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Abstract

In this paper, we employ a three-state hidden semi-Markov model (HSMM) to explain the time-

varying distribution of the Chinese stock market returns since 2005. Our results indicate that the

time-varying distribution depends on the hidden states, which are represented by three market

conditions, namely the bear, sidewalk, and bull markets. We find that the inflation, the PMI,

and the exchange rate are significantly related to the market conditions in China. A simple trad-

ing strategy based on expanding window decoding shows profitability with a Sharpe ratio of 1.14.
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1. Introduction

In this paper, the research question concerns what hidden states drive the time-varying distri-

bution of the Chinese stock market returns. The literature on the Chinese stock market focuses

on financial integration, speculative trading, government interventions, information asymmetry,

and the relation with bank credit (e.g. Girardin & Liu, 2007; Mei et al., 2009; Los & Yu, 2008;

Chan et al., 2008; Girardin & Liu, 2005). Less attention has been paid to the time-varying fea-

tures of the Chinese stock market after 2005. We have observed that the Chinese stock market

behaves quite differently across different periods since 2005. Between 2005 and 2009, the Chinese

stock market index (CSI 300) increased approximately six times from 1003 (April 8th 2006) to

5877 (October 16th 2007), and then dropped to 1627.759 (April 11th 2008). Between 2010 and

2014, the CSI 300 had much less volatility and fluctuated between 2000 and 3500. From 2015

onwards, the market became highly volatile again (see Figure 1).

Figure 1: CSI 300 and its Returns
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We employ a three-state hidden semi-Markov model (HSMM) to explain the time-varying

distribution of the Chinese stock market returns. Based on the estimation by the expectation-

maximization (EM) algorithm, the hidden states behind the return data are represented by the

three market conditions, namely the bear, sidewalk, and bull markets. The underlying sequence

of hidden states is globally decoded by the Viterbi algorithm. The evolution of the market

conditions of the Chinese stock market over the last decade is then reviewed. Using Monte

Carlo simulations, our three-state HSMM is compared with a stochastic volatility (SV) model
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and a tGARCH(1,1) model with respect to three stylized facts, the fat tails, the “long-memory”

and the Taylor effect. All three models can reproduce stylized facts of the “long-memory” and

the Taylor effect, but tGARCH(1,1) fails to reduce the fat tails. Additionally, the information

criteria indicate that our three-state HSMM provides a better performance than the two-state

HSMM, the three-state hidden Markov model (HMM), and the two-state HMM.

We start our analysis by investigating the stylized facts of the CSI 300 returns. These stylized

facts of asset returns in the developed markets are well documented in the literature (Granger

& Ding, 1995; Pagan, 1996; Cont, 2001). They can be classified into two categories, namely

distributional properties and temporal properties. Distributional properties relate to the non-

Gaussianity of the distribution of asset returns, whilst temporal properties refer to the time

dependence of asset returns and of the squared/absolute asset returns.

In the early studies exploring distributional properties, normal distributions with stationary

parameters were often selected in order to model daily asset returns. However, Mandelbrot (1997)

doubted the Gaussian hypothesis of asset returns and stated that stable Paretian distributions

with characteristic exponents of less than 2 are better suited to fit the empirical distribution of

assets (Mandelbrots hypothesis). Fama (1965) undertook extensive testing on empirical data and

found that extreme tail values are more frequent than the Gaussian hypothesis (a.k.a. leptokurto-

sis), which supports the Mandelbrots hypothesis. In order to explain the notion of leptokurtosis,

Fama tried two modified versions of the Gaussian model: a Gaussian mixture model and a non-

stationary Gaussian model. However, his empirical evidence supports neither of them. Praetz

(1972) and Blattberg & Gonedes (1974) employed t-distributions with small degrees of freedom

in order to capture the fat-tail of the empirical distribution of asset returns. Granger & Ding

(1995) suggested that the appropriate distribution is the double exponential distribution with

zero mean and unit variance. Mittnik & Rachev (1993) inspected various stable distributions

for asset returns and found that the Weibull distribution gave the best fit for the S&P 500 daily

returns between 1982 and 1986.

In terms of temporal properties, the ARCH-family models are often used for volatility cluster-

ing. The original ARCH model was introduced by Engle (1982) in order to model non-constant

variances. Bollerslev (1986) generalised the ARCH model by allowing past conditional variances

to affect current conditional variances. Afterwards, variants of the GARCH were developed,

including EGARCH, GJR, GARCH-M, and so forth. Bollerslev et al. (1992) comprehensively

reviewed many types of GARCH models. As for the continuous-time set-up, stochastic volatility

models were introduced by Taylor (1986) in an attempt to overcome the main drawback of the
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Black-Scholes model characterised by a constant volatility. Stochastic volatility models facilitate

analysis of a variety of option pricing problems. A review of the stochastic volatility models was

conducted by Jäckel (2004).

The HMM is suitable to capture both distributional and temporal properties. The state

process of the model evolves as a Markov chain, providing the channel of time dependency. Its

distribution is a mixture of several distributions, enabling it to explain the fat tails. Rydén et al.

(1998) adopted an HMM with component distributions as normal distributions (zero mean but

different variance) in order to reproduce most of the stylized facts of the daily returns. However,

the HMM fails to reproduce the slow decay in the autocorrelation function (ACF) of the squared

returns. For the Chinese stock market, Girardin & Liu (2003) use a switch-in-the-mean-and-

variance model (MSMH(3)-AR(5)) in order to examine the market conditions on the Shanghai

A-share market from 1994 to 2002. They found three regimes: a speculative market, a bull

market and a bear market.

There are two ways to improve the HMM. The first way is to change the component dis-

tribution into other types of distribution. Rogers & Zhang (2011) proposed a two-state HMM

with non-Gaussian component distributions. They examined various component distributions.

By using the Kolmogorov-Smirnov test, the symmetric hyperbolic distribution is found to be

the most appropriate component distribution. With the inclusion of a regularisation term, they

can reproduce the slow decay of the ACF in the absolute returns. Their model setting mainly

focused on statistical properties and lacked meaning for the field of economics. The second way

is to generalise the sojourn time distribution of the HMM. Bulla & Bulla (2006) modelled daily

returns with the HSMM, which is a generalisation of the HMM by explicitly specifying the so-

journ time distribution. They utilised both normal distributions and Student’s t-distributions

as the component distributions. The stylized facts of the daily returns were entirely reproduced

by the HSMM. Their research focused on analysing the variances but ignored the means of the

component distributions. We believe that the means of the component distributions are also

worth investigating because they lead to different market conditions.

In this paper, we provide an interpretation of the hidden states, facilitating the economic

explanations of the HSMM model. Additionally, we provide two simple applications of our

three-state HSMM. In the first application, the three-state HSMM is used as a market condition

classifier, and then an ordinal logit model is employed in order to analyse the links between

the decoded market conditions and the macroeconomic variables. We find that the inflation,

the PMI, and the exchange rate are significantly related to the market conditions in China. In
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the second application, we design a simple trading strategy based on the expanding window

decoding. The trading strategy shows profitability with a Sharpe ratio of 1.14.

The remainder of the paper is structured as follows. Section 2 describes our data and its

descriptive statistics. Section 3 analyses the distributional and temporal properties of the Chinese

stock market returns. Section 4 briefly introduces the HSMM, estimation method, decoding

techniques and our model set-up. In Section 5, the estimation results and the decoding results

are presented and their economic meanings are discussed, followed by the model evaluation and

comparison in Section 6. Section 7 analyses the links between the decoded market conditions

and the macroeconomic variables. Section 8 presents a simple trading strategy with a Sharpe

ratio of 1.14. Section 9 summarises the paper.

2. Data

2.1. Data Information

The raw data is the closing price of the CSI 300 1, which is a free-floating weighted stock

market index of 300 A-share stocks listed on both the Shanghai Stock Exchange and the Shenzhen

Stock Exchange. The sample period is from April 8th 2005 (the launch date of the CSI 300)

to May 13th 2016. The number of observations accounts for 2697 in total. Our data was

downloaded from Wind. The daily return is defined as 100 times the first-order difference of the

natural logarithm of the price series.

rt = 100× (log(Pt)− log(Pt−1)) (1)

where Pt is the closing price of the CSI 300.

2.2. Descriptive Statistics

Table 1 presents the four moments of the daily returns of the CSI 300. The mean is roughly

0.042 and the standard deviation is 1.898. The third moment, skewness, shows that the daily

return is negatively skewed. The fourth moment, kurtosis, is larger than the double of the

normality benchmark. This implies that the daily returns of the CSI 300 have the leptokurtosis

1We employ the CSI 300 because it consists of stocks in both the Shanghai Stock Exchange and the Shenzhen

Stock Exchange, which is the most representative index market of the A Share. Other Chinese stock market

indexes (Shanghai Composite Index, SSE 50, and CSI 500) lead to similar results. Additional results are available

upon request.
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and the fat tails. The third and fourth moments indicate that the distribution of the daily

returns deviates from the normal distribution. The non-Gaussianity can be confirmed by the

Kolmogorov-Smirnov test with statistics of 0.953 and a P-value of approximately zero.

Table 1: Descriptive Statistics

Mean 0.042

Standard deviation 1.898

Skewness -0.516

Kurtosis 6.089

In order to inspect non-Gaussianity, we fit a normal distribution to the empirical distribution

and compare it to the empirical kernel density in Figure 2a. As it may be observed, the empirical

kernel density has the leptokurtosis in the middle and the fat tails at the two sides. The empirical

density is highly inconsistent with the fitted normal density. For the purpose of visualising the

magnitude of the fat tails, Figure 2b shows the QQ plot of the empirical distribution to a

theoretical normal distribution. While the empirical quantiles fit the normal quantiles in the

middle part, they diverge at the two tails. The QQ plot confirms the heavy tail of the daily

returns of the CSI 300.

Figure 2: Non-Gaussianity of the return distribution
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3. Distributional and Temporal Properties

3.1. Distributional Properties

In order to study the distributional properties, we fit various parametric distributions to our

empirical data, the daily returns of the CSI 300. Most parametric distributional types studied

in the literature are considered here. Four evaluation tools (log likelihood, AIC, BIC, and the

Kolmogorov-Smirnov test) are reported in Table 2 for all the fitted parametric distributions.

The normal distribution has the lowest log likelihood, and the highest AIC and BIC, which

confirmed the non-Gaussianity shown in Section 2.2. A Student’s t-distribution with a degree

of freedom 2.145 gives a better fitting than a normal distribution as it can capture the fat-

tail to some extent. However, the t-distribution is also rejected by the Kolmogorov-Smirnov

Test. The double Weibull, which gave a good fit for S&P 500 (Mittnik & Rachev, 1993), is

inferior to the t-distribution for the Chinese stock index returns. A double exponential distri-

bution seems to be the best fitted distribution within the non-mixture distribution category.

The Kolmogorov-Smirnov test cannot reject a double exponential distribution with a P-value of

79.83%. A symmetric hyperbolic distribution is rejected by the Kolmogorov-Smirnov test at the

5% significance level.

If mixture distributions are considered, the Gaussian mixture distribution with two compo-

nents (Gaussian mixture (2)) is better than the double exponential distribution with a higher log

likelihood, lower AIC and BIC, and a Kolmogorov-Smirnov test P-value of 86.20%. With an addi-

tional component, a Gaussian mixture distribution with three components (Gaussian mixture (3))

produces a higher log likelihood. It may be argued that the increase in likelihood comes from over-

fitting by introducing more parameters. However, the AIC and BIC of Gaussian mixture (3) are

lower than those of Gaussian mixture (2). Since the AIC and BIC penalise the additional number

of parameters, this suggests that Gaussian mixture (3) is superior to Gaussian mixture (2) for

Chinese stock index returns. Furthermore, a Kolmogorov-Smirnov test cannot reject Gaussian

mixture (3) at the 5% level.

The study of the fitting of various parametric distributions suggests that Gaussian mixture (3)

is a good candidate to capture the distributional properties of Chinese stock index returns, which

provides an intuitive foundation for using the three-state HSMM in this paper.
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3.2. Temporal Properties

3.2.1. “Long-memory”

As can be seen in Figure 3a, the autocorrelation functions are insignificant 2 for most lags

with a small number of exceptions. Thus, daily returns are uncorrelated. Figure 3b and Figure

3c show that the autocorrelation functions of both squared returns and absolute returns are

significant for all lags and decay slowly. This slowly decaying autocorrelation is referred to as

the “long-memory” in the literature. Both squared returns and absolute returns are two types of

volatility measure. The reason behind the “long-memory” could be volatility clustering, which

results from the fact that the volatility of the past returns will affect the volatility of future

returns for a considerably long period of time.

The temporal property of “long-memory” implies that there is some time dependence for the

squared/absolute returns. This time dependence is very persistent for the volatility of returns.

The GARCH-family models and the stochastic volatility models are usually used to capture

volatility clustering. A Markov chain or semi-Markov chain is also capable of modelling volatility

clustering in a discrete way. The advantage of a Markov chain or semi-Markov chain is that they

can be associated with various distributions. Hence, the study of temporal properties gives us

another incentive to use our three-state HSMM.

3.2.2. Taylor Effect

Taylor (1986) found that the autocorrelations of the power of absolute returns are the highest

when the power coefficient is one. In a mathematical definition, this is represented as:

corr (|rt| , |rt+k|) > corr
(
|rt|θ , |rt+k|θ

)
for any θ 6= 1 (2)

Figure 4 illustrates the Taylor effect for the daily returns of the CSI 300. One horizontal

dimension is the lag number and the other is the power coefficient θ. The vertical dimension is

the autocorrelation function values. The surface has the highest value in the middle where θ = 1

for all lags. The surface is declining when θ deviates from 1 and reaches its lowest values at the

sides of the space. |rt|θ is a volatility measure with different scales. The Taylor effect implies

that the volatility measured by |rt| has the strongest time dependence.

2The 95% confidence band for the autocorrelation function is calculated by ±1.96/
√
N , where N is the sample

size.
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Figure 3: ACF of Original Returns, Squared Returns, and Absolute Returns
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Figure 4: Taylor Effect
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In summary, the combination of a Gaussian mixture model and the “long-memory” time

dependence can correspond to HMM/HSMM where the distributional dimension is a Gaussian

mixture distribution and the time dependence is captured by a hidden Markov chain/hidden

semi-Markov chain. The distributional properties and the temporal properties of our empirical

data provide the intuitive support to adopt the HMM/HSMM for Chinese stock index returns.

The HSMM is finally chosen because it is a generalisation of the HMM and Rydén et al. (1998)

found that the HMM could not reproduce the stylized fact of the “long-memory”.
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4. Methodology

4.1. Hidden Semi-Markov Model

One limitation of the HMM is that its sojourn time 3 has to follow a geometric distribution

(Yu, 2010; Bulla & Bulla, 2006). The HSMM generalises the HSMM by allowing the sojourn

time distribution to follow other distributions. In other words, the sojourn time d of a given

state is explicitly specified for the HSMM. Similarly to the HMM, the HSMM also entails two

processes, an unobservable state process ST1 = sT1 and an observation process XT
1 = xT1 , where

sT1 is the notation for the realised states s1, s2, ..., sT and xT1 is the notation for observations

x1, x2, ..., xT . The hidden state process ST1 is an unobservable semi-Markov chain with m states.

The observation process XT
1 is associated with the hidden state process through component

distributions 4. Equation 3 shows the component distribution for state i at time t.

Pi(xt) = P(xt|st = i) where i ∈ {1, 2, ...,m} (3)

Equation 4 defines the state transition probability from state i to state j.

γij = P(st+1 = j|st = i) where i 6= j, i, j ∈ {1, 2, ...,m} (4)

Unlike the HMM, the transition probability from one state to the same state in the HSMM is

zero, i.e. γij = 0. The sojourn time in the HSMM is controlled by the sojourn time distribution

defined in Equation 5.

di(u) = P(st+u+1 6= i, st+ut+1 = i|st+1 = i, st 6= i) (5)

where the variable u is the length of the sojourn time which can follow nonparametric or para-

metric distributions. The sojourn time distribution for each state i can follow different types of

distribution or the same type of distribution but with different values of the parameters.

The transition probability matrix (TPM) has entries for the transition probabilities γij at

3The sojourn time is also known as the dwell time, occupancy time, or duration time.
4The component distribution is also known as emission distribution, conditional distribution, or marginal

distribution.
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row i and column j. The diagonal elements in the TPM of the HSMM are zeros.

Γ =


0 γ12 · · · γ1m

γ21 0 · · · γ2m
...

...
. . .

...

γm1 γm2 · · · 0

 (6)

We estimate the model using the EM algorithm (see Appendix A). The most likely sequence

of the states is globally decoded by the Viterbi algorithm (see Appendix B.1). Additionally, we

use local decoding to compute the conditional probabilities for each state at time t given the

observation (see Appendix B.2). Our implementation is based on the R package ‘hsmm’ (Bulla

& Bulla, 2013).

4.2. Model Setting

The number of states in our HSMM is set to three. Section 3.1 shows that Gaussian mixture (3)

is a better fit than Gaussian mixture (2) based on the likelihood and the information criteria.

The normal distribution is chosen to be the component distribution for our HSMM. Other dis-

tributions could be considered, but the empirical results of the Chinese stock index returns show

that the HSMM with normal components is sufficient to explain our data. Moreover, it is con-

venient to conduct various tests on a normal distribution, like the z-test in order to examine the

significance of the mean. Additionally, the normal component distribution enables us to give a

straightforward interpretation for the HSMM.

As for the sojourn time distribution, the logarithmic distribution is selected because it can

produce stable estimation results while the EM algorithm may not converge under many other

sojourn time distributions. The logarithmic distribution has only one parameter and can avoid

overfitting by introducing more parameters. The negative Binomial distribution used by Bulla

& Bulla (2006) is also a suitable candidate but it produces similar results as the logarithmic

distribution. Other sojourn time distributions could be used, but the logarithmic distribution is

sufficient for our data.

5. Empirical Results

5.1. Estimation Results

Through the EM algorithm, the parameters of the HSMM are estimated, including the pa-

rameters of the component distributions, transition probability matrix, and sojourn time distri-

12



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

bution. Table 3 presents the estimated parameters of the component distributions. Based on the

estimated mean and standard deviation, it is able to compute one-sample z-statistics in order to

test the significance of the mean. The formula to compute the z-statistics is as follows.

zi =
x̄i

σi/
√
ni

for i ∈ {1, 2, 3} (7)

where x̄i is the mean of state i, σi is the standard deviation of state i, and ni is the sample size

of state i. The one-sample z-test suggests that the mean of state 1 is significantly below 0 at

the 1% significant level; the mean of state 3 is significantly above 0 at the 1% significant level;

whilst the mean of state 2 is insignificant from 0.

Table 3: Component Distribution Parameters

State 1 State 2 State 3

Mean -0.510 -0.020 0.622

Std. Dev. 3.113 1.156 1.440

Sample Size 572 1430 695

z-statistics 3.918∗∗∗ -0.654 11.387∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The results indicate that the time-varying distribution of the returns depends on the hidden

states, which can be interpreted as the market conditions. Specifically, state 1 corresponds to

the bear market, state 2 corresponds to the sidewalk market, and state 3 corresponds to the bull

market. We define the bear, sidewalk, and bull markets from the perspective of the distributional

features.

Definition. A Bear Market

• The mean of the distribution of the daily returns conditional on a bull market is significantly less

than 0.

• The frequency of the positive returns is expected to be larger than that of the negative returns.

• Because of the above statistical properties, the price in a bear market is generally decreasing.

Definition. A Sidewalk Market

• The mean of the distribution of the daily returns conditional on a sidewalk market should be

insignificantly different from 0.
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• It is expected to observe a roughly equal number of positive and negative returns.

• Because of the above statistical properties, the price in a sidewalk market stays in a band and

shows a mean-reversion pattern.

Definition. A Bull Market

• The mean of the distribution of the daily returns conditional on a bull market should be signifi-

cantly larger than 0.

• The frequency of the positive returns is expected to be larger than that of the negative returns.

• Because of the above statistical properties, the price in a bull market is generally increasing.

Table 4 presents the empirical frequency of the positive and negative returns for the fitted component

distributions and confirms our interpretation of the three underlying states of the HSMM. As can be

seen, the frequency of the positive return of state 3 is 67.19%, while the frequency of the negative

return is 32.81%. There are negative returns in the bull market as well, but positive returns are more

frequent. This statistical evidence empowers the price in the bull market to increase. Hence, state 3

can be regarded as a bull market according to its statistical features. Using the same logic, state 1

has a significant negative mean and corresponds to the bear market where the price shows a downward

trend because the negative returns (52.97%) occur more often than the positive returns (47.03%). As

for state 2, the frequency of the positive and negative returns is nearly the same at around 50%. State

2 corresponds to the sidewalk market where the price displays a mean-reversion pattern.

Table 4: Frequency of Positive and Negative Returns

State 1 State 2 State 3

Positive Return Freq. 47.03% 50.49% 67.19%

Negative Return Freq. 52.97% 49.51% 32.81%

Based on the estimated parameters in the component distribution, Figure 5 displays the histogram

of the daily returns of the CSI 300, the empirical density, and three fitted component distribution

densities. By separating the empirical distribution into three component distributions, the HSMM is

able to explain the leptokurtosis and fat tail effects. The over-peak in the middle part of the empirical

distribution mainly results from the sidewalk market, whereas the bear market plays a vital role in the

fat tails. The standard deviation of the bear market is 3.113, which is much higher than for the other two

markets. Hence, the bear market is the most volatile market, followed by the bull market. Conversely,

the sidewalk market is the most stable market.
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Figure 5: Empirical and Component Density
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The existing literature often ignores the analysis of the mean of component distribution. However,

the component mean is important for price behaviour. Although the mean of state 3 (0.622) is very

small, it is still significantly larger than zero. This small but significant positive mean ensures that

positive returns occur more frequently than the negative returns, which is the key feature of the bull

market. The same logic can be applied to state 1. The insignificant mean of state 2 ensures that its

distribution is almost symmetrical around 0 and the frequency of positive returns and negative returns

is nearly the same.

Table 5 presents the number of days, the number of times, and average sojourn time for different

market conditions. Our results show that the bull market has a slightly longer sojourn time than the

bear market. Additionally, the average sojourn time for the sidewalk market is the longest with 204.29

days, which is much longer than in the case the other two types of markets.

Table 5: Sojourn Information

State 1 (Bear) State 2 (Sidewalk) State 3 (Bull)

Number of Days 572 1430 695

Number of Times 22 7 25

Average Sojourn 26.00 204.29 27.80

Table 6 gives the estimated transition probability matrix (TPM) of the HSMM for the CSI 300

returns. The sojourn time of the HSMM is controlled by the sojourn time distribution rather than by

the diagonal entries in the TPM. Hence, the diagonal entries are all zeros for the HSMM. There are a
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few interesting economic implications that can be drawn from the TPM.

Table 6: Transition Probability Matrix

From\ To State 1 (Bear) State 2 (Sidewalk) State 3 (Bull)

State 1 (Bear) 0 0.02% 99.98%

State 2 (Sidewalk) 49.56% 0 50.44%

State 3 (Bull) 74.08% 25.92% 0

• After a bear market, it is highly likely (99.98%) that a bull market will follow. This situation often

occurs at the end of a crisis when the market starts to recover. Once the market has reached the

bottom, it is common that investors overreact (over-sell) and stocks are under-valued.

• A bear market and a bull market have equal possibility (around 50%) to occur after a sidewalk

market. In other words, it is unclear whether a bull or bear market will follow after the price

fluctuates within a certain range for a long period.

• At the end of a bull market, the market has a high probability (74.08%) to be bear and a low

probability (25.92%) to be sidewalk. These circumstances usually ensue after a bubble burst, such

as the financial crisis in 2008.

5.2. Decoding Results

The global decoding is conducted by the Viterbi algorithm. Figure 6 shows the global decoding

states with reference to the CSI 300 original series, while Figure 7 is correlated with the daily returns

of the CSI 300. The purple background represents the bull market, the red background denotes the

bear market, and the green background stands for the sidewalk market. We review the evolution of the

transition between the different market conditions for the Chinese stock market in our sample period.

• At the beginning of our sample period (April 8th 2005), the Chinese stock market was in a sidewalk

market and lasted for about one year until April 27th 2006. After a short period of bull (April

28th 2006 to July 14th 2006), the market became sidewalk again and lasted for approximately 4

months (July 17th 2006 to November 13th 2006).

• At the end of 2006, the CSI 300 started to climb and reached its historically high peak at 5877.20

on October 10th 2007. Interestingly, it is common to believe that this period is a “pure” bull

market, but our decoding results show that this period was not purely bull, but was in fact mixed

with some periods of the bear market.
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• After the financial crisis (March 12th 2007), the market went into a “pure” bear market and the

CSI 300 dropped from its peak to the bottom of 1627.76 on November 4th 2008, which is the

largest drop in the history of the Chinese stock market. After the market collapsed, it started to

be bull and recover.

• Afterwards, the Chinese stock market experienced some periods of bear, sidewalk, and bull alter-

natively. It went into a remarkably long period of sidewalk from November 19th 2011 to November

20th 2014. During that period, the CSI 300 stayed in the range of 2000 to 3500 and displayed a

mean-reversion pattern.

• From December 11th 2014, the Chinese stock market became bull and rocketed from 3183.01 to

5335.12 on June 12th 2015, which represented an astonishing increase of 67.61%. After this bull

market, the Chinese stock market abruptly transited into a bear market. The CSI 300 shrank to

3025.70 on August 26th 2015, which was a dramatic 43.29% decrease.

• From September 18th 2015 to December 25th 2015, the Chinese stock market was a bull market

over the course of three months. Afterwards, a short bear market and a short bull market occurred,

followed by a sidewalk market.

Figure 6: CSI 300 and Market States (Global Decoding)
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The local decoding (Figure 8) offers a more detailed probability of each state along with time in the

sample period. The local decoding results confirm our understanding on the transition of the market

conditions of the Chinese stock market. Before 2007, state 2 remained at a high level of probability.

During 2007 and 2008, state 1 and state 3 alternatively reached high probabilities. After the financial

crisis, state 1 remained at a high probability for about one year, while the other two remained low.
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Figure 7: Daily Returns of CSI300 and Market States (Global Decoding)
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From 2011 to 2014, the probability of state 2 was almost 100% with a few exceptions. After 2015, the

probability of state 3 reached a relatively high level again and was followed by a comparatively high level

of state 1. State 2 has had the highest probability recently. The local decoding results are consistent

with the global decoding results.

6. Model Evaluation and Comparison

In this section, we compare the empirical performance of our three-state HSMM with a stochastic

volatility (SV) model and a tGARCH(1,1) model in terms of three stylized facts, namely the fat tails,

the “long-memory”, and the Taylor effect.

The economic significance of the three stylized facts is as follows. Fat tails are related to the Value-

at-Risk, which plays a vital important role in financial risk management. If the model cannot capture

the correct left tail risk, the Value-at-Risk could be underestimated. In this circumstance, the investors

may encounter an extra loss they do not expect. Figures 3a to 3c show that the return itself is not

autocorrelated but that the squared return and the absolute return are autocorrelated and their ACF

are slowly decaying. Note that the squared return and the absolute return are both volatility measures.

Hence, the stylized fact of the “long-memory” is associated with volatility clustering, i.e. a large volatility

tends to be followed by a large volatility and a small volatility tends to be followed by a small volatility.

A good model should capture the persistence of the volatility in asset returns. The Taylor effect is a

famous statistical observation. Taylor (1986) has initially found that the absolute return with power one

has the highest autocorrelation. The following literatures treat the reproduction of the Taylor effect as
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Figure 8: Local Decoding
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an important benchmark (e.g. Rydén et al., 1998; Bulla & Bulla, 2006; Rogers & Zhang, 2011). If the

model fails to reproduce the Taylor effect, then the data generation process in the model could not fully

represent the empirical asset return.

Additionally, we also compare our model with a two-state HSMM, a three-state HMM, and a two-

state HMM with respect to log likelihood, AIC, and BIC. This is for the model selection purpose and

confirms our choice of a three-state HSMM.

6.1. Comparison with Other Volatility Models

Following Jacquier et al. (1994) and Kim et al. (1998), the stochastic volatility model is specified as

yt = eht/2εt (8)

ht = µ+ φ(ht−1 − µ) + σηt (9)

where yt is the demeaned log return, ht is the latent time-varying log volatility process, µ is the mean

level of the log volatility, φ is the persistence coefficient for the volatility process, σ is the volatility of

the log volatility, and εt and ηt are uncorrelated standard normal white noise shocks.
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We use the MCMC method developed by Kastner & Frühwirth-Schnatter (2014) to estimate the

stochastic volatility model. As for the mean level µ ∈ R, we choose the usual normal prior µ ∼

N (log(var(yt)), 1). The persistence parameter φ ∈ (−1, 1) is equipped with the Beta prior (φ+ 1)/2 ∼

B(20, 1). In terms of the volatility of the log volatility σ ∈ R+, we choose σ2 ∈ 0.1×χ2
1. For the MCMC

setting, the thinning parameter is set to be 10, the burn-in parameter is 5000, and the number of draw

is 55000. Table 7 presents the posterior draws of the parameters. The posterior mean is employed for

the point estimation of the parameters.

The second benchmark model we consider is the tGARCH(1,1), which has the form

rt = µ+ σtεt, εt ∼ t(ν) (10)

σ2
t = ω + α1y

2
t−1 + β1σ

2
t−1 (11)

where ω > 0, α1 > 0, β1 > 0, and α1 + β1 < 1. rt is the log return calculated in Equation 1. The

conditional distribution is set to be the Student’s t-distribution with the degree of freedom ν. We use

the quasi-maximum likelihood method (Bollerslev & Wooldridge, 1992) to estimate the tGARCH(1,1)

model, and the estimation results are reported in Table 8.

Table 7: Estimation for the SV Model

Mean Std. Error 5% 50% 95%

µ 0.933 0.198 0.622 0.932 1.255

φ 0.985 0.005 0.976 0.985 0.992

σ 0.141 0.017 0.115 0.140 0.171

eµ/2 1.602 0.160 1.365 1.594 1.873

σ2 0.020 0.005 0.013 0.019 0.029

Table 8: Estimation for the tGARCH(1,1)

Estimate Std. Error t-stat P-value

µ 0.083 0.027 3.043 0.002

ω 0.026 0.010 2.719 0.007

α1 0.056 0.009 6.368 0.000

β1 0.939 0.009 102.187 0.000

ν 5.280 0.567 9.318 0.000
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6.1.1. Fat Tail Reduction

Figure 9 shows the QQ plots of the log returns in the overall sample and three market conditions

with respect to the theoretical normal distribution. The overall sample has tremendously fat tails since

the QQ line deviates heavily from the diagonal line. After the separation of the whole sample into 3

states by our HSMM, the bear market and the bull market have close to normal distributions with slight

tails, while the sidewalk market has modest tails. The QQ plots suggest that the distributions of the

three market conditions are close to normal distributions. The reduction of fat tails can be confirmed by

the kurtosis. The kurtosis of log returns is 6.089 in the overall sample, 3.002 in State 1 (Bear), 3.865 in

State 2 (Sidewalk), and 3.283 in State 3 (Bull). The kurtosis of the three market conditions is close to

3. Hence, the assumption of the normal component distribution is suitable for our data. This confirms

that the distributional property of the Chinese stock market returns could be a mixture of Gaussian

distributions.

Figure 9: QQ Plots of the Log Returns
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Figure 11 depicts the standardized residuals from three models and their QQ plot with respect to the

theoretical normal distribution. The standardized residual of HSMM is defined as (rt− x̄i)/σi, i = 1, 2, 3,

the standardized residual of the SV model is εt in Equation 8, and the standardized residual of tGARCH

is εt in Equation 10. Both the HSMM and the SV model can significantly reduce the fat tail, while

the GARCH(1,1) still presents fat tails in its standardized residuals. The right tail of the standardized

residuals in the SV model is slightly smaller than that in the HSMM. We further compare the kurtosis

of the standardized residuals in the three models. The kurtosis of the standardized residuals is 3.560 in

the HSMM, 3.285 in the SV model, and 4.678 in the tGARCH. In terms of fat tail reduction, the HSMM

slightly underperforms the SV model, but they both outperform the tGARCH.

6.1.2. “Long-memory”

Rydén et al. (1998) could not reproduce the slow decay of the ACF of the squared or absolute

returns by the HMM. It is interesting to examine the “long-memory” property of our model and two

benchmark models. We simulate data from those three models based on the estimated parameters from

our empirical CSI 300 log return data. The number of the Monte Carlo simulation accounts for 5000

repetitions. Figure 10 shows the empirical ACF and the model ACF for squared and absolute returns.

The grey bars represent the empirical ACF while the red line is the model ACF.

Generally, all three models can reproduce the “long-memory” property because they all have slow

decaying ACF. There are some differences between the ACF of the three models. Firstly, the model

ACF of the HSMM is close to the empirical ACF before Lag 10, but it is slightly underestimated for

large lags. Secondly, tGARCH has best fitting for the empirical ACF of the squared return, while the

model ACF of the HSMM is underestimated and that of the SV model is overestimated. Thirdly, the

SV model gives the best fitting for the empirical ACF of the absolute return, while the model ACF of

the HSMM is still underestimated and that of the tGARCH is overestimated.

Our simulation results of the tGARCH are consistent with Ding et al. (1993). Their Monte Carlo

simulation study also shows that ARCH type models can facilitate the “long-memory” property for both

squared returns and absolute returns. Ding & Granger (1996) also derived the theoretical ACF for

various GARCH(1,1) models and found them to be exponential decreasing.

6.1.3. Taylor Effect

The autocorrelation functions of different power values θ (i.e. corr
(
|rt|θ , |rt−k|θ

)
) for the three

models are also simulated by the same Monte Carlo procedure with 5000 repetitions. Figure 12 displays

the Taylor effect of all three models. The surface of the simulated Taylor effect is much smoother than

that of the empirical Taylor effect in Figure 4.

Generally, all three models can reproduce the stylized fact of the Taylor effect, i.e. the autocorrelation

function with power value θ = 1 is the highest among the other power values. As can be seen in the
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Figure 10: Empirical ACF and Model ACF
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3-D plot, the surface decreases slowly when θ deviates from 1 and reaches the lowest values at two sides.

Nevertheless, the shape of autocorrelation functions surface is different for the three models. The surface

of the HSMM has a more evident curvature before Lag 10 and becomes much flatter with larger lags.

The surface of the SV model and the tGARCH has a consistent curvature in terms of the lag numbers.

The tGARCH has a more blended surface than the SV model.

6.2. Comparison with the Hidden Markov Models

Our three-state HSMM is compared with the two-state HSMM used by Bulla & Bulla (2006), the

three-state HMM adopted by Rydén et al. (1998), and the two-state HMM employed by Rydén et al.

(1998) in terms of log likelihood, AIC, and BIC. Table 9 summarises the performance of all of the

models for the return data of the CSI 300. Our three-state HSMM has the highest log likelihood among

the other models. This indicates that our model fits the empirical return of the CSI 300 better than

the other models. However, it is not fair to evaluate model performance purely on the log likelihood

because different models may have different numbers of parameters. Introducing more parameters usually

increases the log likelihood but may result in overfitting.
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Figure 11: Standardized Residuals and their QQ Plots
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Figure 12: Taylor Effect
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The Akaike information criterion (AIC) and the Bayesian information criterion (BIC) are fair model

comparison tools. The AIC penalises the number of parameters and the BIC takes into consideration

both the number of parameters as well as the sample size. A better model has a smaller AIC/BIC. The

three-state HSMM has the smallest AIC and BIC. This implies that the HSMM does not over-fit the

data and additional parameters are sensibly introduced to model the data.

Table 9: Model Comparison with Hidden Markov Models

3-State HSMM 2-State HSMM 3-State HMM 2-State HMM

Iteration No. 130 18 234 45

Log Likelihood -5178.911 -5213.159 -5186.953 -5229.820

AIC 10385.820 10440.320 10401.910 10473.640

BIC 10468.420 10481.620 10484.500 10514.940

7. Application 1: Links to Macroeconomic Variables

The first application of our three-state HSMM is to classify market conditions, and then investigate

the links between macroeconomic variables and the market conditions. The three market conditions

can be naturally ordered by the mean of the component distributions, i.e. bear in the low category,

sidewalk in the middle category, and bull in the high category. It is straightforward to employ an ordinal

logit model to examine the relationship between the decoded market conditions and the macroeconomic

variables.

Since most economic variables have longer frequency than the daily data, we aggregate the daily

market condition to the monthly market condition. The aggregation rule is to count the number of

appearance of the three market conditions in a specific month, and then the one with the highest

number of appearance represents the market condition for that month. Note that we remove the first

month (April 2005) and the last month (May 2016) in our sample period because of the missing data.

We select eight important monthly macroeconomic variables shown in Table 10. The selected macroe-

conomic variables are from four different categories, including monetary policy, fiscal policy, economic

growth, and the foreign exchange market. The selected eight variables have a low correlation with the

others. In order to avoid multicollinearity, it is appropriate not to incorporate too many variables. In

order to mitigate the impact of seasonality, we calculate the year-to-year % for most variables. There

is no need to calculate the growth rate for the PMI since it is already expressed as a percentage. The

monthly return (i.e. month-to-month %) of the exchange rate USD/RMB is a good measure of the

valuation of the RMB. The sample period of all macroeconomic variables is from May 2005 to April

2016, in total 132 observations.
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Table 10: Macroeconomic Variables Information

Code Name Transformation Source

CPI Consumer Price Index Year-to-Year% National Bureau of Statistics

LB Loan Balance of Financial Institutions Year-to-Year% The People’s Bank of China

GE Government Expenditure Year-to-Year% National Bureau of Statistics

IFA Investment of Fixed Assets Year-to-Year% National Bureau of Statistics

IVA Industrial Value-added Year-to-Year% National Bureau of Statistics

RS Total Retail Sales of Consumer Goods Year-to-Year% National Bureau of Statistics

PMI Purchasing Managers’ Index National Bureau of Statistics

EXR Exchange Rate (USD/RMB) - Monthly Avg. Month-to-Month% The People’s Bank of China

Table 11 shows the estimation result of the ordinal logit model with the market condition as a

dependent variable and the macroeconomic variables as independent variables. We also calculate the

relative risk ratios, which allow an easier interpretation of the logit coefficients. We find that the year-

to-year % of CPI (i.e. inflation), the PMI, and the monthly return of USD/RMB exchange rate are

significantly related to the market condition of the Chinese stock market.

Table 11: Ordinal Logit Model

Estimation
Odds

Mkt. Cond. Value Std. Error z-stat P-vaule

CPI −0.368∗∗ 0.162 -2.270 0.020 0.692∗∗

LB 0.086 0.054 1.573 0.120 1.089

GE 0.004 0.012 0.355 0.720 1.004

IFA −0.063 0.060 -1.065 0.290 0.939

IVA −0.053 0.062 -0.856 0.390 0.948

RS −0.122 0.113 -1.082 0.280 0.885

PMI 0.231∗∗ 0.098 2.361 0.020 1.260∗∗

EXR −1.015∗∗ 0.443 -2.290 0.020 0.363∗∗

Intercept

Bear|Sidewalk 7.113 4.729 1.504 0.130

Sidewalk|Bull 10.159 4.773 2.128 0.030

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Keeping all other variables constant, when the inflation increases by 1%, it is 0.692 times more

likely to be in a higher category. In other words, a higher inflation indicates a more bearish market

5. There are two reasons for the negative relationship between the inflation and the market condition.

Firstly, investors expect that a high inflation would trigger a contractionary monetary policy imposed

by the central bank, and then further limit the growth of the money supply. This is consistent with our

ordinal logit regression results. There is weak evidence (P-value: 0.12) suggesting that the loan balance

is positively related to a more bullish market. Secondly, a higher inflation increases the investors’

expectation of the stock return and the discount rate, and shrinks the valuation of stocks.

If the PMI increases by 1%, the market is 1.26 times more likely to be a more bullish market. The

significant positive relation between the PMI and the market condition is straightforward. The PMI is a

leading indicator of the economic health of the manufacturing sector. A PMI of more than 50 (less than

50) indicates an expansion (contraction) of the manufacturing sector compared to the previous month.

It is worth noting that Chinese investors pay great attention to the PMI, and make investment decisions

based on the new release of the PMI.

If the RMB depreciates by 1% in terms of the USD, it is 0.363 times more likely to see a more bullish

market. In short, the appreciation of the RMB induces a more bullish market. Generally speaking,

when the domestic currency appreciates, it is intuitive to observe the increase of stock prices since the

domestic assets dominating in the domestic currency go up. Additionally, a health economy usually

comes up with a strong currency. During 2006 and 2007, it can be observed that the timing of the RMB

appreciation is generally consistent with the bull market.

Interestingly, the growth rates of government expenditure, investment of fixed assets, industrial value-

added, and retail sales exhibit an insignificant relationship with the market condition. Also, the positive

relationship between the loan balance and the market condition is weak. This is because the official

data of those economic indicators are released in the next month, not in the current month. Investors

usually make decisions based on the economic prospect and use leading indicators, such as the PMI. It

is possible to find significant relations between the market conditions and the lagged economic variables.

For the purpose of simplicity, we leave future research studies to explore this possibility.

8. Application 2: Trading Strategy

In the second application, we design a simple trading strategy 6 based on our three-state HSMM. In

order to test the profitability of the trading strategy, we split the data into two parts, a training sample

5Compared with the bear market, the sidewalk market is a more bullish market. Compared with the bull

market, the sidewalk market is a more bearish market.
6This is only a numerical demonstration of the trading strategy. Investors cannot directly trade the CSI 300

in China, but the index ETF can be its proxy.
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(April 8th 2005 to December 31st 2013) and a testing sample (January 1st 2014 to May 13th 2016). The

three-state HSMM is estimated by the data in the training sample.

In order not to use future information, we use the expanding window to recursively decode the most

likely sequence of states. Specifically, we fix the start date of the window to April 8th 2005 and move

the end date of the window to each date in the testing sample. The performance of the trading strategy

is only evaluated for the testing sample.

For each expanding window, we conduct global decoding for the data and take the last decoded state

in the window. The trading rule is as follows:

• If the last decoded state is the bear market −→ Short and hold in the next trading day

• If the last decoded state is the sidewalk market −→ No position in the next trading day

• If the last decoded state is the bull market −→ Long and hold in the next trading day

Figure 13 shows the cumulative return of the trading strategy in the upper panel, drawdown in the

middle panel and trading signal in the lower panel. This trading strategy is profitable with an annualised

return of 37.59% and a Sharpe ratio of 1.14 7. The maximum drawdown occurred at -21.34% in January

2015. There are three remarkable periods. The trading strategy does not have any position (trading

signal: 0) before December 2014; it takes a long position (trading signal: 1) in April 2014; and it takes

a short position (trading signal: -1) from June 2015 to October 2015 and from January 2016 to March

2016. The majority of the profitability in the trading strategy comes from the short position.

For the robustness test, we conduct three other data split schemes and this trading strategy still

shows high profitability. The robustness test results are shown in Appendix C.

9. Conclusion

In this paper, we employ a three-state hidden semi-Markov model (HSMM) to explain the time-

varying distribution of Chinese stock market returns. Our results indicate that the time-varying distri-

bution of the Chinese stock market returns depends on the market conditions, namely the bear, sidewalk,

and bull market. We reviewed the evolution of the market conditions in the Chinese stock market over

the last decade. The most prominent periods are the bear market (January 16th 2008 to January 14th

2009), the long sidewalk market (November 19th 2011 to November 20th 2014), and a recent bull market

(December 11th 2014 to May 27th 2015). Through Monte Carlo simulations, our three-state HSMM

along with a SV model and a tGARCH(1,1) can reproduce the stylized facts of the “long-memory” and

the Taylor effect, but tGARCH(1,1) fails to reduce the fat tails.

7The risk free rate in China is assumed to be a constant of 4.35% according to http://www.global-rates.

com/interest-rates/central-banks/central-bank-china/pbc-interest-rate.aspx.
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Figure 13: Performance of the Simple Trading Strategy

(Trading Sample: Apr.2005 - Dec.2013; Testing Sample: Jan.2014 - May.2016)
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In the first application, our three-state HSMM is used as a market condition classifier and the links

between the decoded market conditions and the macroeconomic variables are identified by an ordinal

logit model. We found that the inflation, the PMI, and the exchange rate were significantly related to

the market condition of the Chinese stock market. In the second application, we design a simple trading

strategy based on the expanding window decoding. The trading strategy shows profitability with a

Sharpe ratio of 1.14 in the testing sample. Based on the results of three other data split schemes, we

believe that the profitability of the trading strategy is robust.

One limitation of this paper is that our sample period is not very long. Future research may wish to

explore the difference in terms of market conditions between China and other developed markets.

Appendix A. EM Algorithm

In this appendix, we provide technical details of the EM algorithm for the right-censored HSMM. We

adopt the right-censored HSMM because the assumption of the classical HSMM that the last observation
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always coincides with the exit from a state seems to be unrealistic for financial time series data (Bulla

& Bulla, 2006). The right-censored setting releases the assumption that the last observation is always

to be the end of a state. In other words, the last visited state will last for some time even after the last

observation. There is no immediate jump to other states after the last observation. In the right-censored

setting, the sojourn time in the last visited state is modelled by the survivor function, which shown in

Equation A.1.

Di(u) =
∑
ν>u

di(u) (A.1)

Guédon (2003) provided the complete-data likelihood for the right-censored HSMM. The complete-

data likelihood function contains the observation XT
1 and the state sequence ST1 , where u − 1 is the

period that the last visited state will continue after the last observation. The last visited state will jump

into other states at time T + u. The complete-data likelihood for the right-censored HSMM is shown in

Equation A.2.

Lc(X
T
1 , s

T+u
1 |θ) = P(XT

1 = xT1 ,S
T
1 = sT1 ,S

T+u−1
T+1 = sT , ST+u 6= sT |θ) (A.2)

The final likelihood function is obtained by summing all possible state sequences and all possible

prolongation lengths of the last state, as indicated in Equation A.3.

L(θ) =
∑

t=S1,...,ST

∑
uT+

Lc(X
T
1 , s

T+u
1 |θ) (A.3)

where
∑
t=S1,...,ST

represents the summation of all possible state sequences, and
∑
uT+

represents

the summation over all possible additional sojourn time after time T .

It is difficult to compute the likelihood function in Equation A.2 because the underlying state se-

quence is unknown. It needs to consider all possibilities of the state sequence in order to compute the

full likelihood, which is not realistic. The expectation-maximization (EM) algorithm provides a suitable

procedure to deal with the missing data problem. The EM algorithm (Baum et al., 1970) is an iterative

procedure to increase the likelihood until it reaches the convergence criteria. The EM algorithm iter-

atively conducts the E-step and M-step. Given an initial guess of the parameter vector θ , the E-step

firstly computes the Q-function, which is the conditional expectation for the complete-data likelihood.

• E-step

Q(θ,θ(t−1)) = E
{
Lc(X

T
1 , s

T+u
1 |θ)|XT

1 = xT1 ,θ
(t−1)

}
(A.4)

Based on the Q-function in Equation (12), the M-step aims to maximise the Q-function with

respect to parameter θ.

• M-step

θ(t) = arg max
θ

Q(θ,θ(t−1)) (A.5)
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The parameter vector θ that maximises the Q-function in the M-step of the previous iteration will be

used in the E-step of the next iteration. Along with every iteration, the likelihood is non-decreasing. The

algorithm will stop once the convergence criterion is satisfied. Normally, the convergence criterion is the

successive change of likelihood is less than a very small number. The EM algorithm is not guaranteed to

reach the global maxima and it might be trapped in local maxima. Hence, it is necessary to try different

initial values of parameter vector θ in order to check that the maximum reached is the global maximum

rather than the local maximum.

In this paper, we focused on the economic interpretation of the HSMM rather than on the mathe-

matical derivation. We direct the reader to the thesis of Bulla (2006) for the mathematical details of

the EM algorithm of the HSMM. In his thesis, he decomposes the Q-function of the HSMM into four

components, which correspond to the initial probabilities, transition probabilities, sojourn time, and

component distributions. The E-step is implemented by the forward-backward algorithm. His decom-

position framework facilities the M-step in which the four components can be maximised individually.

Bulla shows the close-form solutions for some common distributions for the sojourn time and component

distributions, but the numerical solver could be applied if a closed solution does not exist.

Unlike the maximum likelihood method whereby the standard errors can be directly calculated by the

Fisher information matrix (FIM), one drawback of the EM algorithm is that the FIM is not a by-product

of the algorithm. It is highly unlikely to obtain the FIM by evaluating analytically the second-order

derivatives of the marginal log-likelihood of the HSMM. Recent numerical methods are developed to get

an approximation of the FIM (see Louis, 1982; Meng & Rubin, 1991; Jamshidian & Jennrich, 2000).

However, all these methods have limitations (Meng, 2016). There is no generally accepted method to get

diagnosis for the estimation of the HSMM by the EM algorithm. Hence, we do not provide the diagnosis

of the estimated parameters in this paper.

Appendix B. Decoding Technique

It is interesting to decode the most likely states in the Markov chain. There are two decoding

techniques for the HSMM, global decoding and local decoding. Global decoding aims to determine

the most likely sequence of the states given the observations, while the local decoding computes the

conditional probability of each state at times given the observations. Normally, they produce similar but

not identical decoding results.

Appendix B.1. Global Decoding

The purpose of global decoding is to find the most likely sequence of states conditional on the

observations. Mathematically speaking, global decoding intends to find a sequence of states with the
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highest likelihood given the observations, which is shown in Equation B.1.

ŜT1 = arg max
ST

1

P
(
ST1 |XT

1

)
(B.1)

The exhaustive attack method has the computational complexity level at O(mT ). This brute force

method is not feasible for long sequence data. The Viterbi algorithm (Viterbi, 1967) was developed

by utilising the Markov property of the HMM and HSMM. This is an efficient dynamic programming

algorithm and its complexity level is O(m× T ). The Viterbi algorithm works in the following way.

arg max
ST

1

P
(
ST1 |XT

1

)
= arg max

ST
1

P
(
ST1 ,X

T
1

)
(B.2)

Define

µt(St) = max
St−1

1

P(St1,X
t
1) (B.3)

The recursion expression for maxP(St1,X
t
1) can be derived.

max
St−1

1

P(St1,X
t
1) = max

St−1
1

P(Xt|St)P(St|St−1)P(St−1
1 ,Xt−1

1 )

= max
St−1

{
P(Xt|St)P(St|St−1) max

St−2
1

P(St−1
1 ,Xt−1

1 )

}

= max
St−1

P(Xt|St)P(St|St−1)µt−1(St−1)

(B.4)

The recursion equation for µt(St) is as follows

µt(St) = max
St−1

P(Xt|St)P(St|St−1)µt−1(St−1) for t = 2, ..., T (B.5)

Equation B.5 is able to compute the most likely trajectory for each state up to time t. At time T , the

state with the highest P(ST1 ,X
T
1 ) is picked up and the corresponding trajectory is the solution for the

Viterbi algorithm.

Appendix B.2. Local Decoding

The purpose of local decoding is to compute the conditional probabilities for each state at time t

given the observation.

Ŝt = arg max
St

P
(
St = i|XT

1 = xT1

)
for i = 1, ...,m (B.6)

The conditional probability in Equation B.6 can be decomposed into three terms.

P
(
St = i|XT

1 = xT1

)
= P

(
St+1 6= i, St = i|XT

1 = xT1

)
+ P

(
St+1 = i|XT

1 = xT1

)
− P

(
St+1 = i, St 6= i|XT

1 = xT1

) (B.7)
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Define ξt(i) = P(St = i|XT
1 = xT1 ). It is able to obtain the recursion equation for the conditional

probability.

ξt(i) = P
(
St+1 6= i, St = i|XT

1 = xT1

)
+ ξt+1(i)− P

(
St+1 = i, St 6= i|XT

1 = xT1

)
(B.8)

With Equation B.8, ξt(i) can be computed based on the ξt+1(i) and it is able to calculate the conditional

probabilities at all time in a backward way (see details in Guédon (2003)).

Appendix C. Robustness Test of the Trading Strategy

We implemented three other data split schemes in order to test the profitability of our trading

strategy. The first scheme is cutting the sample at the end of 2009 (i.e. trading sample: Apr.2005 -

Dec.2009, testing sample: Jan.2010 - May.2016); the second scheme is at the end of 2012 (i.e. trading

sample: Apr.2005 - Dec.2012, testing sample: Jan.2013 - May.2016); and the third scheme is at the

end of 2014 (i.e. trading sample: Apr.2005 - Dec.2014, testing sample: Jan.2015 - May.2016). For each

scheme, the HSMM is estimated by using the training data, and then the trading strategy is tested for

the period of the testing sample. The trading strategy still shows high profitability for all three schemes

(see Figure C.14 to Figure C.16). The profitability of the trading strategy is believed to be robust.

Figure C.14: Performance of the Simple Trading Strategy

(Trading Sample: Apr.2005 - Dec.2009; Testing Sample: Jan.2010 - May.2016)
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Figure C.15: Performance of the Simple Trading Strategy

(Trading Sample: Apr.2005 - Dec.2012; Testing Sample: Jan.2013 - May.2016)
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Figure C.16: Performance of the Simple Trading Strategy

(Trading Sample: Apr.2005 - Dec.2014; Testing Sample: Jan.2015 - May.2016)
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Highlights

• We explain the Chinese stock market returns by a three-state HSMM.

• The time-varying distribution depends on three market conditions (Bear/Sidewalk/Bull).

• The inflation, the PMI, and the exchange rate are related to the market condition.

• A simple trading strategy based on expanding window decoding shows profitability.
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