TGF-β1 stimulation. The exosome generated stroma exhibits a 

phenotype of functional properties akin to in vivo educated prostate cancer stroma; and 

supports tumour growth in xenograft (Webber et al., 2015).  

The need for cancer exosomes to drive stromal differentiation to a disease-associated 

phenotype has been shown in different ways. Targeting Rab27a, a guanosine 
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triphosphatases (GTPase) protein involved with trafficking MVEs to the plasma membrane 

would potentially inhibit exosome secretion from tumour cells. Silencing Rab27a depleted 

80% of exosomes from prostate cancer cells, likely to 15 – 20% of TGF-β1 positive exosome 

(Webber et al., 2015). In functional terms, CM from wild type prostate cancer cell drove 

stromal fibroblast differentiation to an α-SMA-positive myofibroblast phenotype, supporting 

vessel-like structure formation. However, CM from DU145 Rab27aKD cells failed to trigger 

differentiation and an angiogenic effect, with reduced secretion of pro-angiogenic growth 

factors. Also, these effects were shown in vivo in terms of promoting tumour growth, where 

Rab27a-dependent exosomes and stromal cells communicate, creating a tumour 

microenvironment for disease progression. Furthermore, xenografts containing DU145 

Rab27aKD cells failed to grow big tumours, even in the presence of fibroblasts, suggesting 

that stromal-assisted growth is lost. It remains unclear, however, what other intrinsic factors 

regulating exosome biogenesis and secretion in cancer cells that can modulate the cross-

communication within the tumour microenvironment.
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1.4 Molecular Mechanisms of Biogenesis and Secretion of Exosomes 

1.4.1 The Endocytic Pathway 

Different Mechanisms for Endocytosis 

Endocytosis is a process where the cells uptake macromolecules or particles that cannot 

penetrate through the plasma membrane by diffusion, or transport through membrane 

pores. It involves the creation of a newly formed endosome by invagination and subsequent 

inward pinching of the plasma membrane. This process plays a role in a variety of cellular 

response, including remodelling of the plasma membrane, nutrient uptake, antigen uptake 

and presentation; regulation of the cell surface signalling receptors. There are numerous 

mechanisms for endocytosis (Doherty and McMahon, 2009), which can be categorised into 

either phagocytosis or pinocytosis. Phagocytosis engulfs large particles (including bacteria 

and pathogens) to eliminate them, which occurs in specialised cells, such as macrophages. 

Binding of the particle to cell surface receptors triggers the plasma membrane to remodel 

(involving actin polymerisation) and leads to pseudopodia formation surrounding the 

particle. This internalisation in a structure is called a phagosome, which is destined for 

lysosomal degradation through the action of hydrolytic enzymes.  

Pinocytosis can occur in all cell types via several mechanisms: clathrin-dependent 

endocytosis, caveolae-dependent endocytosis and macropinocytosis and other related 

mechanisms, as shown in Figure 1.7. Macropinocytosis occurs in a comparable way to 

phagocytosis, to the extent of actin remodelling at the plasma membrane, which engulfs 

extracellular fluid and molecules within to form a large endosome. Caveolae contains a 

cholesterol-binding protein (caveolin) that forms flask-shape invaginations (50nm) at the 

plasma membrane. Clathrin-dependent endocytosis (receptor-mediated endocytosis) is one 

of the most characterised mechanisms (Benmerah and Lamaze, 2007). It involves the 

polymerisation of clathrin lattices through the action of different adaptor complexes to form 

clathrin-coated pits, to cluster cargo together via cell surface receptors. The release of 

clathrin-coated vesicles from the plasma membrane is mediated by dynamin and requires 

GTP hydrolysis by this protein. The formation of newly-formed endosomes from these 

various mechanisms, leading next to fusion with an intracellular compartment, is known as 

an early endosome.
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Intracellular Compartments of the Endocytic Pathway 

The endocytic pathway consists of multiple complex membrane compartments, which leads 

to the recycling of endocytosed material to the plasma membrane, trafficked for their 

degradation in the lysosomes or delivery to the trans-Golgi network (Gruenberg, 2001, 

Stenmark, 2009). These membrane compartments are enriched in specific proteins, such as 

Rab GTPases (Stenmark, 2009); and they can be identified by endocytic tracers or by ligands 

of cell surface receptors. Early endosomes serve as a focal point for the endocytic pathway 

and sorting events are initiated at this compartment to determine the subsequent fate of 

internalised proteins or lipids. Early endosomes are tubulo-vesicular structures located at the 

cell’s periphery and are identified by proteins, such as early endosome antigen 1 (EEA1), 

Rab4 or Rab5; and the presence of the transferrin receptor, following internalisation after 5 

- 10 minutes (Rybin et al., 1996, Rubino et al., 2000). The mildly acidic conditions within the 

early endosomes induces ligand uncoupling that will unload cargo destined for either 

degradation or recycling. The cargo destined for recycling will accumulate in tubular 

membrane compartments, termed recycling endosomes, which are less acidic than early 

endosomes (Stenmark, 2009). These are located near the Golgi apparatus within the 

perinuclear region, identified by Rab4 and Rab11 proteins; and the transferrin receptor is 

reached after 15 minutes of internalisation. 

MVEs or late endosomes are formed during the maturation of the early endosome 

(Stoorvogel et al., 1991). These are characterised by the presence of ILVs and these ILVs 

accumulate other cell-surface receptors and molecules destined for lysosomal degradation. 

As one example, the EGF receptor once internalised, reaches the late endosome 

compartment after 30 minutes. These late endosome compartments are identified by 

proteins, such as LAMP1, LAMP2, CD63 or Rab7 (Kobayashi et al., 2000, Savina et al., 2005). 

Their main function was to fuse with lysosomes to ensure degradation of their content. 

Lysosomes have a low pH with a feature of an electron dense morphology, which possess 

markers, such as LAMP1, LAMP2, CD63 and Rab9 (Eskelinen, 2006, Raposo et al., 2007). 

Many studies have demonstrated that endosomal compartments with MVE hallmarks can be 

fated for fusion with the plasma membrane, leading to exocytosis of ILVs as exosomes, rather 

than fated for lysosomal fusion. This has raised questions whether different subpopulations 

of MVEs can occur simultaneously in cells with some destined for degradation or for 

exocytosis. 

  



Chapter 1. Introduction 
 

36 
 

 

  

Figure 1.7: Different mechanisms of endocytic pathways. In the classical clathrin-

dependent endocytosis, receptors and their bound ligands are organised into specialised 

domains of the plasma membrane through interactions with adaptor protein complexes 

during endocytosis. These areas invaginate, leading to scission and are coated with 

clathrin to form a clathrin-coated pit. Similarly, caveolin-dependent endocytosis and 

another mechanism that does not require clathrin/caveolin/dynamin can also 

internalised cargo. These vesicles uncoat and fuse with early endosomes that is direct to 

late endosomes or lysosomes. Source: (Gould and Lippincott-Schwartz, 2009). 
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MVE Heterogeneity in Cells 

The existence of different subpopulations of MVEs in cells were initially observed in the 

distribution of cholesterol in different endosomal compartments (Möbius et al., 2003); 

staining cholesterol with perfringolysin O (cholesterol-binding toxin) in an EM technique. 

MVEs stained positively and negatively for cholesterol in EBV-transformed B cell lines. MVEs 

which stained positively demonstrated that there were the main lipid compartments which 

contained most ILVs. This finding agrees with other studies characterising the lipid 

composition of exosomes, which shows a clear enrichment of exosomes in cholesterol 

(Laulagnier et al., 2004, Trajkovic et al., 2008), as compared to other cellular membranes. A 

fusion profile showing the release of cholesterol-enriched EVs was seen within these cells. 

Another study also provides evidence of two distinct populations of MVEs (White et al., 

2006), after internalisation of EGFR to a subpopulation of MVEs that were positive for CD63. 

Detailed immuno-EM analysis showed another subpopulation of MVEs that were CD63 and 

lysobisphosphatidic acid (LBPA) positive, but did not contain any EGFR. It is possible that 

MVEs containing LBPA were destined for lysosomal degradation, rather that fusion with the 

plasma membrane. Furthermore, another study revealed the presence of different MVEs by 

making comparisons between immature DCs and DCs undergoing cognate interactions with 

T cells (cells loaded with an antigen and incubated with antigen-specific T cells) (Buschow et 

al., 2009). In immature cells, MHC-II molecules are predominantly sorted into MVEs fated for 

degradation. Though, in the presence of antigen-specific T cells, DCs secrete exosomes that 

are enriched in MHC-II and CD9, from newly formed MVEs. This study points to a difference 

in MHC-II sorting, indicating two distinct MVE pathways: one for lysosomal targeting and the 

other for exosome secretion. The gives some evidence that different subpopulations of 

exosomes can exist, although there might be other types of EVs that exists from different 

MVE, suggesting that different MVE can co-exist in the same cell. 
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1.4.2 Biogenesis of Exosomes 

ESCRT-Dependent Mechanisms 

As previously described, exosomes are formed within MVEs during early endosome 

maturation. Research into the molecular mechanisms that proceeds with ILV formation was 

first observed in yeast Saccharomyces cerevisiae, a model organism for studies involving 

endocytic trafficking and a pathway of lysosomal degradation (Raymond et al., 1992). 

Mutations in the vacuolar sorting (VPS) protein showed impaired MVE formation and an 

accumulation of cargo that was directed for vacuolar degradation (Rieder et al., 1996). 

Additional studies showed their orthologues in mammalian cells could form ESCRT 

complexes, which were described as 4 different components: ESCRT-0 (Katzmann et al., 

2002), ESCRT-I (Katzmann et al., 2002), ESCRT-II (Babst et al., 2002b) and ESCRT-III (Babst et 

al., 2002a), as shown in Figure 1.8. These complexes interact with one another and are 

recruited by the endosomal limiting membrane where they carry out their function. The 

recruitment of these complexes to the endosome membrane is transient, since the function 

of VPS4 (ATPase) is to release these complexes once their function is complete (Babst et al., 

1998). 

ESCRT-0 

The ESCRT-0 complex is a heterodimer formed by HRS (HGS, hepatocyte growth factor 

regulated kinase substrate) and STAM (signal transducing adaptor molecule). This complex 

is key for selecting ubiquitinylated cargo at the endosomal membrane. Phosphattidylinositol-

3-phosphate (PI(3)P) is abundant in endosome membranes which is bound onto by HRS, 

initiating recruiting of this complex to the endosomal membrane. HRS and STAM contribute 

to cargo selection by interacting with monoubiquitinated proteins, through their ubiquitin 

binding domains (UBD) (Urbe et al., 2003). These subunits are proposed to recruit clathrin to 

form a double-layered coat on the endosomal membrane (Sachse et al., 2002), to accumulate 

cargo into microdomains that will subsequently bud to form ILVs. HRS recruits ESCRT-I by 

interaction with the ESCRT-I subunit, TSG101 (Katzmann et al., 2002, Bache et al., 2003). 

ESCRT-I 

The ESCRT-I complex consists of TSG101, VPS28, one isoform of VPS37 and one of the MVB12 

subunits. ESCRT-I can bind ubiquitin through the UBD of TSG101, which increases the 

efficiency of ubiquitinated cargo sorting (Teo et al., 2004). Furthermore, this complex of 

ESCRT-0 and ubiquitin has been shown to interact with ALIX and ESCRT-II. TSG101 is key in 

the ESCRT-dependent pathway and depletion leads to a loss of function of the entire complex 

(Hanson and Cashikar, 2012). 
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ESCRT-II 

The ESCRT-II complex consists of VPS22, VPS36 and together two subunits of VPS25. In yeast, 

VPS36 contains a GLUE domain which interacts with PI(3)P, ubiquitin and ESCRT-I; and the 

two VPS25 subunits are able to bind to the ESCRT-III subunit, VPS20 (Teis et al., 2010). This 

ESCRT-II complex enables the recruitment of ESCRT-III to endosomal membrane (Babst et al., 

2002a). It remains unknown whether inhibition of two ESCRT-II subunits (VPS25) in 

mammalian cells will stop the recruitment of ESCRT-III. 

ESCRT-III 

In mammalian cells, the ESCRT-III complex consists of 4 core subunits: charged multivesicular 

body proteins (CHMPs) 6, CHMP4, CHMP3 and CHMP2; and other associated proteins 

CHMP1, CHMP5 and IST1. In yeast, the ESCRT-III complex also consist of 4 core subunits: 

VPS20, VPS32, VPS24 and VPS2; and other associated proteins DID2, VPS60 and IST1 

(Increased Sodium Tolerance Protein 1). In yeast, the ESCRT-II protein, VPS25, binds to VPS20 

(Teis et al., 2010), initiating ESRCT-III recruitment to the endosome and complex formation. 

VPS20 recruits VPS32 (CHMP4 in mammalian cells), which polymerises and forms filaments 

that clusters cargo together (Teis et al., 2008). VPS32 recruits VPS24 and in turn recruits 

VPS2, which engages with the ATPase VPS4 that uncouples the ESCRT-III complex. 

Furthermore, VPS32 recruits the accessory protein ALIX, which stabilises VPS32 filaments 

and recruits DOA4 (deubiquitinating enzyme) required for cargo deubiquitination (Hurley 

and Odorizzi, 2012). ESCRT-III associated proteins CHMP1, CHMP5 and IST1 have been 

described as modulators of VPS4 ATPase activity (Nickerson et al., 2010), which can influence 

the size and rate of ILV formation. 

Accessory Proteins 

VPS4 is a vital aspect of the ESCRT pathway, since it uncouples the ESCRT-III subunit from the 

endosomal limiting membrane, recycling these components for additional formation of new 

MVEs. In mammalian cells, a dominant negative form of the VPS4 protein demonstrates an 

impaired capacity to hydrolyse ATP, therefore, inhibiting ILV formation and promoting 

accumulation of ESCRT protein on abnormal endosomes (Sachse et al., 2004). The accessory 

protein ALIX has been shown to interact with ESCRT-I and ESCRT-III; and proposed to be a 

key mediator in viral budding (Fisher et al., 2007) and cytokinesis (Carlton et al., 2008). ALIX 

also appear to play a role in MVE formation. During MVE formation, it has been proposed 

ALIX binds to CHMP4 and TSG101, as well as other proteins in the formation of multiple 

ESCRT complexes, but their exact function in the ESCRT pathway for ILV formation is 

unknown. 
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Figure 1.8: The ESCRT-dependent machinery in endosomal sorting and MVE biogenesis. 

Receptors in the limiting membrane of MVE are ubiquitinated in response to ligand 

binding. ESCRT-0 recognises the ubiquitin moieties which internalises cargo into specific 

domains of the limiting membrane. ESCRT-0 recruits ESCRT-I, in conjunction with the 

transfer of ubiquitinated cargo. Together with ESCRT-II, ESCRT-I mediates invagination of 

the MVE’s limiting membrane. ESCRT-III is recruited by binding onto ESCRT-II and cargo 

is deubiquitinated. Spiral-shaped ESCRT-III filaments assembles around the neck of the 

forming vesicle to promote abscission, forming an ILVs. VPS4, recruited by ESCRT-III, 

mediates the disassembly of ESCRT-III oligomers, so that the subunits are recycled. 

Source: (Rusten et al., 2012). 
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ESCRTs and Exosomes 

The role for ESCRT proteins in exosome biogenesis has been based on accumulating evidence 

from several cell lines. A study observed on mouse DCs demonstrated that silencing the HRS 

gene (ESCRT-0 component) attenuates exosome release (Tamai et al., 2010). The authors 

observed a significant attenuation in exosome release from DCs deficient (siRNA-treated 

DCs) in HRS, which were stimulated for exosome secretion with a calcium ionophore. This 

attenuation resulted in defective antigen presentation to cytotoxic T cells and was not due 

to a compromised lysosomal degradation pathway. Additionally, an RNA interference screen 

was performed to target 23 individual ESCRT components in HeLa cells (Colombo et al., 

2013). Silencing ESCRT-0 (HRS and STAM1) or the ESCRT-I gene (TSG101) reduced the 

secretion of exosomes (characterised by CD63 and MHC-II expression).  

ALIX has been involved in exosome biogenesis in multiple studies. One study observed that 

during reticulocyte maturation, the chaperone protein HSP70 binds to the newly 

endocytosed transferrin receptor via the cytoplasmic domain of the adaptor protein 2 (AP2), 

which undergoes degradation by the proteasome (Géminard et al., 2004). Binding of ALIX on 

the transferrin receptor within the same cytoplasmic domain in the absence of AP2, suggests 

to link the receptor to the ESCRT machinery for cargo sorting into the ILVs. Supporting this 

notion, it was reported that exosomes contain syndecans, that can bind to heparan sulphate 

from the extracellular matrix, but also to syntenin (small scaffolding protein) via their 

cytoplasmic domain and ALIX, which in turns interacts with syntenin (Baietti et al., 2012). 

Syntenin overexpression increased exosome secretion (elevated CD63 and HSP70), which 

was dependent on ALIX. Silencing either syndecan, syntenin or ALIX attenuated exosome 

secretion. Supporting these findings, two regulators of this syntenin-ALIX complex, GTPase 

ADP ribosylation factor 6 (ARF6) and its effector phospholipase D2 (PLD2), demonstrated a 

role for affecting exosome biogenesis and budding into MVEs (Ghossoub et al., 2014). Data 

suggest that ALIX might be responsible for loading and packaging of miRNA into ILVs (Iavello 

et al., 2016); and recruiting ESCRT-III components to ESCRT-I domains on the endosome 

membrane. Interestingly, these data support a role for ESCRT-related proteins (HRS or ALIX) 

in exosome biogenesis, but the relationship between ESCRT-dependent exosome formation 

and their cargo load remains poorly understood. 

ESCRT-Independent Mechanisms 

The presence of different MVE subpopulations in a single cell has suggested that different 

mechanisms may operate in cells to generate these distinct endosomal compartments, thus 

challenging the concept that the ESCRT machinery always mediates MVE biogenesis. To 
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address whether ESCRT are necessary for ILV biogenesis, a study silenced four ESCRT proteins 

(HRS, TSG101, VPS22 and VPS24) implicated in all ESCRT complexes, to abolish ESCRT-related 

function (Stuffers et al., 2009). Inhibition of all four ESCRT proteins revealed changes in the 

endosomal compartments, with the presence of enlarged MVEs and with few internal 

vesicles next to the limiting membrane. Though, ILVs were still formed in these altered 

structures, indicating that independent ESCRT pathways can ensure MVE formation. 

In one study, it was demonstrated in an oligodendroglial cell line that budding of ILVs into 

MVEs was independent of ESCRT function and required the sphingolipid ceramide (Trajkovic 

et al., 2008). Inhibition of neutral sphingomyelinases (nSMase; enzyme hydrolysing 

sphingomyelin to ceramide) with GW4869 decreased proteolipid protein (PLP)-associated 

exosome release. This suggested that PLP sorting into ILVs required ceramide and 

independent of ESCRT. Treatment of embryonic kidney  (Chairoungdua et al., 2010, Kosaka 

et al., 2010) with GW4869 also reduced secretion of exosomal associated protein markers 

(CD63, CD81 or TSG101). Though, treatment of cells with GW4869 induces cell death, which 

provides an inaccurate analysis of exosome secretion. In contrast, in human melanoma cells, 

the depletion of nSMase impairs neither MVE biogenesis or exosome secretion (van Niel et 

al., 2011). It was proposed that inhibition of ESCRT function (HRS, TSG101 or VPS4) did not 

alter the sorting of premelanosomal (PMEL) protein (a component of melanosomes) on ILVs. 

MVEs were still capable of forming cells where the ESCRT machinery had been disrupted, 

albeit their morphology was different from that of the control (Theos et al., 2006). Another 

study has proposed that the tetraspanin, CD63, has a role in sorting PMEL to ILVs (van Niel 

et al., 2011). In melanoma cells (MNT-1), CD63 is detected with PMEL in MVEs and 

abundantly on ILVs than on the limiting membrane. Silencing CD63 inhibits ILV formation in 

MVEs and causes PMEL to accumulate at the limiting membrane, demonstrating that CD63 

participates in protein sorting to the ILVs. Other tetraspanins, such as CD9, might have an 

effect, but remains poorly understood in the context of exosome secretion. These results 

and other studies suggests that MVEs and subsequent sorting mechanisms for the sorting 

cargo can be performed via ESRCT-dependent and independent mechanisms, that gives rise 

to a heterogeneous population of MVEs. 
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1.4.3 Exosome Secretion 

The process of exosome secretion involves the trafficking of MVEs or late endosomes to the 

vicinity of the plasma membrane for docking and fusion; and consequently, ILV release into 

the extracellular space. This complex process involves multiple molecules that are 

responsible for different steps: cytoskeleton proteins (actin or tubulin), molecular motor 

proteins (kinesin) mediates transport to the plasma membrane, the Rab protein family will 

be heavily involved in endosomal membrane trafficking; and the SNARE protein family will 

be involved in the final phases of fusion. The precise molecular machinery behind exosome 

secretion is not fully understood, however, multiple studies have identified potential 

proteins involved and this will be discussed in greater detail below. 

Several studies have analysed whether exosome secretion is constitutive or regulated in 

various cell types. Exosome secretion can be induced by a rise in intracellular calcium levels 

in the haematopoietic cell line (K562) (Savina et al., 2003) or in mast cells (Valadi et al., 2007). 

Degranulation of mast cells has been related to increased exosome secretion (Laulagnier et 

al., 2004). Alternatively, exosome secretion is normally analysed at the steady state (absence 

of stimulus), which remains difficult to exclude the possibility that some unsuspected signal 

or stimulus may trigger or modify this secretion. In one study, exosome secretion might be 

increased by cognate interactions with antigen-specific CD4+ T lymphocytes (Buschow et al., 

2009). Exosome secretion by rat cortical neurons can be stimulated by depolarisation of the 

cells (Faure et al., 2006). Furthermore, γ-irradiation induced deoxyribonucleic acid (DNA) 

damage can promote exosome secretion through activation of the p53-regulated protein, 

TSPAN6 (Yu et al., 2006). 

Rab Protein Family 

The Rab protein family are small monomeric GTPases which are regulators of trafficking 

different endosomal compartments within the cell; Rabs can be involved in either vesicle 

budding, tethering to the membrane of an acceptor compartment or motility through the 

cytoskeleton, which will ultimately fuse with the target compartment (Pfeffer, 2001, 

Stenmark, 2009). There are over 70 Rab GTPases, each of which are associated with a specific 

endosomal compartment. The regulatory function of these Rab proteins is based on their 

capacity to switch between an inactive GDP-bound form to an active GTP-bound form, 

considered to be the active conformation (Pereira-Leal and Seabra, 2001). This cycle is 

regulated by guanine nucleotide exchange factors (GEFs), which facilitate GDP release and 

subsequent GTP binding. Alternatively, GTP hydrolysis can be catalysed by the Rab GTPases 

themselves or by GTPase activating proteins (GAPs). 
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The first study that provided evidence for Rab proteins involvement in exosome secretion 

came from studying the erythroleukaemia cell line, K562, which releases exosomes 

containing the transferrin receptor (Savina et al., 2002). Overexpression of the dominant 

negative form of Rab11 (unable to hydrolyse GTP), resulted in attenuated secretion of 

HSP70-associated exosomes, suggesting a role for Rab11. This follow up study suggested that 

Rab11 was involved in tethering MVEs to the plasma membrane, with the final fusion step 

requiring calcium ions (Savina et al., 2005). 

Later, a screening approach was performed in HeLa-CIITA cells to target multiple Rab 

GTPases in their role in exosome secretion (Ostrowski et al., 2010). A total of 59 Rab proteins 

were targeted by an RNAi approach and proposed that Rab2b, Rab5a, Rab9a appeared to 

modulate exosome secretion, with Rab27a and Rab27b, however, having the greatest role. 

It was shown that silencing these Rab proteins decreased the secretion of exosomes bearing 

CD63, CD81 and MHC-II. Additional analysis unravelled that silencing Rab27a, increased MVE 

size and altered its docking to the plasma membrane. However, silencing Rab27b altered 

docking of smaller MVEs to accumulate in the perinuclear region of the plasma membrane. 

Alternatively, another screen was performed that targeted Rab-activating proteins (Rab-

GAPs) in oligodendroglial cell lines (Hsu et al., 2010), revealing that TBC1D10A-C act as 

regulators of exosome secretion. Rab35 was identified as a target of TBC1D10A-C and Rab35 

inhibition (either by siRNA or by using a dominant negative mutant) indicated a significant 

decrease in secretion of PLP-exosomes. Rab35-dependent exosome secretion was also 

confirmed in another study by using primary oligodendrocytes (Fruhbeis et al., 2013). 

Interestingly, different observations were reported in various cell types. In Drosophila S2 

cells, inhibition of Rab11 by dsRNA attenuate the secretion of small EVs containing wingless 

or Evi (Beckett et al., 2013), whereas Rab27 or Rab35 did not. In another study, inhibition of 

Rab11 or Rab35 in retinal epithelial cells attenuated the secretion of flotillin associated EVs, 

whereas Rab27a/b did not play a role (Abrami et al., 2013). In multiple tumour cell lines of 

various origins (prostate, breast or melanoma), silencing Rab27a decreased the secretion of 

exosomes pelletable by ultracentrifugation (Bobrie et al., 2012, Peinado et al., 2012, Webber 

et al., 2015). According to the literature (Stenmark, 2009), Rab11 and Rab35 are proposed to 

associate with the recycling endosomes and Rab27a to the late endosome, as shown in 

Figure 1.9. The conflicting observations in various studies suggests that heterogeneous MVEs 

can generate different subpopulations of secreted exosomes, that may vary from cell type 
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and become enriched with specific proteins (CD63, ALIX, TSG101) or other cell-specific 

proteins (PLP, transferrin receptor or Wnt-associated). Additional investigation will be 

required to elucidate the roles of Rab11b or Rab35 in the context of prostate cancer cells.
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Figure 1.9: The multiple molecular machineries of exosome secretion. Multiple 

molecular machineries of exosome secretion have been described. For MVE-dependent 

secretion, the Rab protein family (Rab11, Rab27 and Rab35) has been documented to 

promote secretion of exosomes and may act on specific MVEs along the endocytic 

pathway. Other related plasma membrane EVs, ARF6 and some ESCRT components has 

been proposed to regulated outward budding. Adapted from Source: (Colombo et al., 

2014). 
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SNARE Protein 

During intracellular vesicle trafficking, the final step fusion of the vesicle with the acceptor 

membrane depends on a family of proteins called SNARE (soluble N-ethylmaleimide-

sensitive fusion attachment protein (SNAP) receptors) (Jahn and Scheller, 2006). SNARE 

proteins were originally categorised as vesicular SNAREs (v-SNARE: vesicular-associated 

membrane proteins), if they were located on the vesicle’s membrane; and target SNAREs (t-

SNARE), if located on the membrane of acceptor compartments (Rao et al., 2004, Chaineau 

et al., 2009). It has been proposed SNARE proteins form complexes with SNAPs between two 

membranes and mediate membrane fusion between the two organelles. In multiple studies, 

calcium regulated fusion of secretory lysosomes with the plasma membrane has been shown 

to involve SNAP-23 at the plasma membrane and lysosomal vesicle-associated membrane 

protein (VAMP)7 in epithelial cells (Rao et al., 2004) or VAMP8 in mastocytes (Puri and Roche, 

2008), but the SNARE complex involved with MVE fusion with the plasma membrane to 

modulate exosome secretion has not been thoroughly investigated. One study proposed the 

role for VAMP7 to promote the secretion of MVEs to release acetylcholinesterase containing 

exosomes in the human leukaemic cell line, K562 (Fader et al., 2009). Other studies 

performed in Drosophila identified YKT6, a SNARE protein involved in endoplasmic reticulum 

to golgi apparatus transport, as required for MVEs to fuse with the plasma membrane to 

release Wnt positive exosomes (Meiringer et al., 2008) or Evi positive exosomes (Koles et al., 

2012). More recently, inhibition of YKT6 from the lung cancer cell line, A549, significantly 

attenuated exosome secretion, characterised by a loss of TSG101 associated exosomes (Ruiz-

Martinez et al., 2016), but additional investigations will be required in other cell lines to 

confirm these findings. 
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Figure 1.10: Model of fusion machinery on an endosomal membrane. The two 

membrane are within the vicinity of each other, but the SNAREs are not yet in contact. 

Once membranes are primed for fusion, the SNARE complexes begin to start zipping, 

drawing the membranes closer to each other. The lateral tension in the transbilayer 

contact area induces membrane breakdown, yielding a fusion pore and the release of 

exosome. Adapted from Source: (Lorentz et al., 2012). 



Chapter 1. Introduction 
 

49 
 

1.5 Hypothesis and Thesis Aims 

I hypothesise that cancer cells secrete distinct sub-populations of exosomes and that these 

may impart distinct molecular phenotypes and functions. 

The main objective of my Thesis is to gain an insight on the components putatively implicated 

in exosome biogenesis and secretion. I have focussed on proteins involved in four protein 

families: tetraspanin, ESCRT, Rab and SNARE. Given their involvement in ILV formation in 

yeast and mammalian models, it is proposed that the ESCRT family are involved in exosome 

biogenesis and secretion. Though, studies have challenged the concept that ILV formation 

solely by ESCRT complexes is not entirely true, with the notion that ESCRT-independent 

mechanisms must exist. It has been proposed that Rab and SNARE proteins have roles in 

endosomal trafficking of ILVs between different subcellular compartments and subsequent 

fusion with the plasma membrane to secrete exosomes. This proposes the idea that vesicle 

heterogeneity is present, where exosome subpopulations may co-exist and be regulated by 

specific proteins. Here, I will investigate the roles of these proteins: CD9, Rab5a, Rab11b, 

Rab35, VAMP7 and VPS25 in one cell type and understand the impact they have upon 

exosome secretion. 

Many studies have highlighted the role for exosomes secreted by cancer cells, as modulators 

of cancer associated stroma, angiogenesis and metastatic priming; promoting a disease 

associated phenotype. It remains unclear whether the factors responsible for generating this 

disease associated phenotype or whether this is due soluble factors or specific vesicle 

subpopulations driving this phenotype. I will assess the outcome of knockdown on secreted 

vesicles and their role in stromal-cell activation capacity. 

Lastly, the exosome generated myofibroblasts may also be considered as a direct stimulus 

for tumour growth, supporting tumour cell expansion, migration and invasion. I will be 

establishing 3D-spheroid culture incorporating tumour cells and fibroblasts, to mimic an in 

vivo 3D microenvironment. It remains poorly understood if the outcome of knockdowns on 

secreted vesicles will affect the 3D tumour spheroid growth and their ability to invade. Much 

of the in vitro experiments we investigate, will be assessed to see if it is translated into the 

in vivo setting. 
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2.1 Culture of Human Cell Lines 

2.1.1 Monolayer Culture 

DU145 is a prostate cancer cell line derived from a metastatic brain tumour and purchased 

from American Tissue Culture Collection (ATCC, USA). The cells were cultured in Roswell Park 

Memorial Institute (RPMI)-1640 (Lonza, Slough, UK) media, supplemented with 100 U/ml 

penicillin (Lonza), 100 µg/ml streptomycin (Lonza) and 10% foetal calf serum (FBS; 

ThermoFisher Scientific, Loughborough, UK). FBS was depleted of bovine exosomes by 

overnight centrifugation at 100,000 x g for 24 hours, followed by filtration though 0.22 µm 

and then 0.1 µm vacuum filters (Millipore, Watford, UK). Adult lung fibroblasts (Coriell 

Institute for Medical Research, USA) were cultured in DMEM/F12 (Lonza) containing 100 

U/ml penicillin (Lonza), 100 µg/ml streptomycin (Lonza) and 10% exosome-depleted FBS 

(ThermoFisher Scientific). Human umbilical vein endothelial cells (HUVEC) were purchased 

from Lonza, and maintained using the endothelial cell growth medium (EGM)-2 BulletKit™ 

(Lonza). Cell lines were all maintained at 37oC in an atmosphere of 5% CO2 in a humidified 

CO2 incubator. Mycoplasma test was carried out using a MycoAlert™ Mycoplasma Detection 

Kit (Lonza) every 2 months. All tissue culture work was carried out in a class II biosafety 

cabinet. 

2.1.2 Bioreactor Flasks for Prostate Cancer Cell Line (DU145) 

DU145 cells were seeded into bioreactor flasks (Wheaton, New Jersey, USA); and maintained 

at a high-density culture for exosome production. The bioreactor flask has two 

compartments; a cell and a medium compartment, which is separated by a 10kDa semi-

permeable membrane (Figure 2.1). This membrane allows the continuous diffusion of 

nutrients into the cell compartment with the removal of any waste products in the medium 

compartment. The medium compartment contains 500ml of culture media and the cell 

compartment contains 15ml of culture media which maintains cells. The cells are attached 

to a woven, polyethylene terephthalate (PET) matrix providing a large surface area for 

attachment; allowing secreted exosomes to be present in the cell CM. A low volume present 

in the cell compartment from these bioreactor flasks allows exosomes to 8 – 10 more 

concentrated per ml, compared to monolayer T-75cm2 flasks, thus reducing cost, labour and 

time (Mitchell et al., 2008).  

Cells were seeded into the cell compartment of the bioreactor flasks at an initial density of 

1.5 – 3.0 x 107 cells in 15ml of required supplemental culture media and 10% exosome-

depleted FBS. The medium compartment was filled with 500ml RPMI-1640 with required 
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supplements and 10% FBS. DU145 cell CM from these bioreactor flasks were collected and 

replaced with fresh media on a weekly basis. The CM containing exosomes from the cell 

compartment were centrifuged at 400 x g for 7 minutes at 4oC, an additional 400 x g for 7 

minutes at 4oC, followed by a 2000 x g for 15 minutes at 4oC to remove dead cells and cellular 

debris. The CM was collected and filtered using a 0.22µm Millex GP syringe filter (Merck 

Millipore, Massachusetts, USA), to remove any remaining debris and larger vesicles. The CM 

was stored at -80oC, until required for exosome purification.  
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Figure 2.1: Integra Bioreactor Flask. The bioreactor flask contains two compartments: 

the cell compartment containing the exosomes (maximum 20ml) and the medium 

compartment (500 – 1000ml) separated by a 10kDa semi-permeable membrane. The 

membrane allows continuous diffusion of nutrients and waste products between both 

compartments. Efficient gas exchange is ensured by a silicone membrane which forms 

the compartment base. This provides an optimal oxygen supply and control of carbon 

dioxide by providing a short diffusion pathway with the cell compartment. Source: 

(Scientific Laboratory Supplies, 2017). 
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2.2 Isolation and Characterisation of Exosomes 

2.2.1 Sucrose Cushion Method 

For all experiments, unless stated otherwise, exosomes were isolated from cell CM using the 

sucrose cushion method, as this is less labourious for exosome isolation, compared to the 

sucrose gradient method. Pre-cleared DU145 cell CM samples were obtained from -80oC and 

defrosted at 37oC. 

The CM was underlain with 4ml of 30% sucrose/D2O (density of 1.2 g/ml) and 

ultracentrifuged at 100,000 x g (SW-32 rotor, Beckman Coulter, High Wycombe, UK) for 2 

hours at 4oC. Approximately 2 - 3ml of the central base of the sucrose cushion solution was 

collected and diluted in excess phosphate buffered saline (PBS). The exosomes were pelleted 

by ultracentrifugation again at 100,000 x g for 2 hours at 4oC (fixed angle 70Ti rotor, Beckman 

Coulter). Exosome pellets were resuspended in PBS and stored at -80oC, until required for 

further experimental use. 

The protein concentration for exosome samples were evaluated using the MicroBCA Protein 

Assay (ThermoFisher Scientific). A standard curve was performed by serial dilution from 

2000µg/ml BSA to 0µg/ml. Exosomes were diluted 1:8 with PBS and absorbance values were 

calculated from the standard curve, to determine the protein content from exosome 

preparations. Unless stated otherwise, exosomes isolated from the sucrose cushion protocol 

will be described as purified DU145 exosomes. These exosomes are used in fibroblast 

differentiation experiments at a dose of 200µg/ml, which is equivalent to a dose of 1.5ng/ml 

rhTGF-β1, as described previously (Clayton et al., 2007, Webber et al., 2010). 

2.2.2 Cryo-Electron Microscopy 

For cryo-EM, this was performed in collaboration with Prof. Juan Falcon-Perez (CIC bioGUNE, 

Derio, Spain). Exosome or vesicle concentrates were directly adsorbed onto glow-discharged 

holey carbon grids (QUANTIFOIL, Großlöbichau, Germany). Grids were blotted at 95% 

humidity and rapidly plunged into liquid ethane with the aid of VITROBOT (Maastricht 

Instruments BV, Maastricht, The Netherlands). Vitrified samples were imaged at liquid 

nitrogen temperature using a JEM-2200FS/CR Transmission Electron Microscope (JEOL, 

Tokyo, Japan), equipped with a field emission gun and operated at an acceleration voltage 

of 200 kV. 
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2.2.3 Microplate Immuno-Phenotyping Assay 

Exosomes or vesicle concentrates were diluted in PBS and bound onto high protein binding 

ELISA strip 96-well plates (Greiner Bio-One, Frickenhausen, Germany), at a dose of 1µg/well 

and incubated overnight at 4oC. The wells were washed 3 times using a Tris-based wash 

buffer (Kaivogen, Turku, Finland), to remove unbound particles. Blocking solution (1% 

BSA/PBS; weight/volume: w/v) was added for 2 hours, before being washed 3 times. Primary 

antibodies were added at 1µg/ml (Table 2.1), for 2 hours at room temperature (RT). After 

washing wells 3 times, primary antibodies were detected by goat anti-mouse biotinylated 

antibody (Perkin Elmer, Massachusetts, USA) (diluted in 0.1% BSA/PBS w/v), at a 200ng/ml 

working concentration for 1 hour at RT. The wells were washed 3 times, before adding a 

europium-streptavidin conjugate (Perkin Elmer) in assay buffer (Kaivogen), for 45 minutes at 

RT. The wells were washed 6 times, before adding enhancement intensifier (Kaivogen), for 5 

minutes at RT and signal assessed by time-resolved fluorescence (TRF) on a PHERAstar FS 

Microplate Reader (BMG Labtech, Aylesbury, UK). 

2.2.4 Development of Permeabilised Exosomes for Microplate Immuno-Phenotyping 

Assay 

Exosomes were diluted in PBS and bound onto high protein binding ELISA strip plate (Greiner 

Bio-One) at a dose of 1µg/well and incubated overnight at 4oC. The wells were washed 3 

times using a wash buffer (Kaivogen), to remove unbound particles. Blocking solution (1% 

BSA/PBS, w/v) was added for 2 hours, before washed 3 times. Radioimmunoprecipitation 

assay (RIPA) lysis buffer (Santa Cruz, Texas, USA) was added for 1 hour at RT, before being 

washed 3 times. Primary antibodies (ALIX and TSG101) were added at 1µg/ml (Table 2.1), for 

2 hour at RT. After washing wells 3 times, the primary antibodies were detected by goat anti-

mouse biotinylated antibody (Perkin Elmer) (diluted in 0.1% BSA/PBS, w/v), at a 200ng/ml 

working concentration for 1 hour at RT. The wells were washed 3 times, before adding a 

europium-streptavidin conjugate (Perkin Elmer) in assay buffer (Kaivogen) for 45 minutes at 

RT. The wells were washed 6 times, before adding enhancement intensifier (Kaivogen) for 5 

minutes at RT and signal assessed by TRF on a PHERAstar FS Microplate Reader (BMG 

Labtech). 
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2.2.5 Western Blotting 

Cell lysates were extracted from whole cells (1 x 106) and prepared by resuspending in RIPA 

lysis buffer (Santa Cruz, Texas, USA) containing: 1X protease inhibitor cocktail, 200mM 

phenylmethane sulfonyl fluoride (PMSF), 100mM sodium orthovanadate and 1X lysis buffer 

(All from Santa Cruz). Insoluble material was removed by centrifuging samples at 10,000 x g 

for 10 minutes at 4oC, split into aliquots and stored at -80oC for future use. Protein 

concentration was determined by Bradford Protein Assay (BioRad, Hemel Hempstead, UK). 

20µg of cell lysate or exosomes (isolated from the sucrose cushion method) or vesicle 

concentrates (isolated from ultracentrifugation) were boiled in lithium dodecyl sulphate 

(LDS) sample buffer (Invitrogen, USA), either reducing with 20mM dithiothreitol (DTT; Santa 

Cruz) or under non-reducing conditions. Boiled samples and molecular weight markers 

(Magic Mark™ XP and SeeBlue® Plus 2 Precision Stain; Life Technologies, USA) were loaded, 

and subjected to electrophoresis for 45 minutes on NuPAGE™ precast 4-12% Bis-Tris gradient 

gels (Life Technologies). The gels were run using 1x NuPAGE™ MOPS sodium dodecyl 

sulphate (SDS) running buffer (Life Technologies) and an Invitrogen™ PowerEase® 500 

(ThermoFisher Scientific) power supply. Proteins were transferred onto methanol activated 

polyvinylidene fluoride (PVDF) membranes (GE Life Sciences, UK), using 25mM Tris, 192mM 

glycine (both Sigma-Aldrich, St Louis, USA) and a BioRad Mini Trans-Blot Electrophoretic 

Transfer Cell (BioRad). Furthermore, the tank was placed in ice to optimise recommended 

cooling conditions and the blots were run for 90 minutes at a constant 80V. The membranes 

were blocked overnight at 4oC in PBS containing 0.5% (w/v) Tween®20 (Sigma-Aldrich) and 

5% (w/v) non-fat powdered milk (Marvel, London, UK). The membrane was incubated with 

primary antibodies (Table 2.1), at 1µg/ml for 2 hour at RT. Membranes were washed 3 x 5 

minutes with 0.5% Tween®20 (Sigma-Aldrich) in PBS and incubated with a goat anti-mouse-

HRP conjugate (Santa Cruz) for 1 hour at RT. After a further 3 x 5 minutes wash, the bands 

were detected using C-Digit blot scanner (Li-Cor, Lincoln, USA) and an enhanced 

chemiluminescent substrate (Li-Cor). 
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Primary Antibody 

Specificity: 

Isotype Size (kDa) Catalogue 

Number 

Company 

ALIX IgG1 95 Sc-166952 Santa Cruz 

Calnexin IgG1 90 Sc-23954 Santa Cruz 

CD9 IgG2B 27 MAB1880 R&D Systems 

CD63 IgG1 25 MCA2142 AbD Serotec 

CD81 IgG1 26 MCA1847EL BioRad 

GAPDH IgG 40 #Y3322 BioChain 

HSP70 IgG1 70 Sc-66048 Santa Cruz 

HSP90 IgG1 90 Sc-69703 Santa Cruz 

LAMP1 IgG1 120 Sc-20011 Santa Cruz 

LAMP2 IgG1 120 Sc-18822 Santa Cruz 

MHC-I IgG2A 45 16-9983-85 eBioscience 

Rab5a IgG2B 25 Sc-130010 Santa Cruz 

Rab11b IgG 26 PA5-31348 ThermoFisher 

Scientific 

Rab35 IgG 25 PA5-31674 ThermoFisher 

Scientific 

TSG101 IgG2A 43 Sc-7964 Santa Cruz 

VAMP7 IgG2A 25 MAB6117 R&D Systems 

VPS25 IgG1 21 Sc-271648 Santa Cruz 

Table 2.1: Table of primary antibodies used for Western Blot and plate-based assays. 
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2.2.6 Nanoparticle Tracking Analysis 

NTA is a method that visualises and analyses nanometre particles (10 – 1000 nm) in liquids. 

Based on a laser-illuminated microscopical technique, NTA utilises the properties of light 

scattering and Brownian motion to analyse nanoparticles in real-time. Brownian motion is 

defined as the random motion of nanoparticles suspended in liquid; their rate of movement 

is related to the temperature and viscosity of the liquid. NTA uses high-intensity laser beams 

sent through the sample chamber, the particles in suspension in the path of this beam can 

scatter light and can be detected by a highly sensitive camera over multiple frames (Figure 

2.2). The NTA software can track each particle on a frame-by-frame basis and the velocity of 

particle movement is used to calculate particle size by applying the Stokes-Einstein equation: 

 

Each particle is visualised and analysed separately; and the resulting estimate of particle size 

distribution and particle size does not suffer in terms of intensity distribution, which is often 

observed in another method, such as DLS. The use of high intensity laser beams combined 

with a low-background optical configuration, allows particles of nanometre dimensions to 

be visualised, though this is dependent on the particle refractive index (Ri; dictates the 

interactions between light and nanoparticles). Particles with very high Ri (colloidal gold) can 

often determine size down to 15nm diameter for lower Ri particles, such as those of 

biological origin (exosomes), the smallest detectable size can only be around 30nm. 

Here, exosomes can be modelled as nanoparticles by determining the light scattering 

intensities of nanoparticles, temperature and liquid viscosity. Each exosome preparation was 

analysed, where size distribution profiles and particle counts were determined using NTA 

(Malvern Instruments, Malvern, UK). The analysis was performed on a NanoSight™ NS300, 

but configured with a temperature controlled 488nm laser module and a high-sensitivity 

sCMOS Camera System (OrcaFlash 2.8, Hamamatsu C11440, Hamamatsu City, Japan) and a 

syringe-pump system (Malvern Instruments). 

Dt = TKB / 3πd 

Dt: Diffusion constant (product of diffusion coefficient D and time t) 

T: Sample temperature 

KB: Boltzmann’s constant 

: Solvent viscosity 

d: Diameter of spherical particle 
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100nm standard latex beads (Malvern Instruments) were tested to confirm the NTA 

measurements were accurate. Samples were administered and recorded under controlled 

flow using the NanoSight™ syringe pump (set to 50) and script control system for each 

sample. Six replicate videos of 30 seconds were taken and temperatures were set at 25oC. 

Videos were batch analysed using NTA 3.1 software (version 3.1 build 3.1.54), with the 

camera’s sensitivity and detection threshold set at 14-16 and 1-3, respectively, to reveal 

small particles taken in light scatter mode. On some occasions, videos were also taken 

following application of long fluorescence filter, so that only particles emitting light at 

>500nm were visible.  Samples were diluted in nanoparticle-free water (Fresenius Kabi, 

Runcorn, UK), so that the particle concentration (particles / ml) was within the linear range 

of the instrument. The area under the histogram for each triplicate measurement was 

averaged to be used as a particle concentration measurement and corrected for cell number. 
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Figure 2.2: Nanoparticle Tracking Analysis (NTA): A laser beam is passed through the 

sample chamber and the particles in suspension in the path of the beam scatter light that 

can visualised by a x20 magnification microscope, which is mounted a video camera. The 

camera captures a video file of the particles moving under Brownian motion. The NTA 

software tracks particles individually and can calculate their hydrodynamic diameters 

using the Stokes Einstein equation. The NanoSight™ provides high resolution particle 

size, concentration and provides real time monitoring in the heterogeneous particle 

population observed by visual. Source: (Malvern Instruments, 2017). 
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2.3 Generation of Lentiviral Transduced DU145 Cell Lines 

2.3.1 shRNA Lentiviral Particle Transduction 

Gene silencing and knockdown using RNAi interference (RNAi) technology is a commonly 

used tool to stably silence gene expression. The introduction of small interfering (siRNAs) 

into cultured cells provides a quick and efficient method of knocking down gene expression 

and is a ubiquitous tool in molecular biology. However, siRNA has been shown to be effective 

only in the short term for gene inhibition and in certain transformed mammalian cell lines, 

while short hairpin RNA (shRNA; sequence of RNA that forms a tight hairpin turn), offers a 

possibility to stably and potently silence gene expression. 

Using shRNA can offer stable and long term gene silencing that is often achieved by using 

clonal selection methodologies, such as the pLKO.1 plasmid containing the puromycin 

resistance gene, followed by selection. The MISSION® shRNA lentiviral transduction particles 

(Sigma-Aldrich) can often permit efficient transduction and integration of the specific shRNA 

construct into the host cells. The host genome can transcribe the target shRNA in the 

nucleus, export it from the nucleus to be processed by Dicer (endoribonuclease), that is 

primed into the RNA-inducing silencing complex (RISC). This complex cleaves their 

designated target mRNA and represses mRNA translation, resulting in target gene silencing 

(Figure 2.3). 

Wild type DU145 cells were seeded into 96-well flat bottomed plates at 5,000 cells/well, 

exosome-depleted media. At day 1, the DU145 cells were stably transduced with MISSION® 

shRNA lentiviral transduction particles (Table 2.2) (Multiplicity of Infection (MOI): 20) in the 

presence of hexadimethrine bromide (8µg/ml) (Sigma-Aldrich). At day 2, puromycin 

(1.25µg/ml) (Sigma-Aldrich) was added and media was changed daily, where each 

knockdown was confirmed at both the mRNA and protein level.  The cells were cultured in 

the presence of puromycin until passage 6, when deemed free of lentiviral particles for 

experimental use. For my Thesis, the non-mammalian (NM) DU145 control (CTR) (transduced 

with a non-mammalian control shRNA) and knockdown of CD9 (CD9KD), Rab5a (Rab5aKD), 

Rab11b (Rab11bKD), Rab35 (Rab35KD), VAMP7 (VAMP7KD) and VPS25 (VPS25KD) cells, were 

generated and selected for additional experiments. 



Chapter 2. Materials and Methods 
 

62 
 

  

 

 

 

 

 

Figure 2.3: shRNA-mediated gene silencing via lentiviral transduction particles. The 

shRNA are incorporated into the lentiviral particle systems, which permit the 

transduction of the viral genome into the cytoplasm, where they are reverse transcribed. 

The DNA intermediate is imported into the nucleus, where it is stably integrated in the 

host genome. Following transcription, the shRNA sequence is exported to the cytoplasm 

where Dicer, processes the shRNA into the siRNA duplexes. This endogenously derived 

siRNA binds to the target mRNA and is incorporated into the RISC complex for target-

specific mRNA degradation; thus preventing protein translation. Source: (Sigma, 2016). 
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Target TRC Number Sequence Clone ID 

C
D

9
 

TRCN0000296953 (#953) CCGGTTCTACACAGGAGTCTATATTCTCGAGAATATAGACTCCTGTGTAGAATTTTTG NM_001769.2-277s21c1 

TRCN0000296958 (#958) CCGGCCTGCAATGAAAGGTACTATACTCGAGTATAGTACCTTTCATTGCAGGTTTTTG NM_001769.2-1072s21c1 

TRCN0000291711 (#711) CCGGGCTGTTCGGATTTAACTTCATCTCGAGATGAAGTTAAATCCGAACAGCTTTTTG NM_001769.2-150s21c1 

TRCN0000057469 (#469) CCGGCATTGGACTATGGCTCCGATTCTCGAGAATCGGAGCCATAGTCCAATGTTTTTG NM_001769.2-201s1c1 

TRCN0000057470 (#470) CCGGGCTGTTCGGATTTAACTTCATCTCGAGATGAAGTTAAATCCGAACAGCTTTTTG NM_001769.2-150s1c1 

R
ab

5
a

 TRCN0000380597 (#597) GTACCGGGAGAGTCCGCTGTTGGCAAATCTCGAGATTTGCCAACAGCGGACTCTCTTTTTTG NM_004162.4-615s21c1 

TRCN0000380466 (#466) GTACCGGCAAGGCCGACCTAGCAAATAACTCGAGTTATTTGCTAGGTCGGCCTTGTTTTTTG NM_004162.4-934s21c1 

TRCN0000273641 (#641) CCGGGCAGCCTTCCTTTCCAAAGTTCTCGAGAACTTTGGAAAGGAAGGCTGCTTTTTG NM_004162.4-2298s21c1 

TRCN0000011215 (#215) CCGGGCAGCCTTCCTTTCCAAAGTTCTCGAGAACTTTGGAAAGGAAGGCTGCTTTTT NM_004162.3-2139s1c1 

TRCN0000007974 (#974) CCGGCCAGGAATCAGTGTTGTAGTACTCGAGTACTACAACACTGATTCCTGGTTTTT NM_004162.3-999s1c1 

R
ab

1
1

b
 TRCN0000381919 (#919) GTACCGGTTTGCTGCACCCATGAAACTCCTCGAGGAGTTTCATGGGTGCAGCAAATTTTTTG NM_004218.3-951s21c1 

TRCN0000381558 (#558) GTACCGGAGACAGCAACATCGTCATCATCTCGAGATGATGACGATGTTGCTGTCTTTTTTTG NM_004218.3-435s21c1 

TRCN0000380618 (#618) GTACCGGCATTCAAGAACATCCTCACAGCTCGAGCTGTGAGGATGTTCTTGAATGTTTTTTG NM_004218.3-587s21c1 

TRCN0000029185 (#185) CCGGCCTATTCAAAGTGGTGCTCATCTCGAGATGAGCACCACTTTGAATAGGTTTTT NM_004218.1-36s1c1 

TRCN0000029188 (#188) CCGGCAAGCACCTGACCTATGAGAACTCGAGTTCTCATAGGTCAGGTGCTTGTTTTT NM_004218.1-288s1c1 

R
ab

3
5

 TRCN0000380335 (#335) GTACCGGTGATGATGTGTGCCGAATATTCTCGAGAATATTCGGCACACATCATCATTTTTTG NM_006861.4-475s21c1 

TRCN0000380080 (#080) GTACCGGTTCACGAAATCAACCAGAACTCTCGAGAGTTCTGGTTGATTTCGTGAATTTTTTG NM_006861.4-453s21c1 

TRCN0000380003 (#003) GTACCGGGGAGAATGTCAACGTGGAAGACTCGAGTCTTCCACGTTGACATTCTCCTTTTTTG NM_006861.4-601s21c1 

TRCN0000047796 (#796) CCGGAGAGCAGTTTACTGTTGCGTTCTCGAGAACGCAACAGTAAACTGCTCTTTTTTG NM_006861.4-207s1c1 

TRCN0000047794 (#794) CCGGCCTCCGAGCAAAGAAAGACAACTCGAGTTGTCTTTCTTTGCTCGGAGGTTTTTG NM_006861.4-649s1c1 

V
A

M
P

7
 TRCN0000379810 (#810) GTACCGGATGAGAGAACAAGGAGTTAAACTCGAGTTTAACTCCTTGTTCTCTCATTTTTTTG NM_005638.4-867s21c1 

TRCN0000298636 (#636) CCGGGCGAGTTCTCAAGTGTCTTAGCTCGAGCTAAGACACTTGAGAACTCGCTTTTTG NM_005638.4-485s21c1 

TRCN0000298637 (#637) CCGGTCTTATGAGCTATCTACTAAACTCGAGTTTAGTAGATAGCTCATAAGATTTTTG NM_005638.4-1157s21c1 

TRCN0000293928 (#928) CCGGGGAAAGAAGAAGTTACCATTACTCGAGTAATGGTAACTTCTTCTTTCCTTTTTG NM_005638.4-837s21c1 

TRCN0000059888 (#888) CCGGGCGAGGAGAAAGATTGGAATTCTCGAGAATTCCAATCTTTCTCCTCGCTTTTTG NM_005638.3-561s1c1 

V
P

S2
5

 TRCN0000381980 (#980) GTACCGGAGTCCAGCTTCCTGATCATGTCTCGAGACATGATCAGGAAGCTGGACTTTTTTTG NM_032353.2-321s21c1 

TRCN0000322763 (#763) CCGGCCCTTTACTTCTTACCTCCCACTCGAGTGGGAGGTAAGAAGTAAAGGGTTTTTG NM_032353.2-585s21c1 

TRCN0000322707 (#707) CCGGAGTCGATCCAGATTGTATTAGCTCGAGCTAATACAATCTGGATCGACTTTTTTG NM_032353.2-255s21c1 

TRCN0000144757 (#757) CCGGGAGTCGATCCAGATTGTATTACTCGAGTAATACAATCTGGATCGACTCTTTTTTG NM_032353.2-254s1c1 

TRCN0000143764 (#764) CCGGCCTGTCTCCCTTTACTTCTTACTCGAGTAAGAAGTAAAGGGAGACAGGTTTTTTG NM_032353.2-578s1c1 

Table 2.2: Table of MISSION® lentiviral particles (Sigma-Aldrich) used to transduce DU145 cells. 
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2.3.2 Reverse Transcription and Quantitative Polymerase Chain Reaction  

RNA Extraction 

RNA was extracted from confluent lentiviral transduced DU145 cell lines or 3D spheroids, 

using 1ml TRI Reagent® per well (Sigma-Aldrich). Afterwards, 200µl of chloroform was added 

(Sigma-Aldrich) to each sample and mixed by inverting the sample numerous times in 

eppendorf tubes (Greiner Bio-One). The samples were centrifuged at 16,000 x g for 20 

minutes at 4oC, to allow the separation of both aqueous and phenol phases. The colourless 

aqueous layer was removed and mixed with ice-cold isopropanol at -20oC for 24 hours, to 

allow precipitation of RNA. Samples were centrifuged at 16,000 x g for 20 minutes at 4oC, to 

wash away the isopropanol and the RNA pellets were washed in ice-cold 70% ethanol 

(volume/volume: v/v). This washing step was repeated twice and afterwards, the RNA pellets 

were air dried at RT and dissolved in 11µl molecular biology grade water. 

1µl of RNA sample was administered onto the NanoDrop™ 2000 Spectrometer 

(ThermoFisher Scientific) which obtains a ratio of absorbance measured at 260nm and 

280nm. RNA and DNA both will absorb at 260nm, they will contribute to the total absorbance 

of the sample. A ratio >1.7 is generally accepted as ‘pure’ RNA and used for analysis. If the 

ratio is considerably lower, it may indicate the presence of protein, phenol or other 

contaminants that absorb strongly near 280nm. For nucleic acid quantification, the 

extinction coefficient for RNA is 40 and the modified Beer-Lambert equation used is: 

Reverse Transcription 

Reverse transcription was performed using the random primer method in a final volume of 

20μl per reaction, containing 1μg of RNA of the sample, 2μl of 10X reverse transcription 

buffer, 0.8μl of 25X deoxynucleotide triphosphates (dNTPs) (mixed nucleotides of dATP, 

dCTP, dGTP and dTTP) mix, 2μl of 10X reverse transcription random primers, 1μl of 

Multiscribe™ reverse transcriptase and 1μl of RNase Inhibitor (all from ThermoFisher 

Scientific). A negative control was included, which substituted RNA sample for molecular 

biology grade H2O. The samples were loaded onto the S1000 Thermal Cycler (BioRad) to 

begin reverse transcription, which involved incubation at 25oC for 10 minutes to allow the 

primers to anneal to the RNA. The primers were then extended in the presence of dNTPs 

using reverse transcriptase at 37oC for 2 hours, generating cDNA. The cDNA was then heated 

at 85oC for 5 seconds to deactivate the RT. The cDNA samples were stored at -20oC. 

C (Nucleic acid concentration µg/ml) = A (Absorbance) * ɛ (Extinction Coefficient) 

      b (Path length in cm) 
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Quantitative Polymerase Chain Reaction (qPCR) 

qPCR was carried out with 20µl per reaction, containing 1µl of sample cDNA, 10µl of 

TaqMan® Universal Master Mix (20X) (ThermoFisher Scientific), 8µl of H2O and 1µl of a 

TaqMan® gene expression assay primer and probe mix (all from ThermoFisher Scientific) 

(Table 2.3). A negative control was prepared using H2O substitute for the cDNA. The PCR 

amplification was performed in a StepOnePlus™ Real-Time PCR System Thermocycler 

(ThermoFisher Scientific). Samples were amplified by heating them to 50oC for 2 minutes, 

then at 95oC for 15 seconds and 60oC for 1 minute, for a total of 40 cycles. The comparative 

CT method was used for relative quantification of target gene expression. The CT (threshold 

cycle where amplification is in the linear range of the amplification curve) for the standard 

reference gene (glyceraldehyde 3-phosphate dehydrogenase: GAPDH) were subtracted from 

the target gene CT to obtain the ΔCT for each sample. Target gene expression was calculated 

in each experimental sample relative to control samples by: 

 

 

The ‘ΔCT 1’ is the mean ΔCT value calculated for the experimental samples, whereas the ‘ΔCT 

2’ is the mean ΔCT value calculated for the control samples (GAPDH). The data was analysed 

using the StepOnePlus™ Software (Version 2.0, ThermoFisher Scientific). 

 

Primer and 

Probe Mix 

Assay ID Amplicon 

Length 

Catalogue 

Number 

CD9 Hs00233521_m1 72 #4331182 

GAPDH Hs02758991_g1 93 #4331182 

MMP-1 Hs00899658_m1 64 #4331182 

MMP-13 Hs00233992_m1 91 #4331182 

Rab5a Hs00991290_m1 157 #4331182 

Rab11b Hs00188448_m1 72 #4331182 

Rab35 Hs00900055_m1 66 #4331182 

TIMP-3 Hs00165949_m1 59 #4331182 

VAMP7 Hs00194568_m1 80 #4331182 

VPS25 Hs00260613_m1 92 #4331182 

 

  

Relative Expression = 2 – ((ΔCT TARGET 1) – (ΔCT TARGET 2))
 

 

Table 2.3: Table of primers used for qPCR. 
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2.3.3 Collecting DU145 Cell Conditioned Media or Vesicle Concentrates 

Obtaining Cell Conditioned Media 

DU145 control or lentiviral transduced cell lines were seeded into 6-well plates (Greiner Bio-

One), at equal densities (1 x 105) and cultured until 80% confluency. Media was removed 

from the flasks and replaced with 1.5ml of fresh RPMI-1640 media only. These plates were 

left at 37oC for 7 days, to allow the accumulation of vesicles in cell CM. Cell CM was collected 

and centrifuged at 400 x g for 7 minutes at RT, an additional 400 x g for 7 minutes at RT, 

followed by an additional at 2000 x g for 15 minutes at RT, to remove dead cells and cellular 

debris. The remaining CM were filtered using a 0.22µm millex GP syringe filter (Merck 

Millipore), to remove any remaining debris and larger vesicles. Filtered CM was used for 

experimental use or stored at -80OC until required. 

Obtaining Vesicle Concentrates 

The CM from above underwent ultracentrifugation at 200,000 x g for 2 hours at 4oC (fixed 

angle 70Ti rotor, Beckman Coulter). Vesicle concentrates were resuspended in PBS and 

stored at -80oC, until required for further experimental use. 

Normalisation of CM/Vesicle Concentrates to Cell Number 

One method of normalisation would be based on protein quantification (BCA Assay) of either 

cell CM or vesicle concentrates. Though, if the knockdown of interest did attenuate exosome 

secretion, normalisation based on protein content would not be a fair representation of 

vesicle loss and may negate its effect in downstream experiments. As protein normalisation 

would be based upon other vesicle subpopulations, this is not a fair representation of the 

impact of knockdown on vesicle secretion. As an alternative, we normalised lentiviral 

transduced DU145 cell CM/vesicle concentrates based on cell number, as this gives a fairer 

representation of secreted number of vesicle per cell.  
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First, cell counts were performed for the DU145 NM CTR, after collecting cell CM from T-

75cm2 culture flasks for ultracentrifugation. This gives an accurate count of cells that 

manufacture 100% of the control vesicle present in cell CM. 

Secondly, cell counts were performed for lentiviral transduced DU145 cells, after collecting 

cell CM from T-75cm2 culture flasks for ultracentrifugation. This give an accurate count of 

cells that manufacture a certain % of the vesicle present in cell CM following knockdown. 

As examples for correcting cell CM to cell number: 

  Control Knockdown 1 Knockdown 2 Knockdown 3 

Collected Cell CM 1ml 1ml 1ml 1ml 

Cell Counts 100000 50000 200000 140000 

Correction Factor 1x 2.0x 0.5x 0.71x 

Normalise Samples to Cell Number 

  Control Knockdown 1 Knockdown 2 Knockdown 3 

CM from Sample 0.5ml 1ml 0.25ml 0.35ml 

PBS 0.5ml 0ml 0.75ml 0.65ml 

Sample Normalised to 50,000 Cell Counts 

 

For characterisation or functional experiments, DU145 control vesicle concentrates was 

quantified to 20µg/ml or 200µg/ml by performing a MicroBCA Protein Assay (Thermo 

Scientific), as previously described. The vesicles derived from each DU145 CD9KD, Rab5aKD, 

Rab11bKD, Rab35KD, VAMP7KD or VPS25KD cell line would be adjusted to achieve an equivalent 

cell count versus controls. 

As examples for correcting vesicle concentrates to cell number: 

  Control Knockdown 1 Knockdown 2 Knockdown 3 

Vesicle 
Concentrates 

10μl = 
20μg/ml 

(Unknown) (Unknown) (Unknown) 

Correction Factor 1x 2.0x 0.5x 0.71x 

Normalise Vesicle Concentrates to Correction Factor 
 Control Knockdown 1 Knockdown 2 Knockdown 3 

Corrected Vesicle 
Concentrates to 

Use 
10μl 20μl 5μl 7.1μl 

Corrected Volume of Vesicle Concentrates 

 

Normalisation based on secreted vesicles per cell number would give an accurate count of 

the influence following knockdown has upon vesicle secretion. 
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2.4 Characterising and Phenotyping Cells and Vesicles 

2.4.1 Cell Viability Assay 

The cell viability reagent, water soluble tetrazolium (WST)-1 (Roche, Basel, Switzerland) was 

used to examine cell viability. In principle, the stable tetrazolium salt, WST-1, is cleaved to a 

soluble dependent on the NAD(P)H in viable cells. Thus, the amount of formazan dye formed 

directly correlates to the number of metabolically viable cells in culture. 

DU145 control or knockdown cells were seeded at 5,000 cells/well in 96-well flat-bottom 

plates (Greiner Bio-One) and incubated with 10µl of WST-1 reagent for 0.5 – 4 hours to 

determine the optimal time. Subsequently, seeded cells were left for 24, 48 and 72 hours 

respectively and plates were incubated up to 1 hour at 37oC. After this incubation period, the 

amount of formazan dye was quantitated by measuring absorbance at 420 nm by the 

PHERAstar FS Microplate Reader.  

2.4.2 Light Microscopy and Immunofluorescence Microscopy 

Light microscopy was used to examine general cellular morphology in vitro. DU145 cells, 

fibroblasts and HUVECs in 96-well plates, 25cm3 or 75cm3 culture flasks at 60 – 100% 

confluence, were visualised by phase contrast and images were captured using the Axio 

Observer Z1 (Zeiss, Oberkochen, Germany). 

For immunofluorescence analysis, a monolayer of lentiviral transduced DU145 cells were 

seeded at 20,000 cells/well in Nunc™ Lab-Tek™ 8-Well Chamber Glass Slides (ThermoFisher 

Scientific) and incubated until 70% confluent. Likewise, following various treatments, 

stromal cells, such as endothelial cells and fibroblasts were washed gently with pre-warmed 

PBS (Lonza) three times and fixed in ice-cold acetone-methanol (1:1 v/v) (ThermoFisher 

Scientific) for 5 minutes and allowed to air dry at RT. The cells were washed three times with 

PBS and blocked for 1.5 hours at RT in 1% BSA (R&D Systems, Minneapolis, USA) in Hanks’ 

Balanced Salt Solution (HBSS) (Sigma-Aldrich). The cells were washed three times using 0.1% 

BSA/HBSS (w/v) and were stained with unconjugated anti-mouse monoclonal antibodies 

(Figure 2.6), at 1µg/ml (in 0.1% BSA/HBSS) for 2 hours at RT. The cells were washed three 

times and stained with a goat anti-mouse secondary antibody (Alexa-488 conjugate) 

(ThermoFisher Scientific), at 10µg/ml for 45 minutes at RT, in the dark. Subsequently, 

following three washes, the cells were counterstained 4’,6-diamidino-2-phenylindole (DAPI) 

(14.3mM) (ThermoFisher Scientific), diluted 1:50,000 in 0.1% BSA/HBSS (w/v) for 5 minutes, 

followed by three further washes and the cells were visualised by wide-field fluorescence 

Axio Observer Z1 with apotome using the Zen Blue Software (Zeiss). 
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2.4.3 Flow Cytometry 

Lentiviral transduced DU145 cells were seeded in 6-well plates at 100,000 cells/well. Once 

confluent, cells were harvested using trypsin (Lonza) and centrifuged to obtain cell pellets, 

which were resuspended in PBS in form a homogenous cell suspension. The cells were fixed 

in IC Fixation Buffer (ThermoFisher Scientific), for 15 minutes at RT and washed twice with 

PBS. The resuspended cell pellets were incubated with unconjugated primary antibodies or 

matched isotype controls (Table 2.4) at 1µg/ml (in PBS) for 1 hour at RT, either with 2X 

Permeabilisation Buffer (ThermoFisher Scientific) or without. Following two washes, the cells 

were incubated with a goat anti-mouse secondary antibody (Alexa-488 conjugate) 

(ThermoFisher Scientific) at 10µg/ml for 45 minutes at RT, in the dark. Following a further 

two washes, cells were analysed using a FACSverse (BD Biosciences, New Jersey, USA). 

 

 

 

  

Primary Antibody 

Specificity: 

Isotype Catalogue 

Number 

Company 

α-SMA IgG1 Sc-166952 Santa Cruz 

CD9 IgG2B MAB1880 R&D Systems 

CD31 (PECAM-1) IgG1 Sc-6520 Santa Cruz 

CD63 IgG1 MCA2142 AbD Serotec 

CD81 IgG1 MCA1847EL BioRad 

EEA1 IgG1 610456 BD Bioscience 

LAMP1 IgG1 Sc-20011 Santa Cruz 

LAMP2 IgG1 Sc-18822 Santa Cruz 

Table 2.4: Table of primary antibodies used for flow cytometry and immunofluorescent 

microscopy. 
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2.4.4 Enzyme-Linked Immunosorbent Assay (ELISA) 

Quantification of FGF-2, HGF, uPA and VEGF-A in DU145 or treated fibroblasts cell CM was 

assayed using the DuoSet ELISA systems (R&D Systems). The manufacturer’s instructions 

were followed except for the detection of the colourimetric change in the substrate solution, 

that was substituted for europium streptavidin and amended to detect TRF. The FGF-2, HGF, 

uPA and VEGF-A capture antibody at a dose of 1µg/ml (mouse anti-human against FGF-2, 

HGF, uPA and VEGF-A) were added to a high protein binding ELISA strip 96-well plate (Greiner 

Bio-One), at 100µl per well and incubated overnight at RT. Wells were aspirated and washed 

three times with Delfia® Wash Buffer (1X in water) (Perkin Elmer) to remove unbound 

antibody. Blocking buffer (1% BSA in PBS) was added to wells for 2 hours at RT, where wells 

were washed three times with Delfia® Wash Buffer.  This was followed by the addition of a 

serial dilution human recombinant FGF-2, HGF, uPA and VEGF-A standard (diluted in 0.1% 

BSA in PBS) starting from 1000pg/ml (FGF-2), 2000pg/ml (VEGF-A), 4000pg/ml (uPA) or 

8000pg/ml (HGF), respectively to 0pg/ml to create an eight-point standard curve. 

Furthermore, DU145 or treated fibroblasts cell CM were added to the coated wells and 

incubated for 2 hours at RT, where wells were aspirated and washed. This was followed by 

the addition of the FGF-2, HGF, uPA and VEGF-A detection antibody (biotinylated goat anti-

human antibody against FGF-2, HGF, uPA or VEGF-A) at 100ng/ml (VEGF-A), 200ng/ml (HGF), 

250ng/ml (FGF-2), 400ng/ml (uPA), was added respectively for 2 hours at RT. Wells were 

washed 3 times, before adding a europium-streptavidin conjugate (Perkin Elmer) in a red 

buffer solution (Kaivogen) for 45 minutes at RT. Wells were washed 6 times, before adding 

enhancement solution (Kaivogen) for 5 minutes at RT; and the signal assessed by time 

resolved fluorescence (TRF) on a PHERAstar FS Microplate Reader. The absorbance values 

were extrapolated from the standard curve to calculate the FGF-2, HGF, uPA or VEGF-A 

protein concentration in each sample. 

TGF-β1 ELISA 

Quantification of TGF-β1 in treated fibroblasts cell CM was assayed using the DuoSet ELISA 

systems. The manufacturer’s instructions were followed except for the detection of the 

colourimetric change in the substrate solution, that was substituted for europium 

streptavidin and amended to detect TRF. The TGF-β1 capture antibody at a dose of 1µg/ml 

were added to a high protein binding ELISA strip 96-well plate (Greiner Bio-One), at 100µl 

per well and incubated overnight at RT. Wells were aspirated and washed three times with 

Delfia® Wash Buffer (1X in water) (Perkin Elmer), to remove unbound antibody. Blocking 

buffer (1% BSA in PBS) was added to wells for 2 hours at RT, where wells were washed three 
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times with Delfia® Wash Buffer. This was followed by the addition of a serial dilution human 

recombinant TGF-β1 standard (diluted in 0.1% BSA in PBS), starting from 2000pg/ml to 

0pg/ml to create an eight-point standard curve. 

To activate latent TGF-β1 to the immunoreactive form detectable by the TGF-β1 DuoSet 

ELISA kit, treated fibroblasts cell CM or vesicle concentrates were acid activated using 20µl 

of 1N hydrochloric acid (HCL), vortexed and incubated for 10 minutes at RT. The acidified 

samples were neutralised by adding 20µl of 1.2N sodium hydroxide (NaOH)/0.5 M HEPES, 

the pH was measured to ensure neutralisation was within 7.0 – 7.6. Once neutralised, 100µl 

of sample were added to the wells and incubated for 2 hours at RT, where wells were 

aspirated and washed. Biotinylated goat anti-human TGF-β1 detection antibody at 300ng/ml 

was added for 2 hours at RT. Wells were washed 3 times, before adding a europium-

streptavidin conjugate in a red buffer solution for 45 minutes at RT. Wells were washed 6 

times, before adding enhancement solution for 5 minutes at RT; and the signal assessed by 

TRF on a PHERAstar FS Microplate Reader. The absorbance values were extrapolated from 

the standard curve to calculate the TGF-β1 protein concentration in each sample. 

MMP-1 and MMP-13 ELISA 

Quantification of MMP-1 and MMP-13 in 3D spheroids cell CM was assayed using the 

RayBio® Human MMP-1 and MMP-13 ELISA kit (both from RayBio® Tech, Georgia, USA). The 

manufacturer’s instructions were followed except for the detection of the colourimetric 

change in the substrate solution, that was substituted for europium streptavidin and 

amended to detect TRF.  A serial dilution of human recombinant MMP-1 and MMP-13 

(diluted in 0.1% BSA in PBS) starting from 18000pg/ml (MMP-1) or 6000pg/ml (MMP-13) to 

0pg/ml created an eight-point standard curve in pre-coated MMP-1 and MMP-13 

microplates (RayBio® Tech). 100µl of 3D spheroids cell CM were added to the wells and 

incubated for 2.5 hours at RT, where wells were aspirated and washed three times with 

Delfia® Wash Buffer (1X in water). MMP-1 or MMP-13 detection antibody (biotinylated goat 

anti-human antibody against MMP-1 or MMP-13) was added at 1:80 dilution for both MMP-

1 and MMP-13 for 1 hour at RT. Wells were washed 3 times, before adding an europium-

streptavidin conjugate in a red buffer solution, for 45 minutes at RT. Wells were washed 6 

times, before adding enhancement solution for 5 minutes at RT; and the signal assessed by 

TRF on a PHERAstar FS Microplate Reader. The absorbance values were extrapolated from 

the standard curve to calculate the MMP-1 and MMP-13 protein concentration in each 

sample. 
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2.4.5 Protein Profiling Array 

Vesicle concentrates (20µl) from DU145 control, Rab11bKD or Rab35KD cells were subject to 

lysis (20µl of RIPA buffer); and analysed by a sensitive Proximity Ligation Assay Configure, in 

the form of a 92-Plex Array. Alternatively, cell CM normalised for cell number, without 

concentrating, were used. The Olink Proseek® Multiplex Inflammation I96x96 Panel comprises 

92 inflammation-related protein analytes as it gave a good coverage of potentially relevant 

factors (Olink Bioscience, Uppsala, Sweden). The Limit Of Detection (LOD) was defined as 1.5 

standard deviations above background and values below this limit were reported as <LOD. 

The data were filtered to remove analytes below the limit of detection and comparisons were 

made between control and knockdowns, based on fold change and t-test.
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2.5 Functional Experiments  

2.5.1 Growth Arrest 

Prior to all functional experiments, fibroblasts were growth-arrested in serum-free media for 

72 hours to allow fibroblast depletion of growth factors, otherwise any remanence of growth 

factors in the media would allow fibroblasts the potential capacity to express α-SMA. Seeded 

fibroblasts were washed with serum-free DMEM/F12 (Lonza) to remove any residual FBS. 

Fresh serum-free DMEM/F12 medium was added to fibroblasts for 72 hours and unless 

stated otherwise, fibroblasts were cultured in DMEM/F12 media. 

2.5.2 Fibroblast Differentiation  

Fibroblasts were cultured in Nunc™ Lab-Tek™ 8-Well Chamber Glass Slides (ThermoFisher 

Scientific) or 24-well plates (Greiner Bio-One) in DMEM/F12 media with supplement mixture 

(as described in 2.1.1) and once 80% confluent, the cells were growth-arrested for 72 hours. 

The fibroblasts were treated with either the equivalent of recombinant human TGF-β1 

(rhTGF-β1) (1.5ng/ml), 200µg/ml of purified DU145 exosomes, cell-number normalised 

vesicle concentrates (DU145 NM CTR, Rab11bKD or Rab35KD), in DMEM 10% exosome-

depleted FBS for 72 hours. In other experiments, fibroblasts were also treated in DU145 NM 

CTR, Rab11bKD or Rab35KD cell CM normalised to cell number. Treated fibroblasts cell CM 

after 72 hours treatment was used for ELISAs or to treat endothelial cells in a migration assay. 

The cells were fixed and subsequently stained for α-SMA (Santa Cruz) and visualised with the 

Axio Observer Z1 with apotome. 

2.5.3 Migration Assay 

A confluent monolayer of HUVEC cells was cultured in 96-well plates and serum-starved for 

24 hours in growth-factor free conditions. The confluent monolayer was subject to a single 

vertical scratch using a 200μl pipette tip. The wells were gently washed with PBS and treated 

with CM taken from fibroblast cultures and wells were microscopically monitored at 0, 6, 12, 

24 hours. The width of the scratch in triplicate wells was measured at 6 points for each well, 

using Image-J (National Institutes of Health, Bethesda, USA) and the rate of monolayer 

recovery plotted as relative to the original scratch width (% closure). 

2.5.4 Vessel-like Formation Assay 

Formation of endothelial vessel-like structures was performed with endothelial cells (20,000 

per well), serum-starved for 24 hours. These were added in triplicate to monolayers of 

fibroblasts (100,000 cells per well), that had been previously treated with rhTGF-β1, 

exosomes or vesicle concentrates for 72 hours. A 1:1 volume ratio of DMEM/F12:EGM-2 
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media in the absence of exogenous factors was used. After a further 4 days of culture, 

structures formed by endothelial cells were visualised by immunofluorescent labelling of 

CD31 (Santa Cruz). The total area occupied by CD31-positive structures was quantified using 

Zen Blue Software to calculate the area occupied by stained cells in each well. Data shows 

the average from triplicate wells per treatment and are representative of three such 

experiments. 

2.5.5 Spheroid Generation for Invasion and Growth Assessment 

Spheroid Generation 

Spheroids were generated in a 96-well u-bottom polyhydroxyethylmethacrylate (Poly-

HEMA)-coated plate (Sigma-Aldrich) or cell-repellent surface plate (Greiner Bio-One). To 

generate homotypic or heterotypic spheroids, tumour cells (DU145 NM CTR, Rab11bKD or 

Rab35KD) were incubated alone or together with fibroblasts at a ratio of 4:1 (tumour 

cells:fibroblast), in poly-HEMA or cell-repellent surface plates and centrifuged at 400 x g for 

10 minutes at RT. This ratio was previously used in vivo experiments specifically revealing a 

tumour growth benefit of fibroblasts (Webber et al., 2015). 10,000 cells were seeded in total 

per well for each generated spheroids and the medium consisted of RPMI-1640 in 10% 

exosome-depleted FBS. After 72 hours, the cell established 3D spheroidal structures. 

Growth Assessment 

3D cell spheroids were cultured in RPMI-1640 with 10% exosome-depleted FBS and every 

other day, 50% of the culture media was replaced by fresh media. Over a 24-day period, 

spheroid area and diameter was measured every 3-4 days by using Image J. 

Invasion Assay 

100µl of Matrigel™ (Corning, UK) was added to each well of a 24-well flat glass bottom plate. 

The basement membrane matrix consists of laminin, collagen IV, entactin and heparan 

sulphate proteoglycans. The matrigel-coated plates were set for 30 minutes at 37oC and 

medium was added. Spheroids were transferred to freshly matrigel-coated, 24-well plates to 

explore the potential invasive behaviours of these cells and the wells were monitored for 96 

hours thereafter. To evaluate the magnitude out from the spheroid, the free-hold selection 

tool in Image-J was used to draw the circumference of the central sphere. This was 

subtracted from the circumference of the region occupied by invading cells. This gives an 

approximation of Matrigel™ invaded by cells, as it does not consider the volumetric aspect 

of the 3D culture and is likely then to underestimate the true differences across the 

experimental groups. 
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2.6 In vivo Experiments 

2.6.1 Animal Maintenance 

In vivo experiments were conducted in accordance with the Animal (Scientific Procedures) 

Act 1986 and the United Kingdom Co-ordinating Committee on Cancer Research (UKCCCR) 

guidelines for the welfare of animals in experimental neoplasia. 8-week-old male CD1 

athymic mice were housed under standard laboratory conditions in a temperature controlled 

(22oC; 50-55% humidity) pathogen free environment, with a 12-hour light-dark cycle. 4 mice 

were used per experimental group. Food and water was supplied ad libitum. All procedures 

were performed under aseptic conditions and the body temperature of animals was kept 

constant using heated pads. 

2.6.2 Xenograft Establishment and Tumour Growth Delay  

For in vivo xenograft experiments, this was performed in collaboration with Prof. Jenny 

Worthington (Axis Bioservices, Coleraine, Northern Ireland). DU145 control or Rab11bKD or 

Rab35KD cells with fibroblasts xenografts (4 tumour cells:1 fibroblast ratio) were established 

on the dorsal flank by subcutaneous injection of 5 x 106 cells suspended in 100μl of matrigel 

with a 21g needle (Becton Dickinson, Oxford, UK). Once the tumour became palpable, 

dimensions were measured using Vernier calipers every two to three days, to determine the 

volume, up to the severity limits at day 46. Tumour volume was calculated using tumour 

volume = 0.523 x width2 x length. Total body weight was also taken and this did not change 

for any mouse during the procedures. At 46 days, tumours were excised and photographed. 

2.7 Statistical Analysis 

Statistical analyses were performed using Prism-5 Software V5.01 (Graph Pad, San Diego, 

USA). In experiments with more than two experimental groups, 1-way ANOVA with Tukey’s 

post-test was used, except for kinetic experiments where a 2-way ANOVA with Bonferroni 

post-test was used. Experiments with two experimental groups were evaluated using 

students t test. P values less than 0.05 were considered significant *p<0.05, **p<0.01, 

***p<0.001. Graphs depict mean±SEM, from one representative experiment of at least three 

similar experiments, unless stated otherwise.
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3.1 Characterisation of Exosomes from Wild Type DU145 Cells 

3.1.1 Introduction 

Cells communicate via soluble, secreted factors or via membrane vesicles, collectively 

referred to as EVs. Exosomes are endosome-derived EVs and correspond to the ILVs released 

into the extracellular space, by fusion of MVEs with the plasma membrane. The prostate 

cancer cell line chosen for this study were DU145 cells, derived from prostate 

adenocarcinoma metastatic to the brain (Stone et al., 1978), as they are commonly used for 

studying prostate cancer in several studies (Alimirah et al., 2006, Clayton et al., 2007, Webber 

et al., 2010); and their exosomes are well-characterised by the Clayton group.  

To broaden our understanding of exosomes, great efforts have been made for 

characterisation. In general, exosomes are isolated from either cell CM or biological fluids; 

and several protocols have been developed. This includes one that was used in initial studies 

describing exosomes (Johnstone et al., 1987, Raposo et al., 1996); and involves several 

centrifugation steps to separate vesicles (Théry et al., 2006): 400 x g and 2000 x g were used 

to eliminate unwanted cells and debris; and 10,000 x g to eliminate microvesicles, which are 

larger than exosomes (100 – 1000nm in diameter vs 30 – 150nm for exosomes). Exosomes 

are then pelleted at 100,000 – 200,000 x g. Alternatively, many variations are implemented 

in practice. Some protocols utilise serial filtration or others use 0.22µm filters prior to 

exosome pelleting, as this provides a quicker isolation step compared to additional spins. 

This protocol leads to a pellet that is concentrated with vesicles. Furthermore, density 

gradient-based isolation using the continuous sucrose gradient (Raposo et al., 1996, Caby et 

al., 2005), 30% sucrose cushion method (Lamparski et al., 2002) and iodixanol (OptiPrep™) 

(Cantin et al., 2008, Tauro et al., 2012), can be applied to obtain purer exosome preparations, 

by allowing separation based on density, rather than size or sedimentation rates by 

ultracentrifugation.  

Here, wild type DU145 exosomes were isolated based on a combination of 

ultracentrifugation and through a 30% sucrose cushion. Once isolated, characterisation of 

exosomes using a combination of techniques aimed at observing size/morphology and 

enrichment in exosomal-associated proteins (Western blotting or plate-based assays) was 

performed. These techniques fit the minimum experimental requirements for the definition 

of exosomes as set out by ISEV (Lotvall et al., 2014). NTA is a light-scattering technique, that 

is useful for size distribution and concentration measurements of exosomes (Dragovic et al., 

2011). In combination, cryo-EM was used to observe exosome morphology and 
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heterogeneity present within samples (Sokolova et al., 2011). Validation of exosomal-

associated markers include: the tetraspanins (CD9, CD63 and CD81); ESCRT-associated 

proteins (ALIX and TSG101); lysosomal-associated membrane proteins (LAMP1 and LAMP2); 

heat shock proteins (HSP70 and HSP90); and major histocompatibility complex-I (MHC-I). In 

addition, the presence of proteins not expected to be enriched in exosomes of endosomal 

origin should be determined and this simple aspect is often overlooked in the field. 

Contaminating soluble proteins such as calnexin (endoplasmic reticulum associated protein), 

cannot be detected by cryo-EM or NTA, and can be assessed by Western blot or other 

methods. One other method that discriminates purer vesicle preparations from those 

containing contaminating proteins is to compare the ratio of nanoparticle counts to protein 

concentration (P:P ratio) (Webber and Clayton, 2013). By being able to estimate purity and 

compare sample purity in relatively simple and general quantitative manner, will be useful. 

As this tool broadly defines what is an acceptably pure vesicle sample. A P:P ratio that is less 

than 1 x 1010 is considered to be unpure and will be used as a basis to quality control check 

exosome preparations. 

Here, in this Chapter, we will characterise wild type DU145 exosomes by using multiple 

approaches, which include cryo-EM, an immune-phenotyping plate assay, Western blot, NTA 

and by determining P:P ratios. These methods will form as a basis for analysing exosomes, 

by determining the quantity and phenotype of vesicles. These methods will act as a platform 

to examine whether exosome secretion is modulated by silencing putative regulators of 

exosome biogenesis and secretion. 
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3.1.2 Characterisation of DU145 Exosomes 

The DU145 cell line (originally derived from the metastatic site of the brain) was purchased 

from ATCC. A monolayer of DU145 epithelial cells were examined by phase contrast 

microscopy (Figure 3.1), revealing cells to be adherent to plastic and consisting of a flat 

polygonal shape in appearance; sometimes referred to as a cobble-stone like pattern when 

fully confluent (Stone et al., 1978). These morphological observations agreed with other 

studies on the DU145 cell line (Hayward et al., 2001, Alimirah et al., 2006). 

Isolating exosomes from DU145 cell CM by a combination of ultracentrifugation and 

purifying exosomes on a density-based gradient or cushion, based on their floatation 

property, is a commonly used analytical tool (Raposo et al., 1996, Théry et al., 2006). 

Traditionally, the continuous sucrose gradient is a commonly used method, however, it is 

labourious and there is variability with the exosome yields obtained (Lamparski et al., 2002). 

Alternatively, the sucrose cushion is a quicker method for isolating exosomes compared to 

the sucrose gradient method. This method utilises both ultracentrifugation and a 30% 

sucrose cushion to purify exosomes based on their flotational density in sucrose of 1.1 – 

1.2g/ml. Exosomes were captured in a small density cushion, composed of 30% sucrose/D2O. 

D2O can readily diffuse with H2O, which allows the formation of the minigradient between 

1.1 – 1.8g/cm3 and for enrichment and increased purity of exosomes because of the 

decreased soluble proteins present. The cushions containing exosomes were collected and 

went through an additional PBS wash. This resulted in an exosomal pellet which was 

characterised. 

First, the morphology of DU145 exosomes was examined by cryo-EM, in collaboration with 

Prof. Juan Manuel Falcon-Perez (CIC bioGUNE, Derio, Spain). This was carried out by 

resuspending exosome pellets in PBS and placed onto carbon grids. Grids were vitrified with 

the aid of a Vitrobot. Vitrified samples were imaged quickly at liquid nitrogen temperature 

to prevent the formation of ice crystals. The image reveal heterogeneous populations of 

rounded structures of vesicles with a thick outer boundary, indicative of a lipid bilayer (Figure 

3.2). The diameter of DU145 exosomes agrees with the typically observed diameter range 

for exosomes, often found between 30 – 150nm, as reported by other studies (Raposo et al., 

1996, Welton et al., 2010, Yuana et al., 2013).  

Additionally, the phenotype of DU145 exosomes was examined using a microplate immune-

phenotype assay. Exosomes were coated onto ELISA plates overnight and were assessed for 

their expression of proteins commonly found on exosomes. The expression of CD9, CD81 and 
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MHC-I on the DU145 exosomes were expressed at just over 3.5 x 106 TRF (Figure 3.3 A). The 

DU145 exosomes still showed expressed levels of CD63, but to a lesser extent compared to 

the other tetraspanins (3-fold less). The expression of other markers LAMP1, LAMP2, HSP70 

and HSP90 revealed DU145 exosomes exhibit a lower positive expression (< 5 x 105 TRF). 

However, it remained difficult to detect ALIX and TSG101 (ESCRT-related proteins) on the 

surface DU145 exosomes with this method, as these are ESCRT-related markers typically 

found on exosome’s internal side. Next, we attempted to refine this immune-phenotype 

assay by lysing exosomes coated onto ELISA plate to detect levels of ALIX and TSG101 (Figure 

3.3 B). The signal of ALIX and TSG101 was 4-fold greater when lysing exosomes with RIPA, 

compared to the standard method (P<0.001). Here we showed the isolated DU145 exosomes 

express proteins typically found on the exosome’s surface similar to other studies (Escola et 

al., 1998, Théry et al., 1999). 

To ensure that a specific protein is enriched in exosomes, a comparison in proteins between 

whole cell lysates and exosomes were prepared from the same parent cell (DU145) on the 

same gel. Cell lysates and exosomes from DU145 cells were compared by Western blot and 

probed with an assortment of antibodies. The expression of exosome-associated markers, 

such as ESCRT-related proteins (ALIX and TSG101) and MHC-I were highly enriched in 

exosomes, compared to cell lysates (Figure 3.4). LAMP1 and LAMP2 expression was found to 

be positively expressed in both cell lysates and exosomes, slightly enriched in the exosomes. 

In contrast, the endoplasmic reticulum protein, calnexin, was only present in the cell lysates. 

The expression of the cytosolic marker, GAPDH, was found in cell lysates and exosomes, as 

expected. By phenotyping the DU145 exosomes, these results agree with similar 

documented studies in characterising exosomal-associated proteins (Raposo et al., 1996, 

Escola et al., 1998). The method provides a means of differences in the endosomal/lysosomal 

origin of exosomes; and potentially as a means of defining if any change in their pathways 

arise if interferences with secretion. 

To provide an indication of the heterogeneity present within our purified DU145 exosome 

preparations, Nanosight™ NTA was used. First, we analysed the size distribution of vesicles 

present in DU145 cell CM and show a modal diameter of 99nm (Figure 3.5 A). This 

observation is comparable to the cryo-EM images presented in Figure 3.2, showing a 

heterogeneous population of exosomes with a diameter within the range of 30 – 150nm 

(Raposo et al., 1996, Filipe et al., 2010, Sokolova et al., 2011). Similarly, the isolated purified 

DU145 exosomes had a modal diameter of 131nm (Figure 3.5 B), comparable with the cryo-

EM images. No major differences in the modal size characteristics of exosomes were present 
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between both methods. Despite showing no presence of larger sized vesicles or cellular 

aggregates present (>500nm) in purified exosomes, there remains a broader range of 

detected vesicles (up to 500nm), compared to cell CM which ranges up to 300nm. This data 

suggests that characterising vesicles in cell CM gives similar size distribution profiles present 

in purified DU145 exosomes, with the benefit of having fewer peaks for larger size 

nanoparticles (>300nm). On the other hand, it is important to consider the purity of isolated 

exosomes from cell CM, as it is often dependent on the protocol utilised. 

Estimation of the exosome purity can be measured based on the P:P ratio, using a 

combination of NTA and a colourimetric BCA assay, to determine the particle per ml and 

protein concentration respectively (Webber and Clayton, 2013). A study has demonstrated 

that an exosome preparation containing protein contaminants, resulted in a reduced P:P 

ratio, compared to an exosome sample with no contamination. It was proposed that a P:P 

ratio that was below 1.0 x 1010 were impure and a P:P ratio >1.0 x 1010 were considered of 

low to high purity. The quality threshold of our exosome preparations were routinely used 

on isolated exosomes from the sucrose cushion preparation (Table 3.1). By characterising 

vesicles from cell CM alone, a P:P ratio of 1.78 x 108 was obtained and indicates the sample 

would be impure and could contain other soluble proteins that may not be vesicle-based 

(Figure 3.5 A). In contrast, a P:P ratio of 1.11 x 1010 was obtained from a purified DU145 

exosome preparation (Figure 3.5 B), passing the arbitrary threshold for a pure preparation. 

Many exosome preparations exceeded the quality threshold and were used for subsequent 

characterisation and functional experiments. In contrast, the preparations that failed the 

quality control were not used for experiments and this could be explained by some 

contamination of collecting the sucrose cushion containing exosomes during isolation. 

Exosomes isolated from prostate cancer DU145 cells using the sucrose cushion method are 

of good purity and largely free of contaminating proteins.  
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Figure 3.1: Morphology of prostate cancer cell line (DU145). Monolayer of live prostate 

cancer cell (DU145) were imaged using phase contrast microscopy to confirm 

cobblestone morphology of the epithelial cells. Scale Bar: 100µm. 
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Figure 3.2: Cryo electron microscopy images of DU145 exosomes. DU145 exosomes were adsorbed onto glow-discharging holey carbon 200-

mesh copper grids (QUANTIFOIL, Germany). Grids were blotted at 95% humidity and rapidly plunged into liquid ethane with the aid of VITROBOT 

(Maastricht Instruments BV, The Netherlands). Vitrified samples were imaged at liquid nitrogen temperature using a JEM-2200FS/CR 

Transmission Electron Microscope (JEOL, Japan), equipped with a field emission gun and operated at an acceleration voltage of 200 kV. Multiple 

samples were viewed under cryo-EM, confirming the presence of vesicle structures (white arrows) typical of exosomes. Scale bar: 100µm. 
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Figure 3.3: Characterisation of DU145 exosomes by an immune-phenotype plate assay. 

(A) DU145 exosomes were captured onto high protein binding ELISA plates (1µg/well). 

They were analysed for the expression exosome-associated proteins: tetraspanins (CD9, 

CD63 and CD81), MHC-I, lysosomal associated membrane proteins (LAMP1 and LAMP2), 

heat-shock proteins (HSP70 and HSP90), ESCRT-related proteins (ALIX and TSG101) with 

isotype controls. Graph shows mean + SEM, based on duplicate wells.  (B) DU145 

exosomes were lysed with RIPA and analysed for the expression of ALIX and TSG101. 

Time resolved fluorescence (TRF) is shown. Graph shows mean + SEM, based on duplicate 

wells. n.s: non-significant, **<0.01 and ***P<0.001. One-way ANOVA with Tukey’s 

multiple comparison test. 

(A) 

(B) 
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Figure 3.4: Characterisation of DU145 exosomes by Western blot. DU145 exosomes 

(20µg) and whole cell lysates (20µg), were subjected to SDS-PAGE and Western blotting. 

They were probed for exosomal associated proteins: ALIX, GAPDH, LAMP1, LAMP2, MHC-

I, TSG101. The presence of a protein not expected of endosomal origin was determined 

by calnexin a marker for the endoplasmic reticulum.  

 

 

 

  



Chapter 3. Characterisation of Exosomes from Wild-Type DU145 Cells 
 

86 
 

 

(A) 



Chapter 3. Characterisation of Exosomes from Wild-Type DU145 Cells 
 

87 
 

Figure 3.5: Isolated DU145 exosomes using the sucrose cushion are of high purity. (A) DU145 cell CM or (B) sucrose cushion purified exosomes 

were measured under flow conditions using Nanosight™ NTA. Data from each repeat measurement is shown, revealing the overall size 

distribution (histograms) and particle counts (particles/ml). 6 replicate measurements were carried out and overlaid to show the consistency 

across repeat measurements. BCA assay was used to quantify the protein concentration (µg/ml) of the exosomes. The purity of exosomes was 

assessed by the P:P ratio.  

 

 

  (B) 
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Table 3.1: Quality of isolated DU145 exosomes from the sucrose cushion. Protein and 

particle concentration of DU145 exosomes were measured using the BCA Assay and 

Nanosight™ nanoparticle tracking analysis respectively, to calculate the particle:protein 

(P:P) ratio. Isolated exosome samples with a P:P ratio of >1 x 1010 passed the arbitrary 

quality threshold for a pure exosome preparation (Webber and Clayton, 2013).  

Date Protein 

Concentration 

(µg/ml) 

Particle Concentration 

(particles/ml) 

Ratio 

(Particle/µg) 

Quality 

Control 

14/02/2014 3518 3.86 x 1013 1.09 x 1010 PASS 

26/03/2014 4239 1.48 x 1014 3.49 x 1010 PASS 

30/06/2014 6018 1.53 x 1014 2.54 x 1010 PASS 

30/07/2014 7281 2.20 x 1012 3.02 x 108 FAIL 

11/09/2014 6390 1.86 x 1013 2.91 x 109 FAIL 

18/11/2014 10273 2.51 x 1014 2.44 x 1010 PASS 

30/01/2015 2262 3.12 x 1013 1.38 x 1010 PASS 

20/02/2015 4456 6.87 x 1013 1.54 x 1010 PASS 

18/06/2015 9099 4.30 x 1014 4.73 x 1010 PASS 

17/08/2015 9748 2.27 x 1013 3.70 x 109 FAIL 

21/10/2015 5164 6.11 x 1013 1.18 x 1010 PASS 

04/11/2015 1760 3.73 x 1013 2.12 x 1010 PASS 

03/12/2015 903 8.31 x 1012 9.20 x 109 FAIL 

06/01/2016 677 8.54 x 1012 1.30 x 1010 PASS 

15/02/2016 2053 4.27 x 1013 2.07 x 1010 PASS 

10/03/2016 2758 3.63 x 1013 1.32 x 1010 PASS 

05/04/2016 2242 2.50 x 1013 1.11 x 1010 PASS 

24/05/2016 6398 6.40 x 1013 1.00 x 1010 PASS 

18/07/2016 11019 1.40 x 1014 1.27 x 1010 PASS 

04/10/2016 2003 3.86 x 1013 1.97 x 1010 PASS 

21/11/2016 3159 5.90 x 1013 1.77 x 1010 PASS 

22/12/2016 5014 7.02 x 1013 1.39 x 1010 PASS 
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3.2 Discussion 

In this Chapter, we used purified DU145 exosomes as a basis to characterise vesicles for 

future experiments, to determine whether silencing putative regulators of exosome 

biogenesis and secretion will impact vesicle secretion.   

Here, we showed that the prostate cancer cell line, DU145, was confirmed to have a cobble-

stone like morphology (Stone et al., 1978), similarly shown in other studies with prostate 

cancer cells (Hayward et al., 2001, Alimirah et al., 2006). Exosomes from DU145 cells were 

isolated using the sucrose cushion method and revealed circular structures, demonstrating 

the presence of a lipid bilayer. The DU145 exosomes were a heterogeneous population, in 

which the size of vesicles ranged between 30 – 150nm in diameter, in agreement with NTA 

analysis. The NTA enabled size distribution measurements of nanoparticles in fluid phase, as 

opposed to dehydrated and fixed exosome samples used in traditional (non-cryo) EM. This 

observation may give a greater representation of exosomes, as they are in their native state. 

The NTA data indicated a broad nanoparticle size ranging up to 500nm for purified DU145 

exosomes, despite passing through 220nm-pore filters. The purity of this method of isolating 

exosomes has been previously questioned as high molecular weight complexes and 

apoptotic blebs may co-sediment with these exosomes. Though, other studies have 

demonstrated the purity of these isolated exosomes contain minimal contaminating 

organelles (Mitchell et al., 2008, Webber and Clayton, 2013, Jeppesen et al., 2014). In 

contrast, we observed fewer size distribution peaks that are >300nm in size with 

nanoparticles in cell CM as detected by NTA. It could be possible that cell CM is less 

concentrated with EVs that may not co-isolate as many mixed EV populations. Both NTA and 

cryo-EM gave evidence that nanoparticles greater than >500nm were not present, 

suggesting the absence of apoptotic bodies or large organelles. Both these methods provide 

an indication of the heterogeneity present within samples that can characterise individual 

exosomes. NTA alone cannot distinguish EVs from co-isolated, non-membranous particles of 

similar size and should be compared with cryo-EM to acquire wide-field images of exosomes 

in question. Other methods to determine the presence of exosome-associated proteins must 

be considered to ascertain the isolated samples are in fact exosomes. 

Typically, a general overview of the protein composition of each exosome preparation should 

be provided in a semi-quantitative manner, with exosomal-associated proteins expected to 

be present and components not necessarily expected. Although numerous proteomics 

studies have highlighted proteins commonly found in exosome preparations, it is becoming 
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clear that these do not represent exosome ‘specific’ markers, but rather exosome ‘enriched’ 

proteins (Mathivanan and Simpson, 2009, Kalra et al., 2012). Within the literature, the 

relative proportion of exosomal-associated proteins varies with different EVs or cell types. It 

has been proposed that several proteins (three or more) in a semi-quantitative manner 

should be reported to characterise EVs (Lotvall et al., 2014). The expression of these 

tetraspanins: CD9, CD63, CD81 were detected on our purified DU145 exosomes, commonly 

found on the surface of exosomes from various cell types (Raposo et al., 1996, Escola et al., 

1998, Lamparski et al., 2002). These findings were similar to other studies with prostate and 

bladder cancer cells (Zoller, 2009, Welton et al., 2010). The microplate immune-phenotype 

assay and Western blot analysis revealed DU145 exosomes to be enriched with LAMP1 and 

LAMP2. The LAMP proteins are markers for lysosomes and could reflect the late endosomes 

containing ILVs, although the presence of LAMPs varies for most cell types. Some studies 

only demonstrate the presence of LAMP proteins in exosomes, as reported in tumour cells 

(Wolfers et al., 2001), but absent in DC-derived exosomes (Zitvogel et al., 1998). DU145 

exosomes also showed an enrichment of HSP70 and HSP90. These proteins are involved in 

antigen presentation and participate in loading peptides to MHC molecules (Srivastava, 

2002). Here, MHC-I was also present on exosomes and it is normally present in exosomes 

from most cell types. In general, the level of cellular contamination present within the 

exosome preparation was minimal, as the calnexin protein (ER marker) was absent in 

exosome samples. Within these DU145 exosomes, the presence of CD9, CD63, CD81, ALIX, 

TSG101, LAMP1, LAMP2, HSP70 and HSP90, in combination of the absence of calnexin, 

strongly suggests that the studied vesicles are exosomes. 

One other approach to determine sample purity of exosome preparations is by determining 

the levels of particle to protein (P:P) ratio (Webber and Clayton, 2013). It has been shown 

that vesicle preparation that are considered pure exhibit a relatively high ratio of particles to 

protein and thus contaminating protein within samples should have a negative effect on this 

ratio. Typically, an arbitrary P:P ratio of <1 x 1010 would be considered an impure isolated 

vesicle sample. From the data, isolated DU145 exosomes from the sucrose cushion method 

as one example, demonstrated a P:P ratio of 1.11 x 1010 compared to cell CM with a ratio of 

1.78 x 108. This suggests the exosome preparation from the sucrose cushion would be 

deemed purer. In contrast, analysing cell CM indicates an impure exosome preparation, 

possibly indicating a greater level of soluble proteins present.  Applying the ratio method 

provides a relatively simple and quantitative manner to estimate and compare purity. 

Though, there are some caveats using the P:P ratio as a sole method to analyse exosomes. 
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There it is difficulty in discriminating vesicles from non-vesicular particular material, there is 

an assumption that all detected particles are vesicles and there could be an overestimation 

of particles present within the sample. Furthermore, there is an assumption that each vesicle 

has a comparable and stable quantity of protein; though different disease states may alter 

the protein content to some degree, but this remains poorly understood. Nevertheless, 

bearing issues in mind, the P:P ratio method does provide an additional method to determine 

the purity of the vesicle preparation for future experiments. 

Other methods to isolate exosomes have claimed to isolate pure exosomes from cell CM, 

such the commercially available ExoQuick® (EQ) or Total Exosome Isolation Reagent (TEI). 

Though, the main caveat is that these reagents co-precipitates exosomes with non-vesicular 

proteins, leading to a low yield of impure exosomes (Van Deun et al., 2014). It has been 

shown that isolating vesicles based only on ultracentrifugation can retain a relatively 

moderate pure sample of vesicles, compared to density-based methods. One of the main 

advantages of ultracentrifugation method is it shows a greater protein yield, compared to 

other methods and remains enriched in exosomal-associated proteins. The ease of obtaining 

high overall yields of vesicles will be important for future experiments, as it will be utilised 

to not only be characterised by various methods, but also to perform functional experiments.  

In this Chapter, we have demonstrated different methods used to determine the phenotype 

of exosomes and the amount or concentration of exosomes present. All these methods act 

to analyse exosomes. By doing so, these methods act as a platform to evaluate whether 

exosomes are modulated by silencing putative regulators of exosome biogenesis and 

secretion in future Chapters.
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4.1 Generating Exosome-Deficient Cancer Cells 

4.1.1 Introduction 

Exosomes were first defined as EVs of heterogeneous sizes including one population with 

diameters between 500 and 1000nm (Trams et al., 1981); although this definition changes 

with exosomes originating from the endocytic pathway during early endosome maturation, 

to form MVEs (Harding et al., 1983, Pan et al., 1985). The formation of ILVs, within MVEs, 

involves inwardly budding vesicles with the incorporation of selected cargo. Once ILV 

formation is completed, fusion of MVEs with the plasma membrane secretes ILVs into the 

extracellular space; thus exosome secretion (Stoorvogel et al., 2002). However, MVEs that 

do not fuse with the plasma membrane can often be redirected to lysosomes for degradation 

(Futter et al., 1996). Currently, a great amount of effort has been made towards identifying 

the molecular machinery responsible for this process. 

One of the first mechanisms described for MVE formation was the ESCRT complex (Babst et 

al., 2002a). It contains four protein complexes (ESCRT-0, -I, -II and -III) and interacting 

accessory proteins, transiently engaged to the endosome’s limiting membrane. It is proposed 

that ESCRT-0, -I and -II are involved in clustering cargo in ILVs; and ESCRT-III in vesicle budding 

and scission (Wollert et al., 2009). The ESCRT-II complex contains two core VPS25 protein 

subunits, interacting heavily with both ESCRT-I and -III protein complexes (Wernimont and 

Weissenhorn, 2004). VPS25, as part of the ESCRT-II complex, appears to play a role in MVE 

formation (Katzmann et al., 2002); and localisation of ESCRT-III to late endosomes (Babst et 

al., 2002a). The formation of late endosome, ESCRT components (ALIX and TSG101), as well 

as ubiquitinated proteins, have been proposed to load cargo into ILVs. As examples, ALIX and 

TSG101 mediate epidermal growth factor (EGFR) and transferrin receptor loading into 

exosomes, respectively (Lu et al., 2003, Géminard et al., 2004); and are exosome-associated 

protein markers. Furthermore, the presence of cytosolic proteins into the ILVs can be due to 

co-sorting with other proteins. This mechanism is suggested for chaperones, such as HSP-70 

and HSP-90, found on exosome surfaces in some cell types (Théry et al., 1999, Gastpar et al., 

2005). 

In contrast, depletion of certain ESCRT subunits does not completely impair MVE formation, 

indicating other mechanisms independent of ESCRT may operate in ILV formation (Stuffers 

et al., 2009). It was demonstrated that inhibition of neutral sphingomyelinase, decreased the 

levels of PLP-associated exosome secretion (Trajkovic et al., 2008), independent of ESCRT 

function. Exosomes are often enriched with tetraspanins, such as CD9, CD63 and CD81, 
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dependent on cell type; although a recent report suggests that only CD81 is exosome-specific 

(Kowal et al., 2016). More recently, the tetraspanin, CD63, known to be expressed on the 

exosome surface, directly participates in ESCRT-independent sorting of the PMEL, as PMEL 

localises to CD63-containing ILVs, even in ESCRT-I depleted cells (van Niel et al., 2011). In the 

absence of functional CD63, ILV formation, PMEL sequestration and downstream 

melanosome biogenesis are severely reduced. Similarly, silencing another member of the 

tetraspanin family, CD9, results in a significant decrease in secreted exosomes from DCs 

(Chairoungdua et al., 2010) and Nalm-6 pre-B cells (Mazurov et al., 2013). Although CD9 is a 

commonly expressed tetraspanin on DU145 exosomes (Hosseini-Beheshti et al., 2012, 

Webber et al., 2014), the role they play on MVE biogenesis and exosome secretion is poorly 

understood. CD9 may function, in a similar manner to CD63 with melanosome secretion (van 

Niel et al., 2011). This suggests that distinct ESCRT-independent mechanisms might coexist 

with the ESCRT machinery on MVEs in different cells, reflecting multiple MVE subpopulations 

fated for degradation or exosome secretion (Buschow et al., 2009, Ostrowski et al., 2010, 

Hurley and Odorizzi, 2012).  

Rab proteins are small GTPases and essential regulators of transporting different endosomes 

between different endosomal compartments. Rabs can be involved endosomal budding, 

motility or tethering to the membrane of an acceptor compartment. The Rab family is 

composed of greater than 70 GTPases, each of which is potentially associated with one 

intracellular compartment, depending on cell type. Rab5 is proposed to be involved in early 

endosome formation and maturation of these compartments into late endosomes (Gorvel 

et al., 1991, Chen et al., 2009). It was first reported that silencing Rab11 in K562 cells 

attenuated exosome secretion (Savina et al., 2002); and their follow-up study showed Rab11 

to promote docking and fusion of MVE with the plasma membrane (Savina et al., 2005). 

These studies created an interest in Rab protein roles in exosome secretion. Rab27 was 

initially explored in HeLa cells, found to function in MVE docking at the plasma membrane 

(Ostrowski et al., 2010) and silencing Rab27a inhibited exosome secretion, as shown in 

various studies (Peinado et al., 2012, Bobrie et al., 2012, Ostenfeld et al., 2014, Webber et 

al., 2015). Similarly, silencing Rab35 demonstrated an accumulation of intracellular 

endosomes within the cell, whilst attenuating exosome secretion (Hsu et al., 2010). These 

proteins, Rab11, Rab27a and Rab35 are proposed to stimulate tethering and fusion of 

recycling or late endosomes to the plasma membrane, though it remains poorly understood 

whether Rab11 or Rab35 have the same role in trafficking MVEs with the plasma membrane 

in one given cell type. 
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In addition to Rab proteins, SNARE proteins localise to exosomes with CD63 and lipid rafts 

(Salaun et al., 2005, Perez-Hernandez et al., 2013). SNARE proteins are proposed to mediate 

membrane fusion, including transport between organelles (Jahn and Scheller, 2006). As a v-

SNARE protein, VAMP7 is suggested to assist in MVE docking and fusion with the plasma 

membrane; and subsequent release of exosomes into the extracellular space (Fader et al., 

2009). Some of these components are involved in MVE fusion with the plasma membrane 

during exosome release, although the specific SNARE complex has yet to be discovered.  

Here, we will transduce DU145 cells with lentiviral particles with a specific shRNA sequence 

targeting: CD9, Rab5a, Rab11b, Rab35, VAMP7 and VPS25. Confirmation of knockdown will 

be assessed at the mRNA and protein level; and possible cytopathic consequence of the 

knockdowns. Multiple approaches will be utilised to assess the outcome of knockdown on 

secreted vesicles; and be any distribution changes in endo/lysosomal compartments. 

Currently, there appears to few distinct mechanisms for exosome biogenesis, trafficking and 

release. It remains poorly understood whether different mechanisms may explain the 

heterogeneity of exosomes produced in each cell. However, one question that remains is 

whether it is possible to manipulate cells and force them to produce an altered repertoire of 

vesicle subpopulations, whilst understanding if there is a hierarchy of which mechanism is 

most relevant? As shown in Figure 4.1, the hypothesis is that blockade of one pathway 

(pathway A for example) may lead to a loss of a specific subpopulation. This may still enable 

the secretion of other vesicle subpopulations, pathway B and C as examples, that may impart 

a different cancer cell function. 
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Figure 4.1: Simplified diagram of MVE and vesicle heterogeneity. The cell has distinct 

pathways that generate complex heterogeneity in secretion of exosomes. Blockade of 

one pathway, for example pathway A, may result in a loss of subpopulation and impact 

the cancer cells function. 
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4.1.2 Puromycin Kill Curve for DU145 Cells 

For my initial studies, MISSION® shRNA lentiviral particles (Sigma-Aldrich) were used to 

transduce DU145 cells with a shRNA sequence against each respective target. Each lentiviral 

plasmid vector contains a puromycin resistance gene for mammalian selection. Therefore, 

puromycin was used in gene selection for mammalian host cells. First, a puromycin kill curve 

was performed to determine the minimum puromycin concentration required to kill all non-

resistant cells. Here, the WST-1 assay (measuring cell metabolic activity) was used to 

determine the minimum puromycin concentration required for efficiently selecting 

transduced cells. Incremental doses of puromycin (0 – 10µg/ml) were used to treat DU145 

cells (Figure 4.2). Absorbance was measured, based by the cleavage of the stable tetrazolium 

salt, WST-1, into a soluble formazan by cellular mitochondrial dehydrogenases present in 

viable cells. The quantity of released formazan dye correlates to the number of metabolically 

active cells in culture. Here, 1.25µg/ml was the minimal puromycin dose observed, that was 

sufficient to kill all DU145 cells. 

4.1.3 Confirmation of Knockdown at the mRNA and Protein Level 

Here, we used lentiviral particles with a specific shRNA sequence to silence targets putatively 

involved in exosome biogenesis and secretion to transduce DU145 cells. A multiplicity of 

infection (MOI) of 20 was used. MOI is defined as the number of transducing lentiviral 

particles per cell. DU145 cell were transduced with lentiviral particles containing shRNA, 

treated with puromycin for six passages before assessing levels of target mRNA and protein. 

We tested five different shRNA sequences for each target (Figure 4.3) that included: CD9, 

Rab5a, Rab11b, Rab35, VAMP7 and VPS25. Lentiviral particles delivering a shRNA sequence 

targeting a non-mammalian RNA was used as a control. Confirmation of each knockdown 

was carried using gene expression assays to show relative quantification (RQ) of the target 

mRNA to the control. For this, GAPDH mRNA was used as an internal control. 

The five shRNA sequences targeting CD9 showed variable mRNA knockdown, ranging from 

45% - 87% (Figure 4.3 A). Targeting Rab5a showed mRNA knockdown ranging from 85% - 

97% (Figure 4.3 B). Targeting Rab11b showed mRNA knockdown ranging from 71% - 95% 

(Figure 4.3 C). Targeting Rab35 showed mRNA knockdown ranging from 78% - 95% (Figure 

4.3 D). Targeting VAMP7 showed mRNA knockdown ranging from 87% - 92% (Figure 4.3 E). 

Lastly, targeting VPS25 showed mRNA knockdown ranging from 78% - 93% (Figure 4.3 F). 

These results indicated that we had successful knockdown of each target at the mRNA level. 

However, confirming knockdown at the mRNA level may not necessarily correlate to changes 

at the protein level.  
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Next, the protein level was investigated by Western blotting. First, analysis of whole cell 

lysates derived from each cell line demonstrated attenuated expression of target proteins. 

With the CD9 target, the clone #953 showed the greatest mRNA knockdown of 87% (Figure 

4.3 A), but did not show the greatest attenuation at the protein level (Figure 4.4 A). The clone 

#470 showed the greatest attenuation for CD9 at the protein level (Figure 4.4 A), despite 

only having a mRNA knockdown of 70%. All clones for the Rab5a target showed no detectable 

protein levels (Figure 4.4 B). The clone #466 was selected based on the mRNA knockdown at 

97%. With the Rab11b target, the clone #919 showed the greatest attenuation at the protein 

level (Figure 4.4 C), with a mRNA knockdown of 95%. Knockdown of Rab35 was less obvious 

when detecting levels of Rab35 protein (Figure 4.4 D). Although mRNA knockdown ranged 

from 78% - 95% for Rab35; the Rab35 clone #335 was selected based on 95% knockdown at 

the mRNA level. All clones for the VAMP7 target showed no detectable protein levels (Figure 

4.4 E). Therefore, clone #928 was selected based on the mRNA knockdown at 92%. For the 

VPS25 target, clone #757 showed the greatest attenuation at the protein level (Figure 4.4 F), 

with a mRNA knockdown of 93%. In Figures 4.3 and 4.4, the selected clones (denoted by a 

↓), CD9 (#470), Rab5a (#466), Rab11b (#919), Rab35 (#335), VAMP7 (#928) and VPS25 

(#757) were chosen for future experiments, based on a combination of both the mRNA and 

protein data. 
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Figure 4.2: Puromycin kill curve for DU145 cells. DU145 cells were seeded at a density of 

5,000 cells per well in a 96-well plate. Wells were subjected to a range of puromycin 

concentrations (0 -10µg/ml) and incubated for 2 hours. After this incubation period, cell 

viability was measured using the WST-1 assay. Wells were incubated with WST-1 for 1 

hour, to quantify the release of formazan by measuring absorbance at 420nm by the 

PHERAstar FS Microplate Reader. Graph shows mean + SEM, based on 5 wells. 
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Figure 4.3: Confirmation of knockdown of target mRNA by qPCR. DU145 cells were 

stably transduced with MISSION® shRNA lentiviral transduction particles expressing a 

non-mammalian control (CTR) or shRNA against the indicated target: (A) CD9, (B) Rab5a, 

(C) Rab11b, (D) Rab35, (E) VAMP7 and (F) VPS25. Relative expression of target mRNA 

was evaluated using qPCR, with GAPDH as the internal control. Arrows indicate selected 

clones demonstrating greatest knockdown at the mRNA level and subsequent protein 

level taken forward for experiments. Graph shows mean ± SEM, based on triplicate wells. 

***P<0.001. One-way ANOVA with Tukey’s post hoc test. 
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Figure 4.4: Confirmation of knockdown by Western blot. Cell lysates (20µg) from each 

cell lines was probed for their respective target protein: (A) CD9, (B) Rab5a, (C) Rab11b, 

(D) Rab35, (E) VAMP7 and (F) VPS25. GAPDH was used as a protein loading control. 

Arrows indicate the selected clones which showed greatest knockdown at both the 

mRNA and protein level. 
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4.1.4 The Impact of Knockdowns on Cell Viability 

We next explored some of the general properties of cells, to understand if the knockdowns 

have any cytopathic impact. A monolayer of lentiviral transduced DU145 cells were seeded 

and examined by phase contrast microscopy (Figure 4.5). All the cells display a flat polygonal 

morphology typically shown in DU145 control cells, forming discrete islands when sub-

confluent (shown) and a cobblestone-monolayer pattern, when confluent. This was indeed 

the case regardless of attenuated target proteins. The knockdowns, therefore, did not impart 

gross effects on cell shape or the capacity to attach or form monolayers. 

Next, we examined the proliferation properties of these lentiviral transduced cells, using the 

cell proliferation reagent, WST-1. DU145 cells were seeded equally and incubated with the 

WST-1 reagent for 0.5 – 4 hours.  This determined the optimal incubation time required to 

detect formazan levels above the background and below the maximum thresholds (Figure 

4.6 A). Here, we observed that doubling of DU145 cell numbers, indicated by the absorbance 

values showed a sigmoidal curve with a signal plateau at 50,000 cells/well or greater; 

although there was a dose-dependent relationship within a range of 6,000 – 50,000 cells. 

Here, there is no advantages in signal strength when incubating for different times. 

Therefore, a time of 1 hour was chosen to incubate cells to ensure the signal is present or 

does not plateau.  

Next, we seeded 5,000 lentiviral transduced DU145 cells into 96-well plates and monitored 

cell proliferation over 72 hours. WST-1 was incubated for 1 hour at each timepoint to 

measure formazan absorbance. Here, knockdown of CD9 and Rab5a in DU145 cells appeared 

to show weak inhibition of cell proliferation (Figure 4.6 B and C) over 72 hours, compared to 

controls. Knockdown of Rab11b and Rab35 (Figure 4.6 D and E) in DU145 cells appears to be 

negligible on cell proliferation over 72 hours compared to the control. In contrast, 

knockdown of VAMP7 in DU145 cells appeared to show a modest increase in cell 

proliferation (Figure 4.6 F). On the other hand, there was a significant decrease in cell 

proliferation with the knockdown of VPS25 (Figure 4.6 G), compared to controls. The 

majority of knockdowns showed a minimal impact upon cell viability, except for VPS25. 

Therefore, any observed changes with vesicle secretion with the VPS25 knockdown will be 

difficult to assess, as the impact on vesicle secretion may be accounted for by toxic, rather 

than specific effects on vesicle biogenesis/traffic function.  
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Figure 4.5: Transduced DU145 cells maintain cobblestone-like morphology. Monolayer 

of live transduced DU145 cell lines were imaged using phase-contrast microscopy, to 

visualise the cobblestone-like morphology within the epithelial cells. Scale bar: 100µm. 

Representative fields are shown. 
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Figure 4.6: Confirmation of lentiviral transduced DU145 cell viability. (A) Lentiviral 

transduced DU145 cell lines were seeded at various cell densities (0 – 200,000 cells per 

well) in a 96-well plate; and subjected to different incubation times (30 - 240 minutes) 

with WST-1 reagent. After incubation, absorbance was measured at 420nm, quantifying 

formazan release, using the PHERAstar FS Microplate Reader. 5,000 cells were seeded 

into 96-well plates for each lentiviral transduced DU145 cell lines: (B) CD9, (C) Rab5a, (D) 

Rab11b, (E) Rab35, (F) VAMP7 and (G) VPS25. Cells were subjected to the WST-1 reagent 

at 24, 48 and 72 hours. Graph shows mean ± SEM, based on quadruplicate wells. n.s: 

non-significant, *P<0.05, **P<0.01 and ***P≤0.001. Two-way ANOVA with Bonferroni 

post hoc test. 
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4.1.5 Confirmation of Knockdown Cell Stability  

Previously, we demonstrated that puromycin selection eliminated non-transduced DU145 

cells and knockdown of CD9, Rab5a, Rab11b, Rab35, VAMP7 and VPS25 was validated at both 

the mRNA and protein levels. Selected sequences with successful knockdown demonstrated 

a mRNA reduction between 70% - 97%. However, if shRNA-mediated depletion of the target 

caused a growth disadvantage over time, the cells bearing knockdowns might be overgrown 

with cells not exhibiting the knockdown from this heterogeneous cell population. This may 

limit the experimental timeframe available to us, if loss of the knockdown phenotype over 

time is apparent. To test the stability of each knockdown within the populations of 

transduced DU145 cells, we compared target mRNA expression between two time-points. 

Newly transduced DU145 cell lines, free from lentiviral particles at week 6, were compared 

to cells maintained in continuous culture for 15 weeks, longer than any other experiments 

conducted in this study. 

The CD9 mRNA transcript expression levels were decreased by 86% in DU145 CD9KD cell 

populations at 15 weeks after transduction (Figure 4.7 A), compared to a 70% decrease at 

week 6. Transduction of other targets showed decreased expression of target mRNA that still 

maintained very good knockdown stability, as in all cases, the target mRNA remains >78% 

decreased below controls, although this shows a slight increase in target mRNA expression 

levels than at the initial 6-week time-point, for Rab5a, Rab11b, VAMP7 and VPS25 (Figure 

4.7 B – C and E – F). For Rab35, however, the cloning levels was faster for wild type, showing 

expression levels at 5% at week 6 and 45% at week 15; but remained significantly down 

(Figure 4.7 D). In all cases, besides CD9, the mRNA knockdown decayed over time, indicating 

cells can maintain their stability over a given time, although all experiments were performed 

prior to week 15.  
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Figure 4.7: Confirmation of shRNA silencing stability in lentiviral transduced DU145 

cells. mRNA was extracted from lentiviral transduced DU145 cell lines at week 6 or 15, 

to confirm the stability of each target at the mRNA level. Relative expression of target 

mRNA; (A) CD9, (B) Rab5a, (C) Rab11b, (D) Rab35, (E) VAMP7 and (F) VPS25 were 

evaluated using qPCR, with GAPDH as the internal control. Graph shows mean ± SEM, 

based on triplicate wells. ***P<0.001. One-way ANOVA with Tukey’s post hoc test. 
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4.1.6 Characterisation of Vesicles Derived from Lentiviral Transduced DU145 Cells 

We investigated whether silencing CD9, Rab5a, Rab11b, Rab35, VAMP7 or VPS25 attenuated 

exosome secretion. We characterised the number and size of nano-particulate material 

present in cell CM using the Nanosight™ NTA platform for each lentiviral-transduced DU145 

cells. First, cell CM was collected from DU145 CD9KD, Rab5aKD, Rab11bKD, Rab35KD, VAMP7KD 

and VPS25KD cells, cultured at identical densities. Cellular debris was removed by serial 

centrifugation (400 x g for 7 minutes, 2000 x g spins for 15 minutes); and the removal of large 

non-exosomal particles by filtration (0.22µm filter). The resultant cell CM was analysed by 

NTA. Otherwise, cell CM underwent ultracentrifugation (200,000 x g for 2 hours), to obtain 

vesicle concentrates that were characterised for exosomal-associated proteins. 

Traditionally, estimates of the relative expression of proteins of interest are often made by 

comparison against the signal observed by internal standards (housekeeping proteins). 

Conventionally, such proteins are considered to be ubiquitously and constitutively expressed 

in every tissue, presumed necessary for normal cellular function. Classical examples include 

GAPDH or β-actin. This allows normalisation of signals so that expression of genes/proteins 

between samples can be compared, eliminating variations arising from technical reasons, 

such as sample loading or transfer. However, there is currently no ubiquitously and 

constitutively expressed housekeeping protein on exosomes, derived from various cell types. 

Here, by investigating multiple targets putatively implicated in exosome biogenesis and 

secretion, comparisons made between secreted exosomes from lentiviral transduced DU145 

cells were difficult. Normalisation of the secreted exosomes based on protein concentration 

would not give a true representation of the knockdown effect, as this may incorporate other 

exosome subpopulations. Thus, the cell CM or vesicle concentrate pellet were corrected for 

cell number. By normalising for cell number, we can analyse the exosome quantity arising 

from each lentiviral transduced DU145 cells, that will give a fair comparison between the 

exosome subpopulations.  

First, we performed size distribution measurements of vesicles by NTA in the DU145 control, 

CD9KD, Rab5aKD, Rab11bKD, Rab35KD, VAMP7KD and VPS25KD cell CM, corrected for cell number 

(particle/cells). We observed that nanoparticle size distribution profiles were similar 

irrespective of knockdown; and revealed a population of particles ranging between 50 – 

200nm in diameter, while not exceeding 300nm (Figure 4.8 A). The histogram mode of the 

control cells was around 110nm and this was comparable with other knockdowns, with a 

tendency for larger nanoparticles in the VAMP7KD (125nm) and VPS25KD (135nm) (Figure 4.8 

B). When examining the quantity of particles per cell, some significant differences were 
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present. We observed no significant differences in the CD9KD, but surprisingly an elevation 

(24%) in particles/cell (P<0.01) was evident in the Rab5aKD. In contrast, there was a modest 

attenuation in particles/cell with respect to the Rab11bKD (24%) (P<0.01), Rab35KD (23%) 

(P<0.05), VAMP7KD (32%) (P<0.001) and VPS25KD (20%) (P<0.01), respectively (Figure 4.8 C). 

The selected knockdowns, therefore, appeared to have an impact on the cell-derived, 

nanoparticles produced, except for the CD9KD. 

Solely relying on NTA to characterise vesicles based on size distribution profiles is not 

sufficient, as it does not discriminate vesicles from other nanoparticles or any other non-

vesicular aggregates of protein/cell debris. Therefore, other related assays (Western blot or 

plate-based assays) are used to confirm the vesicle levels in the total secretome. To confirm 

vesicle loss from DU145 control, CD9KD, Rab5aKD, Rab11bKD, Rab35KD, VAMP7KD and VPS25KD 

cells, we used ultracentrifugation to concentrate vesicles in bulk. For the following 

experiments, cell counts were used as a basis for correcting differences in cell numbers at 

the CM harvesting time. Pelleted vesicle concentrates were obtained from cell CM, as 

previously described. Western blot was performed to observe the presence of any exosomal-

associated proteins in the vesicles derived from knockdowns. Membranes were probed for 

ESCRT-related proteins; ALIX and TSG101; lysosomal associated membrane proteins, LAMP1 

and LAMP2; heat shock proteins HSP70 and HSP90; and GAPDH. Data for the CD9KD in terms 

of Western blot, matched the NTA dataset to some degree, where we observed little change 

in the levels of ALIX, GAPDH, HSP90 and TSG101, despite a modest reduction in intensity for 

HSP70, LAMP1 and LAMP2 (Figure 4.9). Following Rab5aKD, the Western blots pointed to a 

general increase in intensity for ALIX, GAPDH, HSP90, LAMP1 and LAMP2, despite little 

change in HSP70 or TSG101, consistent with NTA data showing an increase in particles/cell. 

In contrast, the Western blots revealed a general reduction in levels of ALIX, HSP70, HSP90, 

GAPDH, LAMP1, LAMP2 and TSG101 for the Rab11bKD, Rab35KD or VPS25KD. This agreed with 

the NTA data and would be consistent with a partial attenuation in exosome secretion. 

Similarly, VAMP7KD followed this trend, despite showing little change in ALIX and TSG101 

protein. Despite these trends, it remains difficult to assess changes in protein target levels, 

as it depends on the knockdown target.  

Next, we characterised these vesicle concentrates from the DU145 control, CD9KD, Rab5aKD, 

Rab11bKD, Rab35KD, VAMP7KD and VPS25KD cell CM (described previously), using a plate-based 

assay to examine surface expressing tetraspanins (CD9 and CD81). Vesicle concentrates were 

corrected to cell number, as previously described. We examined the relative level of 

tetraspanin positive vesicles, compared to controls. Vesicles derived from the CD9KD, 
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demonstrated a significant reduction in CD9 signal (P<0.001); as expected (Figure 4.10). 

Similarly, there was an attenuation (<50%) in CD9 signal with the Rab11bKD, Rab35KD and 

VAMP7KD (P<0.01); and likewise, with the VPS25KD (P<0.001), compared to controls. 

Consistently, there was an increase (80%) in CD9 signal for the Rab5aKD (P<0.001), similar to 

the Western blot and NTA data. Despite showing no significant differences in CD81 signal, 

we observed the same trends with each knockdown, as we saw for CD9-signal (Figure 4.10). 

In summary, stable knockdown of at least >70% was achieved for each target, without 

unleashing gross cytopathic or toxic effects. Although the mRNA was effectively diminished, 

exosome concentrates for Rab11b or Rab35 resulted in a modest 23% decrease only. 

VAMP7KD was similar, but gave no changes in levels of ALIX or TSG101. These are difficult to 

interpret, whether indicative of a protein and/or a vesicle effect. The CD9KD demonstrated 

little changes in vesicle number, but may have some effect in controlling protein-cargo 

loading onto vesicles, although this remains difficult to understand. In contrast, Rab5aKD 

showed increased levels of exosome concentrates, though this is unknown whether this is 

due to increased exocytosis or blockade of endocytosis. Silencing VPS25, however, remains 

difficult to assess, whether this is due to the toxic cellular effect or genuine vesicle function. 

Based on our evidence, we decided to explore the importance of Rab11b and Rab35, in terms 

of vesicle structure and endosomal/lysosomal distribution in cells. 
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Figure 4.8: Characterising vesicles from lentiviral transduced DU145 cell CM by NTA. Cell CM was collected from DU145 control, CD9KD, Rab5aKD, 

Rab11bKD, Rab35KD, VAMP7KD and VPS25KD cells, cultured for 7 days. CM was analysed by NTA and six replicate measurements, revealing (A) the 

overall size distribution (histogram), (B) modal particle size and (C) the number of particles, adjusted for cell number (particles per cell: p/cell) is 

shown. The background of particles in the culture medium has been subtracted. These data are from a contiguous experiment and are 

representative of three such experiments. Graph shows mean ± SEM, based on 6 replicates. n.s: non-significant, *P<0.05, **<0.01 and 

***P<0.001. One-way ANOVA with Tukey’s post hoc test. 

(A) 
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Figure 4.9: Characterising vesicles from lentiviral transduced DU145 cell CM by Western 

blot. Cell CM was collected from DU145 control, CD9KD, Rab5aKD, Rab11bKD, Rab35KD, 

VAMP7KD and VPS25KD cells, cultured for 7 days. CM underwent a basic differential 

ultracentrifugation method, followed by filtration through a 0.22µm filter, before 

ultracentrifugation at 200,000 x g for 2 hours in a fixed angle 70Ti rotor to obtain vesicle 

concentrates. Vesicle concentrates corrected for cell number were loaded. Six different 

exosomal-associated proteins (ALIX, HSP70, HSP90, LAMP1, LAMP2 and TSG101) were 

probed by Western blot. 
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Figure 4.10: Characterising vesicles from lentiviral transduced DU145 cell CM by a plate-

based assay. Cell CM was collected from DU145 control, CD9KD, Rab5aKD, Rab11bKD, 

Rab35KD, VAMP7KD and VPS25KD cells, cultured for 7 days. CM underwent a basic 

differential ultracentrifugation method, followed by filtration through a 0.22µm filter, 

before ultracentrifugation at 200,000 x g for 2 hours in a fixed angle 70Ti rotor to obtain 

vesicle concentrates. Vesicle concentrates corrected for cell number were captured onto 

high protein binding ELISA plates. Expression of (A) CD9 and (B) CD81 were analysed and 

plotted as relative levels, compared to control cells. Graph shows mean + SEM, based on 

duplicate wells, due to the limitation of sample availability. n.s: non-significant, **<0.01 

and ***P<0.001. One-way ANOVA with Tukey’s post hoc test. 
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4.1.7 Characterising Vesicle Structures by Cryo-EM From DU145 Control or Rab11bKD or 

Rab35KD Cells 

To understand the structure of nanometre sized vesicles, direct imaging would be a preferred 

characterisation technique. However, due to the limitation of their nanometre size, vesicles 

are at the lower limit of resolution for conventional light microscopy techniques. Although 

confocal or fluorescence microscopy can detect the larger nanometre-sized vesicles 

(>200nm), the fine details cannot be resolved (Piccin et al., 2007); although attempts have 

been made, but none seem quite successful. One of the commonly used methods to 

determine vesicle’s size and structure is TEM. Though some concerns about the reliability of 

analysis of pelleted vesicles (dehydration and fixation) for TEM may alter vesicle size and 

morphology. Other ‘newer’ methods, such as cryo-EM, led to finding that the ‘cup-shaped’ 

morphology of exosomes was an artefact related to fixation for TEM (Théry et al., 2006). 

Despite these concerns, cryo-EM is the only method by which the nature of the vesicles size 

and structure may be determined at the same time. Here, the morphology of vesicles derived 

from DU145 control, Rab11bKD or Rab35KD cell CM were examined using cryo-EM in 

collaboration with Prof. Juan Manuel Falcón-Pérez (CIC bioGUNE, Derio, Spain). To perform 

this, vesicle concentrates were resuspended in PBS and placed onto glow-discharged holey 

carbon grids. Grids were blotted at 95% humidity and rapidly plunged into liquid ethane with 

the aid of VITROBOT. Vitrified samples were imaged at liquid nitrogen temperature, using a 

JEM-2200FS/CR cryo-TEM (JEOL, Japan), equipped with a field emission gun and operated at 

an acceleration voltage of 200 kV. Vesicle samples were viewed, revealing circular vesicle 

structure with a thick outer boundary, typical of a lipid bilayer.  

Representative images are presented from DU145 control, Rab11bKD- or Rab35KD- derived 

vesicle concentrates, showed the presence of exosomes (Figure 4.11 A - C). The vesicles were 

heterogeneous in size, demonstrating that the population of vesicles from either control or 

knockdowns are not uniform as expected; and comparable to other reports of vesicle 

analysis by others (Caby et al., 2005, Yuana et al., 2013, Royo et al., 2017). From these 

representative images, there appeared to be fewer smaller sized (<50nm) vesicles in the 

Rab11bKD images (Figure 4.11 B), compared to controls. Though, there appears to be an 

increase in smaller sized vesicle-like structures (<20nm) in the Rab35KD (Figure 4.11 C), that 

may reflect the impact of knockdown on vesicle heterogeneity. Overall, these representative 

images appear to show the presence of vesicles, with all well recognised within the 

established diameter range of exosomes at 30nm - 150nm reported by various studies 

(Raposo et al., 1996, Escola et al., 1998, Yuana et al., 2013). 
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Figure 4.11: Characterisation of vesicles from DU145 control, Rab11bKD or Rab35KD cells by cryo-EM. CM from (A) control, (B) Rab11bKD or (C) 

Rab35KD cells were concentrated by 200,000 x g ultracentrifugation into vesicle pellets, that were resuspended in PBS and placed onto glow-

discharged holey carbon grids. Grids were blotted at 95% humidity and rapidly plunged into liquid ethane with the aid of Vitrobot. Samples were 

imaged at liquid nitrogen temperature using a JEM-2200FS/CR cryo-TEM (JEOL), equipped with a field emission gun. The vesicles were viewed 

under cryo-EM, confirming the presence of lipid-bounded vesicle structures typical of exosomes. Scale bar: 100nm.  
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4.1.8 Distribution of Endosomal/Lysosomal Markers in DU145 Rab11bKD or Rab35KD Cells 

Previous studies have demonstrated that silencing Rab27a (Ostrowski et al., 2010) or Rab35 

(Hsu et al., 2010), results in an accumulation of MVEs within the cell, because of attenuated 

exosome secretion. These alterations are often associated in distribution changes with 

endosomal/lysosomal compartments, revealing MVE accumulation that may otherwise be 

exosomally-secreted. We next investigated the impact of knocking down Rab11b and Rab35 

upon the endosomal compartments in DU145 cells. These following experiments involved 

immunofluorescent microscopy and flow cytometry staining for the tetraspanins (CD63 and 

CD81) and LAMP2. We also included early endosome antigen 1 (EEA1), as a marker for the 

early endosome. For assessing whole cell populations, flow cytometry was carried out on 

fixed/permeabilised cells for the markers, as described. 

Here, we examined the impact of Rab11bKD or Rab35KD, in relation to any alteration in size or 

distribution and accumulation of proteins in late endosomes/lysosomes. There was clear 

evidence for an elevation in intracellular CD63, LAMP1 and CD81, following knockdown of 

Rab11b or Rab35 (Figure 4.12 A - C), compared to controls. The weak and diffuse punctate 

staining of CD63, LAMP1 and CD81 in control cells became more intense, with increased peri-

nuclear accumulation. On the other hand, staining for EEA1 (Figure 4.12 D) remained 

punctate and diffuse within the cytosol with no significant alteration in intensity or 

distribution, suggestive of the early endosomes remaining unaffected following knockdown.  

Next, we performed flow cytometric analysis on control and knockdown cells, showing 

similar results to immunofluorescent staining. However, the results indicated the median 

fluorescent intensity (MFI) are weak and this may be due to sub-optimal staining or sub-

optimal cell permeabilisation (Figure 4.13 A - C). Nevertheless, we observed a significant 

elevation (40%) in the MFI of CD63 (Figure 4.13 D) was observed in both Rab11bKD and 

Rab35KD (P<0.001), compared to controls. This was also true for LAMP1 staining 

accumulation (40% increase) (Figure 4.13 E), in Rab11bKD (P<0.05) and Rab35KD (P<0.01). 

Interestingly, data for CD81 (Figure 4.13 F), showed a significant difference in Rab11bKD 

(P<0.05), but not for Rab35KD. Consistently, EEA1 (Figure 4.13 G) MFI remained not 

significantly altered following either knockdown, suggesting that early endosomes are not 

affected. Here, the cells demonstrate that knockdown of Rab11b or Rab35 impacts the 

organisation of the late endosomal or lysosomal compartments and not early endosomes, 

consistent with the previous published data related to attenuated exosome secretion.   
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Figure 4.12: Immunofluorescent staining of endosomal/lysosomal markers in DU145 

control, Rab11bKD or Rab35KD cells. Fixed-permeabilised DU145 control or Rab11bKD or 

Rab35KD cells were stained for markers of late endosomes/lysosomes: (A) CD63, (B) 

LAMP1, (C) CD81, or a marker of early/recycling endosomes EEA1 (D) and labelled with 

Alexa-488, and DAPI. Wide-field fluorescence microscopy, with structured illumination 

was performed, and images show representative microscopic fields, as Z-axis sections 

overlaid to generate maximum projection images. The grey box shows selected regions 

at higher magnification. Scale bar: 20µm and 5µm respectively. Representative fields are 

shown. 
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Figure 4.13: Flow cytometric analysis of endosomal/lysosomal markers in DU145 control, Rab11bKD or Rab35KD cells. Flow cytometry analysis of 

fixed-permeabilised DU145 control, Rab11bKD or Rab35KD cells. (A) Representative dot plot image of size and granularity distribution of cells. Region 

of interest (P1) was selected to include single and viable cell populations. Representative histograms shows an example of LAMP1 staining in 

fix/permeabilised DU145 control and (B) Rab11bKD and (C) Rab35KD cells. Median fluorescent intensities (MFI) were plotted after isotype subtraction 

(based on 5,000 events), based on other primary antibodies against: (D) CD63, (E) LAMP1, (F) CD81 and (G) EEA1. Graph shows mean + SEM, based 

on duplicate samples. n.s: non-significant, *P<0.05, **<0.01 and ***P<0.001. One-way ANOVA with Tukey’s post hoc test. 
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4.1.9 Protein Profiling of Vesicles or the Soluble Secretome Following Rab11b or Rab35 

Knockdown 

The Rab proteins are known to function collectively in regulating a myriad of membrane 

transport processes. However, disrupting the intracellular traffic regulators may have 

unexpected effects on the secretome. In one report, silencing Rab27a resulted in effective 

exosome attenuation, although, this also impacted on the secretion of a subset of cytokines. 

For example, the secretion of pro-MMP-9 were significantly reduced, or in contrast cells 

displayed increased tendencies to secrete granulocyte-colony stimulating factor (G-CSF); but 

none were secreted in associated with vesicles (Bobrie et al., 2012). These results highlight 

silencing Rab27a not only impacts the secretion of MVE derived exosomes, but also regulates 

the secretion of a subset of soluble proteins.  

Here, we investigated whether the secretion of non-exosome associated secreted factors 

present in cell CM (total secretome) and changes arising in the vesicle concentrates, could 

also be affected upon knockdown of Rab11b or Rab35. We performed a sensitive Proximity 

Ligation Array (Proseek® Multiplex Immuno-Onc I96x96) for this experiment, which measured 

the expression of 92 proteins across various samples, to sub picogram sensitivity. This 

sensitive array was performed because soluble factors are often at low concentrations that 

are difficult to detect by the Array. From the Array, many proteins were reported below the 

LOD, whilst detectable signal was present for 46 proteins in the total secretome. With 

respect to the vesicle concentrates a total of 38 proteins were detected (Figure 4.14). 

First, we compared the profile of vesicle-rich pellets from DU145 control cells, compared to 

vesicle pellets from Rab11b or Rab35 knockdowns. The data is presented as fold-changes 

compared to control cells; and revealed around 18 analytes exhibiting greater than 2-fold 

changes in relative abundance following knockdown (Figure 4.15 A). Though the extent of 

change was dissimilar, the direction of change was similar for both Rab11b and Rab35 

knockdowns, all except for some cases. For example, CXCL6 was >3.8 fold decreased in 

vesicles derived from the Rab11b knockdown, compared to >2 fold increased from the Rab35 

knockdown. The factors were significantly different (P<0.05) compared to control cells, as 

shown in the volcano plot (Figure 4.15 B). This highlights a reduction in MMP-1, but an 

elevation in CXCL6, IL18R1, TGFα, TNFRSF3, TRAIL and VEGF-A in vesicle pellets derived from 

Rab35 knockdowns. In contrast, vesicle concentrates from the Rab11b knockdown 

demonstrated decreased levels of AXL1N, CXCL6, TRAIL and TWEAK; and showed an 

elevation in 4E-BP1. This data revealed that despite showing similarities across vesicle 
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samples, there are examples where the vesicle populations following knockdown of Rab11b 

or Rab35, are not identical. 

Similar comparisons were made comparing with cell CM (Figure 4.15 C). We observed 

numerous changes with the DU145 Rab11bKD and Rab35KD cells, compared to controls. As 

examples, LIF (>30 fold) and IL-6 (>36 fold) expression were significantly elevated in the 

Rab35 knockdown cell secretome, but were not a feature of the vesicle-rich pellets. This 

suggests that these are present as soluble rather than in association with vesicles. Changes 

in CXCL6 and 4E-BP1 in the Rab11b knockdown, or CXCL6, IL18R1 in the Rab35 knockdown 

(Figure 4.15 D), however, agreed in both the general secretome and vesicle pellets; which 

were at least partially vesicle-related. Protein profiling the secretome highlights several 

examples of dissimilarity and showed Rab11b or Rab35 knockdown imparts distinct effects 

on the general secretome and which are not vesicle exclusive. 
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Figure 4.14: Venn diagram depicting the Protein Array in CM and vesicle pellets. The 

Venn diagram depicts the entire Proseek® (Multiplex Immuno-Onc I96x96) Protein Array 

menu (of 92 analytes); and shows those identified with signal above the limits of 

detection in cell conditioned media and vesicle pellets (green, 38 analytes), or those 

found in cell conditioned media but reported with no signal in vesicle pellets (orange, 8 

analytes). Half of the menu (blue, 46 analytes), were below detection limits. Specific 

identifications in each category are shown. 
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Figure 4.15: Knockdown of Rab11b or Rab35 alters the protein profile of vesicle concentrates and the general secretome. Cell CM from control 

or knockdown cells were concentrated by 200,000 x g ultracentrifugation and pellets normalised for protein, were analysed using the Proseek 

Multiplex Proximity Ligation Array, with coverage of 92 analytes related to inflammation. Analysis represent differences in levels of those 38 

analytes reporting with signals above the assay limits of detection (LOD), comparing the vesicle-pellets derived from RAB11b or Rab35 relative 

to control. (A) The waterfall plot lists the analytes, and plots log10-fold change compared to control levels. (B) The volcano-plot identifies 

differentially expressed analytes with a fold change>2 and a P value<0.5 (T-test). Similarly, cell conditioned media was analysed (without 

concentrating vesicles), representing the secretome, showing (C) waterfall and (D) a volcano-plot as above for the 48 analytes reporting with 

signals above the LOD. 
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4.2 Discussion 

In this Chapter, we investigated whether our choice of factors putatively implicated in 

exosome biogenesis and secretion can be successfully knocked down using lentiviral particles 

delivering specific shRNAs. Puromycin was used in gene selection for mammalian host cells 

and identified the minimal puromycin concentration to kill all non-resistant cells, which was 

used to conditioned transduced DU145 cells with specific shRNA clones. 

RNA-mediated silencing is an evolutionary conserved mechanism, through which dsRNA 

induces inactivation of specific gene sequences. The discovery of RNAi provided researchers 

with a rapid rise in identified genes underlying many biological processes and produced 

phenotypes that revealed gene function (Moffat et al., 2006). Its success is attributed to an 

evolutionary endogenous pathway present in all cell types, that regulates gene expression 

commonly achieved by siRNA or shRNA. The use of exogenously supplied siRNA that mimic 

the functions of miRNAs, but are designed to have a greater specificity to their targets by 

having complementary sequences, can assemble with RISC and have siRNA-mediated target 

recognition; thus mRNA cleavage and degradation (Brennecke et al., 2005). One drawback 

to using this is the depletion of siRNA over a few days and a loss of effect, with recovery of 

cells to the wild-type phenotype. As an alternative to this method, we used shRNA and its 

delivery through a lentiviral vector-expressing plasmid, which contains a selection marker 

(puromycin). This produces a dsRNA structure that is similar to the pri-miRNA of the cell and 

is produced accordingly to the miRNA mimic, the siRNA. Hence, we achieved continuous 

stable expression of shRNA for suppressing the target gene (Lee et al., 2003, Sigma, 2016). 

Many studies have utilised shRNA as a powerful tool to study gene function in both in vitro 

and vivo models (Stewart, 2003, Van den Haute et al., 2003, Singer and Verma, 2008, Wilson 

et al., 2013). Similarly, our knockdowns still remain stable over 15 weeks and all 

characterisation and functional experiments were performed, prior to 15 weeks. 

Our results initially confirmed that knockdown targets were reduced (70 - 97%) at the mRNA 

level; and we evaluated if these knockdowns would translate into attenuated protein levels. 

We demonstrated attenuated expression of target proteins in lentiviral transduced DU145 

cells, with an overall agreement of the mRNA knockdown. As one example showing mRNA 

expression was strongly decreased by 86% in DU145 CD9KD (#711 clone) cells, it’s impact on 

protein was not similar, compared to the #470 clone. Since biological processes are typically 

driven by proteins, mRNA expression signatures results are thought of as a proxy for 

functional pathway changes, involving changes in protein levels. This requires the 
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assumption that global differences in mRNA levels reflect differences in protein levels. 

Comparisons attempting to directly determine how closely mRNA expression levels reflect 

those corresponding to proteins, have revealed weak to moderate correlations between 

both mRNA and protein markers (Anderson and Seilhamer, 1997, Tian et al., 2004, Pascal et 

al., 2008, Koussounadis et al., 2015). Differences in the mRNA vs protein correlation show a 

surprisingly weak correlation of 0.40; signifying that only ~40% of protein concentration can 

be explained by knowing mRNA abundance (de Sousa Abreu et al., 2009, Schwanhausser et 

al., 2011). The other ~60% of the variation could be explained by a combination of post-

transcriptional and post-translational regulation, half-life of different proteins varying from 

minutes to days; and by measurement errors (Maier et al., 2009, Vogel and Marcotte, 2012). 

Thus, we felt it was important to evaluate and select our knockdowns sequences on a 

combination of diminished mRNA and protein levels. 

We next determined whether the phenotypic consequence of gene knockdown would 

impact cell proliferation or morphology. Similar cobblestone-like cell morphology was 

observed in all lentiviral transduced DU145 cells. There was slightly reduced cell proliferation 

seen with knockdown of CD9 and Rab5a in DU145 cells; and this was more pronounced with 

the knockdown of VPS25. The connection between VPS25 knockdown and cell proliferation 

extends to fungal species, where VPS25 inhibition interrupts the division of cells and invasive 

growth (Sarode et al., 2011). In Drosophila models, many of the mutations related to VPS-

related proteins and in particular VPS25 mutant cells, are very sensitive to apoptosis (Herz 

et al., 2006). With this evidence, we proposed that VPS25 have roles in reducing cell 

proliferation and a slower rate of reaching confluency. However, to assess vesicle secretion, 

DU145 VPS25KD cells experienced some toxicities, which is extremely difficult to assess, as 

these cells are undergoing cell death that can produce apoptotic blebs and cellular debris to 

confound analysis of exosome secretion. We did not, therefore, evaluate the remaining 

vesicle population in detail for this cell line. 

CD9 was first documented in exosomes derived from dendritic cells (Théry et al., 1999). 

Several studies describe CD63 and CD81 as the most frequently identified proteins in 

exosomes, which are considered classical markers (Kobayashi et al., 2000, Caby et al., 2005, 

Logozzi et al., 2009). Here, silencing CD9 showed a partial decrease in protein content of 

LAMP1, LAMP2 and HSP70, whilst no significant changes in particles/cell. There are, 

however, some conflicting studies. In one report, exosome release from dendritic cells 

generated from CD9 knockout (CD9KO) mice was reduced, compared to wild type dendritic 

cells (Chairoungdua et al., 2010). In a different model, knockdown of CD9 in Nalm-6 pre B-
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cells resulted in a decrease in CD10-associated vesicles (Mazurov et al., 2013). In a similar 

tetraspanin model, in the absence of CD63 expression, ILV formation and downstream MVE 

biogenesis were severely reduced, but not any MVEs requiring sphingomyelinase expression 

or activity (van Niel et al., 2011). The results we observed differs from other studies and 

suggests that knockdown of CD9 has little effect on vesicle number, but some effect in 

controlling the protein-cargo loading onto the vesicle. Perhaps, CD9 may contain a 

population of vesicles that are independent of ALIX and TSG101, but are important for 

LAMP1, LAMP2 and HSP70. This data reveals there is a full complex mechanism for vesicle 

manufacture by the cells and the data do not possess a definite explanation yet of the CD9 

role. 

Also, we next investigated the impact of the SNARE protein (VAMP7) in exosome secretion 

by DU145 cells. Silencing VAMP7 caused a modest decrease in particles/cell and other 

exosomal-associated markers (CD9, LAMP1 and LAMP2) in the remaining vesicle pellet. With 

a role in membrane fusion between intracellular endosomal compartments, VAMP7 is 

potentially involved in the final steps of exosome secretion. Currently, there are few studies 

to address the requirement of SNAREs in exosome secretion. Our results are consistent with 

the finding that VAMP7 is involved in exosome secretion by K562 cells (Fader et al., 2009). 

Expression of the N-terminal domain of VAMP7, which impairs the formation of the SNARE 

complex, induced the accumulation of enlarged MVEs at the cell periphery and reduced 

exosome secretion, similar to other studies targeting exosome secretion by other means 

(Bobrie et al., 2012, Webber et al., 2015). Likewise, YKT6 is another SNARE protein implicated 

in membrane fusion, YKT6 inhibition led to a reduction in exosome release in lung cancer 

models (Ruiz-Martinez et al., 2016). There are some conflicting studies demonstrating that 

VAMP7 is not required for exosome secretion (Rao et al., 2004). In one report, expression of 

the longin domain (N-terminus) of VAMP7 inhibits the secretion of lysosomes, but not of 

exosomes (Proux-Gillardeaux et al., 2007). These findings indicate that different SNARE 

complexes may function differently in specific cell types and might be involved in fusion of 

certain endosomal compartments. Therefore, different SNARE complexes could mediate 

only a certain subpopulation of MVEs within a single cell type, as highlighted by another 

group (Colombo et al., 2013); and VAMP7 downregulation might only affect a specific 

exosome subpopulation. Our data shows quantification of some exosomal-associated 

markers (ALIX and TSG101) remains unaltered in the knockdown of VAMP7, compared to 

controls. The results we observe differ from other studies, and suggests that knockdown of 

VAMP7 attenuates vesicles secretion by 31%, but show little changes in the levels of ALIX 



Chapter 4. Generating Exosome-Deficient Cancer Cells 
 

126 
 

and TSG101. Perhaps VAMP7 may contain a population of vesicles that are dependent of 

ESCRT-related proteins, but not important for LAMP1, LAMP2, HSP70 and HSP90. It could be 

possible that VAMP7 may govern a specific MVE subpopulation, though this data reveals the 

complex mechanism for vesicle secretion and does not provide a definitive role of VAMP7.  

In contrast, silencing Rab5a induced an increase in exosome secretion by 25%, which may be 

a potential candidate for enhancing the extracellular vesicle content, either through 

enhanced accelerated secretion, or equally by dysregulating the cell’s capability to 

endocytose and process vesicles through an autocrine fashion. Some studies reveal 

overexpression of Rab5 impairs early intra-endosomal trafficking and causes MVEs to 

enlarge, severely reducing exosome secretion and respective markers (ALIX, CD63 and 

syntenin) in MCF-7 cells (Baietti et al., 2012). Likewise, knockdown of endogenous Rab5 

increased the number of secretory granules per mast cell in the immunological setting (Azouz 

et al., 2014). These findings conflicted with other observations, where exosome secretion is 

decreased upon Rab5a targeting (Ostrowski et al., 2010). Multiple studies, however, have 

documented that knockdown of Rab5 decreased uptake levels of horseradish peroxidase in 

NIH3T3 cells (Su et al., 2006), low-density lipoproteins in primary mouse hepatocytes 

(Zeigerer et al., 2012) and Staphylococcus aureus (S. aureus) uptake in Cos-7 cells (Hagiwara 

et al., 2014). These studies suggests Rab5 plays potential roles in endocytic uptake. Other 

studies have also shown the role for Rab5a-mediated autophagy, together with a key 

autophagic protein (Beclin-1), between the early stages of autophagosome-mediated fusion 

with the lysosome (Maroni et al., 2016, Tan et al., 2016). Different Rab5 isoforms for 

endosomal trafficking show that in HeLa cells, Rab5aKD or Rab5bKD impairs and delays EGFR 

degradation and consequently delays early to late endosome trafficking, whereas Rab5cKD 

does not affect EGFR degradation (Chen et al., 2009). With no direct evidence to these 

speculations, it could be hypothesised that cargo in the early endosome is typically fated for 

Rab5a-mediated autophagic degradation. Rab5a inhibition could potentially redirect 

endosomal compartments to a different pathway (exocytosis), hence increased exosome 

secretion, yet this should be investigated in further detail.  

From our data, silencing either Rab11b and Rab35 appears to have attenuated exosome 

secretion from DU145 cells, confirmed by a reduction in exosomal-associated proteins (ALIX, 

HSP70, HSP90, LAMP1, LAMP2 and TSG101) and tetraspanins (CD9 and CD81) within the 

remaining vesicle pellet and a modest reduction (20%) in particle/cell. Supporting these 

findings, other studies focusing on Rab11 in K562 cells and Rab35 in oligodendrocytes, have 

demonstrated that silencing either protein appears to attenuate exosome secretion (Savina 
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et al., 2002, Hsu et al., 2010). Given the amount of evidence available, we generated 

knockdowns of Rab11b or Rab35 to give a genuine, but modest, perturbation on exosome 

secretion and provided the basis of selected target for future investigation. 

There was no general failure in trafficking machinery following Rab11b or Rab35 knockdown, 

as early endosomes appeared unaffected and the knockdowns showed only a limited impact 

on exosome secretion. Silencing Rab11b or Rab35 also accumulated levels of CD63, LAMP1 

and CD81 around the nuclei, signifying an accumulation of potential MVEs in the cells, which 

agreed with other studies in a similar Rab27a knockdown model (Ostrowski et al., 2010, 

Webber et al., 2015, Grimsey et al., 2016). Similarly, it was noted that knockdown of Rab27a 

demonstrated reduced MVE docking, despite an increase in MVE size (Ostrowski et al., 2010). 

This could be explained by a lack of motor linkage resulting in enlarged compartments. 

Myosin Va is a widely expressed actin-based protein, binding only to a subset of Rab proteins 

(Rab8, Rab11b and Rab27a), associated with either endocytic recycling and post-golgi 

secretory systems (Desnos et al., 2003, Lindsay et al., 2013). In contrast, myosin Va does not 

directly bind to Rab35 (Rahajeng et al., 2012). However, Rab35 promotes the recruitment of 

Rab8 with MICAL-L1, a multiple Rab-binding protein mediating exocytosis (Kobayashi et al., 

2014). This may explain that a myosin Va-driven specific-Rab exchange mechanism is only 

conceivable during the late stages of exocytosis, as is the case for Rab11b or Rab35, 

transporting MVEs to the cell periphery by a kinase-driven mechanism; thus modulating 

exosome secretion. 

Visualisation of the nanometre-sized structures of the vesicles derived from either DU145 

control, Rab11bKD or Rab35KD cells was performed by cryo-TEM. As observed for controls, the 

200,000 x g vesicle pellet showed the presence of different populations of vesicles with 

different sizes ranging from 30nm-150nm. The existence of morphologically different 

exosome subpopulations among secreted vesicles is in agreement with other reports, 

showing the presence of different MVEs in a single cell (Möbius et al., 2003, White et al., 

2006, Bobrie et al., 2012, Willms et al., 2016), as these distinct exosomes may be formed in 

diverse MVEs. Alternatively, smaller sized vesicle-like structures (<10nm), exhibit a dense 

centre without a distinctive bilayer membrane was observed in the knockdown of Rab35. It 

was demonstrated that mutant Rab35 redirects many receptors to be found in smaller sized 

vesicles (<30nm in diameter), suggesting an accumulation in transport intermediates (Sato 

et al., 2008). In contrast, no smaller size vesicles were detected in the knockdown of Rab11b. 

From these images, there could possibly be an underestimation of the particle/cells in the 

knockdown of Rab35. NTA enables the analysis of nanoparticles around 20nm, provided the 
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samples have a high refractive index (Gardiner et al., 2014), but biological samples are often 

complex and in reality, the limit of detection is often around 40 - 50nm. Despite showing the 

differences behind the knockdown of Rab35 in generating <20nm vesicles, the mechanism 

behind this remains unknown and has not been addressed, but these images show the 

presence of distinct vesicle subpopulations as a result from each respective knockdown.  

Because of the similarities in data for Rab11bKD and Rab35KD, in terms of a partial attenuation 

of exosome secretion, characterised by exosomal-associated markers and NTA analysis, 

described above; the hypothesis is whether both Rab11b and Rab35 co-regulate an identical 

pathway. Here, a highly sensitive multiplexed proximity-ligation array was used to address 

this. There were significant changes in the protein profile of DU145 Rab11bKD-derived 

vesicles, with many overlapping similarities following knockdown of Rab35, but the 

phenotype between vesicles were not identical. The Array showed that CXCL6, TRAIL and 

TWEAK are proteins found in the DU145 Rab35KD-derived vesicles, compared to their 

decrease in DU145 Rab11bKD derived vesicles. These observations support the concept that 

different endosomal compartments and subsequent secreted vesicles, display different 

protein compositions (Bobrie et al., 2012, Colombo et al., 2013), governed by these Rab 

proteins. It remains difficult, however, to characterise specific markers to analyse different 

vesicle populations, either based on different isolation techniques or different endosomal-

derived vesicles. Published reports have highlighted the presence of vesicle heterogeneity 

(Lazaro-Ibanez et al., 2014, Smith et al., 2015, Willms et al., 2016); and one study has 

attempted to distinguish different vesicles by a proteomic comparison, attempting to define 

new markers (Kowal et al., 2016). Here, our data reveals vesicle heterogeneity, with respect 

to remaining vesicles enriched with distinct proteins, following knockdown of Rab11b or 

Rab35 in DU145 cells. 

Inhibition of Rab11b or Rab35, however, for assessing subsequent exosome function should 

be taken with a degree of caution, as this may impact secretion of soluble factors. It is not 

completely understood what interplay between vesicles that are truly separate from the 

soluble secretome. However, many databases, such as ExoCarta (Mathivanan and Simpson, 

2009) and Vesiclepedia (Kalra et al., 2012), highlight vesicle association with various 

cytokines, eicosanoids and growth factors. Hence, the loss of a vesicle subpopulation may 

impact on the soluble secretome, as these are no longer available to tether molecules to 

their surface as a manner of sequestration. In a breast carcinoma model, secretion of other 

non-exosome-associated proteins, such as MMP-9, was decreased, with the Rab27a 

knockdown model (Bobrie et al., 2012). Likewise, other secreted soluble factors such as PDGF 
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and placental growth factor (PGF), in melanoma cells were decreased following Rab27a 

knockdown (Peinado et al., 2012). Control of MVE trafficking by Rab GTPases have potential 

broad effects on exocytic events, that cannot be assumed to be exosome-selective. 

In this Chapter, we have successfully transduced DU145 cells with specific shRNA and 

validated these DU145 knockdown cell lines at the mRNA and protein level. We have 

demonstrated that Rab11b and Rab35 play minor roles in terms of overall secretion of 

exosomes and abrogate distinct subpopulations of exosomes.  We will take forward both 

DU145 Rab11bKD and Rab35KD cells, to explore the functional impact of a loss of these 

exosome subpopulations has upon the cancer-associated stroma.
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5.1 The Impact of Exosome-Deficient Tumour Cells on the Stroma 

5.1.1 Introduction 

Tumours are complex structures of malignant cancer cells surrounded by stroma, pivotal for 

cancer growth and progression (Hanahan and Weinberg, 2011). The tumour stroma consists 

of cellular and non-cellular components. Cellular components include immune cells, 

endothelial cells, mesenchymal stem cells and fibroblasts, whereby non-cellular components 

include growth factors and other signalling molecules (Kalluri and Zeisberg, 2006). While 

none of these cells are themselves malignant, their complex reciprocal interaction with each 

other and tumour cells, creates a tumour microenvironment that supports local growth, 

invasion and ultimately dissemination. Exosomes plays large roles in intercellular 

communication, between cancer and stromal cells, resulting in tumour microenvironment 

maturation, aiding tumour growth in a variety of systems (Chowdhury et al., 2015, Saleem 

and Abdel-Mageed, 2015, Webber et al., 2015, Baglio et al., 2017). 

Fibroblasts are one of the dominant cell types within the tumour microenvironment of many 

solid cancers and then play pivotal roles in dictating the nature of cancer-activated stromal 

tissues. For this study, we relied on an extensively well-characterised primary cell as a model, 

to assess stromal-fibroblast phenotypes under the influence of cancer cells. The AG02262 

normal diploid adult lung fibroblasts (from Coriell Institute) were used, as these have limited 

population doubling levels and become senescent post-passage 10. They have previously 

been studied for their capacity to differentiate to myofibroblasts (Webber et al., 2009, 

Webber et al., 2010, Midgley et al., 2013, Chowdhury et al., 2015, Webber et al., 2015). These 

fibroblasts can differentiate into myofibroblasts under the control of recombinant human 

TGF-β1 (rhTGF-β1) and have been used in studying exosome-controlled differentiation 

(Webber et al., 2010, Webber et al., 2015). Myofibroblasts are determined by the acquisition 

of alpha-smooth muscle actin (α-SMA), together with cell contractility (Hinz et al., 2012). 

Since the classic observations of many histological similarities between the tumour 

microenvironment and wound healing, it has been proposed that the tumour stroma is 

“wound healing gone awry” (Dvorak, 1986). During normal wound healing, coagulation of 

extravasated blood initiate an intricate cascade of signals that recruit inflammatory cells, 

stimulate fibroblasts and epithelial cell proliferation, direct cell migration and induce 

angiogenesis to restore tissue integrity (Kalluri and Zeisberg, 2006). This permits re-

epithelialisation of the injured region and the myofibroblasts undergo apoptosis when the 

injured site is fully covered by a new epidermis (Shaw and Martin, 2009). In the context of 
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carcinomas, this process is not self-limiting. As it is often associated with the chronic 

persistence of α-SMA positive myofibroblasts (Orimo et al., 2005), increased proliferation 

and invasion of epithelial cells, resulting in uncontrollable tumour growth and eventual 

metastatic spread (Coussens and Werb, 2002). 

For the metastatic spread of cancer tissue, the formation of a supportive vascular network is 

important. Tumour cells can penetrate into newly-formed and poorly organised blood or 

lymphatic vessels, pass through the lymphatic or peripheral circulation and then localise at 

other sites (Folkman, 1971). Angiogenesis occurs in a multi-step process involving 

endothelial cell activation by angiogenic factors, migration, proliferation and organisation of 

endothelial cells into vessel-like structures (Carmeliet and Jain, 2000). Tumour angiogenesis, 

however, relies on many of the same processes involved in physiological angiogenesis. This 

is associated with excessive growth-promoting signals and a lack of sufficient cues to spatially 

and temporally coordinate vessel growth, remodelling and maturation, fuelled in part by 

tumour-secreted factors and tumour hypoxia (Carmeliet and Jain, 2000, Trojan et al., 2004). 

The blood vessels produced by tumours are typically aberrant, where the tumour 

neovasculature is marked by distorted and enlarged vessels, leakiness and abnormal 

endothelial cell proliferation (Nagy et al., 2010). Numerous studies have demonstrated that 

angiogenesis directly associates with aggressive carcinomas and increasing incidences of 

tumour metastasis (Weidner et al., 1993, Jaeger et al., 1995, Parangi et al., 1996). Therefore, 

angiogenesis is considered an important aspect for primary tumour growth that provides a 

continual supply of nutrients, as one of the hallmarks for cancer (Hanahan and Weinberg, 

2011).  

A host of pro-angiogenic growth factors secreted from cancer epithelial and stroma cells 

have been identified. The VEGF family and their receptors (VEGFR) are powerful angiogenic 

mediators in cancerous tissues and adjacent stroma. Elevated expression of VEGF and VEGFR 

correlates with aggressive metastatic cancer, compared to non-metastatic tumours 

(Takahashi et al., 1995, Hoeben et al., 2004, Caballero et al., 2007). Expression of hepatocyte 

growth factor (HGF), has been shown to positively correlate with enhanced vessel formation 

in various in vitro and in vivo models (Xin et al., 2001, Abounader and Laterra, 2005). Basic 

fibroblast growth factor (bFGF) and epidermal growth factor (EGF) were expressed in 

malignant carcinomas, associating with increased CD31 (endothelial cell marker) expression, 

compared to non-tumour tissues (Dunn et al., 2000, Bajou et al., 2002, Trojan et al., 2004, 

van Cruijsen et al., 2005). Various studies showed that different growth factors are released 

from epithelial cells, or cells within the stroma, such as endothelial cells, mast cells or 
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fibroblasts (McNeil et al., 1989, Leon et al., 1994, Stadnyk, 1994, Grugan et al., 2010). These 

cellular components may therefore play a role in support of vessel formation, but the 

principal source of these growth factors should be explored. 

Fibroblasts within the tumour stroma have an activated phenotype, known to produce 

growth factors and chemokines, supporting ECM remodelling and facilitating the angiogenic 

recruitment of endothelial cells (Kalluri and Zeisberg, 2006). Breast cancer cells co-cultured 

with tumour-associated myofibroblasts demonstrated extensive vascular formation in vivo 

(Orimo et al., 2005). However, capillaries were far less established when tumour cells were 

co-cultured with normal fibroblasts. In intestinal tumours, tumour-associated myofibroblasts 

strongly stimulated the migration and vessel formation of vascular endothelial cells (Shao et 

al., 2006); and this has also been shown in gastric cancer in vivo models (Guo et al., 2008). 

However, not all myofibroblasts are pro-angiogenic. Current studies have shown that α-SMA 

positive myofibroblasts generated from rhTGF-β1 induced fibroblasts did not elevate 

angiogenic growth factors or support formation of endothelial vessel-like structures in vitro 

(Webber et al., 2015). In contrast, prostate cancer exosomes induced myofibroblasts, which 

were pro-angiogenic, exhibited elevated HGF and VEGF secretion and encouraged formation 

of endothelial vessel-like structures in vitro (Webber et al., 2015). In the in vivo setting, co-

administration of diseased prostate stromal myofibroblasts with tumour cells in mice 

enhanced tumour growth, in contrast to rhTGF-β1-treated fibroblasts or exosome-activated, 

normal stromal fibroblasts (Webber et al., 2015). These findings show the role of exosomes 

in communicating between tumour cells and the surrounding stroma, directing stromal 

differentiation to a tumour supporting phenotype. 

Previously, I have demonstrated that knockdown of Rab11b or Rab35 appeared to impact a 

distinct subpopulation of exosomes from DU145 cells. It remains unknown, however, 

whether the effect has any functional relevance in terms of cancer cell influence on stromal 

fibroblasts. The hypothesis is that the remaining vesicles, following Rab11b or Rab35 

attenuation, lose their stromal activating potency.  
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5.1.2 The Cancer Cell Secretome Triggers a Poor Fibroblast Differentiation Response 

We first measured secreted growth factor levels from the cancer conditioned media (CM) 

(control or Rab11bKD or Rab35KD), corrected for cell number (as described in Chapter 4). There 

were no significant differences in secreted levels of FGF-2, HGF, uPA and VEGF-A (Figure 5.1 

A-D) in either Rab11bKD or Rab35KD in comparison to controls. These observations are 

important, as it demonstrates that exocytic modulation by knocking down Rab11b or Rab35 

does not have a major effect on these important angiogenic factors. 

Next, we determined the fate of fibroblast differentiation in response to cancer cell CM 

(control or Rab11bKD or Rab35KD). Fibroblasts were grown until 70% confluent and growth-

arrested for 72 hours. Subsequently, fibroblasts were grown in DMEM-F12 media alone or 

with a single stimulation with rhTGF-β1 (1.5ng/ml), purified DU145 exosomes at an 

equivalent TGF-β1 dosage (200µg/ml) or cell CM (control or Rab11bKD or Rab35KD), corrected 

for cell number. After 72 hours, fibroblasts were fixed, stained and analysed by 

immunofluorescent microscopy, to explore α-SMA expression. The number of α-SMA 

positive cells was assessed over 6 microscopic fields and in duplicate treatments. Fibroblasts 

treated with either rhTGF-β1 or purified DU145 exosomes increased the number α-SMA 

positive cells, compared to untreated fibroblasts (Figure 5.2). Control cell CM had a negligible 

effect on α-SMA onset, where weak staining was evident in a small proportion of cells. There 

was a total absence of α-SMA-positivity in fibroblasts treated with Rab11bKD or Rab35KD cell 

CM. Thus, unlike rhTGF-β1 or purified exosomes, the soluble secretome appears insufficient 

to trigger a robust fibroblast differentiation response into α-SMA positive myofibroblastic 

cells under these conditions. 

The levels of growth factors, FGF-2, HGF, uPA and VEGF-A, secreted by untreated fibroblasts 

or fibroblasts treated with cancer CM were investigated (Figure 5.3). There was a significant 

reduction in HGF levels, following treatment with CM from Rab11bKD (P≤0.01) or Rab35KD 

(P≤0.001) cells, compared to the control (Figure 5.3 B). Similarly, levels of activated VEGF-A 

secretion followed the comparable trend of HGF and did not quite reach statistical 

significance when using knockdown cell CM (Figure 5.3 D). In contrast, levels of activated 

FGF-2 and uPA secretion (Figure 5.3 A & C), exhibited negligible changes in both control and 

knockdown conditions. These observations are important, as the cell CM effects are 

apparent following knockdown of Rab11b or Rab35. A full-blown differentiation was not 

observed and there were indeed, documented differences in the functional influence of the 

CM, following knockdown. For example diminished HGF and VEGF levels, suggestive that 

Rab11b or Rab35 must have a role in attenuating growth factor release. 



Chapter 5. The Impact of Exosome-Deficient Tumour Cells on the Stroma 
 

135 
 

  

Figure 5.1: Assessment of growth factor secretion from exosome competent and 

deficient tumour cells. Cell CM from DU145 control or knockdowns (Rab11b or Rab35; 

corrected for cell number), after 5 days of culture were analysed by ELISA for (A) FGF-2, 

(B) HGF, (C) uPA and (D) VEGF levels. Graph shows mean ± SEM, based on triplicate wells. 

n.s: non-significant. One-way ANOVA with Tukey’s post hoc test. 

(A) (B) 

(C) (D) 
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Figure 5.2: Cancer cell secretome triggers a poor fibroblast differentiation response. Fibroblasts at passage 7 were growth-arrested (72 hours) 

and were either left untreated, or treated in the presence of rhTGF-β1 (1.5ng/ml), purified DU145 exosomes (200ug/ml) or DU145 (CTR, 

Rab11bKD or Rab35KD) cell CM, corrected for cell number in DMEM-F12 media. Fibroblasts were examined by immunofluorescent microscopy for 

the expression of α-SMA (green) and DAPI (blue). Scale bar: 50μm. α-SMA positive cells over 6 microscopic fields were examined in duplicate 

wells per treatment. Representative fields are shown. Data are representative of three independent experiments. 

Data as representative of three independent experiments. 
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Figure 5.3: Fibroblasts treated with DU145 Rab11bKD or Rab35KD cell CM generate 

reduced pro-angiogenic growth factors. Fibroblasts at passage 7 were growth arrested 

(72 hours) and were either left untreated, or treated in the presence of the DU145 

(control, Rab11bKD or Rab35KD) cell CM, corrected for cell number in DMEM-F12 media. 

CM collected from different treated fibroblast conditions was analysed by ELISA for levels 

of (A) FGF-2, (B) HGF, (C) uPA and (D) VEGF. Graph shows mean ± SEM, based on triplicate 

wells. n.s: non-significant, **P≤0.01 and ***P≤0.001. One-way ANOVA with Tukey’s post 

hoc test. Data are representative of three independent experiments. 

 

(B) (A) 

(C) (D) 
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5.1.3 Vesicle Concentrates From Rab11bKD or Rab35KD Cell CM Lose Their Stroma-

Activating Potency 

Previously it was shown that the cell CM influenced fibroblast secretion. As such, we 

proposed that this may be due to a vesicle-driven process, as demonstrated with cancer 

exosomes holding the capacity to drive stromal fibroblast differentiation into myofibroblasts 

(Webber et al., 2010, Webber et al., 2015). We, therefore, concentrated vesicles from cell 

CM and examined the effects on fibroblasts, as we did for the treatment of cell CM.  

Fibroblasts were grown in DMEM-F12 media alone, with a single stimulation with rhTGF-β1 

(1.5ng/ml) or purified DU145 exosomes at an equivalent TGF-β1 dosage (200µg/ml). Vesicle 

concentrates (control or Rab11bKD or Rab35KD) corrected for cell number also were 

compared. Untreated fibroblasts exhibited low level/negligible staining of α-SMA, whilst 

purified exosomes from wild-type DU145 cancer cells stimulated the onset of α-SMA in the 

entire cell population (Figure 5.4). Similarly, stimulation with rhTGF-β1 generated a robust 

differentiation response. Vesicle concentrates obtained from control cell CM triggered a 

strong differentiation response, involving the majority of the fibroblasts in the population. In 

contrast, treating fibroblasts with remaining vesicle concentrates deriving from Rab11bKD or 

Rab35KD cells, revealed a poorly convincing differentiation response; whilst some of the α-

SMA was detectable, this was weaker in intensity and not all cells had responded (Figure 5.4). 

Hence, we proposed that the remaining vesicles from Rab11bKD or Rab35KD cells resulted in 

an attenuated fibroblast differentiation response. 

We next explored levels of FGF-2, HGF, uPA and VEGF-A, secreted by treated fibroblasts 

(Figure 5.5). We observed a significant increase in both HGF and VEGF secretion when using 

vesicle concentrates from control cells (Figure 5.5 B & D). In contrast, there was a significant 

reduction in secreted HGF (Figure 5.5 B) in treated conditions for Rab11bKD (P≤0.001) and 

Rab35KD (P≤0.01). Also, levels of VEGF secretion (Figure 5.5 D) followed this pattern, when 

using either Rab11bKD (P≤0.05) or Rab35KD (P≤0.01). Levels of FGF-2 increased with the 

Rab11bKD (P<0.01) (Figure 5.5 A), secreted uPA levels were reduced with the Rab35KD 

(P<0.05) (Figure 5.5 C). This highlights that the fibroblasts treated with distinct vesicle 

concentrates following knockdown of Rab11b or Rab35 are different in the effects on 

fibroblasts. It supports the idea of vesicle subpopulations dictate distinct functions. 

Overall, there appears to be a significant attenuation when using vesicles concentrated from 

either Rab11bKD or Rab35KD, in terms of the acquisition of the α-SMA positive phenotype and 

in terms of the secretory phenotype of the fibroblasts. 
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Figure 5.4: Vesicle concentrates from Rab11bKD or Rab35KD cell CM triggers a poor fibroblast differentiation response. Fibroblasts at passage 7 

were growth arrested (72 hours) and were either left untreated, treated in the presence of rhTGF-β1 (1.5ng/ml), purified DU145 exosomes 

(200µg/ml), or DU145 vesicle concentrates (control, Rab11bKD or Rab35KD) corrected for cell number in DMEM-F12 media. Fibroblasts were 

examined by immunofluorescent microscopy for the expression of α-SMA (green) and DAPI (blue). Scale bar 50μm. Images of α-SMA positive 

cells over 6 microscopic fields were examined in duplicates per treatment. Representative fields are shown. 
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Figure 5.5: Vesicle concentrates from Rab11bKD or Rab35KD cell CM fail to fully induce 

fibroblast secretion of pro-angiogenic factors. Fibroblasts at passage 7 were growth 

arrested (72 hours) and were either left untreated, or treated in the presence of the 

DU145 vesicle concentrates (control, Rab11bKD or Rab35KD) corrected for cell number in 

DMEM-F12 media. CM collected from undifferentiated and differentiated fibroblasts was 

analysed by ELISA for levels of (A) FGF-2, (B) HGF, (C) uPA and (D) VEGF. Graph shows 

mean ± SEM, based on triplicate wells. n.s: non-significant, *P<0.05, **P≤0.01 and 

***P≤0.001. One-way ANOVA with Tukey’s post hoc test. 

(A) 

(C) (D) 

(B) 
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5.1.4 Quantification of Remaining TGF-β1 Positive Vesicles following Knockdown 

Previously, as we observed a different fate in α-SMA expression, following treatment with 

vesicles following knockdown of Rab11b or Rab35, we examined if there were any changes 

in vesicle-associated TGF-β1 which accounted for this. 

Vesicles derived from control or knockdown cells were treated with HCl, to activate the 

latent TGF-β1 on the vesicle’s surface to the immunoreactive form, detectable by the TGF-

β1 ELISA (Figure 5.6). A consistent expression of TGF-β1 was observed among the control 

vesicle, in which 7.2pg of TGF-β1 was expressed per µg of DU145 vesicles, similar to previous 

studies (Clayton et al., 2007, Webber et al., 2010). We, therefore, questioned if perturbation 

of the Rab GTPases would interfere the TGF-β1-positive signal on vesicles. We revealed there 

was 4.8pg of TGF-β1 expressed per µg of DU145 Rab11bKD derived vesicles (33% decrease) 

(P<0.01), compared to controls. Similarly, 4.1pg of TGF-β1 was detected in DU145 Rab35KD 

derived vesicles (44% decrease) (P<0.001), compared to controls. This suggests that the 

presence of Rab11b or Rab35 must be required for vesicles that are expressing high TGF-β1 

content, in relation to the entire vesicle population. 
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Figure 5.6: Reduced TGF-β1 expression on vesicles derived from DU145 Rab11bKD or 

Rab35KD cells. CM underwent a differential ultracentrifugation method, followed by 

filtration through a 0.22µm filter, before ultracentrifugation at 200,000 x g for 2 hours in 

a fixed angle 70Ti rotor to obtain vesicle concentrates. Vesicle concentrates from DU145 

control or Rab11bKD or Rab35KD cells (20µg/well) and corrected for cell number were 

added to a 96-well plate coated with a TGF-β1 capture antibody. Vesicles were subjected 

to acid activation and expression of active TGF-β1 were measured using a TGF-β1 ELISA. 

Graph shows mean ± SEM, based on duplicate wells. **P≤0.01 and ***P≤0.001. One-way 

ANOVA with Tukey’s post hoc test. 
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5.1.5 Rab11b- and Rab35-Dependent Vesicles are Required for Stromal Activation 

Previously we have shown that knockdown of Rab11b or Rab35 results in a loss of TGF-β1 

positive vesicles from DU145 cells, which results in a poor differentiation response. We, 

therefore, examined if this functionality is dependent on the exosome dose required to 

trigger a fibroblast differentiation response or if it were due alterations in the vesicle’s 

phenotype following knockdown.  

Fibroblasts were grown and growth-arrested as described previously. Briefly, fibroblasts 

were grown in DMEM-F12 media alone or with a single stimulation with rhTGF-β1 (1.5ng/ml) 

or purified DU145 exosomes at an equivalent TGF-β1 dosage (200µg/ml). Importantly, unlike 

our previous experiments, the vesicle concentrates were added at equal quantities 

(200µg/ml) to the fibroblasts, to negate any effects on knockdown on vesicle secretion 

amount. Untreated fibroblasts exhibited low level/negligible staining of α-SMA and positive 

control exosomes from wild-type DU145 cancer cells stimulated the onset of α-SMA in the 

entire cell population (Figure 5.7). Similarly, stimulation with rhTGF-β1 generated a robust 

differentiation response. Vesicle concentrates obtained from DU145 control cell CM 

triggered a strong differentiation response, involving the majority of the fibroblasts in the 

population. Treating fibroblasts with vesicle concentrates derived from knockdown of 

Rab11b showed a moderate differentiation response; whilst some α-SMA was detectable. 

Though, vesicles derived from knockdown of Rab35 showed a poor differentiation response. 

Whilst some α-SMA was detectable, this was weaker in intensity and not all cells had 

responded. Here, adding the identical quantity of vesicle from the cancer cell CM gives a 

different fibroblast response. We concluded that the knockdowns modulate a distinct vesicle 

phenotype and this results in defective cancer cell stromal influence. 

We also observed a significant increase in both HGF and VEGF secretion when using vesicle 

concentrates from control cells. In contrast, there was a significant reduction in secreted HGF 

(Figure 5.8 A) in treated conditions for Rab11bKD (P≤0.01) and Rab35KD (P≤0.05). Also, levels 

of VEGF secretion (Figure 5.8 B) followed this trend, when using either knockdown of Rab11b 

(P≤0.05) or Rab35 (P≤0.05). By equalising vesicle quantity, it was not sufficient to negate the 

effects of the knockdowns. These effects, therefore, must be due to the changes occurring 

in the vesicle’s molecular phenotype, following attenuation of Rab11b or Rab35.
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Figure 5.7: Rab11b- or Rab35-dependent vesicles are still required for stromal activation. Fibroblasts at passage 7 were growth arrested (72 

hours) and were either left untreated, treated in the presence of rhTGF-β1 (1.5ng/ml), purified DU145 exosomes (200µg/ml), or DU145 vesicle 

concentrates (control, Rab11bKD or Rab35KD) corrected for protein (200µg/ml) in DMEM-F12 media. Fibroblasts were examined by 

immunofluorescent microscopy for the expression of α-SMA (green) and DAPI (blue). Scale bar 50μm. Images of α-SMA positive cells over 6 

microscopic fields were examined in duplicates per treatment. Representative fields are shown. 
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Figure 5.8: Normalised vesicle concentrates by quantity from Rab11bKD or Rab35KD CM, 

reduces fibroblast secretion of pro-angiogenic factors. Fibroblasts at passage 7 were 

growth arrested (72 hours) and were either left untreated, or treated in DU145 vesicle 

concentrates (control, Rab11bKD or Rab35KD) corrected for protein (200µg/ml) in DMEM-

F12 media. CM collected from undifferentiated and differentiated fibroblasts was 

analysed by ELISA for levels of (A) HGF and (B) VEGF. Graph shows mean ± SEM, based 

on duplicate wells. *P<0.05 and **P≤0.01. One-way ANOVA with Tukey’s post hoc test. 
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5.1.6 Fibroblasts Treated with Vesicles From Knockdown of Rab11b or Rab35 are not 

Pro-Motile 

One key aspect of tumour-associated myofibroblasts is their influence on an angiogenic 

response. Previously, our group demonstrated that purified cancer exosomes can generate 

a pro-angiogenic stromal microenvironment (Webber et al., 2015). For angiogenesis to 

occur, endothelial cell migration is crucial and a simple method to quantify this, is the 

‘scratch’ migration assay (Liang et al., 2007). The creation of an artificial gap to an endothelial 

cell monolayer so called ‘scratch’, allows the cells on the newly created edge to migrate to 

close the ‘scratch’, until new cell-to-cell contacts are re-established. This motility may be 

heightened by a particular stimulus.  Here, we assessed the effects of CM from fibroblasts 

following treatments with either cancer cell secretome or vesicle concentrates (control or 

Rab11bKD or Rab35KD derived) on endothelial cell motility, using a monolayer scratch assay. 

A monolayer of HUVEC cells, cultured in EBM-2 media was established. Once fully confluent, 

these were growth-arrested for 24 hours to remove pro-motility factors in the supplemented 

media, followed by formation of a vertical scratch by a 200µl pipette tip. The endothelial cell 

media was replaced with CM from either untreated (EBM-2 only) or fibroblasts treated with 

the cell secretome (control or Rab11bKD or Rab35KD). Endothelial cell motility in response to 

the different treatments was examined by imaging and measuring scratch closure over the 

24-hour period (Figure 5.9 A). From an early timepoint of 6 hours, the endothelial scratch 

closure in response to untreated or CM from treated fibroblasts with knockdown cell 

secretome was less than 10% (Figure 5.9 B). In contrast, the endothelial cell response to the 

CM from fibroblasts treated with the control cell secretome showed an accelerated response 

of 30% closure by 6 hours; achieving almost 70% closure within 24 hours. In contrast, 

untreated or knockdown-treated CM was slower in closure, reaching only around 30% 

closure in the same timeframe (P<0.001).  

Next, we, therefore, questioned if CM from vesicle-treated fibroblasts would accelerate 

endothelial cell motility, compared to the cancer cell secretome-treated fibroblasts. HUVEC 

monolayers were established, as described previously, but endothelial cell media was 

replaced with CM, from untreated or DU145 vesicle concentrates (control or Rab11bKD or 

Rab35KD) treated fibroblasts (Figure 5.10 A). Endothelial cell motility was markedly quicker 

(30%~) at 6 hours in response to CM from vesicle-treated fibroblasts, compared to the cancer 

cell secretome-treated fibroblasts (~10%) (Figure 5.9 B). From an early timepoint at 6 hours, 

endothelial scratch closure in response to CM from untreated or CM from treated fibroblasts 

with Rab11bKD or Rab35KD vesicle concentrates was less than 30% (Figure 5.10 B). In contrast, 



Chapter 5. The Impact of Exosome-Deficient Tumour Cells on the Stroma 
 

147 
 

the endothelial cell response to CM from normal vesicle-treated fibroblasts marked an 

accelerated response of 60% closure, achieving full closure by 18 hours; quicker than 

fibroblasts treated with the cancer cell secretome (50%) (Figure 5.9 B). In contrast, the 

closure rate was slower at 18 hours, reaching only <40% in untreated (P<0.001) and <60% in 

knockdown of Rab11b and Rab35 in the same timeframe (P<0.001). 

Therefore, the soluble factors secreted from fibroblasts treated with vesicles accelerated 

endothelial cell migration, compared to fibroblasts treated with the cancer cell secretome; 

indicating this stimulus is enhanced by vesicles. This influence, suggests that to promote a 

highly pro-motile influence over endothelial cell, stromal cells activated by vesicles is 

required and the effect is strongly attenuated using knockdown of Rab11b or Rab35.



Chapter 5. The Impact of Exosome-Deficient Tumour Cells on the Stroma 
 

148 
 

 

 

Figure 5.9: CM from fibroblasts treated with Rab11bKD or Rab35KD cell secretome, slows endothelial cell motility. (A) Growth-arrested primary 

fibroblasts were treated with the control or Rab11bKD or Rab35KD cancer cell secretome, normalised for input cell number. After 3 days, the 

fibroblast CM was harvested and added to monolayers of human endothelial cells that had been freshly scratched using a 200µl pipette tip. The 

closure of the scratch was monitored microscopically up to 24 hours thereafter. Representative images of wells at scratch initiation and at 24 

hours are shown and the margin of the scratch emphasised by the white lines. Scale bar: 100µm. (B) Measurements of scratch gap were taken 

throughout the time course and are plotted as the proportion of scratch width relative to that at 0 hours, at each time point. Graph shows mean 

± SEM, based on quadruplicate wells. ***P≤0.001. Two-way ANOVA with Bonferroni post hoc test. 

(B) (A) 
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Figure 5.10: CM from fibroblast treated with vesicles from Rab11bKD or Rab35KD cells, slows endothelial cell motility. (A) Growth-arrested 

primary fibroblasts were treated with vesicles from control or Rab11bKD or Rab35KD cells, normalised for input cell number. After 3 days, the 

fibroblast CM was harvested and added to monolayers of human endothelial cells that had been freshly scratched using a 200µl pipette tip. The 

closure of the scratch was monitored microscopically up to 18 hours thereafter. Representative images of wells at scratch initiation and at 18 

hours are shown and the margin of the scratch emphasised by the white lines. Scale bar: 100µm. (B) Measurements of scratch gap were taken 

throughout the time course and are plotted as the proportion of scratch width relative to that at 0 hours, at each time point. Graph shows mean 

± SEM, based on quadruplicate wells. ***P≤0.001. Two-way ANOVA with Bonferroni post hoc test. 

 

 

(A) (B) 
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 5.1.7 Rab11bKD- or Rab35KD- Derived Vesicles Fail to Trigger Angiogenesis-Promoting 

Stroma 

The formation of blood vessels coordinates a combination of endothelial cell proliferation, 

migration and structural organisation into vessel-like structures (Adams and Alitalo, 2007). 

To investigate the potential for endothelial cells to not only migrate, but to organise into 

vessel-like structure, was performed through co-culture of pre-treated fibroblasts with 

endothelial cells (Sheldon et al., 2010). Fibroblasts were left untreated with DMEM-F12 

media alone or treated for 72 hours with a single stimulation with rhTGF-β1 (1.5ng/ml), 

purified DU145 exosomes at an equivalent TGF-β1 dosage (200µg/ml) or vesicle 

concentrates (control or Rab11bKD or Rab35KD) corrected for cell number. After stimulation, 

endothelial cells were added in a random drop-wise fashion to the wells and left untreated 

for 96 hours. The cells were fixed and stained for the endothelial cell marker, CD31, absent 

in fibroblasts.  

The data demonstrated in either untreated or rhTGF-β1 treated fibroblasts, there were rare 

clusters of CD31-positive cells formed, with little evidence of newly developed structures 

(Figure 5.11). In contrast, purified wild type DU145 exosomes showed the generation of 

often thick, elaborate CD31-positive structures, comprising hundreds of individual cells. 

There was little evidence of structures generated with the fibroblasts treated with the 

control cell secretome or with knockdown of Rab11b or Rab35. It suggested that although 

the CM could support motility, their influence is limited and fails to promote a more 

sophisticated and mature endothelial structure, with limited effects on vessel formation. We, 

therefore, questioned whether vesicles dependent on Rab11b or Rab35, can support these 

vessel-like structures to form. 

Similarly, untreated or rhTGF-β1 treated fibroblasts gave rare clusters of CD31-positive cells, 

with little evidence of endothelial cell structures (Figure 5.12 A). In contrast, purified wild 

type DU145 exosomes and control vesicle concentrates showed the generation of often 

thick, elaborate CD31-positive structures comprising hundreds of individual cells and 

occupying most of the microscopic field. There were a relative lack of structures generated 

with either DU145 Rab11bKD- or Rab35KD- derived vesicles. These were comprised of tens, 

rather than hundreds, of cells. Measuring the area occupied by the CD31-positive structures 

allowed for a straightforward means of quantifying this pro-angiogenic behaviour (Figure 

5.12 B). This revealed a significant increase in CD31-positive surface area in response to 

controls, compared to the knockdown of Rab11b or Rab35 (P<0.001). Therefore, the vesicles 

which remain following knockdown of Rab11b or Rab35 are insufficient in numbers and/or 
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molecular composition, to trigger formation of a fibroblast with a positive influence on vessel 

forming capacity of endothelial cells. Together, these findings suggest that Rab11b- or 

Rab35-dependent vesicles play roles in activating the stroma, in terms of fibroblast 

differentiation and supporting the formation of vessel-like structures.
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Figure 5.11: Cancer cell secretome fails to stimulate fibroblasts to support endothelial vessel-like structure formation. Growth-arrested 

primary fibroblasts were treated with the cancer cell secretome derived from control or Rab11bKD or Rab35KD cells, normalised for input cell 

number. Similarly treated fibroblasts at day 3 were subject to the addition of endothelial cells (20,000 cells/well), in a randomly placed, drop-

wise fashion. Co-cultures were maintained undisturbed for a further 4 days, before fixation and immunofluorescent staining with antibody 

against CD31. Images of CD31 positive cells were examined in duplicates per treatment are shown. Scale Bar: 100µm. Data are representative of 

three independent experiments. 
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Figure 5.12: DU145 Rab11bKD- or Rab35KD- derived vesicles render the stroma poorly 

angiogenic. (A) Growth-arrested primary fibroblasts were treated with vesicle 

concentrates derived from control or Rab11bKD or Rab35KD cells, normalised for input cell 

number. Similarly, treated fibroblasts at day 3 were subject to the addition of endothelial 

cells (20,000 cells/well), in a randomly placed, drop-wise fashion. Co-cultures were 

maintained undisturbed for a further 4 days, before fixation and immunofluorescent 

staining with antibody against CD31. Fluorescence (CD31-alexa-488) images of 

representative microscopic fields are shown. Selection from image showing endothelial 

vessel-like structures comprising of hundreds or tens of endothelial cells (inset). Scale 

Bar: 100µm. (B) The regions of CD31-positivity were measured using intensity 

thresholding in the Alexa-488 channel (Zeiss Zen software), to calculate the area occupied 

by endothelial cells. This was done on 4-microscopic fields in each well. Graph shows 

mean ± SEM, based on triplicate wells. n.s: non-significant ***P≤0.001. One-way ANOVA 

with Tukey’s post hoc test. 
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Figure 5.13: Diagram of the importance of Rab11b- or Rab35-dependent tumour vesicles on the stroma. Wild type exosomes can drive 

fibroblast differentiation into α-SMA positive myofibroblasts, secreting growth factors, accelerating endothelial cell motility and vessel-like 

structure formation. Here, we propose that in the absence of either Rab11bKD/Rab35KD derived vesicles, a reduction in α-SMA positive 

myofibroblastic cells are present, showing a reduction in secreted pro-angiogenic growth factors from myofibroblasts, thus slower endothelial 

motility and a lack of vessel like-structures formed. 
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5.2 Discussion 

In this Chapter, we investigated the functional importance of tumour-derived Rab11b- and 

Rab35-dependent, vesicle subpopulations, by highlighting the vesicle populations following 

Rab11b or Rab35 knockdown and their interaction with the stroma, in terms of fibroblast 

differentiation and promotion of angiogenic properties. 

Traditionally, TGF-β1 is an established cytokine essential for regulating fibroblast 

differentiation (Desmoulière et al., 1993, Sime et al., 1997, Thannickal et al., 2003). rhTGF-

β1 treated fibroblasts, resulted in high levels of α-SMA positive cells, but secrete low levels 

of both HGF and VEGF (Chowdhury et al., 2015, Webber et al., 2015). In contrast, purified 

prostate cancer exosomes had the potent capacity to trigger fibroblast differentiation, as 

noted by the onset of α-SMA stress fibres, consistent with a previous study (Webber et al., 

2010). Furthermore, exosome-treated fibroblasts secreted elevated levels of pro-angiogenic 

growth factors, HGF and VEGF, consistent with features akin to myofibroblastic stromal cells 

extracted from prostate cancer tissues, that have been ‘educated’ in vivo under the direction 

of the cancer milieu (Webber et al., 2015). These findings agree with lung cancer-derived, 

vesicles stimulating the stromal cells to produce factors that induce the expression of several 

pro-angiogenic factors, such as VEGF and MMP-9, that can enhance metastatic spread 

(Wysoczynski and Ratajczak, 2009). Similarly, melanoma derived vesicles, promoted 

fibroblast differentiation to myofibroblasts, that potentially regulates VCAM-1 and activates 

extracellular signal-regulated kinase 1/2 (ERK1/2) signalling pathways, promoting 

endothelial cell proliferation and migration during angiogenesis (Srinivasan et al., 2009, Zhao 

et al., 2015, Shin et al., 2016). Likewise, pancreatic cancer cell-derived vesicles, containing 

miR-155, also can trigger fibroblast differentiation (Pang et al., 2015). Taken together, the 

literature suggest that cancer-derived exosomes are crucial for generating tumour-

associated myofibroblasts, conditioning the tumour microenvironment in promoting 

angiogenesis and metastasis.  

Growing evidence suggests that the cancer cell secretome itself containing cancer exosomes, 

can promote fibroblast differentiation into myofibroblasts. CM taken from aggressive breast 

tumour cells induces fibroblast differentiation by potentiating TGF-β1 signalling, in both in 

vitro and in vivo models (Valenti et al., 2001, Avgustinova et al., 2016). Similarly, fibroblast 

treatment with ovarian cancer cell secretome resulted in α-SMA positive myofibroblastic-

like cells, secreting elevated levels of HGF and VEGF (Yao et al., 2009). The cancer cell 

secretome from ovarian and cancer cells appear sufficient to trigger fibroblast 
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differentiation. Equally, with the prostate cancer model, our group have previously shown 

that the cell secretome is sufficient to trigger fibroblast differentiation and secreting 

elevated growth factors (Webber et al., 2015). However, our data demonstrates the cell 

secretome appears insufficient to trigger fibroblast differentiation, despite differences in the 

secretory profile. One explanation for this, could be the collection of the cancer cell CM was 

from densely seeded cell numbers in other studies, therefore a concentrated cell secretome, 

sufficient to trigger these responses. In contrast, our experiments may have been conducted 

using lower density of cell numbers, producing therefore a diluted cell secretome, 

insufficient to trigger the onset of fibroblast differentiation. 

Initially, the first indications for Rab GTPases in exosome secretion were from reticulocyte 

cell lines, which required the function of Rab11 for exosome secretion (Savina et al., 2002). 

In an RNAi screen in HeLa cells targeting a host of Rab GTPase family members, silencing 

Rab27a reduced MVE docking, which significantly reduced the levels of secreted exosomes 

(Ostrowski et al., 2010). However, other studies using the Rab27a knockdown model have 

demonstrated that silencing Rab27a does not exclusively affect exosome secretion, but 

impacts other secretory routes for the cell, such as pro-MMP-9 secretion (Bobrie et al., 2012). 

Similarly, observations in another Rab27a knockdown model, reveal attenuated levels of 

exosome secretion, which also reduced secretion of pro-angiogenic soluble factors (PDGF-

AA and osteopontin), derived from tumour cells, hindering bone marrow derived cells 

mobilisation and tumour growth (Peinado et al., 2012). Therefore, this makes interpretation 

of the data difficult, as findings may be due to soluble factors and not due to loss of vesicles. 

However, I found much of the stromal-activating activity is focused to the vesicular content 

of the secretome, observing stronger differentiation effects and a stronger angiogenic 

promoting phenotype. This demonstrates the effects on the soluble-secretome are not solely 

responsible for the functional defect arising (Webber et al., 2015). In our data, concentrating 

vesicles from the cell secretome triggered fibroblast differentiation, in much of the fibroblast 

population. The knockdowns, however, could not trigger differentiation similar to the 

control, even following vesicle concentration. Myofibroblastic differentiation is 

predominantly a vesicle-mediated effect and not governed by other factors derived from 

cancer cells. For this critical activation of tumour-associated myofibroblasts, we showed that 

vesicle secretion controlled by Rab11b or Rab35 is required. 

Understanding precisely how myofibroblastic traits of the cancer-associated stroma are 

initiated, altering stroma from a normal homeostatic function towards a malevolent, or 

indeed, a protective phenotype; remains unclear. Although TGF-β, secreted by tumour cells 
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has remained a principal factor, studies from our group (Webber et al., 2010, Chowdhury et 

al., 2015, Webber et al., 2015), and others (Gu et al., 2012, Borges et al., 2013), have reported 

exosomes delivering TGF-β1 elicit robust stromal modulation in cancer. In our data, we 

demonstrate a 20% loss of vesicles following knockdown of either Rab11b or Rab35, that 

demonstrates defective α-SMA differentiation. Attenuating the vesicle population even by 

20% may be sufficient to disrupt the required threshold for differentiation. The vesicles 

following knockdown of Rab11b or Rab35 show a loss of 30 – 40% of TGF-β1 positive vesicles, 

and it appears that these are needed to generate the robust differentiation response. 

Alternatively, there could be alterations in the vesicle’s phenotype following knockdown of 

Rab11b or Rab35, that renders the remaining population deficient in fibroblast 

differentiation. In a simple experiment, normalising vesicles to a quantity to reach a 

threshold for activation was shown; and knockdown of Rab11b were still capable of driving 

differentiation. However, vesicles following knockdown of Rab35 remained deficient in 

differentiation ability, irrespective of normalisation. The data highlights that the vesicles 

following Rab11b knockdown are distinct in protein profile and differentiation capacity, 

compared to vesicle produced following Rab35 knockdown. This suggests that the Rab35-

dependent vesicle subpopulation are required for fibroblast differentiation to 

myofibroblasts. 

Angiogenesis is a complex process in which growth of new blood vessels can be described by 

multiple steps. Firstly, angiogenic stimuli cause increased endothelial cell permeability and 

cellular proliferation, which is followed by proteolysis of the basement membrane and ECM. 

Endothelial cell migration into the stroma of the neighbouring tissue, requires the 

cooperative MMP and plasminogen activator system, before endothelial cells trigger lumen 

formation as the sprout forms a vessel-like structure (Hoeben et al., 2004). 

In this Chapter, I have demonstrated that CM from fibroblasts treated with the DU145 

knockdown (Rab11b or Rab35) cell secretome can significantly slow endothelial cell 

migration, in comparison to controls. Here, the in vitro scratch assay is a frequently used 

technique to investigate endothelial cell motility (Xu and Deng, 2006, Shi et al., 2013, 

Chronopoulos et al., 2016). One downfall is that it does not replace well-established 

chemotaxis studies, such as the Boyden Chamber assay (Liang et al., 2007) and there is little 

physiological relevance. Still, the in vitro scratch assay is an inexpensive and straightforward 

method to study cell migration. Here, we show endothelial cells cultured in CM from 

untreated fibroblasts were poorly motile. This effect was similar to CM from fibroblasts 
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treated with vesicle concentrates from knockdown of Rab11b or Rab35, only achieving 50%~ 

closure by 18 hours; in contrast where full closure was seen in the control. 

Endothelial cell migration is one essential aspect of angiogenesis and many different 

cytokines are involved in chemotactic endothelial cell migration. Some of the main 

promoters of actin-based motility include HGF, VEGF, bFGF, angiopoietins and other 

contributing factors, such as: PDGF, EGF, TGF-β, uPA and many more (Lamalice et al., 2007). 

VEGF is a potent inducer of endothelial cell proliferation and migration in vitro and in vivo 

(Ferrara, 1993, Bernatchez et al., 1999). Endothelial cell sensitivity to VEGF is exemplified, by 

the lethal vascular abnormalities that result from disrupting a single VEGF allele in mice 

(Carmeliet et al., 1996). Furthermore, VEGF-A is capable of binding onto multiple VEGFRs 

including VEGF-R1 and VEGF-R2. Upon VEGF binding, phosphorylation of tyrosine kinase 

residues on VEGF-R, activates the ERK pathway and p38/mitogen-activated protein kinase 

(MAPK) which induces cell proliferation, migration and increases vascular permeability 

(Murphy et al., 2006).  Furthermore, HGF is a powerful motility factor in different cells, acting 

through the tyrosine kinase receptor, encoded by the MET oncogene (Bussolino et al., 1992). 

In various studies, heightened HGF levels interacts with its cognate receptor, c-Met; and 

promotes angiogenesis by elevating VEGF expression; and by stimulating endothelial cell 

migration and growth (Cai et al., 2000, Duan et al., 2004, Usatyuk et al., 2014). Interestingly, 

analysis of tumour-associated myofibroblasts showed elevated levels of both PDGF and 

PDGFR in a colorectal cancer model (Pena et al., 2013). PDGF appears to play a critical role 

in increasing endothelial cell migration during angiogenesis in vitro, by activating protein 

kinase A (PKA), increasing downstream vasodilator-stimulated phosphoprotein (VASP) 

phosphorylation; thus, increasing endothelial cell migration (Thommen et al., 1997, Zhang et 

al., 2010).  

At the molecular level, HGF/c-Met signalling is proposed to activate multiple signal 

transduction pathways, including the p120/STAT3, the PI3K/Akt pathway, the Ras/MEK 

pathway and phosphorylating annexin-1 supporting angiogenesis. The p120/STAT3 pathway 

stimulates branching morphogenesis of cells (Boccaccio et al., 1998), the PI3K/Akt pathway 

activates cell motility and survival (Potempa and Ridley, 1998, Xiao et al., 2001),  the Ras/MEK 

pathway mediates HGF-induced scattering and proliferation of cells (Ivan et al., 1997) and 

phosphorylating annexin-1 induces endothelial cell proliferation and migration (Pin et al., 

2012). Therefore, these pathways may directly or indirectly stimulate endothelial cells: 

directly by morphogenic effects and indirectly by regulation of other angiogenic factors. As 

demonstrated in various studies, tumour-associated myofibroblasts can secrete various 
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growth factors and cytokines supporting angiogenesis (Kalluri and Zeisberg, 2006, Clark et 

al., 2013, Webber et al., 2015, Chowdhury et al., 2015). Therefore, we demonstrate that 

targeting the Rab11b or Rab35 vesicle secretion pathway, triggering a weakened fibroblast 

differentiation response with decreased levels of secreted HGF and VEGF; and possibly other 

related growth factors, thereby, slowing endothelial cell motility. The extent by what the 

fibroblast secretes by sub-optimal stimulation due to Rab vesicles is not yet understood, but 

a worthwhile avenue for more expansive studies.  

As angiogenesis is a complicated event that requires interactions among different cells, 

growth factors and matrix components, a single “gold standard” assay to capitulates all these 

events is currently unavailable. More commonly used, the ex vivo explant assay involving a 

3D mouse aortic ring, is considered more physiological relevant, because the system includes 

the surrounding non-endothelial cells (pericytes and smooth muscle cells) and a supporting 

matrix, in contrast to traditional cell-based assays (Bellacen and Lewis, 2009). Also, the 

endothelial cells have not been altered by repeat passaging, thus making them quiescent at 

the beginning of explantation, hence, more representative of the in vivo situation, where 

angiogenesis is stimulated and quiescent endothelial cells respond by migration, 

proliferation from existing vessels and differentiating into tubules (Staton et al., 2004). 

However, this method has its downfalls, including the necessity for fresh mouse tissue, 

species differences compared to humans, a lack of non-aortic tissues; and vessel regression 

over time giving them a restricted time for analysis (Baker et al., 2011). Also, endothelial cells 

derived from veins, such as HUVECs, are more applicable for studying angiogenesis, as they 

are prone to generating capillaries, albeit ideally the source should be microvascular 

endothelial cells best derived from the tissue organs, similar to those found at tumour sites, 

unlike endothelial cells from aortic vessels (dela Paz and D'Amore, 2009). 

Here, we used the co-culture method (fibroblasts with endothelial cells), which allowed us 

to assess the specific stromal influence on the formation of vessel-like structures, unlike the 

aortic ring model. Fibroblasts provide critical support for the proliferation and migration of 

endothelial cells, in part, this is mediated through the secretion of pro-angiogenic growth 

factors (Jain, 2003, Nagy, 2003). Furthermore, similar observations showed endothelial cell 

migration, forming branching vessel-like structures that was dependent upon the presence 

of fibroblasts. Tumour cells that released VEGF could not replace fibroblasts in these 

interactions (Velazquez et al., 2002). Here, exosome-generated myofibroblasts can secrete 

pro-angiogenic growth factors, aiding the formation of endothelial vessel-like structures. 

This was shown in a similar gastric cancer exosome model, inducing VEGF expression in 
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stromal fibroblasts, which accelerated the vessel formation assay in HUVECs in vitro and vivo 

(Guo et al., 2008). Yet, vesicles remaining following attenuation of the Rab11b or Rab35 

secretory pathway could only trigger weakened stromal activation, with decreased levels of 

secreted HGF and VEGF, thus reflecting the failure of these vesicles to promote a pro-

angiogenic function in stromal cells. The cancer cell secretome derived from knockdown of 

Rab27a, also failed to trigger fibroblast differentiation and lacked pro-angiogenic effects, in 

terms vessel-forming capability (Webber et al., 2015).  

Therefore, in this Chapter, I have shown that targeting the Rab11b or Rab35 vesicle sub-

population has major effects on cancer to stroma communication. Although there remains 

notable vesicles secretion (80%) by these cells, this remaining subpopulation is dysfunctional 

in driving fibroblast differentiation into myofibroblasts. The stromal cells that arise also 

exhibit attenuated support for angiogenesis. Therefore, the production of vesicle that 

dependent on Rab11b or Rab35 are important elements in stromal regulation by cancer cells. 
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6.1 The Impact of Exosome-Deficient Tumour Cells and Fibroblasts in a 3D 

Co-Culture Model 

6.1.1 Introduction 

Cancer develops in a complex tissue environment, which depend upon continuous growth, 

invasion and metastasis. Studies have shown that tumour-derived exosomes are capable of 

“re-educating” fibroblasts within the stroma to an activated phenotype, supporting ECM 

remodelling and tumour invasion (Yang and Robbins, 2011, Webber et al., 2015). For 

example, myofibroblasts isolated from breast carcinomas compared to normal mammary 

fibroblasts from the same patient, contribute to enhanced tumour invasion and growth in 

vivo (Olumi et al., 1999). An altered stromal microenvironment is a feature of many 

aggressive tumours and consistently, myofibroblasts are commonly found in the stroma of 

carcinomas, often concentrated at the invasive margin of the tumour (Lewis et al., 2004, 

Karagiannis et al., 2013, Li et al., 2016). CM from these tumour-associated myofibroblast 

contains elevated levels of HGF, VEGF or MMPs, suggested to promote the invasive capacity 

of myofibroblast and carcinoma cells through collagen and matrigel matrices (De Wever et 

al., 2004, Cat et al., 2006, Ding et al., 2015). This highlights the importance of myofibroblasts 

in tumour invasion. In particular, interactions between tumour cells and the associated 

disease stroma represents a powerful relationship that influences disease progression and 

poor prognosis (Joyce and Pollard, 2009). Currently, information on exosomal 

communication, controlling the interplay between cancer cells and stromal myofibroblasts 

remains limited in vivo, as it is difficult to recapitulate this exact environment in vitro. 

Evidence has suggested that three dimensional (3D) cell culture models represent the 

microenvironment accurately, where cells resides in tissue, compared to 2D culture systems 

(Kim, 2005). Within 3D culture conditions, there exists a pathophysiological gradient this is 

representative of that in vivo, compared to 2D culture (Benya and Shaffer, 1982, Nelson and 

Bissell, 2005, Baharvand et al., 2006). This added dimensionality leads to quite different 

cellular responses, because not only does it influence physical constraints of the cell, but it 

also promotes the spatial orientation of cell surface receptors engulfed in surrounding cells. 

These physical and spatial features in 3D culture affects the signal transduction from outside 

and into the cell, ultimately influencing gene expression and cellular behaviour in a profound 

manner (Takahashi et al., 2015). 
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Previous studies have reported the importance of cancer exosomes in activating the stroma 

(Webber et al., 2010), that can provide a tumour-supporting environment to support tumour 

invasion in vitro (Chowdhury et al., 2015) and growth in vivo (Webber et al., 2015). It remains 

unclear whether a Rab11b- or Rab35-dependent vesicle subpopulations from tumour cells 

can maintain this crosstalk to fibroblasts within a 3D cell culture model. The previous Chapter 

provided evidence that the Rab11b- or Rab35-dependent vesicle subpopulations can play 

roles in stroma activation, that can support a pro-angiogenic phenotype. Whether these 

functional in vitro assays can be recapitulated within a 3D microenvironment will be 

explored. 

In this Chapter, we will first characterise 3D cell spheroid generation methods with tumour 

cells alone, or co-cultured with fibroblasts. We hypothesise that the remaining vesicle 

subpopulations, following knockdown of Rab11b or Rab35, can exert an influence on 3D 

culture models, in terms of spheroid generation and growth as examples. The invasive 

capacity of these 3D cell spheroids will be explored and their potential mechanism of action 

will be investigated. The hypothesis is that the vesicles remaining following knockdown of 

Rab11b or Rab35 in tumour cells, will severely attenuate the capacity for tumour growth in 

a 3D structure and propose these findings may be recapitulated in vivo.  
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6.1.2 Optimisation of 3D Co-Culture with Tumour Cells and Fibroblasts 

3D spheroid growth of established tumour cell lines is regarded as a stringent and 

representative model when performing in vitro drug screening. They possess several in vivo 

features of aggressive solid cancer, such as cell-to-cell interaction (Baker and Chen, 2012), 

hypoxia (Doublier et al., 2012), production/deposition of ECM (Kimlin et al., 2013) and 

tumour invasion (Weiswald et al., 2015). Here, homotypic (tumour cells alone) or heterotypic 

(tumour cells with fibroblasts) spheroids were used to evaluate spheroid growth and the 

influence of DU145 Rab11b or Rab35 knockdowns. 

The DU145 CTR or Rab11bKD or Rab35KD cells were incubated alone or together with 

fibroblasts at a ratio of 4 tumour cells : 1 fibroblast in cell-repellent plates. Here, two 

methods were used to generate and characterise 3D spheroid cell culture: a Poly-HEMA 

coated plate (cell repellent) or CELLSTAR® cell-repellent surfaces, obtained from Greiner Bio-

One (GBO, UK). The spheroids were cultured in RPMI-1640 in 10% exosome-depleted FBS 

and every other day, 50% of the culture media was replaced with fresh media, as other 

methods used to generate spheroids (Hirschhaeuser et al., 2010, Vinci et al., 2012, Weiswald 

et al., 2015).  

Spheroids were fully established at day 3 (Figure 6.1 A), with cells seeded at a density of 

either 1,000, 5,000 or 10,000 cells (4 tumour control cell: 1 fibroblast) on a poly-HEMA-

coated 96-well round-bottomed plates. Some cellular debris was present around the 

spheroid’s periphery, in different cell seeded conditions. The free hand tool on Image J was 

used to measure spheroid’s diameter and area. The morphology of different cell seeded 

spheroids looks spherical, comparing day 3 to day 13 images. Cells seeded at 1,000 cells had 

an average diameter of 220µm; a diameter of 400µm at 3,000 cells; and a diameter of 580µm 

at 10,000 cells (Figure 6.1 B). In terms of area, a 1,000-cell spheroid had an average area of 

50,000µm2; an area of 100,000µm2 at 3,000 cells; an area of 260,000µm2 at day 3 and an 

area of 200,000µm2 at day 13 (P<0.001) at 10,000 cells (Figure 6.1 C). This showed that as 

more cell numbers were seeded, diameter and area both increased. It was observed that in 

replicate 10,000 cell spheroids, they were robust and stable generated spheres that could be 

handled, compared to smaller cell numbers as they would become fragile, when assessed for 

other functional experiments. Such smaller sized spheroids that were fragile could not be 

modelled without disrupting their structure. Therefore, we proceeded seeding 10,000 cells 

to generate 3D spheroids.  
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As an example of spheroid generation, time-lapse imaging of cells aggregating together over 

72 hours is shown (Figure 6.2). Cells seeded at a density of 10,000 cells (tumour:fibroblast) 

can aggregate into a compact 3D spheroid, with the spheroid’s core becoming darker, 

compared to the spheroid’s periphery by 16 hours. Possibly, the larger seeded cell numbers 

are shrinking and becoming compact within the inner spheroid core, as light must travel 

through more thickness. 

Next, we measured spheroid growth over a 24-day period, either in spheroids containing 

DU145 control, Rab11bKD or Rab35KD cells, or in the presence or absence of fibroblasts (Figure 

6.3 A) by the Poly-HEMA method. All tumour or tumour:fibroblast spheroids were stable 

upon generation. By day 4, the spheroid’s diameter (Figure 6.3 B) was smaller (650µm) in 

spheroid’s containing fibroblasts, compared to tumour cells alone (750µm). There was a 35% 

decrease in area (~250,000µm2), in spheroid’s containing fibroblasts (Figure 6.3 C), compared 

to tumour cells alone (~380,000µm2) (P<0.05). By day 13, all spheroid’s diameter and area 

had shrunk by 20%-30% (~500µm:~200,000µm2). However, from day 17, all spheroids 

increased in spheroid size by 20% (~600µm:~250,000µm2). There were no significant 

differences in size between spheroids containing exosome-deficient or competent tumour 

cells, or in the absence or presence of fibroblasts in spheroids. Though, the observed biphasic 

changes in a 3D sphere was unexpected and is difficult to interpret. Perhaps, this may be 

related to the uneven coating poly-HEMA to these plates that may explains these changes. 

In contrast, spheroids generated with the GBO cell-repellent surfaces plates, coated with a 

polymer still induced spheroid formation. This method maintained a steady spheroid size 

increase, showing a darker inner core over 24 days (Figure 6.4 A). Possibly, larger spheroids 

over time have greater inner quiescent cells that die through necrosis; thus a darker necrotic 

core. By day 4, the diameter and area (Figure 6.4 B & C) of spheroids were 10%-15% smaller 

in size (575µm:275,000µm2), in the presence of fibroblasts, compared to tumour cells alone 

(675µm:305,000µm2). By day 24, the diameter and area on average increased by 5%-20% 

(690µm:350,000µm2), in fibroblast containing spheroids and similarly shown in spheroids 

containing tumour cells only. We failed to observe any significantly differences in spheroid 

growth by comparing spheroids containing or lacking fibroblasts, or the presence or absence 

of DU145 Rab11bKD or Rab35KD cells. Hence, we failed to discriminate each homotypic or 

heterotypic spheroid by size alone. 
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Next, we compared both spheroid generation methods (Poly-HEMA vs GBO). There was a 

consistent increase in spheroid size by using the GBO method (Figure 6.5), compared to Poly-

HEMA. Furthermore, fluctuations in spheroid size by the Poly-HEMA method remained 

difficult to ascertain, whether this was due to the knockdown effect or spheroid generation 

method. Over time, we observed a consistent increase in spheroid size with the GBO method 

and a dark spheroid inner core, proposed to be a necrotic cell core similar with other 3D cell 

spheroid studies (Hirschhaeuser et al., 2010, Godugu et al., 2013, Takahashi et al., 2015). 

Therefore, the reliability issues with generating spheroids, together with minimal 

fluctuations in size parameters, parallel with other studies the GBO method will be 

implemented for future experiments within this Chapter.
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Figure 6.1: Optimising cell number to generate 3D cell spheroids. Cells were seeded at 

a density of 1,000, 5,000 or 10,000 cells (4 tumour control cell: 1 fibroblast) on poly-

HEMA-coated (cell repellent), 96-well round-bottomed plates. After 72 hours, seeded 

cells aggregated into a compact 3D cell spheroid. (A) Representative images of 3D co-

cultured spheroids (a single spheroid per well) at day 3 and day 13. Scale bar: 250µm. 

Representative fields are shown. (B) Diameter and (C) area measurements were carried 

out using Image J software at day 3 and 13. Graph shows mean ± SEM, based on 15 wells. 

n.s: non-significant and ***P<0.001. One-way ANOVA with Tukey’s post hoc test. Data 

are representative of three independent experiments. 

 

(A) 
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Figure 6.2: Time-lapse images of 3D spheroid generation. Cells were seeded at a density 

of 10,000 cells (4 tumour cell: 1 fibroblast). Over time, cells suspended on a cell-repellent 

plate aggregated into a compact 3D cell spheroid. Time-lapse brightfield images were 

obtained every hour, up to 72 hours by the CytoSmart™ Lux 10X System (pictured: every 

hour up to 16 hours, and daily up to 72 hours). Representative images are shown. Scale 

bar: 250µm. Data are representative of three independent experiments. 
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Figure 6.3: Spheroids containing DU145 control, Rab11bKD or Rab35KD cells alone or co-

cultured in fibroblasts maintain tumour growth over time (Poly-HEMA method). (A) 

Starting from day 3 post- initiation, representative images of DU145 control, Rab11bKD or 

Rab35KD +/- fibroblasts spheroids grown on Poly-HEMA plates, were obtained at 

indicated time points. Scale bar: 250µm. Representative fields are shown. (B) Diameter 

and (C) area measurements were carried out using ImageJ software. Graph shows mean 

± SEM, based on 10 wells. n.s: non-significant. Two-way ANOVA with Bonferroni post hoc 

test. Data are representative of three independent experiments. 
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Figure 6.4: Spheroids containing DU145 control, Rab11bKD or Rab35KD cells alone or co-

cultured in fibroblasts maintain tumour growth over time (GBO method). Starting from 

day 3 post initiation, representative images of DU145 control, Rab11bKD or Rab35KD +/- 

fibroblasts spheroids grown on CELLSTAR® cell-repellent surfaces from Greiner-Bio One 

(GBO) plates were obtained at indicated time points. Scale bar: 250µm. Representative 

fields are shown. (B) Diameter and (C) area measurements were carried out using ImageJ 

software. Graph shows mean ± SEM, based on 15 wells. n.s: non-significant. Two-way 

ANOVA with Bonferroni post hoc test. Data are representative of three independent 

experiments. 
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Figure 6.5: Comparing two spheroid generation methods (Poly-HEMA vs GBO) over 

time. Measurements of (A) diameter and (B) area of 3D spheroids between the Poly-

HEMA and the GBO spheroid method over 24 days. Line graph showing diameter and 

area of Poly-HEMA spheroids fluctuating compared to GBO’s spheroids gradually 

increasing over time. Graph shows mean ± SEM, based on 15 wells. n.s: non-significant 

and ***P<0.001. Two-way ANOVA with Bonferroni post hoc test. 
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6.1.3 Loss of Rab11b- or Rab35-Dependent Tumour Exosomes Attenuates Invasion in 3D 

Culture 

Myofibroblasts orchestrate processes aiding tumour invasion and progression, through 

paracrine interactions involving the secretion of several soluble growth factors, such as EGF, 

FGF-2, HGF, VEGF-A (Orimo et al., 2005, Kalluri and Zeisberg, 2006, Webber et al., 2015). 

Furthermore, myofibroblasts can also secrete MMP enzymes to aid ECM modelling that can 

potentially recruit cells to facilitate an aggressive invasive functional change of tumour cells. 

Here, we explored if loss of Rab11b- or Rab35-dependent exosomes can have any effect on 

invasivity in 3D culture models. We established 3D tumour (DU145 control or Rab11bKD or 

Rab35KD cells) spheroids with or without fibroblasts by day 4. Once these spheroids were 

established, these were transferred to matrigel-coated plates acting as a 3D basement 

membrane mimic (Figure 6.6 A). Each well contained RPMI-1640 media with 10% exosome-

depleted FBS. Each spheroid was examined microscopically daily, up to 96 hours, to 

determine whether cells escape from the spheroid into the surrounding matrix. Cell 

outgrowth was observed from the spheroid (DU145 control + fibroblast) as early as 8 hours, 

growing beyond the field of view (x10 objective) at 32 hours (Figure 6.6 B).  

Control tumour cells, in the absence of fibroblasts readily formed compact spheroids, but 

cells within exhibited a poor capacity to escape into the surrounding matrix. This was true 

for both knockdown of Rab11b (Figure 6.7 A) or Rab35 (Figure 6.7 C). In contrast, when 

incorporating fibroblasts into these spheroids, we observed notable cell invasion into the 

matrix as early as 24 hours; and beyond the x10 field of view as time progressed. By tiling 

multiple images, we could assess invasion up to 96 hours and quantify % increase in area 

difference from day 0 spheroid. The formula used to calculate this: 

% increase in area difference = Total area of outgrowth (day n) / Total area of spheroid at 

day 0 

When measuring these outgrowths, we took into consideration these 3D spheroid structures 

are viewed as 2D images. Therefore, we are not accounting for any movement in the z-axis. 

Nonetheless, spheroids comprising fibroblasts and exosome competent tumour cells 

demonstrated a significant increase in area occupied by extra-spheroid cells (Figure 6.7 B & 

D), compared to tumour cells containing the Rab11bKD (150% decrease) (P<0.01) (Figure 6.7 

B) or Rab35KD (350% decrease) (P<0.001) (Figure 6.7 D) at 96 hours. Outgrowths were 

drastically less extensive by 96 hours, with a clear attenuation of invasive capacity in the 

absence of Rab11b or Rab35 tumour-derived vesicles. Fibroblasts, therefore, are important 
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mediators of this invasive behaviour. Tumour cells exhibiting knockdown of Rab11b or Rab35 

still exhibited an attenuated invasive capacity, even in the presence of fibroblasts, suggesting 

these regulators are important in communicating between tumour and stromal cells in the 

context of a 3D spheroid environment, as they are relevant regulators of invasive behaviour.
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Figure 6.6: Time-lapse imaging of the 3D spheroid invasion assay. (A) Schematic 

diagram of 3D spheroid matrigel invasion assay: a single day 4 established 

tumour:stroma spheroid was transferred to each well of a matrigel matrix-coated 24-

well, flat bottomed plate. (B) Representative time-lapse brightfield images of the 3D 

spheroid cell outgrowths (pictured: every 4 hours up to 60 hours) were obtained by the 

CytoSmart™ Lux 10X System. Scale bar: 250µm. Data are representative of three 

independent experiments. 
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Figure 6.7: DU145 Rab11bKD/Rab35KD cells attenuate aggressive invasion in 3D culture. Spheroid cultures were established, composed of DU145 

control and (A and B) Rab11bKD or (C and D) Rab35KD cells, or a combination of DU145 cells with fibroblasts (at a ratio of 4:1 respectively), at 104 

total cells/spheroid. The area occupied by extra-spheroidal cell outgrowths was measured daily for up to 96 hours. For late time-points, multiple 

images of the spheroid-outgrowths were taken and these were tiled to form a composite representation of the full extent of outgrowth. Scale bar: 

100µm. Graph shows mean ± SEM, based on 5 spheroids per group. ** P≤0.01 and ***P≤0.001. Two-way ANOVA with Bonferroni post hoc test. 

Data shown as representative of three experiments. 
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6.1.4 Tracking Fluorescently Labelled Tumour Cells and Fibroblasts in the Invasion Assay 

The tumour margin is an important aspect for invasion, where stromal cells are pivotal in 

supporting this complex tumour microenvironment. Notably, many tumour cells do not 

degrade the surrounding matrix and do not secrete high levels of proteases, but are able to 

disseminate and invade aggressively (Cao et al., 2015). The population of myofibroblasts may 

provide a significant stromal remodelling capacity, leading the way for invasive tumour cells. 

However, it remains poorly understood whether tumour cells or fibroblasts concentrate at 

the leading edge to support cancer invasion. Here, DU145 cells labelled with green 

fluorescent protein (GFP) and fibroblasts labelled with quantum dots (qDot) were used, to 

track cells in the spheroid invasion assay. 

Previously, we transduced DU145 cells with MISSION® lentiviral particles (Chapter 4) with 

the pLKO.1-puro vector, allowing stable gene silencing of selected targets. Here, we selected 

the best knockdowns and used lentiviral particles with an alternative vector backbone; Neo-

CMV-tGFP, to fluorescently express our selected DU145 cells with GFP allows for selection of 

transduced cells using Geneticin® (G418). The 3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay was used to determine the lowest G418 dose 

(eukaryote antibiotic) required for efficiently selecting transduced cells. Here, incremental 

G418 doses were used to treat DU145 cells (Figure 6.8). 2000µg/ml was the minimal G418 

dose observed, sufficient to kill the majority of DU145 cells. These transduced DU145 cells 

successfully fluorescently expressed GFP. 

We initially proposed to use a Neo-CMV-tRFP to fluorescently label our fibroblast cell line 

with red fluorescent protein (RFP); though this would be redundant as these primary 

fibroblasts have a limited number of passages. If fibroblasts were RFP positive and be 

deemed free of lentiviral particles, they would undergo senescence if available for use. An 

alternative to fluorescently label fibroblasts would be utilising quantum dots (qDots), as one 

study reported to successfully track MSCs in vitro and vivo with long photostability (Muller-

Borer et al., 2007). First, we explored the effect of qDot-labelling on fibroblasts, to 

understand if qDot-labelling has any cytopathic impact on fibroblasts. A monolayer of 

unlabelled and labelled fibroblasts was seeded and counted daily, over the 144-hour time 

course. We observed no significant differences in cell number between labelled and 

unlabelled conditions over time (Figure 6.9 A), which suggests qDot-labelling does not cause 

any cytopathic effect on fibroblast cell growth. 
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Next, we labelled fibroblasts with qDots and assessed intracellular qDot labelling over a 96-

hour time course by flow cytometry (Figure 6.9 B). 24 hour labelled qDot fibroblasts 

demonstrate a greater fluorescent signal, compared to unlabelled fibroblasts. Though by 72 

hours and until 144 hours, the qDot signal was weakened and we saw some overlap with 

unlabelled fibroblasts; suggestive of a faint signal. As the fibroblasts incorporated qDots, this 

declining signal may be explained by the cells undergoing cell division, that potentially divides 

the signal in half with every division.  

Nevertheless, we next incorporated these fluorescently-labelled cells into our 3D spheroid 

invasion assay, to determine whether the periphery of cell outgrowths is concentrated with 

just tumour cells, fibroblasts or a combination of both. Cell outgrowth was observed from 

the spheroid (DU145 control cells + fibroblasts) as early as 8 hours (Figure 6.10 A). Cells were 

proliferating and growing beyond the field of view at x20 microscope objective at 30 hours, 

with evidence of tumour cells proliferating between 16-22 hours. We observe weakly GFP-

labelled tumour cells present in the cell outgrowth at 0 and 12 hours (Figure 6.10 B). 

Similarly, qDot-labelled fibroblast signal was present at the periphery of cell invasion at 0 

hour, but the signal faded by 12 hours. As some examples, individual qDots are present 

within cell outgrowth, as determined by the zoomed in images; indicative of fibroblasts, 

albeit very faint. These results give some indication that tumour cells are present in these 

outgrowths, supporting cancer invasion at the leading edge. Fibroblasts are likely to be 

present, as some qDot positive cells were present with tumour cells at the invading front, 

but the signals were weak and difficult to detect over time.  
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Figure 6.8: Optimisation of G418 cytotoxicity profile for DU145 cells. Cells were seeded 

at a density of 5,000 cells per well and incubated with a range of G418 concentrations 0-

4000µg/ml. After 48 hours, cell viability was measured using the WST-1 assay. DU145 

cells were stably transduced with MISSION® lentiviral transduction particles expressing 

GFP. Graph shows mean, based on 5 wells. 
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Figure 6.9: Growth curve and quantification of qDot-labelled fibroblasts over time. (A) 

Fibroblasts were labelled with qDots for 24 hours, prior to seeding cells at a density of 

7,500 cells per well in DMEM-F12 media. The growth curve of fibroblasts was monitored 

daily, up to 72 hours and at 144 hours, determined by cell counts. Graph shows mean ± 

SEM, based on triplicate wells. n.s: non-significant. Two-way ANOVA with Tukey’s post 

hoc test. (B) Flow cytometry results of qDot labelled fibroblasts at 24, 48, 72 and at 144 

hours.  
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Figure 6.10: Tracking GFP-positive DU145 cells and qDot-labelled fibroblasts in the invasion assay. (A) Representative time-lapse images of 

GFP-positive DU145 cells (green) and qDot-labelled fibroblasts (red) images of the 3D spheroid cell outgrowths. Representative images (pictured: 

every 2 hours up to 30 hours) obtained hourly up to 96 hours (not shown) by the Zeiss Z1 observer. Image of spheroid cell outgrowth at 0 hour 

and 12-hour time points with (B) GFP-labelled tumour cells and qDot-labelled fibroblasts at the periphery of cellular invasion. Scale bar: 250µm. 

White arrows: GFP or qDot labelled cells.  
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6.1.5 Loss of Rab11b- or Rab35-Dependent Exosomes Attenuates MMP Levels in 3D 

Culture  

Previous results revealed that DU145 Rab11bKD or Rab35KD cells significantly reduced the 

invasive capacity of 3D spheroids, failing to give any advantageous invasion even in the 

presence of fibroblast. Invasion requires a complex actin-based tumour cell migration 

machinery that works in tandem with the secretion of MMPs. Here, we explored the 

potential mechanism of action underlying these invasive differences proposed to be 

alterations in MMP levels, capable of degrading the ECM to support cellular invasion. 

RNA was extracted from 3D spheroids at day 4. The relative levels of mRNA for MMP-1, 

MMP-13 and tissue inhibitor of matrix metalloproteinase-3 (TIMP-3) were compared among 

the different homotypic and heterotypic spheroids using Taq-Man PCR assays. Relative 

quantification using the comparative Ct method (2-ΔΔCt), was used to analyse differences in 

gene expression of MMP-1, MMP-13 or TIMP-3 among the spheroids. MMP-1 or MMP-13 

expression was measured relative to the DU145 control, Rab11bKD or Rab35KD cells alone. 

TIMP-3 expression was measured relative to DU145 control cell co-cultured with fibroblasts. 

The mRNA for MMP-1 and MMP-13 was significantly up-regulated by 1.7-fold (P<0.001) and 

1.6-fold (P<0.01) respectively, in DU145 control cells with fibroblasts compared to control 

tumour cells alone (Figure 6.11 A & B). In contrast, DU145 Rab11bKD or Rab35KD cells, with or 

without fibroblasts, showed no significant differences in MMP-1 and MMP-13. Though, 

TIMP-3 was up-regulated by 1.5-fold in DU145 Rab11bKD (P<0.05) and Rab35KD (P<0.05) cells 

in the presence of fibroblasts respectively, compared to controls (Figure 6.11 C). Overall, at 

the transcript level, TIMP-3 was undetectable in the tumour cell only spheroids. 

At the protein level, the pattern is similar to the mRNA data (Figure 6.12), revealing increased 

concentrations of both MMP-1 (4.7-fold increase) (P<0.01) and MMP-13 (1.6-fold increase) 

(P<0.05), in the DU145 control and fibroblast spheroid’s CM, compared to control tumour 

cells alone. This influence is lost when using either DU145 Rab11bKD or Rab35KD cells (Figure 

6.12 A & B). Loss of either Rab11b- or Rab35-dependent vesicles appear to shows disruptive 

effects on the cross-talk between tumour cells and fibroblasts. These rendered the spheroid 

environment lower in MMPs and elevated in TIMP-3 at the transcript level; and this may 

explain the differences observed in invasivity. 
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Figure 6.11: Exosome-deficient tumour spheroids have reduced transcripts for MMP-1 

and MMP-13; and elevated TIMP-3.  RNA was isolated from spheroids containing DU145 

control, Rab11bKD and Rab35KD cells, with or without fibroblasts, at day 4. Quantification 

of mRNA expression levels for (A) MMP-1, (B) MMP-13 and (C) TIMP-3 in the different 

spheroids were measured, relative to the DU145 tumour cells alone or with fibroblasts, 

using qPCR. Graph shows mean ± SEM, based on triplicate wells. n.s: non-significant, 

*P<0.05, **P<0.01 and ***P<0.001. One-way ANOVA with Tukey’s post hoc test.  
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Figure 6.12: Exosome-deficient tumour cell spheroids secrete reduced levels of MMP-

1 and MMP-13. Cell CM was collected from spheroids containing DU145 control, 

Rab11bKD and Rab35KD cells, with or without fibroblasts, at day 4. Quantification of 

protein levels for (A) MMP-1 and (B) MMP-13 in the different spheroids were measured 

by ELISA. Graph shows mean ± SEM, based on duplicate wells. n.s: non-significant, 

*P<0.05 and **P<0.01. One-way ANOVA with Tukey’s post hoc test.  
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6.1.6 Knockdown of Rab35 Impacts Tumour Growth, but not Rab11b 

Previously, our group has demonstrated that administration of DU145 control cells with 

fibroblasts accelerated tumour growth in mice, compared to DU145 Rab27aKD cells with 

fibroblasts (Webber et al., 2015). Our results revealed that knockdown of Rab11b or Rab35 

leaves a vesicle population that remains insufficient for driving fibroblast differentiation into 

myofibroblast, leading to diminished angiogenesis and attenuated behaviour in 3D in vitro 

models. Here, we explored whether we could recapitulate these in vitro findings into the in 

vivo setting, in terms of tumour growth. 

Tumour:fibroblast xenografts consisted of DU145 (control or Rab11bKD or Rab35KD) cells co-

cultured together with fibroblasts in a ratio of 4 tumour cells:1 fibroblast (Figure 6.13 A). 

These xenografts were established on the dorsal flank of CD1 athymic mice and administered 

by subcutaneous injection of 5 x 106 total cells suspended in matrigel. Once tumours became 

palpable, dimensions (height and width) of tumours were measured using vernier callipers 

every 2 to 3 days. These measurements were used to calculate tumour volume (Jensen et 

al., 2008, Faustino-Rocha et al., 2013), using the formula:  

tumour volume (mm3) = width2 x length x 0.5. 

For each condition, tumours became palpable at day 7, with steady growth thereafter (Figure 

6.13 B). Knockdown of Rab11b showed little difference in tumour growth rates, compared 

to controls, reaching a large volume of in excess of 330mm3 by day 46, compared to 389mm3 

by the controls. In contrast, knockdown of Rab35 showed a significant attenuation of tumour 

growth from day 35 onwards (P<0.001) and at day 46, the tumour volume was less than 

100mm3. Representative images of excised tumours are shown (Figure 6.13 C), 

demonstrating restricted growth of the Rab35 knockdown tumour. We were surprised to see 

that knockdown of Rab11b did not show similar results as the Rab35 knockdown. Possibly, 

this may be due to other responses that we have not explored, perhaps phenotypic 

differences in the secretome. Though these reasons will be discussed in greater detail in the 

Discussion. 

 

 

 

 

 



Chapter 6. The Impact of Exosome-Deficient Tumour Cells in a 3D Co-Culture Model 
 

187 
 

 

  

Figure 6.13: Rab35 knockdown attenuates growth in vivo, but not Rab11b. (A) 

Schematic diagram of experimental outline. A total of 5 x 106 cells comprising of tumour 

cells (DU145 control or Rab11bKD or Rab35KD) with fibroblasts, at a ratio of 4:1 were 

administered subcutaneously to the dorsal flank of CD1 athymic mice. Three groups were 

compared; including control tumour cells, Rab11bKD or Rab35KD. (B) When tumours were 

palpable, day 7 onwards, tumour growth was assessed using external callipers every 2 to 

3 days and the graph shows tumour volume (mm3) for up to 46 days. Graph shows mean 

± SEM, (n=4). n.s: non-significant and ***P<0.001. Two-way ANOVA with Bonferroni post 

hoc test. (C) Tumours were excised, and photographed to represent the differences in 

volume at the experimental endpoint. 

(B) (C) 

(A) 
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6.2 Discussion 

In this Chapter, we investigated the implications of spheroids containing DU145 Rab11bKD or 

Rab35KD cells, co-cultured with fibroblasts on spheroid growth and invasion in vitro and 

tumour growth in vivo. First, spheroids generated with DU145 control, Rab11bKD or Rab35KD 

cells alone, or with fibroblasts, were cultured for 24 days. Numerous factors including 

spheroid generation method, culture media and cell lines can affect spheroid formation 

(Kelm et al., 2003, Kim, 2005). During the growth of these homotypic and heterotypic 

spheroids, we observed a dark dense cell core suggestive of a necrotic centre. This was 

commonly observed in all spheroids containing either DU145 control, Rab11bKD or Rab35KD 

cells. This feature was also observed in other 3D cell spheroids cultured in vitro (Folkman and 

Hochberg, 1973, Sherar et al., 1987, Hirschhaeuser et al., 2010). A necrotic core is recognised 

to be enclosed by a shell of quiescent cells and an outermost layer of live proliferating cells. 

Studies have described spheroids with diameters larger than 500µm, accumulating 

metabolic waste in the inner core which deprives cells of oxygen and nutrients, thus a 

necrotic centre (Anada et al., 2012, Beauchamp et al., 2015).  

Analysis of these DU145 control, Rab11bKD or Rab35KD cells alone, or and tumour:fibroblast 

spheroids, revealed a reduction in size with the Poly-HEMA method, before increasing in size 

over time. Although Poly-HEMA coated plates can generate spheroids, it remains difficult to 

control a homogenous Poly-HEMA coating (Ke et al., 2004). Where uneven coating can occur, 

this may result in impurities or poor ethanol evaporation in Poly-HEMA, that may affect 

spheroid formation and growth (Atala and Lanza, 2001). There was great difficulty in using 

poly-HEMA generated spheroids for functional invasion assays, as spheroids became fragile 

and brittle. This led to companies, such as GBO, to manufacture CELLSTAR® cell-repellent 

surfaces plates that have a homogenously coated polymer to induce spheroid formation. 

Similar to Poly-HEMA, these coated polymers are proposed to prevent cell adherence, due 

to the negative electrostatic reduction of the polystyrene surface (Folkman and Moscona, 

1978). Based on the GBO-spheroid method, an increase spheroid growth for homotypic and 

heterotypic spheroids was consistent with other studies (McMillan et al., 2016, Wang et al., 

2016b). In contrast, the presence of tumour cells and especially fibroblasts showed an initial 

smaller spheroid, compared to tumour cells alone. This initial smaller spheroid may be due 

to cell re-organisation and cellular contraction of fibroblasts (Sodek et al., 2009, Nyga et al., 

2013). However, even in the presence of exosome deficient tumour cells, this did not seem 

to hinder spheroid growth. Similar to other reports, there is a finite limit to the maximum 

size a spheroid can grow to, regardless of how frequent media is replenished or the 
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availability of space for spheroid growth (Folkman and Hochberg, 1973). This could be 

explained the spheroid’s total number of cells reaches a point where their aggregate surface 

area is insufficient to allow adequate diffusion of catabolites. These spheroids enter a 

‘dormant’ phase and would perhaps require vascularisation that would begin exponential 

growth. Furthermore, measurements of these 3D spheroids are based on 2D measurements, 

which is not an accurate representation of tumour growth, as we assume spheroids are 

perfect spheres but the surface composition may differ. Spheroids which look small, might 

nevertheless be complex biologically; and differences other than this may exist. Analysis of 

spheroid tumour growth revealed that the single parameter of size (diameter and area) was 

not able to show differences in experimental groups, as we initially hoped.  

During tumour invasion, the stroma plays a fundamental role in secreting growth factors and 

matrix degrading enzymes to support tumour invasion (Hanahan and Weinberg, 2011). 

Therefore, we examined the invasive behaviour as a feature affected by the Rab 

knockdowns. Matrigel was used for in vitro invasion assays to mimic basement membrane 

matrices, which cancer cells penetrate during tumour metastasis (Albini et al., 1987, Albini, 

1998). From our data, cell outgrowth from 3D spheroid into the surrounding ECM occurs 

readily. By observing GFP-positive tumour cells and qDot-labelled fibroblasts, there was 

some evidence of tumour cells at the leading invasive edge. Although, some qDot 

fluorescence was present at the time of invasion (12 hours), qDot fluorescent signal was lost 

over time. An improved approach would have been to transduce fibroblasts with lentiviral 

particles with a fluorescent tag (mCherry/RFP), similar to GFP-positive tumour cells. This 

would have sustained fluorescent signal over a longer duration, whilst addressing whether 

fibroblasts are present at the leading edge or within the invading mass. In other studies, 

fibroblasts are located at the leading edge of invasive colon and gastric cancer models 

(Illemann et al., 2004, Satoyoshi et al., 2015). However, this remains to be explored in detail 

in our model. 

By using 3D spheroids in a matrigel invasion assay, DU145 control cells co-cultured with 

fibroblasts increased their invasivity capacity with larger outgrowths, though it remains 

uncertain whether this penetration occurred on top or through the matrigel. Both DU145 

Rab11bKD or Rab35KD cells severely attenuated tumour invasion, even in the presence of 

fibroblasts. This suggest that Rab11b- or Rab35-dependent vesicles appear key in mediating 

this cross-talk in between tumour and fibroblasts, enhancing the tumour’s invasive capacity.  
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As with stroma activation and motility, CM from fibroblasts treated with vesicles derived 

from DU145 Rab11bKD or Rab35KD cells, showed a decrease in secreted growth factors, such 

as VEGF-A and HGF (shown in Chapter 5), which may be involved in cancer cell invasion. The 

role of secreted VEGF-A and HGF by myofibroblasts, has been documented for supporting 

aggressive tumour cell invasion (Lewis et al., 2004, Cat et al., 2006). Overexpression of HGF 

and c-Met can promote cancer cell invasiveness (Ebert et al., 1994, Gao and Vande Woude, 

2005). Elevation of secreted HGF and VEGF was observed in prostate cancer stromal cells 

and exosome-differentiated fibroblasts (Webber et al., 2015), along with uPA contributing to 

degradation of the basement membrane and ECM (Jeffers et al., 1996, Botta et al., 2012). It 

could be possible that growth factors secreted from exosome-differentiated fibroblasts may 

play a role in triggering a proteolytic cascade for ECM modulation, supporting tumour 

invasion, although we do not have direct evidence for this. 

mRNA analysis from 3D spheroids, revealed highly expressed levels of MMP-1 and MMP-13 

in spheroids with exosome competent tumour cells containing fibroblasts, compared to 

spheroid containing DU145 Rab11bKD or Rab35KD cells. There was only TIMP-3 mRNA present 

in the fibroblast containing spheroids; and knockdown of Rab11b or Rab35 had a similar 

effect on elevating this inhibitor of metalloproteinase function. Quantification of MMP-1 and 

MMP-13 at the protein level was determined by ELISA. The pattern followed that of the 

mRNA data, revealing heightened activity in the presence of fibroblasts; and this influence is 

lost using either DU145 Rab11bKD or Rab35KD cells. This data only reveals MMP quantity, not 

showing MMP activity present within this 3D-microenvironment. Therefore, performing an 

MMP activity assay may answer whether these MMPs are involved in promoting invasion of 

tumour cells. 

Expression of MMP-1 and MMP-13 play a role in degrading collagen type I, II and III, which 

are components of the interstitial stroma (Aznavoorian et al., 1993). Consistent with a 

number of studies, MMP-1 overexpression has been described in a wide variety of advanced 

cancers (Kanamori et al., 1999, Franchi et al., 2002, Liu et al., 2012); and increased MMP 

activity is associated with tumour progression and aggressive invasion (Sakakibara et al., 

1999, Bendardaf et al., 2007). MMP-13 has been shown to enhance pancreatic tumour cell 

migration and invasion in vitro and vivo; and often stained heavily in highly invasive tumour 

cells in pancreatic cancer tissues, compared to weakly invasive cells (Tan et al., 2010, Fan et 

al., 2015). 
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By blocking MMPs, the relative importance they demonstrate in spheroid invasion can be 

proposed. Blockade of MMP-13 with a selector inhibitor (Cmpd-1) has been shown to reduce 

the tumour growth rate of two different primary breast cancer in vivo (Shah et al., 2012). 

Similarly, blockade of MMP-1 activity with specific inhibitors and antibodies, inhibited 

prostate cancer cell migration and invasion in vitro, whilst reducing tumour growth in vivo 

(Pulukuri and Rao, 2008). In many cases, MMP activity can degrade components of the ECM 

(collagens, fibronectin and laminins), generating fragments that have different biological 

activities (Xu et al., 2001, von Nandelstadh et al., 2014). For example, type I collagen 

degradation is mediated by MMP-1 and their by-products aids epithelial cell migration and 

wound healing in culture models (Pilcher et al., 1997). Furthermore, MMP-13 can activate 

the precursors of MMP-9 (Knäuper et al., 1997), which can degrade basement membrane 

type IV collagen, allowing tumour cell invasion and spread. This positive feedback loop lead 

to excessive collagen by-products, elevated during cancer progression and this correlates 

with metastatic cancer (Kehlet et al., 2016). This may activate further MMPs, allowing a 

continuous breakdown of the ECM and supporting the tumour’s invasive nature. 

As for TIMP-3, a variety of studies have shown that TIMP-3 expression is reduced in various 

cancer tissues, compared to non-cancerous tissues (Wu et al., 2012). Decreased TIMP-3 

expression was associated with pathological stage, nodal involvement and poor survival 

(Mino et al., 2007, Ninomiya et al., 2008). Furthermore, elevated TIMP-3 expression is 

proposed to contribute to tumour progression in head and neck squamous cell carcinomas, 

showing to be frequently silenced by promoter hyper-methylation during cancer progression 

(Worsham et al., 2006). Treatment of xenografts of human prostate or breast cancer cells in 

vivo with recombinant TIMP-3 protein, reduced tumour cell proliferation, sensitised cells to 

chemotherapy, reducing tumour growth and invasion (Mahller et al., 2008, Shinojima et al., 

2012). Possibly, TIMP-3 expression may exert its anti-proteolytic function at the invasion 

front of tumour cells, to quench tumour-associated ECM degrading activity, or in the stroma 

itself, where soluble proteases liberate ECM-tethered factors that assist cancer invasion. 

Spheroids containing both exosome competent tumour cells and fibroblasts can up-regulate 

matrix remodelling proteins, which may degrade the ECM and support the aggressive 

invasive nature of the tumour. The data in this Chapter revealed that co-culture of fibroblasts 

and exosome competent tumour cells, maintained an aggressive invasive capacity in vitro. 

However, loss of either DU145 Rab11b- or Rab35-derived exosomes appear detrimental in 

invasion, even in the presence of fibroblasts. Although we may like to believe the disease 

modulation is due to changes in secreted vesicles, it is important that this is not potentially 
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exclusive. The effects could equally be due to cell-contact dependent changes and alterations 

in the secretome. Nonetheless, the targets of Rabs is the best method available to target 

vesicles in complex 3D models or indeed in vivo; and it is likely these observations will be a 

vesicle-driven process. 

Next, we attempted to recapitulate these in vitro findings in an in vivo setting, by establishing 

xenografts consisting of DU145 control, Rab11bKD or Rab35KD cells with fibroblasts. 

Xenografts containing DU145 control cells with fibroblasts accelerated tumour growth, 

compared to DU145 Rab35KD cells with fibroblasts, but this difference was not similar in 

xenografts containing DU145 Rab11bKD cells. From day 35, knockdown of Rab35 significantly 

reduced tumour growth, compared to which controls, suggesting functional differences 

between Rab11b and Rab35 were not apparent from in vitro experiments. Similar 

experiments performed previously by our group, showed differences in attenuated tumour 

growth in xenografts with DU145 Rab27aKD cells with fibroblasts over 32 days, compared to 

controls (Webber et al., 2015). This may be highlighted by differences in phenotype and 

function between these subpopulations of vesicles. 

As demonstrated previously in Chapter 4, the protein profile of remaining vesicle 

subpopulation and secreted cytokines, following knockdown of Rab11b and Rab35 are 

distinct, despite showing similar effects upon fibroblast differentiation and supporting 

angiogenic function. Knockdown of Rab11b was capable of triggering fibroblast 

differentiation, if normalised for vesicle quantity to reach a threshold for activation. In 

contrast, vesicles produced by knockdown of Rab35 remained deficient in differentiation, 

irrespective of normalisation. Perhaps this may be explained by the chronic exposure of 

vesicle-defective tumour cells in vivo, between knockdown of Rab11b or Rab35. Previously, 

we have shown that TRAIL expression on the vesicle pellet was >2 fold increased in DU145 

Rab35KD remaining vesicles and <2 fold decreased in DU145 Rab11bKD remaining vesicles. 

Although the ability of TRAIL to trigger apoptosis in certain cell lines is well-established, its 

physiological role is not fully defined. Though, in mice, lower expression or genetic ablation 

of TRAIL supports the role for this ligand in the suppression of tumour growth and metastasis 

in vivo (Takeda et al., 2001). Similarly, there appears to be an increased susceptibility to 

tumour initiation and metastasis in TRAIL-deficient mice (Cretney et al., 2002). Recently, 

comparison of gene-expression profiles in a panel of >300 human breast cancer samples 

revealed down-regulation of TRAIL correlates with breast cancer metastasis to the brain (Bos 

et al., 2009). Therefore, it could be possible that the distinct protein profiles in remaining 

vesicles, following knockdown of Rab11b or Rab35 in tumour cells, may have different 
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implications on tumour growth, which is broader that simply the effect on stromal 

modulation. 

Furthermore, in similar in vivo studies, knockdown of Rab27a attenuated exosome secretion, 

but also impacted the cell secretome, such as the secretion of MMP-9, PGF and PDGF which 

have implications on modulating the tumour microenvironment (Bobrie et al., 2012, Peinado 

et al., 2012). In our protein profiling data (Chapter 4), as examples, we see that LIF expression 

was >2 fold increased in the DU145 Rab35KD cell secretome, compared to a <2 fold decrease 

in the DU145 Rab11bKD cell secretome. It is reported that elevated LIF expression induces cell 

cycle arrest and apoptosis, along with inhibition of melanoma cell migration (Humbert et al., 

2015). It could be possible that decreased LIF expression may not induce apoptosis and 

migration as extensively in the Rab11bKD xenograft, compared to the Rab35KD; although we 

do not have any direct evidence for this.   

As demonstrated in Chapter 5, normalisation of vesicle quantity to protein following 

knockdown of Rab11b or Rab35, failed to trigger a potent fibroblast differentiation response. 

We did observe that DU145 Rab11bKD cell-derived vesicles still triggered a moderately 

convincing response of fibroblast differentiating into α-SMA positive myofibroblasts, 

compared to DU145 Rab35KD cell-derived vesicles. It could be possible these fibroblasts have 

been ‘educated’ in vivo under the direction of the total secretome following knockdown of 

Rab11b, to become myofibroblasts similar to wild-type cells. Though, we highlight that 

Rab35-dependent vesicles appear to be important for stromal differentiation and this results 

in restricted tumour growth in vivo. Therefore, changes in the vesicle (decreased TRAIL 

expression) or soluble (decreased LIF expression) secretome; and the capacity to drive 

fibroblast differentiation following Rab11b knockdown, may all contribute to tumour growth 

in vivo, compared to the Rab35 knockdown. 

In this Chapter, I have shown that silencing Rab11b or Rab35 has major effects on tumour 

invasion in vitro. This is supported by attenuated levels of matrix degrading enzymes in this 

3D-microenvironment. This is recapitulated in vivo with knockdown of Rab35, however, this 

is not as clear with Rab11b. This may be explained by differences in the remaining vesicle 

subpopulations or cell secretome, following knockdown of Rab11b or Rab35, which may play 

independent roles in tumour growth and progression.
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7.1 General Discussion 

7.1.1 Summarising Discussion 

In this study, we aimed to assess the possible roles of CD9, Rab5a, Rab11b, Rab35, VAMP7 

and VPS25 in exosome secretion. ESCRT proteins are involved in MVE formation in yeast and 

mammalian cells. Silencing VPS25 (part of ESCRT-II) reduced exosome secretion by 20%. 

However, as there are reports of ESCRT-II are not required for viral budding (Langelier et al., 

2006) or degradation of EGFR (Bowers et al., 2006), this suggests that ESCRT-independent 

pathways are potentially present. Yet, we highlight VPS25 appears important for maintaining 

cell viability and proliferation, with signs of toxicity upon VPS25KD. To assess vesicle secretion 

by cells undergoing major toxicity is difficult. Dead cells are unable to produce a complex 

range of particulates, vesicles, molecular proteins of the cells compared to viable cells. 

We chose to examine CD9, because it is very abundant on DU145-derived exosomes, isolated 

by size exclusion chromatography (Welton et al., 2015), sucrose gradients and cushion 

methods (Webber et al., 2014). It was reported that silencing CD9 reduced the secretion of 

EVs in Nalm-6 pre-B cells (Mazurov et al., 2013); and in mouse-derived bone marrow DCs 

(Chairoungdua et al., 2010). Though, we report minimal impact in quantity of secreted 

vesicles following CD9KD, there are differences in enrichment of exosome-associated 

proteins. Little changes in levels of ESCRT-proteins suggests CD9 vesicles are maintained in a 

manner independent of ESCRT, but are perhaps dependent on LAMP or HSP. The importance 

of CD9 in other cell types may play roles in exosome secretion, yet it is not a major influence 

on exosome secretion in DU145 cells. 

Few studies have attempted to address the requirement for SNAREs in vesicle secretion. We 

examined silencing VAMP7 reported a modest decrease in vesicle secretion, yet only a 

modest decrease in LAMP proteins. One study reported that VAMP7 is not required for 

exosome secretion in MDCK cells (Proux-Gillardeaux et al., 2007), but inhibits lysosome 

secretion. In contrast, VAMP7 was found to be involved in exosome secretion by K562 cells 

(Fader et al., 2009). Currently, 36 SNARE proteins have been described in human cells (Jahn 

and Scheller, 2006), but only one SNARE protein has been assessed in this study. Other 

studies may suggest different cell types, may have different SNARE complexes involved in 

fusion of MVEs with the plasma membrane. Possibly, SNARE complexes may mediate fusion 

of specific MVE within a single cell type; and silencing VAMP7 may affect a specific vesicle 

subpopulations. The quantification of several exosome-associated proteins (ESCRT and HSPs) 

appeared to be unaffected, compared to controls, which may provide some insight into the 
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latter possibility. It should be stressed, we cannot convincingly conclude the role of VAMP7 

analysed here in vesicle secretion, as further studies such as molecular profiling data and 

functional data, will be required. 

Rabs constitute the largest family of small Ras-like GTPases, with over 70 types identified 

now in humans (Hutagalung and Novick, 2011). By knocking down Rab5a, an increase in 

vesicle number was observed. Contrasting studies have shown silencing Rab5a inhibited 

exosome secretion (Ostrowski et al., 2010), or increased secretory granules per cell (Azouz 

et al 2014). Different Rab5 isoforms may play different roles, such as trafficking early 

endosomes or trafficking to lysosomes for degradation in different cell types (Chen et al., 

2009). It remains possible that Rab5a may redirect endosomes to undergo exocytosis to 

release vesicles, instead of directing to lysosomes (Tan et al., 2016). As Rab5a is involved in 

endocytosing molecules, autocrine vesicle uptake from the cell may be abrogated; and may 

explain increased vesicle accumulation in the extracellular space. Nonetheless, it’s important 

to consider other Rab5 isoforms and their roles in exosome biogenesis and secretion, but 

also the interplay between either autophagy or endocytosis may explain this increase in 

vesicle secretion. 

By silencing Rab11b or Rab35, little signs of toxicity were shown. Alterations in the late 

endosome was present, as either knockdown revealed an accumulation of CD63, CD81 or 

LAMP1 in peri-nuclear structures. Similarly, these observations were reported in other cell 

types because of attenuated Rab11b (Grimsey et al., 2016), Rab27a (Ostrowski et al., 2010, 

Webber et al., 2015) and Rab35 (Hsu et al., 2010). These observations were consistent with 

the diminished capacity to expel these proteins out of the cell in association with vesicles. A 

20% decrease in vesicle secretion was measured, following Rab11b or Rab35 knockdown by 

NTA. This was also shown with a decrease in exosomal-associated proteins by plate-based 

assays and Western blot. Despite a strong knockdown at the RNA level (95%), the impact on 

exosomes is rather minor. It suggests that other pathways deliver MVEs to the plasma 

membrane, in which Rab11b or Rab35 are redundant; and supports the notion that other co-

existing MVEs are present and differentially trafficked. 

It was suggested that Rab11b or Rab35 regulate the same vesicle pathway, as silencing either 

protein resulted in a vesicle population that was approximately 80% of control cells. It was 

first reported that Rab11 was involved in trafficking MVEs to the plasma membrane (Savina 

et al., 2002), but it remains unknown which type of MVE was trafficked. In one study both 

Rab11 and Rab35 mediated slow endocytic recycling through endosomes to the plasma 
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membrane (Stenmark, 2009). Similarly, Rab35 have been shown to promote the recruitment 

of other related Rab proteins to recycling endosomes in yeast models (Rahajeng et al., 2012); 

and in a neuroendocrine tumour cell line (Kobayashi et al., 2014). Additional roles for Rab35 

has been reported to localise at the newly formed early endosomes to traffic the transferrin 

receptor (Kouranti et al., 2006), or the mannose-6-phosphate receptor (Cauvin et al., 2016). 

However, in oligodendrocytes, Rab35 has been proposed to be involved in acting on the late 

endosome (Hsu et al., 2010). Interestingly, work in C. elegans showed that the combined 

knockdown of both Rab11 and Rab35 leads to a dramatic enhancement of intracellular 

accumulation of endosomal cargo (Sato et al., 2008). We have evidence from the protein 

profiling array to propose both that Rab11b and Rab35 regulating distinct exosome-secretion 

pathways in the remaining (80%) vesicle population; with decreased CXCL6 (Rab11bKD) and 

increased CXCL6 (Rab35KD) as an example. However, the specific endosomal compartments 

that Rab11b and Rab35 regulate are poorly understood; although this thesis provides 

evidence that they possess independent parallel roles in endosomal trafficking rather than 

acting in sequential stages. 

Attenuating Rab proteins has been demonstrated to impact on the soluble secretome 

(Bobrie et al., 2012). Our protein profiling data agrees with this notion, in relation to Rab11b 

and Rab35. As one example, LIF and IL-6 were significantly elevated in the Rab35-knockdown 

secretome, but this was not a feature of the vesicles. This suggests that these factors are 

present as soluble factors, rather than association with vesicles. Profiles of the secretome 

highlight examples of dissimilarities and show that knockdown of Rab11b or Rab35 impart 

distinct effects on the general secretome, which are not vesicle-exclusive effect. 

Previously, it was demonstrated that tumour exosomes can drive fibroblast differentiation 

into myofibroblast (Webber et al., 2010). This distinct myofibroblastic phenotype arising 

from tumour exosome treatment, differs to cancer-associated stromal cells treated with 

rhTGF-β1, as they promote angiogenesis in vitro and tumour growth in vivo (Webber et al., 

2015). Here, we report that the general secretome appeared to lack the capacity to drive 

fibroblast differentiation, despite containing other factors as well as the presence of vesicles. 

Though, this issue may be due to a lack of seeded cell numbers, hence, the number of vesicles 

available from the total secretome is minimal. However, fibroblast differentiation resided in 

the vesicle concentrates, implicating this is a vesicle-driven process. Following vesicle 

concentration from Rab11b or Rab35 knockdown, there was a diminished capacity to drive 

differentiation. This vesicle-mediated differentiation mechanism is dependent on the levels 

of vesicle-tethered TGF-β1 (Webber et al., 2010). This could be explained by the loss of as 
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little as 20% of the vesicle subpopulation to disrupt the threshold required for 

differentiation. Similar studies have also not achieved the required threshold in vesicles, with 

changes in lymphocyte mRNA expression (Muller et al., 2016) or invasion of trophoblasts 

(Salomon et al., 2013).  

Alternatively, a possible explanation for this failure to drive fibroblast differentiation is that 

the vesicle phenotype following knockdown of Rab11b or Rab35 is altered, which renders 

the remaining vesicle population insufficient in this functional activity. We report that by 

treating fibroblasts with equal vesicle quantities in control, Rab11bKD and Rab35KD; the 

Rab11bKD were still capable of driving sufficient differentiation. This was only capable if 

vesicles were added to reach the correct threshold for activation. In contrast, the vesicles 

secreted from Rab35KD cells appeared to be deficient in their ability to differentiation, 

irrespective of normalisation. It could be possible that these Rab35-dependent vesicles may 

contain specific mRNA/miRNA (Valadi et al., 2007), proteins or other molecules, along with 

TGF-β1 delivery, that may drive fibroblast differentiation. Additional investigation would be 

required to understand the molecular features of Rab11b (functional) and Rab35 

(dysfunctional). The profiling performed so far is not of sufficient breadth and complexity to 

provide us with these answers and a more extensive analysis would be required. This data 

highlights the distinct vesicle profiles remaining in cells following knockdown of either 

Rab11b or Rab35, revealing Rab35-dependent vesicles are required for fibroblast 

differentiation into myofibroblasts. 

In the absence of fibroblast differentiation, stromal cells that arise demonstrate poor 

tumour-supporting function, such as angiogenesis. The direct effect of cancer exosomes on 

endothelial cells promoting angiogenesis (Sheldon et al., 2010), or indirectly through 

differentiated myofibroblasts to support angiogenesis has been reported (Webber et al., 

2015). We showed a loss of Rab11b- or Rab35-dependent vesicles can strongly attenuate the 

secretion of pro-angiogenic growth factors, HGF and VEGF; slowing endothelial cell migration 

and inhibiting vessel formation. These regulators also appear to be relevant in context of a 

3D-microenvironment of a tumour:fibroblast co-culture model, that appear to drive an 

aggressive matrix invasive behaviour. We provided some evidence that the presence of 

tumour cells and fibroblasts are present within the leading edge, yet the signal for fibroblasts 

was weak and difficult to detect over time. This invasive behaviour was attenuated when 

Rab11b or Rab35 were knocked down, as this may have interfered with tumour-stroma 

communication. However, we cannot state this effect is exclusively due to vesicle loss, as the 
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knockdowns could influence the soluble secretome, which may impact other aspects of cell 

behaviour, such as adhesion or motility. 

This aggressive invasive behaviour was attenuated in the absence of Rab11b or Rab35, or 

even in the presence of fibroblasts. We reported a reduction in levels of MMPs within the 

3D-microenvironment, containing the knockdown of Rab11b or Rab35. MMPs are reported 

to play roles in promoting tumour growth (Franchi et al., 2002, Shah et al., 2012), by enabling 

penetration through the ECM (Pilcher et al., 1997), supporting invasion (Hsu et al., 2006, 

Bendardaf et al., 2007). However, it remains difficult to determine whether enhanced MMP 

secretion is truly relevant to this aggressive invasion that is observed. Methods would include 

inhibition of MMP activity or detecting levels of MMP activity within the 3D-

microenvironment. It could be possible MMPs may be present on the vesicles, playing this 

invasive function of tumour cells, as demonstrated in melanoma derived exosomes 

(Hakulinen et al., 2008). Nevertheless, this data reports that Rab11b and Rab35 have an 

influence on the invasivity of heterotypic spheroids and MMP levels present in the 3D-

microenvironment; and together with the previous data, this emphasises the importance for 

activation of the tumour-supportive fibroblast functions. 

Many of the in vitro experiments in this study demonstrated that knocking down of either 

Rab11b or Rab35 gives rise to functionally similar effects shown in a multitude of short-term 

based assays. Here, we reported that injecting these manipulated tumour cells with 

fibroblasts showed significant differences. Knockdown of Rab11b had no significant impact 

on tumour growth in vivo, with tumour volume similar to controls. Alternatively, knockdown 

of Rab35 significantly attenuated tumour growth after 46 days. This may be explained by 

differences in the secretome following knockdown of Rab11b or Rab35. The chronic 

exposure to vesicle-defective tumour cells in vivo revealed functional differences that were 

not clear from in vitro experiments. Furthermore, we show differences in secretion of growth 

factors from fibroblasts treated with vesicles, following knockdown of Rab11b (increased 

FGF-2) or Rab35 (decreased uPA). From previous data, we showed differences in the levels 

of CXCL6 following knockdown with decreased CXCL6 (Rab11bKD) and increased CXCL6 

(Rab35KD) as an example. These secreted cytokines may play roles in modulating the immune 

response or enhancing tumour cell proliferation in vivo. In similar models, blockade of 

Rab27a attenuated exosome secretion and impacted the secretion of growth factors (PIGF-

2 or PDGF) or MMP-9, reducing tumour growth and metastasis in vivo (Bobrie et al., 2012, 

Peinado et al., 2012, Webber et al., 2015). Nevertheless, the collective functional data 
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demonstrates the differences in phenotype between vesicle subpopulations and the 

influence they have in driving tumour growth. 

In this Thesis, the data identifies a minor role for Rab11b and Rab35 in regulating the overall 

secretion of vesicles from prostate cancer cells. Interfering with these pathways attenuates 

vesicle secretion by 20%, impacting vesicle-mediated communication between tumour and 

stromal cells; restricting stromal differentiation, angiogenic and invasive behaviours. Here, 

we showed that Rab11b and Rab35 GTPases regulate distinct pathways, resulting in different 

vesicle molecular phenotypes. Attenuating the Rab35-dependent vesicle subpopulation that 

remains functionally important for stromal differentiation, results in reduced tumour growth 

in vivo, as shown in Figure 7.1. Molecular targeting of this specific vesicle subpopulation may 

provide to be a novel avenue likely to attenuate the tumour promoting microenvironment 

to ultimately slow disease progression. 
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Figure 7.1. Schematic summary of Rab11b- or Rab35-dependent vesicle effects on the 

stroma and in vivo. (A) Wild-type tumour cells secrete a heterogeneously subpopulation 

of exosomes, which drives fibroblast differentiation into myofibroblast with a 

subsequent supportive pro-angiogenic and invasive phenotype. This results in 

unrestricted growth in xenografts in vivo. (B) Knockdown of Rab11b resulted in a 20% 

loss in total vesicles, with decreased (Blue) and increased levels (Red) in secreted protein; 

though this is not critical, as the remaining population retains the ability to support 

differentiation and tumour growth. (C) Likewise, knockdown of Rab35 resulted in a 20% 

loss in total vesicles and the remaining vesicles exhibit a distinct protein profile. With 

these vesicles, however, differentiation does not occur and restrict tumour growth was 

shown in vivo.  

 

(A) 

(B) 

(C) 
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7.1.2 Future Directions 

Within this study, specific exosome subpopulations have been demonstrated to be strong 

drivers of fibroblast differentiation, that can aid tumour growth and progression. 

Understanding the molecular phenotype of these Rab35-dependent exosomes and their 

interaction with other cell types within the stroma, may provide additional avenues to slow 

tumour growth and progression. 

Exploring the Importance of CD9, Rab5a and VAMP7 

We have not explored the full importance of CD9, Rab5a and VAMP7 in other roles involved 

in endocytic trafficking. In this study, we have indicated that Rab5a may have a role for 

elevating the EV content of the total secretome, that could occur through accelerated 

exosome secretion or by regulating the capacity of endocytic uptake of exosomes. The role 

of Rab5a has been predominantly involved in mediating the early endocytic pathway (Gorvel 

et al., 1991), or an autophagy-mediated dependent pathway (Tan et al., 2016). As Rab5a is 

involved in endocytosing molecules, autocrine vesicle uptake from the cell may be 

abrogated; and may explain increased vesicle accumulation in the extracellular space. One 

area of investigation would be to explore if different endocytosis pathways are dependent 

on the Rab5a protein; does blockade of Rab5a lead to inhibition of specific endocytosis 

pathways leading to the accumulation of vesicles in the extracellular space? Would the 

presence of additional vesicles within the extracellular space lead to a more aggressive 

tumour-supporting phenotype? 

Few studies have addressed the requirement for SNAREs in exosome secretion. VAMP7 was 

indicated to have a role for attenuating EV secretion (Fader et al., 2009); as shown in this 

Thesis. It could be possible different SNARE complexes could mediate fusion of specific 

subpopulations of MVEs within a single cell type, potentially impacting a specific vesicle 

subpopulations. The data suggests knockdown of VAMP7 or CD9 does not impact ESCRT-

related proteins. Instead, CD9 might be involved in cargo loading on MVEs, as there was no 

significant differences in vesicle number, but changes in the levels of exosomal-associated 

proteins. One area of investigation would be to explore the molecular profile of the vesicles 

following knockdown of CD9, Rab5a and VAMP7, that will give us a greater comprehensive 

understanding of proteins present on the surface. Furthermore, it would be important to 

understand whether these proteins can redirect endosomal trafficking or mediate cargo 

loading onto MVEs.  
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The in-depth Mechanism of Exosome-Induced Myofibroblast Differentiation 

The mechanism behind the generation of myofibroblasts by cancer exosomes remains poorly 

understood. Here, we highlight the role of Rab35-dependent vesicles on triggering 

differentiation and it could be possible these vesicles may incorporate distinct miRNA and 

mRNA (Valadi et al., 2007) into recipient cells, that vary from Rab11b-dependent vesicles. 

Studies have focused on the role of exosomal miRNA in their regulatory role on gene 

expression (Kosaka et al., 2010). As one example, tumour-associated myofibroblasts express 

significantly higher levels of miRNA-21, compared to ovarian tumour cells (Au Yeung et al., 

2016). Co-culture experiments highlight transfer of miRNA-21 to neighbouring tumour cells 

suppressing apoptosis. Though, there are limitations to some of the current functional 

studies associated with exosomal miRNA. As mentioned previously, there are multiple 

methods to isolate vesicles which may vary in the exosomal content, including proteins and 

miRNA (Kosaka et al., 2010, Hu et al., 2012). Though, it leads us to question the role of 

exosomal miRNA, to investigate if Rab35-dependent vesicles contain miRNA differing from 

Rab11b-dependent vesicles that would exert a different functional capacity, such as 

fibroblast differentiation. Though, some studies have implicated exosomes do not exert any 

functions via miRNA, and this is all due to cellular miRNA, it remains to be questioned and 

investigated in greater detail. 

Targeting Rab35-Dependent Vesicles as a Therapeutic Approach 

Since the data emphasises the role of Rab35-dependent vesicles for driving fibroblast to 

myofibroblast differentiation, leading to diminished angiogenesis and attenuated invasive 

behaviours in 3D in vitro models. Silencing Rab35-dependent vesicles significantly reduced 

tumour growth rates in vivo and targeting these vesicles may act as a therapeutic approach 

to slow tumour growth and progression. 

In breast cancer, the expression of human epidermal growth factor receptor 2 (HER2) protein 

can stimulate tumour growth and progression, where this intracellular signalling is proposed 

to be exemplified with exosomes (Marleau et al., 2012). Herceptin® (HER2-blocking 

antibody) is often used as a therapeutic antibody to treat breast cancer and exosomes can 

interfere with its activity. There has been the development of the extracorporeal 

haemofiltration of exosomes from the whole circulatory system, using an affinity 

plasmapheresis platform, known as Aethlon ADAPT™ (adaptive dialysis-like affinity 

technology system), which separates particles based on size and phenotype (Marleau et al., 

2012). This device consists of an outer compartment containing immobilised affinity agents 

(proteins of interest), which the compartment is integrated with a standard renal dialysis 
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machine. As blood passes through this system, particles smaller than 200nm will pass 

through that will be able to specifically bind to exosomes expressing proteins of interest; in 

our case Rab35. Currently, this machine is being used to eliminate Hepatitis C viruses from 

the circulatory system in some infected patients. Though, the safety and efficacy of this 

ADAPT™ machine for exosomal removal remains to be clinically tested, it may introduce a 

new therapeutic avenue to remove vesicle subpopulations. 

There has been approaches to develop inhibitors to block exosome secretion to attenuate 

different disease states. It was demonstrated that a ceramide-dependent mechanism is 

present to secrete exosomes in mouse oligodendroglial cells (Trajkovic et al., 2008). This led 

to the development of the GW4869 drug, a neutral sphingomyelinase (sphingomyelinase 

hydrolyses sphingomyelin into phosphocholine and ceramide) inhibitor, first used to inhibit 

exosome secretion in human embryonic kidney cells (Kosaka et al., 2010); and in mouse 

cardiac endothelial cells (Wang et al., 2014). However, it has been reported that 

administering GW4869 in primary cell line induces cell death, which provides an unreliable 

analysis of exosomes (Colombo et al., 2014); and demonstrated to be cytotoxic even when 

administered at low doses to myeloma cells (Vuckovic et al., 2017). Alternative approaches 

have been investigated in exploring the role of V-ATPase (large multi-subunit proton pump) 

on exosomes. They have roles in acidifying the endosomal lumen by localising the 

concentration of protons, powered by ATP hydrolysis. A study reported that V-ATPase has a 

direct interaction with VAMP protein, appearing to play a role in fusion neurotransmitter 

release (El Far and Seagar, 2011). V-ATPase inhibitors, balfilomycin A1 and concanamycin A, 

were proposed to inhibit the secretion of Rab27b-dependent vesicles in breast cancer cells 

(Rasschaert et al., 2015).  

Here, we would propose developing an inhibitor would be a novel approach to prevent the 

Rab35-dependent vesicle subpopulation, that has the capacity to activate the stroma and 

promote tumour growth in vivo. Future investigation would utilise a high-throughput 

approach to screen for inhibitors, to target their protein-protein interactions in silico and 

translate these findings in vitro and vivo. This would open a novel avenue to target a Rab35-

dependent vesicle subpopulation that is key in driving tumour growth and progression, 

although a limited number of pharmacological approaches have been investigated and this 

would open for further investigation. 
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Concluding Remark 

For the first time, we show that Rab35-dependent tumour vesicles is key for communication 

between cancer and stromal cells; and is essential for generating a tumour 

microenvironment favourable for disease progression. This emphasises along with the 

current literature that the presence of exosome heterogeneity is present and targeting a 

specific subpopulation may provide a novel valuable therapeutic approach for attenuating 

tumour growth and progression.  
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