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The macrophage-inducible C-type lectin (Mincle) is an innate immune receptor on 
myeloid cells sensing diverse entities including pathogens and damaged cells. Mincle 
was first described as a receptor for the mycobacterial cell wall glycolipid, trehalose-6, 
6′-dimycolate, or cord factor, and the mammalian necrotic cell-derived alarmin histone 
deacetylase complex unit Sin3-associated protein 130. Upon engagement by its ligands, 
Mincle induces secretion of innate cytokines and other immune mediators modulating 
inflammation and immunity. Since its discovery more than 25  years ago, the under-
standing of Mincle’s immune function has made significant advances in recent years. In 
addition to mediating immune responses to infectious agents, Mincle has been linked 
to promote tumor progression, autoimmunity, and sterile inflammation; however, further 
studies are required to completely unravel the complex role of Mincle in these distinct 
host responses. In this review, we discuss recent findings on Mincle’s biology with an 
emphasis on its diverse functions in immunity.

Keywords: macrophage inducible C-type lectin, trehalose dimycolate, anti-inflammatory, phagocytosis, innate 
immunity

iNTRODUCTiON

Upon initial encounter with infectious invaders or cellular stress conditions, the host defense 
immune system has to rapidly recognize pathogens or danger signals as potentially harmful. For 
this purpose, innate immune cells, such as macrophages, dendritic cells (DCs), and neutrophils 
(PMN) use a limited number of pattern recognition receptors (PRRs), including toll-like receptors 
(TLRs), nucleotide-binding oligomerization domain-like receptors, and C-type lectin receptors 
(CLRs), which activate immediate anti-microbial effectors or other defense mechanisms. These 
PRRs can sense conserved structural motifs of both microbial and endogenous danger signals, 
i.e., pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns 
(DAMPs), respectively (1, 2). The macrophage-inducible C-type lectin (Mincle) belongs to the 
CLR family, along with Dectin-1 (CLEC7A), Dectin-2 (CLEC6A), macrophage C-type lectin 
(MCL) (CLEC4D), macrophage mannose receptor (MMR, CD206) as well as dendritic cell-specific 
intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN, CD209) (1–3). Initial reports 
demonstrated that Mincle, similar to Dectin-2 and MCL, associates with the Fc receptor gamma 
(FcγR) signaling chain, which contains an immunoreceptor tyrosine-based activation motif (ITAM). 
Phosphorylation of the associated FcγR ITAM leads to recruitment of spleen tyrosine kinase (Syk), 
which activates Card9-Bcl10-Malt1-mediated NF-κB signaling pathway and subsequent expression 
of pro-inflammatory cytokines (2, 4, 5).

Over recent years, Mincle gained growing interest as shown by an exponentially increasing 
number of publications on its complex biology. Excellent reviews have already emphasized the 

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2017.00861&domain=pdf&date_stamp=2017-07-25
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2017.00861
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:uschaible@fz-borstel.de
https://doi.org/10.3389/fimmu.2017.00861
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00861/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00861/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00861/abstract
http://loop.frontiersin.org/people/387502
http://loop.frontiersin.org/people/69237


TABLe 1 | Microbial or endogenous ligands of macrophage inducible C-type 
lectin (Mincle).

Mincle ligand Origin Selected publications

Sin3-associated protein 130 Damaged and 
necrotic cells

Yamasaki et al. (4)

β-glucosylceramide Damaged cells Nagata et al. (31).
Cholesterol crystals Bovine liver Kiyotake et al. (32)
Cholesterol sulfate Skin epithelium Kostarnoy et al. (33)
Trehalose-6,6′-dimycolate Mycobacteria Ishikawa et al. (47); 

Schoenen et al. (48)
Glycerol monomycolate 
(GroMM)

Mycobacteria Hattori et al. (49)

β-gentiobiosyl diacylglycerides M. tuberculosis Richardson et al. (50)
Glucosyl-diacylglycerol Streptococcus 

pneumoniae
Behler-Janbeck et al. (44)

α-glucosyl diglyceride Lactobacillus 
plantarum

Shah et al. (46)

Brartemicin Nonomuraea spp. Jacobsen et al. (92)
Agrocybe aegerita lectin Agrocybe aegerita Zhang et al. (20)
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beneficial role of Mincle during infection in triggering pro- 
inflammatory responses as well as its recognition of the 
mycobacterial ligand, trehalose-6,6′-dimycolate (TDM or cord 
factor), and the putative utilization of synthetic homologs as 
better adjuvants for vaccination (5–9). Based on recent studies, 
we discuss herein Mincle’s expression patterns, rapidly expand-
ing ligand diversity, and interactions with ligand relevant for 
adjuvant design as well as novel facets of Mincle’s functions in 
immune modulation, phagocytosis, cancer surveillance, and 
autoimmunity.

MiNCLe’S FiNe-TUNeD eXPReSSiON  
iN iMMUNe CeLLS

Macrophage inducible C-type lectin was first identified in 
the late 1990s by Matsumoto and colleagues who observed 
increased expression of the Mincle encoding CLEC4E gene in 
macrophages following stimulation with inflammatory agents 
such as TLR agonists, including LPS, but also pro-inflammatory 
cytokines such as IFNγ, TNF-α, and IL-6 (10). Importantly, the 
increase in Mincle expression was dependent on the nuclear 
factor NF-IL6 and MyD88 (10–12). To date, Mincle has been 
shown to be mainly expressed on myeloid cells, including mac-
rophages, monocytes, DCs, and PMN (5, 10, 13–15) although 
one report also described Mincle expression on human B cell 
subsets (16). Induction of Mincle expression was observed 
upon infection with mycobacteria (17, 18), Leishmania major 
(L. major) (19) and treatment with the Agrocybe aegerita lectin 
(AAL) (20). In addition to TLR-mediated signals, induction 
of Mincle expression was also shown to depend on MCL 
(CLEC4D). In contrast to Mincle, which is weakly expressed in 
the absence of inflammatory stimuli, myeloid cells were shown 
to express MCL constitutively in macrophages and DCs (21), 
whereas MyD88 was critical for its surface translocation (12). 
Notably, MCL and Mincle share ligands such as TDM, which 
strongly suggests synergy between both receptors and a two-
step control of the downstream signaling pathway (21). Recent 
investigations indicate that MCL and Mincle form a complex 
heterodimer that is translocated to the cell surface during 
microbial challenge (12, 22, 23). One could speculate that a 
certain threshold of MCL ligands further enhances sensing of 
those triggers by increasing Mincle expression to better regulate 
host responses. Of note, Schoenen and co-workers recently 
demonstrated the critical function of the early growth response 
transcription factor C/EBPβ for the expression of Mincle in 
macrophages, which failed to respond to TDB/TDM stimula-
tion in the absence of this factor (11).

Little is known about the molecular mechanisms involved 
in the negative modulation of Mincle expression. However, one 
group recently showed that a cocktail of GM-CSF and IL-4 can 
downregulate Mincle mRNA transcripts in human DCs (24). 
Follow-up investigations from the same group extended previ-
ous observations by showing that IL-4 inhibits Mincle expression 
during in  vitro differentiation of murine bone marrow-derived 
macrophages and DCs in a STAT-6-dependent manner (25). 
Interestingly, stimulation by the TLR4 ligand, LPS, counteracts 
IL-4-mediated suppression of Mincle expression in myeloid cells.

MiNCLe, A PROMiSCUOUS SeNSOR  
OF DiveRSe STiMULi

Diverse structures originating from both the mammalian host 
as well as microbes have been identified as ligands for Mincle. 
Mincle thereby acts as a PRR for infectious as well as endog-
enous inflammatory conditions. All currently described putative 
ligands of Mincle are listed in Table 1. However, some of these 
ligands most likely require further biochemical evaluation in 
order to pivotally clarify whether these are true Mincle ligands 
or whether their observed reactivities were due to minor con-
taminations with other PAMPs, a lesson learned from studies on 
putative TLR2 and TLR4 ligands (26, 27).

Macrophage-inducible C-type lectin has been shown to sense 
mammalian cell components or DAMPs such as the histone 
deacetlyase complex unit SAP130 alarmin, a protein released 
from damaged and necrotic cells (4, 28). Recombinant SAP130 
triggers pro-inflammatory cytokine secretion such as MIP-2 
from peritoneal macrophages in a FcγR chain-dependent man-
ner (4).The relevant role of Mincle for endogenous inflamma-
tory conditions is corroborated by concomitant upregulation 
of Mincle, SAP130, and phospho-Syk expression in ischemia 
(29), pancreatic ductal adenocarcinoma (PDA) (28), as well as 
ethanol-induced liver injury (30). More recently, Nagata and 
coworkers identified β-glucosylceramide, an ubiquitous intracel-
lular metabolite also released from damaged cells, as a ligand 
for Mincle (31). Accordingly, this endogenous component was 
able to induce immunostimulatory functions in myeloid cells, 
which was abbrogated in the absence of Mincle. In addition, 
crystalline cholesterol present in atheriosclerotic plaques, inflam-
matory foci associated with macrophage infiltrates, was shown 
to bind to human, but not mouse Mincle, thereby inducing 
pro-inflammatory cytokines (32). Furthermore, it was recently 
reported that Mincle could sense cholesterol sulfate in a sterile 
skin inflammation model in mice (33).

In addition to binding DAMPs, Mincle also interacts with 
PAMPs from various microbes. Initial studies reported Mincle as 
the receptor for the mycobacterial cell wall glycolipid TDM (6). 
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TABLe 2 | Future questions on macrophage inducible C-type lectin (Mincle)’s 
immune functions.

1. Which are the physicochemical properties of Helicobacter pylori, Fonsecaea 
monophora, Leishmania major, Candida albicans, and Pneumocystis carinii 
ligands recognized by Mincle?

2. Can the promiscuity of Mincle’s ligand interactions be explained by structural 
analogies between ligands?

3. Is Mincle recruited to the phagocytic synapse together with other receptors?

4. Are Mincle SNPs associated with increased susceptibility to cancers and 
autoimmune diseases?

5. Is Mincle involved in autoimmunity in the absence of respective ligands during 
the induction phase?

6. Is targeting Mincle a strategy to cure infections, cancers, and autoimmune 
diseases?

7. Is Mincle playing a role in sterile inflammation?
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Consequently, Mincle was also found to be involved in protective 
immunity to both, Mycobacterium bovis bacillus Calmette–
Guérin (BCG) and M. tuberculosis Erdman. However, an  
independent study demonstrated that Mincle is dispensable 
for the control of M. tuberculosis H37Rv in mice (15, 17, 34). 
The  different routes of administration, i.e., systemic versus 
airway, might explain the discrepancies between those reports. 
Differences in TDM content or localization between the myco-
bacterial strains used in those studies may also affect Mincle sens-
ing and subsequent innate responses. In addition to Mincle, TDM 
can also engage MCL (21). Recent investigations have revealed 
a critical function of MCL in M. tuberculosis infection, which 
was demonstrated by enhanced mortality rates and aggravated 
inflammation in MCL-deficient mice when compared to their 
WT counterparts (35).

Macrophage inducible C-type lectin has also been described 
as important player in immunity to fungal pathogens such as 
Candida (C.) albicans and Malassezia species (36, 37). However, 
the fungal cell wall component acting as a ligand for Mincle has 
still not yet been fully identified although two distinct glycolip-
ids isolated from Malassezia were shown to bind Mincle (38) 
(Table 2).

Over recent years, the list of pathogens recognized by Mincle 
has expanded tremendously, including Streptococcus (S.) pneu-
moniae, Fonsecaea (F.) monophora, Helicobacter (H.) pylori,  
L. major, Pneumocystis carinii as well as different Corynebacterium 
strains (19, 39–43). From many of these pathogens, the specific 
ligands that bind Mincle are yet unidentified. However, one group 
recently reported Mincle as receptor for glucosyl-diacylglycerol 
from S. pneumoniae, and this interaction was demonstrated to 
determine the outcome of experimental pneumococcus infec-
tion in mice (44). It was also shown that a galectin isolated from 
Agrocybe aegerita mushroom could act as ligand for Mincle 
(45). In addition, Mincle has also been described as a PRR for 
cyclopropane-fatty acid α-glucosyl diglyceride, a product of 
the commensal probiotic Lactobacillus (L.) plantarum (46). 
Therefore, Mincle is not only involved in sensing infectious 
or endo-inflammatory conditions but may also act as sensor 
for changes in microbiota community compositions and may, 
therefore, contribute to microbiota associated immundomula-
tion. Taken together, Mincle recognizes a heterogeneous array 

of ligands most of them not identified yet. Whether Mincle’s 
promiscuous ligand interactions are based on common structural 
analogies is awaiting further studies (Table 2).

As supported by numerous investigations, TDM is the best 
Mincle ligand characterized. Interaction between Mincle and 
TDM triggers pro-inflammatory cytokine secretion in mac-
rophages (11, 47). Consequently, Mincle-deficient mice showed 
impaired production of inflammatory cytokines and chemokines 
upon infection with M. bovis BCG or exposure to oil-in-water 
emulsion containing TDM (15, 48). In vitro, deletion of Mincle 
impairs TDM-mediated induction of pro-inflammatory cytokine 
release by murine macrophages (47). Another mycolic acid deri-
vatized compound, glycerol monomycolate (GroMM), derived 
from mycobacteria was recently identified as a Mincle ligand 
(49). Interestingly, further structurally unrelated M. tuberculosis 
metabolites, β-gentiobiosyl diacylglycerides, are sensed by 
murine but not human Mincle. However, a synthetic truncated 
β-glucosyl diglyceride emerged as a superior agonist of murine 
as well as human Mincle (50).

To summarize, the list of endogenous and exogenous ligands 
recognized by Mincle is steadily growing supporting the critical 
role of this innate immune receptor in detecting various stimuli 
under stress conditions.

MiNCLe ACTivATiON: A PROMiSiNG PATH 
FOR THe DeSiGN OF New ADJUvANTS

Macrophage inducible C-type lectin ligands including various 
DAMPs and PAMPs, but also synthetic ones such as TDB, are 
promising adjuvants for vaccine therapies (24, 51–53). Complete 
Freund’s adjuvant (CFA), which was extensively used for optimal 
immunization in animal models, also contains mycobacterial 
cell wall glycolipids including TDM but is to inflammatory for 
usage in humans.

As critical step in designing new adjuvants, the mechanism 
of ligand recognition by Mincle has been investigated intensively 
over recent years. The ultimate aim is to design synthetic Mincle 
ligands, which retain their robust adjuvancy while their exacer-
bated inflammatory properties are reduced for safer usage.

The structure–function relationships during molecular 
Mincle–ligand interactions have already been the subject of 
excellent reviews (5, 54, 55). To date, structural studies have iden-
tified various ligand-binding sites in Mincle (56–59). A glycolipid 
ligand has been shown to interact with Mincle via three binding 
sites: (I) a primary canonical Ca2+ based C-type binding site  
with similarity to sites in other C-type lectins; (II) a proximal 
secondary binding site for a glucose residue in the trehalose 
headgroup; (III) a shallow hydrophobic region, which can 
bind acyl chains and is in close proximity to the putative sugar 
binding site in a similar manner as in MCL (56, 59). The latter 
two binding sites likely act in concert to interact with both, the 
hydrophilic sugar head group as well as the fatty acid chains of 
glycolipid ligands, which may modulate affinity and/or specificity. 
Recently, Feinberg and co-workers demonstrated that the affinity 
of Mincle for hydrophobic ligands correlates with the number 
of carbon atoms. This was irrespective of the ligand’s fatty acid 
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side chain structures, i.e., linear, branched, aromatic rings, which 
could be responsible for a certain level of promiscuity in Mincle’s 
interactions with hydrophobic ligands. In addition, the structural 
conformation of Mincle displays a certain degree of flexibility, 
which might influence the structural properties of the hydropho-
bic groove and, therefore, ligand binding (58). However, further 
studies are required to fully understand the structural basis of 
Mincle’s promiscuity in ligand binding.

Several studies have investigated the potential of synthetic 
ligands to induce Mincle-mediated immune responses in  vitro 
and in  vivo. Ostrop and co-workers demonstrated strong 
Mincle-mediated cytokine production from human primary 
macrophages and DCs in response to TDB/TDM stimulation 
in vitro (24). Synthetic mycolic acids, such as trehalose, glucose, 
and arabinose monomycolates, were shown to induce produc-
tion of cytokines and reactive oxygen species as well as surface 
expression of costimulatory molecules in DCs through Mincle 
binding (60). Immunization of mice with liposome-based anti-
gen pre parations containing synthetic Mincle ligands, including 
trehalose diesters and monoesters led to robust antigen-specific 
Th1/Th17 responses (51). Rationally designed Mincle ligands, 
namely 2-tetradecyloctadecanoic acid and (GlcC14C18) man-
nose 2-tetradecyloctadecanoic (ManC14C18), have been shown 
to possess potent immunoprotective activity against M. tubercu-
losis infection (61).

MiNCLe MODULATeS iNFLAMMATORY 
ReSPONSeS

The role of Mincle as a receptor for pathogenic stimuli, which 
subsequently triggers innate pro-inflammatory responses, is well 
established [reviewed in Ref. (5)]. However, recent reports indi-
cate that Mincle rather than purely inducing pro-inflammatory 
responses is an immune modulator as its engagement also pro-
motes expression of anti-inflammatory cytokines and counter 
regulates pro-inflammatory signaling pathways (62).

Enhanced secretion of IL-10 has been reported to increase 
susceptibility of mice to infections by mycobacterial and fun-
gal pathogens (63–67). Moreover, blocking IL-10 production 
enhanced the protective efficacy of BCG vaccination against  
M. tuberculosis infection (68). Zhang and colleagues demon-
strated the ability of neutrophils to secrete IL-10 in response to 
TDM and concomitant TLR signals (69) and IL-10 production by 
DCs was also reported upon stimulation with TDB (70). Recently, 
we revealed the critical role of Mincle and FcγR-Syk signaling 
pathway for induction of IL-10 secretion in vitro and subsequent 
downregulation of IL-12p40 in response to TDM or M. bovis 
BCG (18). It should be noted that IL-10 secretion as induced by 
TDM requires a concomitant TLR2 signal, which is provided by 
whole mycobacteria containing lipoproteins.

Other studies have also revealed an important role for Mincle 
in the induction of IL-10 expression in BMDMs or BMDCs 
upon infection with Malassezia spp. (37, 38). Moreover, Mincle 
was shown to induce anti-inflammatory IL-10 responses in 
human THP-1 cells challenged with H. pylori (40). Considering 
the role of Mincle in regulating IL-10 production, it would be 

interesting to analyze whether inhibition of IL-10 at the same time of  
vaccination using TDB as an adjuvant can increase protection 
to the respective infections. Finally, it remains to be elucidated 
whether engaging Mincle signaling can trigger expression of 
other anti-inflammatory cytokines other than IL-10 such as TGF-
β and IL-27. However, our preliminary studies failed to reveal 
production of IL-27 upon TDB stimulation in vitro (71).

Besides induction of anti-inflammatory cytokine secretion, 
Mincle has recently been implicated in the downregulation 
of pro-inflammatory signals. Investigations from Wevers and 
colleagues revealed that F. monophora engagement of Mincle 
inhibits Dectin-1-mediated IL-12p35 responses in human DCs 
(41, 72). Similar results were obtained with TDB, which was 
shown to interfere with LPS-mediated induction of IL-12p35. 
Interestingly, F. monophora-mediated inhibition of IL-12p35 
was abrogated upon treatment of human DCs with wortman-
nin, a pharmacological inhibitor of phosphoinositide-3-kinase 
(PI3K). Inhibition of the PI3K effector molecule PKB (or Akt) 
also blocked Mincle suppression. The authors further concluded 
that Mincle-mediated activation PI3K/PKB signaling leads to 
impaired protective Th1 immunity via proteasomal degrada-
tion of interferon regulatory transcription factor (IRF)-1. 
Interestingly, another study revealed Mincle-mediated suppres-
sion of Dectin-2/FcγR/Card9-induced Th17 response during  
F. monophora infection (73). Indeed, while Dectin-2-deficient 
mice displayed impaired IL-17 production in lymph nodes of 
infected mice, this was abrogated in Mincle-deficient animals, 
thereby revealing a dual function of Mincle and Dectin-2 during 
fungal infections. More recently, an alternative inhibitory Mincle/
FcγR/SH2-domain-containing inositol polyphosphate 5′ phos-
phatase (SHP-1) signaling pathway was described in L. major 
infection (19). It was demonstrated that Mincle could impair DC 
activation through SHP-1 recruitment. As a consequence, Iborra 
and colleagues observed less inflammatory lesions and more 
robust IFNγ-producing-CD4+ T  cell responses in the absence 
of Mincle. Finally, Mincle-deficient mice were less susceptible 
to experimental Leishmaniasis as shown by decreased parasite 
burden when compared to their WT counterparts (19).

Other studies have reported Mincle-mediated suppression of 
TLR2 and TLR4 signaling. Indeed, it was shown that interference 
with Mincle signaling significantly increased the production of 
pro-inflammatory cytokines such as TNF-α and IL-6 in sple-
nocytes, BMDCs, and BMDMs upon LPS stimulation. Mincle-
deficient mice were likewise more susceptible to an endotoxic 
shock syndrome-associated pro-inflammatory cytokine storm 
when compared to their WT counterparts (74). While we 
observed that TDM-Mincle-mediated IL-10 production in mac-
rophages downregulated TLR2-induced IL-12p40 secretion (18), 
Mincle-mediated suppression of TLR4-induced cytokine secre-
tion was independent of IL-10. Furthermore, Mincle-deficient 
splenocytes were shown to express less inhibitory proteins such as 
SOCS1, A20, and ABIN3, but increased amounts of the TLR4 co-
receptor, CD14, in response to LPS. Increased CD14 expression 
in the absence of Mincle signaling was responsible for enhanced 
LPS-induced cytokine production (74).

Finally, Lee and co-workers recently revealed a contribution of 
Mincle to enhanced NOS-2 expression, which involves p38-mediated 
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FiGURe 1 | Macrophage inducible C-type lectin (Mincle)-mediated modulation of inflammatory responses. (1) Mincle ligands, such as mycobacterial Trehalose-6,6′-
dimycolate (TDM) and its synthetic homolog TDB as well as whole mycobacteria, Helicobacter pylori and fungi of the Malassezia genus induce IL-10 production by 
engaging Mincle. (2) Mincle triggers the upregulation of NOS-2 expression, which leads to nitric oxide (NO) production and concomitant inhibition of NLRP3 
inflammasome activation and subsequent IL-1β expression in murine macrophages. (3) Mincle impairs Fonsecaea monophora Dectin-1-mediated pro-inflammatory 
cytokine secretion through inhibition of pharmacological inhibitor of phosphoinositide-3-kinase (PI3K)-PKB signaling. (4) Mincle activates both inhibitory intermediates 
A20 and ABIN3 to downregulate toll-like receptor (TLR)4 signaling. (5) Mincle also inhibits mycobacteria-mediated IL-12 via an unknown mechanism.
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eIF5A hypusination (45). This mechanism sub  se  quently inhibits 
the NLRP3 inflammasome and caspase-1-dependent IL-1β secre-
tion by murine macrophages through elevated nitric oxide (NO) 
production (45). Upon TDM injection, NOS-2-deficient mice 
developed larger granulomas than wild type ones.

Thus, as depicted in Figure  1, recent investigations have 
shown that Mincle can act as immune modulator in different 
models by either triggering anti-inflammatory responses or 
downregulating pro-inflammatory signals.

iS MiNCLe A MODULATOR DURiNG 
PHAGOCYTOSiS?

Phagocytosis is an essential effector mechanism in innate 
immunity to eliminate pathogens or infected cells. Moreover, in 
multicellular organisms, phagocytosis is part of the maintenance 
system to assure tissue homeostasis by clearing necrotic and 
apoptotic cells (75). Several studies raised the question whether 
Mincle could be involved in phagocytosis similar to other  
Syk-coupled CLRs such as Dectin-1 (76, 77). However, this ques-
tion has not yet been satisfactorily answered.

An early report from Wells and colleagues suggested Mincle  
as a non-phagocytic receptor in C. albicans infection (36). 
Although the authors described significant recruitment of 
Mincle to yeast-containing phagosomes in murine macrophages, 
Mincle was not required for fungal uptake although confocal 

microscopy analysis demonstrated localization of Mincle 
around C. albicans at the newly formed macrophage phagocytic 
cup (36). However, neither treatment of macrophages with an 
anti-Mincle blocking antibody nor using Mincle-deficient mac-
rophages altered the number of phagocytosed yeasts when com-
pared with untreated or control macrophages, respectively (36). 
From those observations, the authors concluded that the role of 
Mincle was restricted to sensing C. albicans concomitantly with 
the phagocytic process. An exclusive sensing function of Mincle 
was also observed in the S. pneumoniae–macrophage interac-
tion. Using a recombinant Mincle–Fc fusion protein, Rabes et al. 
reported that Mincle was capable of binding heat-inactivated  
S. pneumoniae but was dispensable for pneumococcus internali-
zation by professional phagocytes, including macrophages and 
neutrophils, and for inducing either pro-inflammatory cytokine 
secretion (39).

In contrast, Mincle was implicated as a receptor for non-
opsonic phagocytosis of Klebsiella pneumoniae (78). Indeed, 
lower phagocytosis rates of non-opsonized K. pneumoniae were 
observed by flow cytometry in Mincle-deficient neutrophils 
when compared with WT control neutrophils (Figure  2). 
Lobato-Pascual and colleagues investigated the role of Mincle 
in phagocytosis of anti-Mincle coated particles by 293T  cells 
transfected with Mincle (Figure 2) (23). Phagocytosis of anti-
Mincle-coated beads was detected in cells expressing Mincle, 
but interestingly, phagocytosis was synergistically increased 
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FiGURe 2 | Macrophage inducible C-type lectin (Mincle)-mediated modulation of phagosome biogenesis. (1) Mincle mediates uptake of Klebsiella pneumoniae  
in neutrophils. (2) Mincle and macrophage C-type lectin (MCL) synergize in phagocytosis of anti-Mincle-coated particles by human embryonic HEK-293 cells. (3) 
Upon FcγR-mediated phagocytosis, trehalose-6,6′-dimycolate (TDM) decelerates phagosome maturation through Mincle signaling. TDM-mediated deceleration  
of IgG-coated bead particles phagosome maturation required both SHP-1 and FcγRIIB indicating a synergistic inhibitory signal downstream of Mincle, which is, 
however, associated with the phagocytic process.
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in cells expressing both MCL and ITAM-containing FcγR in 
addition to Mincle. Those results showed the importance of 
close association between Mincle, MCL, and FcγR for optimal 
uptake of anti-Mincle-coated particles. Importantly, MCL has 
also been reported to be involved in the uptake of mycobacteria 
by neutrophils, which was taken as explanation for the higher 
susceptibility to experimental tuberculosis of MCL-deficient 
mice (12).

Cell wall glycolipids have been shown to interfere with phago-
cytosis through modulation of phagosome maturation follow-
ing PRR surface recognition. For instance, mannose-capped 
lipoarabinomannan (ManLAM) engaging the MMR during 
phagocytosis was suggested as a mechanism to direct and main-
tain ManLAM-coated particle in early endosomal phagosomes in 
human macrophages (79). Similarly, higher-order phosphatidyl-
inositol mannosides (PIMs) such as PIM6 or glycopeptidolipids 
were shown to inhibit phagosome maturation by binding to the 
MMR (80, 81). Importantly, TDM has been proposed as one of 
the main mycobacterial glycolipids responsible for interference 
with phagosome maturation. Indrigo and colleagues showed 
that reconstitution of delipidated mycobacteria with purified 
TDM restored the ability of the bacteria to inhibit trafficking of 
phagosomes to lysosomes (82). We and others described delayed 
maturation of phagosomes containing TDM-coated beads when 
compared with uncoated beads (82, 83). Phagosomes containing 
TDM-coated beads retained early endosomal characteristics for 
a longer time period than phagosomes containing beads coated 
with the TDM precursor, trehalose monomycolate, or non-related 
lipids. This indicates that the fatty acid chain is a determinant 
for TDM-mediated interference with phagosome maturation. 
Notably, IFN-γ-activation of macrophages overcomes TDM-
induced delay of phagosome maturation through NO-mediated 

alteration of TDM’s hydroxyl residues (83). Those observations 
suggested a potential role of Mincle during phagocytosis of TDM-
coated particles. However, a recent study utilizing several fluo-
rescent trehalose glycolipid reporter systems showed that Mincle 
was not involved in the uptake of TDM or TDM-coated particles 
(84), which reinforced the hypothesis of a non-phagocytic role 
of Mincle. However, Mincle was involved in decelerating bead 
phagosome maturation, when TDM beads were additionally 
opsonized with specific IgG (Figure 2). Therefore, parallel engage-
ment of Mincle interferes with FcγR receptor initiated phagosome 
biogenesis (85). A recent study by Iborra and colleagues demon-
strated that Mincle employs a SHP-1-coupling cellular signaling 
pathway to dampen adaptive immunity to L. major infection  
(19). Interestingly, our investigations showed that TDM-mediated 
deceleration of phagosome maturation also required SHP-1 sug-
gesting an inhibitory signal downstream of Mincle during the 
phagocytic process (Figure 2). TDM-mediated inhibition of IgG 
bead phagosome maturation additionally required the inhibi-
tory FcγRIIB, which suggests collaboration between Mincle and 
FcγRIIB receptor signaling pathways in modulating phagocytosis 
of IgG-opsonized TDM-containing particles (Figure  2) (85). 
Corroborating this notion, association between Dectin-1 and 
FcγRIIB was previously shown to be required for the inhibition 
of neutrophil function by IgG1 immune complexes (86). In the 
context of FcγRIIB’s role in delaying IgG-TDM bead phagosome 
maturation, it should be noted that mice lacking FcγRIIB were 
less susceptible to M. tuberculosis infection than wild-type ones 
(87). However, whether Mincle can also modulate phagosome 
biogenesis upon phagocytosis of particles, which expose other 
ligands on their surface requires further studies. As mycobacteria 
triggers strong antibody responses (88), Mincle function upon 
BCG vaccination would need to be reassessed.
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MiNCLe AS AN eNDOGeNOUS SeNSOR 
iN CANCeR AND AUTOiMMUNiTY

Macrophage inducible C-type lectin can be exploited as a target 
for TDB adjuvant to boost vaccine efficacy but also for antitumor 
immunotherapies (89). However, recent studies also indicate a 
“natural” role of Mincle in sensing tumors and promoting their 
progression.

Pioneering studies by Roperto and colleagues revealed 
increased Mincle expression in bovine urothelial tumor cells 
when compared to healthy individuals (90). The authors con-
cluded that upregulation of Mincle in bladder cancer cells can 
influence interactions between tumor and immune cells. The 
anti-TB vaccine strain BCG is successfully used clinically as 
an immunotherapy against bladder cancer. The underlaying 
immune mechanisms are not well understood yet, but BCG 
derived TDM might be involved in this mechanism. The natural 
trehalose-derived metabolite, brartemicin, a new pharmaco-
logical inhibitor of murine colon carcinoma cells has been also 
described as a Mincle ligand (91, 92). Furthermore, the likely 
Mincle ligand AAL was described to exert significant inhibitory 
activities toward various murine and human tumor cell lines  
such as mouse sarcoma S-180 and HeLa, respectively (20, 93).

A recent study demonstrated a detrimental role of Mincle 
in pancreatic tumorogenesis in a model of PDA in mice (28). 
Seifert and co-workers revealed that Mincle expression in tumor-
infiltrating myeloid-derived suppressor cells, macrophages, and 
DCs can promote necrosome-induced accelerated oncogenesis 
through ligation of the cellular alarmin SAP130. Notably, pan-
creatic oncogenesis was decelerated in Mincle-deficient mice, and 
treatment of mice with TDB can drive tumorogenesis, thereby 
confirming the deleterious effect of Mincle in PDA.

Besides promoting tumor progression, Mincle also seems to 
be detrimentally involved in exacerbation of certain auto immune 
diseases. In T cell-mediated human autoimmune hepa titis as well 
as its experimental murine counterpart, SAP130 was strongly 
enhanced and hepatic innate inflammatory cells overexpressed 
Mincle triggering exacerbated inflammation, whereas interfer-
ence with Mincle signaling protected against auto immune 
hepatitis (94). Experimental autoimmune uveoretinitis (EAU) 
develops in mice immunized with the endogenous retinal 
protein interphoto-receptor retinoid binding protein in CFA. 
Consequently, mice deficient for Mincle but no other C-type 
lectins were protected against EAU. This observation indicates 
that Mincle and its Syk/Card9 signaling pathway can pro mote the 
development of experimentally induced autoimmune reactions 

(95). However, it should be noted that CFA, which is frequently 
used for immunization with autoantigens in order to break toler-
ance, contains mycobacterial cell wall constituents including 
TDM. Therefore, it is questionable whether Mincle is involved in 
triggering autoimmunity under natural conditions when TDM or 
other Mincle ligands are absent.

CONCLUDiNG ReMARKS

Over the last decade, great progress has been achieved to under-
stand the role of Mincle in immunity. Recent investigations have 
demonstrated that immune activation using rationally designed 
synthetic Mincle ligands represents an interesting strategy to 
shape immune responses toward robust protection against 
infectious diseases. However, originally categorized as a pro- 
inflammatory receptor involved in sensing pathogens and necrotic 
cells, Mincle is now also considered as important regulatory ele-
ment in inflammation by promoting anti-inflammatory cytokines 
and subsequent downregulating pro-inflammatory responses. 
Moreover, Mincle can also determine signaling events control-
ling phagocytosis and downstream phagosome maturation. 
Thereby, Mincle can be exploited by mycobacteria through their 
virulence-associated glycolipid, TDM, to decelerate phagosome 
maturation. The multifunctional aspect of Mincle in immune 
responses becomes even more evident by recent observations 
that it can promote progression of certain tumors, autoimmune 
reactions, as well as sterile inflammation. The detrimental role 
of Mincle in these pathological conditions opens up new pos-
sibilities of targeting Mincle signaling as potential immune 
modulatory therapies.
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