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Abstract—While the risks induced by system dependencies have been studied; little is known about modelling 

complex collections of supposedly independent systems at different geographical locations, which are in reality 

interdependent due to sharing often-unrecognized common elements. It could be argued that any risk analysis of a 

large infrastructure that does not take account of such interdependencies is dangerously introspective. We present a 

top-down, goal-to-dependencies approach to modelling and understanding such Complex Systems, which uses 

secure, distributed computing protocols to share risk data between the risk models of interdependent systems. We 

present a Bayesian-sensitivity measure of risk, which is both intuitively satisfying and accords with everyday 

notions of risk. The core benefit of this approach is to capture dependencies between systems and share risk data 

such that failure of an entity along the ‘supply chain’ can be rapidly propagated to those who depend on it allowing 
them to calculate the likely impact and respond accordingly.  

Keywords-risk assessment;vulnerability analysis;senstivity analysis;failure mode analysis;interdependent 

systems;distributed systems  

I. INTRODUCTION 

 

In the twenty-first Century, an individual, group or enterprise depends on a range of entities, 

including telecommunications, supplies of energy, transportation, human resources, and governance, provided by 

private and public enterprises, and agencies.  Other entities may in turn depend on them to form a ‘supply chain’. 
Collectively this results in a Complex System, within which entities often operate autonomously, at different 

geographical locations, and there may be little coordination from an overarching authority. Such complexity often 

results in an entity’s owner not knowing on what they depend, or the full range of entities that depend on it. In short, 

it cannot collate the risks associated with its ‘supply chain’. 
Risk assessments undertaken using enterprise risk assessment methodologies (e.g including ISO/IEC Standard 

27005 [1], CRAMM [2], Octave [3]) are often carried out introspectively and define risk for individual entities of 

Complex Systems. A risk assessment for a hospital, for example, might highlight entities such as staff availability, 

medical equipment, records management systems, data communication networks, power stations, data centers, and 

transport infrastructures, to name a few. Some of these entities, such as staff and medical equipment, are self-

provisioned. If we regard risk as the failure to achieve the provision of these entities in full working order, then the 

risk for self-provisioned entities can likely be defined as it is known what they depend on to be successfully 

deployed. However, some of the entities may be provided from outside the hospital by external entities. The risk of 

external entities not being provided is unknown because the elements they depend on are not comprehensively 

understood by the principal entity. However, they are probably known to the external entity, which may have 

performed its own risk assessment. The problem is, the two risk models are unconnected, and there is no 

communication between the principal and external entities pertaining to shared risk data, even though they are 

effectively part of the same Complex System. What makes entities interdependent is their vulnerability to the failure 

of elements not directly included in their individual risk models. Indeed, the failure of elements in an external entity 

may trigger a rapid, unanticipated and catastrophic cascade of repercussions to other, nominally separate principal 

entities.  The role of interdependencies means that for the purpose of risk analysis, it makes sense to regard many 

notionally distinct entities as parts of a larger Complex System, a notion supported by [10].  

Interdependencies mean that static one-off risk assessments on isolated entities may not suffice to manage risk 

within and between notionally distinct systems. Isolated models need to be linked, somehow, to build a risk model 
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for a Complex System. However, linking introspective risk models from distributed entities is non-trivial. Firstly, to 

link models requires the identification of elements common to both models. Secondly, to determine the risk for the 

dependency requires an understanding of the dependencies of the common element. Most existing risk modelling 

methods use a bottom-up approach - from failure to consequence. The principle question in this case is “What could 
go wrong?”, which is a subjective view of risk and may lead to a failure to recognise dependencies and unpredicted 

circumstances. Finding elements common to multiple independent risk models using method is extremely difficult, 

as it is focused on independent failure modes and not common objectives. In contrast, we propose the question 

“What does the element depend on to be successful?”. When an entity is modelled for risk using this approach, at 

some point the dependency on an external entity emerges, and this is when it might be more beneficial to the 

understanding of external dependencies if both entities are regarded as parts of a larger Complex System.  

Working from the top down in this way (i.e. from the goals of a Complex System to its dependencies) allows 

failure modes to be quickly determined in the event of failure anywhere in the Complex System.  This amounts to 

answering repeatedly the original question “What does the element depend on to be successful?” across multiple 

isolated models. The difference is subtle but important and is equivalent to traversing a tree recursively from the 

trunk (top-down), which generates all the branches, versus tracing a path from a given branch to the trunk (bottom-

up), which generates only one path. 

This paper presents a top-down, or goal-oriented modelling approach that enables analysts to identify which 

dependencies their goals are most sensitive to, thereby enabling a prioritised risk management strategy with 

informed investment and allocation of countermeasures; to identify the most likely sources of failure given an actual 

or assumed failure within the entity, enabling effective use of time in identifying the problem and returning the 

system to full operation; and to identify other autonomously managed entities on which it depends.  These 

determinations can be rendered more accessible by the use of Bayesian methods and failure mode analyses.  

Our risk-modelling paradigm is able to provide both a statistical assessment of various definitions of risk and also 

a real-time representation of the current status of all the entities in the model. The inherent scaling problem of 

handling potentially large Complex Systems is facilitated by a novel, distributed middleware and supporting service-

oriented architecture which simplifies the construction of the original model and permits the sharing of real-time 

functional status data between principal and external entities, including the secure fine-grained acquisition of 

distributed status data, and updating of the conditional probability tables needed for meaningful statistical analysis. 

 

II. MODELLING DEPENDENCIES WITHIN COMPLEX SYSTEMS 

 

We present an approach to Dependency Modelling (DM) as a method of determining the risk to an enterprise 

through the use of a graphical model. We use enterprise to denote the providing entity under consideration or its 

owner, be it for instance a government, a business, a group etc. 

The method for building a model is as follows. A top-down model of the enterprise is built from an overall goal to 

its first-level dependencies (see Figure 1), and then to next-level dependencies, and so on. Dependencies are 

assigned a number of possible states (failure or success being the simplest), and a conditional probability of being in 

those states. Repeating this for sub-processes produce a tree or graph-based model. For brevity we will not go into 

the technical specifics of how, but this model can be interpreted both as a Bayesian network and as a failure-mode 

model (see [8,9]).  The probabilities are used by a Bayesian analysis engine to determine a range of sensitivities or 

vulnerabilities illustrating which elements in the model are most pivotal to its success, while a mode-analyzer 

intuitively illustrates the most likely cause of failure in a model, given that a hypothetical (for simulation purposes) 

or actual (for response purposes) failure has occurred. Individual models can be created for a number of provided 
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entities owned by an individual enterprise, these can be linked and scaled to model the entire enterprise, and finally, 

they can be linked to interdependent entities within other enterprises, to build a model of a Complex System through 

a scale-management method we call Zooming. 

 
Figure 1 - Goal with dependencies 

 

Central to the method is the role of goals.  Loosely speaking risk is about failing to achieve goals. In DM terms, 

risk in complex systems relates to the achieving, or the failure to achieve, the provision of the fully functioning 

entities that goals depend upon. We refer to the successful provision as a goal. Without a goal there is no risk, and 

changing goals changes the threat landscape.   

Every element in a Dependency Model is an abstract goal. We are not for example interested in having (say) an 

access control system for its own sake, but rather because we want to keep hackers out of the network. The goal 

would therefore be to Keep Hackers out of the System, not to Have an Access Control System (ACS). It quickly 

becomes clear that all goals are abstract in this sense. Having an ACS does not necessarily achieve the goal. The 

successful defence of the system may be dependent on a number of factors, including technology (such as an ACS), 

expert knowledge (how to configure the ACS), and people (abiding by the expected security policy). To require the 

mere existence of the ACS leads to “box-ticking” risk management approach - this is unlikely to see the goal 

achieved. 

Each element in the model can be regarded as a goal whose dependencies are drawn to its right, it may also be a 

dependency of one or more elements drawn to its left. The model can be extended in this way at will, and the 

process can be terminated at any stage by merely regarding some elements - for the purpose of the model - as being 

external entities, whose dependencies are unknown. Examples of the latter might include the reliability of the public 

electricity supply or a supply of clean water. All we need to know about these elements are their statistical properties 

to feed into the Bayesian engine when the model is complete, and we will call them uncontrollables.  Ultimately 

much of the risk in Complex Systems springs from these uncontrollables, hence the terminology.   

 

III. ANALYZING THE MODEL 

 

Bayesian network literature [8,9] often describes relationships through a dynastic metaphor.  Our dependencies 

would be called the parents of goals, and our goals the children of dependencies. The model can be viewed in a 

number of different ways.  It can be used to determine failures modes, and if we include conditional probability 

tables (CPTs) it can be treated as a Bayesian network, whereupon a Bayesian analyser can determine the probability 

that each element will be in each possible state. To make Bayesian inferences we need to know the statistical 

relationships between parent and child. The degree to which a goal is achieved is expressed as the state of the goal 

element. Each element may have any number of possible states greater than one. A common number is two, 
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typically associated with failure and success, though it is sometimes convenient to have more. A power station for 

example, could be able to provide varying levels of supply. In accordance to the concept of the success model, states 

are labelled according to some value judgement. Typical names for pairs of states would then be bad-good, failure-

success, red-green, no-yes or 0-1.  

If we incorporate real-time updating (via sensor data collected via an Internet of Things model, for example), 

DM can provide a “living” risk model where the impact of changes in state can be immediately seen in the rest of 
the model. For example the reduction in risk due to the introduction of a countermeasure can be used to decide the 

cost-effectiveness of the countermeasure, or by experimenting with various economies it is possible to find one that 

entails least extra risk. 

The relationship between a goal and its parents is expressed by a conditional probability table (CPT), which lists 

the probability of the goal being in each state according to the states of its parents. If the nature of the relationship 

boils down to a logical AND or OR function then the CPT has a simple structure consisting merely of 0s and 1s, but 

more subtle relationships can be accommodated. If the goal is an uncontrollable then this table, in an isolated model, 

is just a list of the probabilities it will be in each possible state. The power of DM in Complex Systems becomes 

more evident when the states of uncontrollables are dynamically pulled into the model from other distributed models 

that contain the actual states and dependencies of these uncontrollables, as described in Section V. 

 

IV. COMPARISON TO OTHER MODELLING APPROACHES 

 

A brief introduction to traditional risk modelling techniques is available in [11], and several reviews of risk 

assessment in critical complex system exist [13-16]. In summary the most popular approaches, include Fault Tree 

Analysis [4], Attack Trees [6], Cause-consequence/effect diagrams [7], Bayesian networks [8,9] and CORAS 

diagrams [12]. We add to this, enterprise risk assessment methods such as ISO/IEC Standard 27005 [1], CRAMM 

[2], and Octave [3]. 

The enterprise risk assessment methods work by defining a list of assets, determining their vulnerabilities, 

assigning threats to those vulnerabilities, and calculating the impact of a threat exploiting a vulnerability. Little 

attention has been given to dependencies between assets, or cause and impact throughout the rest of the enterprise 

should vulnerability attack occur, though this has begun to some extent with ISO/IEC 31000:2009 [5], which begins 

to frame risks in a goal-oriented manner but without full attention to dependencies. These considerations are 

addressed in this paper. 

Fault Trees, Event Trees and Attack trees can be used to focus on identifying potential faults, events or attacks 

that could cause a Complex System to fail. Cause-effect diagrams and CORAS threat models also work from failure 

to potential cause and subsequent effect. These are all, in principle, graph-theoretic modeling approaches, with 

nodes and edges representing how elements depend on one and other. Our approach is broadly related to the same 

type of graph. If probability data is added to the graph a Bayesian analyzer can interpret these approaches as well as 

the method proposed here. The key difference between our modeling approach and the others is our focus on the 

success of achieving goals (top-down) and not likely causes of failure (bottom-up), which we now elaborate. 

Let us first say what we mean by bottom-up and top-down approaches to defining risk, since these terms are used 

to mean different things by different authors. The bottom-up, fault-oriented approach of working from cause to 

impact introduces the following difficulty. The failure of some simple element (such as a bolt working loose) could 

ultimately lead, via a set of interdependencies, to the failure of (say) a major power station. Methods such as Fault 

Trees and Event Trees could be used to model this risk, and they would track the failure of successive subsystems, 

working from the loose bolt upwards towards the failure of the power station. This is easy to understand and logical. 
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However, the loose bolt is just one of literally thousands of events that could cause the power station to fail. It could 

for instance fail due to industrial action in its fuel supply chain, or through an EU directive restricting use of fossil 

fuel, or because an aircraft hit a distribution network.  The question then arises, why would we focus on the bolt 

working loose?. In other words this approach is restricted to investigating only those avenues that occur to us when 

we carry out the analysis, and may fail to include the factors, which actually turn out to be critical, and thereby fail 

to span the relevant domain of causality. 

By contrast, top-down goal-oriented approach corresponds to recursively expanding branches from trunk 

outwards, which generates an entire tree. As a loose analogy, bottom-up is like checking a bicycle inner-tube for a 

slow leak by examining some suspect parts with a magnifier, while top-down is plunging it into water and checking 

for bubbles.  

 

V. LINKING ISOLATED RISK MODELS AND SHARING RISK DATA 

 

Dependency models, as explained in Section II, support the identification of external entities on which an 

enterprise depends. They also support the establishment of critical dependencies – the entities the enterprise is most 

sensitive to, and are most pivotal to their success. When these critical dependencies have been identified they can in 

turn be investigated by examining their own dependencies through the process we called Zooming. This could be a 

continual cycle where multiple zooms create a model of interdependent systems across an infrastructure. When 

considering complex ‘supply chains’, this is a very powerful tool. In reality however, an enterprise owner is unlikely 

to be willing to share all of its dependency data with other parties – not to mention the security risk of centralizing 

such information. Thus, the current scope of the system focuses on supporting zooming by sharing a limited view of 

an enterprise’s dependency data, determined by the requirement to access the data. If an entity has a dependency on 
an external entity, its owner can periodically request access to state data from the model of that external entity, 

obtain the current state of the goal on which they depend, and instantly incorporate this understanding in their own 

model. 

The data embodying models in our proposed system is stored, managed and distributed in a way that both gives 

some protection against attack by hostile parties attempting to learn of system vulnerabilities from the model, and 

also manages the scaling problem of handling the data for large models whose complexity grows roughly 

exponentially with depth. The idea is that each entity’s data is stored and managed by only the enterprise owning the 
entity, and access to it is through a network connection, the URL for which is securely managed and distributed 

based on the access restrictions as defined by the enterprise.  

We recommend that the URL point to a disaster-resilient endpoint - for example a mirrored site or secure 

datacenter - away from the geographical location of the entity. The reason for this is because, should the entity 

succumb to a major incident, the data will not be able to be retrieved if it is destroyed in the same incident. 

When an enterprise creates a model, it stores it in a secured Internet-accessible location with and associated 

Uniform Resource Identifier (URI), and allows limited access to other enterprises, to view parts of the model. A 

dependency model consists of a number of goals, each with a Globally Unique IDentifier (GUID) that is 

automatically created for every new goal. The state and probability data for each goal is thus individually 

discoverable. If an analysis requires data regarding an external entity, the analyst can contact the owner of that entity 

through an agreed protocol, and request access to data for the goals on which they depend. For example, if a hospital 

depends on an electronic patient admission service that is remotely hosted, it can contact the hosting enterprise and 

request access to the data of the goal that represents the correct functioning of a patient admissions service. If 

agreed, the external entity will grant access to that specific goal but not the rest of the model. This is enterprise-
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based, fine-grained access control. Of course, the negotiation could include access to the dependencies of the goals, 

on which they depend, iteratively to whatever depth is both desired and permitted. The negotiation of access to goal 

states and the competition and political ramifications that are associated with it are outside the scope in this paper. 

At present we consider only the technical aspects, enabling the secure sharing of state data from dependency models.  

 

 
 

Figure 2 - Distributed Model “Zooming” 

 

The URIs (including GUID) of goals that are the subject of sharing agreements are automatically pushed to a 

global Goal Registry (see Fig. 2), which essentially contains a list of unique goal identifiers and URIs pointing to the 

network addressable endpoint to which queries for the state of that goal can be sent. Once the agreement has been 

made to share model data, the dependent entity creates a goal in their local dependency model and attaches its state 

information to the URI of the remote dependency. To populate the state information, the local model sends a request 

for the status of that goal to a Distributed Query Engine (DQE) (see Fig. 2). A DQE exists within each enterprise 

that agrees to share their model data. Acting in client mode, it sends requests for goal status to a DQE acting in 

server mode at remote sites. Thus, data requesters also act as data providers – a relationship that is true of service 

providers in Complex Systems. The state and probability data is returned to the requester (via a secure cryptographic 

protocol) and added to the goal in the local model. If the state is different to the one already in the model, the model 

is updated to reflect the change in state. This gives an instant view of how failure within a remote system affects a 

local system, and enables interdependencies within a complex system to be continually updated. The Goal Registry 

can be pinged periodically to request the location of state and probability data for external goals. In an emergency 

situation this could be every few seconds.  

VI. CASE STUDY 
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In this section we present an example of two isolated dependency models: a hospital and a data center. The latter 

hosts and provides the electronic admissions service for the former. We demonstrate how external dependencies are 

discovered within an isolated model and then show how the two models are merged.  

Figure 3 (left) shows a snippet of the dependency model for a data center. It focuses on “Systems OK” - the 

correct functioning of the IT systems hosted by the data centre. This data center provides the patient admissions 

service to a hospital at a different geographical location. The hospital has performed its own risk assessment and 

produced a dependency model which is partially shown in Figure 3 (right), focused on “IT Systems OK”, which 
includes a dependency “Admission System OK” – the availability and correct functioning of the electronic patient 

admission system. This is an external dependency, provided by the data center. Therefore, “Systems OK” and 
“Admission System OK” are one and the same, i.e. a common element in both models. They just happen to have 
been given different names by their modelers, but discussion between the two enterprises will establish that this goal 

is the common element in both models. By using the distributed data sharing method described in Section V, we can 

add a reference to the actual goal state data, stored and managed in the model of the external dependency. Using our 

Distributed Query Engine (DQE), we can mine the current status data for “Systems OK” from the remotely stored 
model, update the hospital model, and identify any changes.  

Using a real-world example to describe how unexpected events can impact on Complex Systems, we consider the 

Buncefield incident1 where a series of explosions at a major oil storage facility caused a nearby business park to 

burn down. As it happens a data center on that site provided the electronic patient admissions system for a hospital 

50 miles away. At the time, there was no way to gauge the impact this would have on the hospital’s admission 
system, nor the dependencies of that system.  

With our approach, an analysis of the data center could have quickly judged which of the goals within the model 

had failed. Cause of failure is not important at this point. However, by informing the dependencies of the failure, the 

risk model can be updated and appropriate action can be quickly taken. One of the failed goals would be “Systems 
OK”. The hospital would periodically be using the DQE to query the state of its dependencies, which would obtain a 

response from the data center model that “Systems OK” had a success probability of 0. The DM software would 

immediately change the state of the goal representing this in the hospital’s model and the impact would be 
discovered instantly. 

 

 

 

 

 

Figure 3 – Partial Data center Dependency Model (left), and Partial Hospital Dependency Model (right) 

                                                           
1 The Buncefield Incident – Final Report. 2008. Available at http://www.buncefieldinvestigation.gov.uk/reports/ 

http://www.buncefieldinvestigation.gov.uk/reports/
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Figure 4 (top) shows the hospital model again, this time with success probability scale displayed. “IT Systems 
OK” has a success probability of 0.45 while the other goals are in their current state.  

 

 
 

Figure 4 – Probability Table for the Hospital Model before (top) and after (bottom) ‘Admissions System Failure’ 
 

If we change the success probability of “Admission System OK” to 0, that is, we assume the DQE has updated 

the model following the incident, we can see from Figure 4 (bottom) that the “IT Systems OK” goal now has a 
success probability of 0, as the failure of a critical dependency has had an impact on its success. This is an instant 

update following the failure of an external entity. 

 

VII. CONCLUSION 

 

Prior to this work it was not usual to join risk models and share functional status data such that a change in the 

status of an external entity could be immediately incorporated into the models of its dependencies. Existing work 

into vulnerability/sensitivity analysis is capable of producing probability statistics and likely causes of failure within 

Complex Systems, but existing risk analyses are geared to handle only preconceived failures. Potential causes of 

failure change all the time and as cyber-terrorism becomes more of a threat, it is valuable to focus on prerequisites 

for success rather than what might fail, since this can generate the entire dependency tree rather than isolated routes 

from failure to consequence. Taking a goal-oriented view of risk enables such coverage, whereas a failure-oriented 

view can lead to overlooked threats, static outdated risk models and a myopic picture of vulnerabilities. The ability 

to evaluate the likelihood of a foreseen event fails to address the threat from unforeseen ones.  

A top-down approach builds models that spans the entire causal domain and hence finds and evaluates all threats, 

not just the ones the model-writer thought of at the time of analysis. A more detailed technical description of the 

method can be found in The Open Group’s Dependency Modeling (O-DM) standard which was co-authored by the 

authors of this article2. 

                                                           
2 https://www2.opengroup.org/ogsys/catalog/C133 
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