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a b s t r a c t 

Social networks are increasingly being investigated in the context of individual behaviours. Research 

suggests that friendship connections have the ability to influence individual actions, change personal 

opinions and subsequently impact upon personal wellbeing. This paper explores the effect of individual 

friendship selection decisions, and the impact they may have on the overall evolution of a social network. 

Using data from a large smoking cessation programme in secondary schools, an agent based simulation 

aiming to predict the evolution of the adolescent social networks is created. The simulation uses exist- 

ing friendship selection algorithms from link prediction literature, along with a new approach to link 

prediction, termed PageRank-Max. This new algorithm is based upon the optimisation of an individuals 

eigen-centrality, and is found to be more successful than existing methods at predicting the future state 

of an adolescent social network. This research highlights the importance of eigen-centrality in adoles- 

cent friendship decisions, and the use of agent-based simulation to conduct behavioural investigations. 

Furthermore, it provides a proof-of-concept for targeted interventions driven by social network analysis, 

demonstrating the utility of using emerging sources of social network data for public heath interventions 

such as with tobacco use which is a major global health challenge. 

© 2017 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Investigation into individual behaviours in relation to social net-

orks has experienced substantial growth in recent years. This is

n part due to the availability of social network data as a result

f social networking sites such as Facebook, Twitter and Google+,

nd the computing advancements that allow for the exploration

f such large data sets ( Kwak, Lee, Park, & Moon, 2010; Mis-

ove, Koppula, Gummadi, Druschel, & Bhattacharjee, 2008; Salter-

ownshend, 2012 ). 

This paper is concerned with the individual decisions that cause

ocial network evolution in adolescents, which is applied to data

rom a large smoking cessation programme in secondary schools.

moking is a major global health challenge and tobacco use is said

o kill 6 million people worldwide per year ( World Health Organi-

ation, 2015 ). More than 5 million of those deaths are the result of

irect tobacco use while more than 60 0,0 0 0 are the result of non-

mokers being exposed to second-hand smoke. Secondary schools

re a common point at which people start smoking with, for
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xample, two-thirds of smokers in the UK starting before the age

f 18 ( Action on Smoking & Health (ASH), 2016 ). Quitting smoking

s notoriously difficult; among all current U.S. adult cigarette smok-

rs, nearly 7 out of every 10 (68.8%) reported that they wanted to

uit but were so far unable to do so ( Centers for Disease Control

 Prevention, 2016 ). Smoking increases the risk for serious health

roblems, many diseases, and death ( Centers for Disease Control &

revention, 2014 ). 

The theory of friendship decisions amongst adolescents has

een widely researched, with factors such as proximity ( Festinger,

ack, & Schachter, 1950 ), reciprocation ( Parker & Seal, 1996 ) and

imilarity ( McPherson et al., 2001) discussed as important. Often

tudies such as these are based on qualitative evidence, with sci-

ntific experts drawing conclusions based on retrospective analysis.

ur research discusses the development of an Agent Based Simu-

ation (ABS) model which allows for the testing of behavioural the-

ry relating to friendship. Through the use of specifically selected

lgorithms, drawn from the link prediction literature, a predicted

uture state of a social network can be made. The predicted future

ocial network may then be compared with the real social network

or accuracy, with conclusions drawn around the implemented be-

avioural theory. 
 under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Simulation provides a tool to explore the evolution of a sys-

tem, scrutinise theory and evaluate potential outcomes. Within the

domain of OR, simulation is a core tool utilised for research –

lending itself to applications such as manufacturing,defence and

healthcare ( Pidd, 2004 ). ABS is a particular paradigm of simula-

tion, which aims to take an individualistic view of system evolution

( An, 2012 ). ABS is a micro-simulation technique, modelling the in-

dividual behaviours of specific objects in a system to understand

the emergent global phenomena ( Niazi & Hussain, 2011 ). 

ABS investigations related to social networks have covered a va-

riety of topics. Epidemiology in particular has adopted ABS tech-

niques to explore the spread of infectious diseases through net-

works, including HIV spread in Amsterdam ( Mei, Sloot, Quax, Zhu,

& Wang, 2010 ), Influenza in a metropolitan social network ( Mao,

2014 ) and H1N1 on a Chinese university campus ( Mei et al., 2010 ).

ABS has also been used in the investigation of network structure,

as opposed to its effects, although the number of papers in this

area is far fewer. Pujol, Sanguesa, and Delgado (2002) uses agents

to extract reputation in a social network topology, Han, Zhao, Hadz-

ibeganovic, and Wang (2014) explores hierarchical geographical

network structures and Bernstein and O’Brien (2013) uses ABS to

generate ‘realistic’ social network data sets; however, these studies

do not utlise empirical social network data. Given the individual

perspective of ABS, and the ability to quantify the impact to a sys-

tem as a result of the interactions of constituent parts, ABS appears

an appropriate method to explore the behavioural factors influenc-

ing the evolution of adolescent social networks. 

The motivation to adopt a quantitative simulation-based re-

search approach to adolescent friendships, as presented in this pa-

per, is that it appears to be an unexplored niche in social network

literature. More specifically, the ability to implement link predic-

tion methods in an ABS framework for adolescent social networks,

provides a novel contribution to the literature. Furthermore we

provide a proof-of-concept for targetted interventions driven by so-

cial network analysis, demonstrating the utility of using emerging

sources of social network data for public heath interventions. 

This research also contributes to the growing body of work in

Behavioural Operational Research (BOR) which is defined as the

study of behavioural aspects related to the use of OR methods in

modelling, problem solving and decision support ( Hämäläinen, Lu-

oma, & Saarinen, 2013 ). BOR may broadly be considered within

three categories: behaviour in models (methods), behaviour with

models (actors) and behaviour beyond models (praxis) ( Franco &

Hämäläinen, 2017 ). Our work is firmly grounded in incorporat-

ing behaviour within models (methods). Furthemore, as compre-

hensive reviews of the application of OR to healthcare ( Brailsford,

Harper, Patel, & Pitt, 2009; Hulshof, Kortbeek, Boucherie, Hans, &

Bakker, 2012 ) reveal, relatively little prior consideration has been

devoted to behavioural aspects in this field. Hence this paper also

aims to demonstrate the use of BOR for healthcare applications. 

The remainder of the paper is structured as follows. In

Section 2 we introduce the data from the smoking in schools pro-

gramme. Section 3 outlines the chosen network structures utilised

within this research, whilst link prediction methods are introduced

in Section 4 . The developed ABS is described in Section 5 . A new

method for link prediction, PageRank-Max , is proposed in Section 6 ,

validated in Section 7 , and compared against the other methods in

the results in Section 8 . Conclusions are made in Section 9 . 

2. Case study 

There are signficant global challenges to reducing smoking

from a public health perspective. The World Health Organzia-

tion (WHO) has created the Tobacco Free Initiative (TFI) which

aims to “reduce the global burden of disease and death caused

by tobacco, thereby protecting present and future generations
rom the devastating health, social, environmental and economic

onsequences of tobacco use and exposure to tobacco smoke”

 World Health Organisation, 2016 ). Many of the TFI’s actions are

imed at adolescents given that this is a common time in life at

hich people start smoking. It is therefore vital to intervene at

his age given the addictive nature of tobacco and the longer-term

ealth effects. 

Our conceptual approach to the problem is in predicting so-

ial networks to help with more targetted interventions to reduce

he uptake of smoking amongst adolescents. The case study data

s taken from “A Stop Smoking in Schools Trial” (ASSIST) and ex-

lores the effects of social networks upon attitudes toward ado-

escent smoking, with a view to inform potential cessation prolif-

ration methods. Formed through a joint venture between Cardiff

niversity Institute of Society, Health and Ethics and The Depart-

ent of Social Medicine at the University of Bristol, UK, ASSIST

as designed as a peer-led intervention, formulated around the

Gay Hero’ work of Kelly et al. (1992) . Schools from across the West

f England and South Wales were recruited to the study, through

tratified randomisation, following a cohort of Year 8 students (12–

3 year olds) over the course of a three and a half year period

 Holliday, 2006 ). 

Three waves of social network data were collected at one year

ntervals for 18 schools in the study. Each participant was asked to

ame up to six other students with whom they shared a friend-

hip. From this data, a school based social network may be con-

tructed, describing friendship evolution over the course of the

tudy. The students’ ability to only identify up to six friendships

ay be considered a limitation of the study; however, the work of

irke (1996) and Pearson and Michell (20 0 0) suggest that friend-

hips ranked below the top six connections do not carry equal sig-

ificance. Additionally, the average number of friendship nomina-

ions in the data across the three time points was calculated as

.8 ( T 1 ), 4.3 ( T 2 ) and 3.8 ( T 3 ) – suggesting students often did not

pt to maximise their number of friendship nominations. Given

he objective of this research is to predict social network struc-

ure to identify future influence, the friendship nomination limit is

nlikely to substantially impact the conclusions of this research. 

From the 18 schools, 12 are classified as control and 6 as inter-

ention. Identified socially prominent individuals in adolescent so-

ial networks within the intervention schools were given training

o diffuse a ‘stop smoking’ message to their peers ( Audrey, Cordall,

oore, Cohen, & Campbell, 2004 ). An example of the data from

ne school may be observed in Figs. 1 and 2 demonstrating the

volution of the social network over time (friendship network at

ear 1 and 2 for Figs. 1 and 2 respectively). 

Figs. 1 and 2 show network patterns and evolutions that were

een in many of the control schools. That is, over time the preva-

ence of smoking increases and that smokers tend to cluster to-

ether as friends. The findings of Campbell et al. (2008) suggest a

educed smoking prevalence in intervention schools in the early

tages of the trial. Overall, the researchers concluded that ASSIST

as a success, providing a cost-effective method for increasing

dolescent smoking cessation ( Hollingworth et al., 2012 ). 

. Network structures 

This section introduces the essential graph theoretic and net-

ork science definitions that are used to inform the research in

he development of the ABS ( Section 4 ). As our study is concerned

ith the investigation of social networks, and ultimately the de-

elopment of a new algorithm to predict social network evolution,

he relevant metrics to analyse and interpret network structures

re required. 

An undirected Graph is defined as a pair G = (V, E) of sets such

hat E is a subset of the unordered pairs of V , where V is the set
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Fig. 1. Social network at T 1 ; dark nodes indicate smokers. 

Fig. 2. Social network at T 2 ; dark nodes indicate smokers. 
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f vertices (or nodes) and E represents the set of edges (or links).

 directed graph (or digraph) may be defined in the same manner,

xcept that E is a subset of the ordered pairs of V . 

The order of G is defined as the number of elements in the set

f vertices V , denoted by | G |; thus | G | = | V (G ) | ( Bollobas, 2013 ). For

implicity, the number of vertices for any particular graph G , shall

e referred to as n . A social network may be represented as a di-

ected or undirected graph. A directed graph offers a rich source of

nformation, both in terms of the qualitative implications of friend-

hip, and the quantitative metrics of network calculation. 

For an undirected graph, an edge { i , j } links the vertices v i and

 j and may be represented by ij . A directed network edge pre-

erves the order by which a link is made, such that an edge { i , j }

mplies a link from v i to v j is denoted by i → j , therefore it cannot

e assumed the link j → i exists. A number of the metrics defined

ater require the maximum number of edges ( e max ) of a graph;

or an undirected graph, e max = 

n (n −1) 
2 , and for an directed graph,

 max = n (n − 1) . 

With the basic elements of a graph defined, we next introduce

our commonly used network metrics that we utilise (in the results

ection 7 ) to compare the performance of predicting social network
volution under different link prediction measures (which will be

efined in later sections). 

.1. Average degree 

The degree of a vertex v i is denoted as deg (v i ) and represents

he number of incident edges of v i . In a directed network, these

ay be separated further in terms of in-degree deg (v i ) in and out-

egree deg (v i ) out , defined as the count of the inward links and out-

ard links of v i respectively ( Newman, 2003 ). 

In terms of network cohesion, and a representation of the graph

s a whole, the average vertex degree may therefore be calculated

y: ∑ n 
i =1 deg (v i ) 

n 

(1) 

here deg (v i ) is replaced by the directed network equivalent (if

equired). 

.2. Reciprocity 

A directed graph’s in-degrees and out-degrees allows for inci-

ent edges to become unreciprocated. In terms of a social network,

his could suggest the node v i extending a link to v j but the link

 → i not being in existence. This provides a representation of net-

ork cohesion, termed reciprocity. 

A reciprocated tie is one in which for the vertices v i and v j ,
he links i → j and j → i exist. The overall reciprocity of the directed

raph G is said to be: 

 = 

| L | 
| E| (2) 

here L is the set of edges involved in reciprocal ties. As such,

 ∈ [0, 1], meaning that r = 1 signifies a fully reciprocated graph

 Newman, Forrest, & Balthrop, 2002 ). Both average degree and reci-

rocity are used in this paper to measure network cohesion. 

.3. Transivity ratio 

For a directed graph, a transitive triple is defined to be a se-

uence of edges such that i → j , j → k and i → k exist ( Wasserman

 Faust, 1994 ). A subgraph is defined as G 

′ = (V ′ , E ′ ) of G ( V , E ) if

 

′ ⊂ V and E ′ ⊂ E . In an undirected graph, a triangle may be consid-

red as a complete subgraph containing three nodes of G, where

he number of triangles containing v i is defined to be δ(v i ) =
{{ v i , v j } ∈ E : { v j , v k } , { v i , v k } ∈ E}| ( Schank & Wagner, 2005 ). The

umber of all possible triangles in G is denoted by τ ( G ), therefore

he transitivity ratio T ( G ) may be calculated by: 

 (G ) = 

∑ n 
i =1 δ(v i ) 
τ (G ) 

(3) 

or a directed graph, edges are converted into undirected associa-

ions ( Luce & Perry, 1949 ). 

This measurement calculates the proportion of “closed trian-

les” of nodes, in relation to all connected triples of nodes. This

ives a representation of how clustered the network is, offering

n indication of mutual relations. Other interpretations of graph

ransitivity have been suggested; for example, the global cluster-

ng coefficient and the local clustering coefficient ( Watts & Stro-

atz, 1998 ), both of which are said to suffer from bias ( Soffer &

ázquez, 2005 ). Given its overall simplistic and effective nature,

oupled with the avoidance of inherent bias associated with other

ethods, the transitivity ratio has therefore been selected as the

etric of choice for quantifying network clustering within this re-

earch. 
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Fig. 3. Example network for illustration of link prediction algorithms. 
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3.4. Average path length 

Travelling a concourse of nodes via a graph’s incident edges

is described as navigating a path . A path is a graph P of form

 (P ) = { v 0 , v 1 , ... v l } , with edges E(P ) = { v 0 v 1 , v 1 v 2 , . . . , v l−1 v l } , de-

noted by v 0 v 1 , . . . , v l . The end vertices are v 0 and v l , therefore the

path may be denoted by v 0 − v l . In a directed graph, the direction

of the edges dictate the direction of the path ( Bollobas, 2013 ). 

The path of a network plays an important role in the descrip-

tion of reachability between nodes. For example, if a path exists

between the nodes v i and v j then these nodes are said to be

reachable ( Holme, 2005 ). In a fully connected graph, every node

is reachable. Social Networks are unlikely to ever achieve complete

reachability, even less so if the network is directed ( Barabási, Al-

bert, & Jeong, 20 0 0 ). To garner an overall picture of the reachabil-

ity between paths of nodes, one must consider the geodesic , the

shortest path connecting two vertices v i and v j ( Harary, 1994 ). 

The Average Path Length (APL) l G for G is described as the short-

est distance between the nodes v i and v j , denoted as d(v i , v j ) , di-

vided by the maximum possible number of edges ( e max ) ( Newman,

2001 ). A disconnected APL assumes d(v i , v j ) = 0 if v i = v j and

d(v i , v j ) = n if v i cannot reach v j . Therefore: 

l G = 

∑ 

i � = j 
d(v i , v j ) 

e max 
(4)

APL is a robust measurement of network topology, often quoted

as the main factor in the classification of network type ( Fronczak,

Fronczak, & Holyst, 2004 ). 

4. Link prediction algorithms 

Link prediction is the process of attempting to foresee con-

nections that are yet to be established ( Liben-Nowell & Kleinberg,

2007 ). Given a graph G t ( V , E ) of n nodes/vertices ( V with vertices

v i ) and a set of links/edges ( E with edges e i ) at time t , an attempt

is made to arrive at G t+1 through the evaluation of possible new

edges, e i , j between vertices v i and v j . 
Link prediction algorithms have a variety of applications, in-

cluding: optimisation of website navigation ( Zhu, Hong, & Hughes,

2004 ), the recommendation of content to web users (recommender

systems) ( Huang, Li, & Chen, 2005 ), and the acceleration of aca-

demic collaboration ( Farrell, Campbell, & Myagmar, 2005 ). Meth-

ods employed in conjunction with the link prediction problem in-

clude machine learning ( Goldenberg, Kubica, & Komarek, 2003;

Hasan, Chaoji, Salem, & Zaki, 2006 ), Markov methods ( Domingos &

Richardson, 2007; Taskar, Wong, Abbeel, & Koller, 2004 ) and statis-

tical inference ( Popescul & Ungar, 2003 ). It is widely accepted that

the task of accurately predicting links is difficult ( Getoor, 2003;

Taskar et al., 2004 ), in part due to the a priori probability of a link

being small ( Getoor & Diehl, 2005 ). 

The seminal paper ( Liben-Nowell & Kleinberg, 2007 ) discusses

link prediction specifically applied to social networks, by applying

a range of widely accepted methods to predict new academic col-

laboration data. This review was later augmented by Lü and Zhou

(2011) , expanding the algorithms tested and using alternative col-

laboration data. However, the motivations for academic collabora-

tion may be different to the friendship selection methods of ado-

lescents. Additionally, the analysis does not consider the impact of

the links being formed and thus influencing the formation of other

links in the network. The possibility to breaking links is also ab-

sent from the work of Liben-Nowell and Kleinberg (2007) and Lü

and Zhou (2011) , as the research was concerned only with the for-

mation of new collaborations. Thus, the ability to implement link

prediction methods in an ABS framework for adolescent social net-

works, provides a novel contribution to the literature. 
Four prediction methods have been selected for the purpose

f our research: Adamic/Adar ( Section 4.1 ), Katz ( Section 4.2 ), SAB

odelling ( Section 4.3 ) and (PageRank ( Section 4.4 ). These methods

ave been selected for comparison with a newly developed algo-

ithm that we propose in Section 6 , PageRank-Max . A summary of

ach method now follows aided by an example based upon the il-

ustrative network shown in Fig. 3 (where appropriate). 

.1. Adamic/Adar 

The Adamic/Ada (AA) method was originally developed to quan-

ify how webpages were similar in terms of content, specifically

ocusing upon personal web pages; if the content between two

ages is similar ( Adamic & Adar, 2003 ) theorised that a connec-

ion between them is more likely to appear. The authors based

heir theory upon the notion that friends tend to be similar to one

nother ( Carley, 1991; Feld, 1981 ), therefore making connections

ore probable. 

To perform the AA method, the neighbourhood , �( i ), of each in-

ividual, i , is required; �( i ) being the set of individuals with whom

 shares a connection. A score is calculated for each link ( ij ) that is

ot present (unobserved) in the network, such that: 

core [ i, j] = 

∑ 

z∈ �(i ) ∩ �( j) 

1 

log | �(z) | (5)

here z is a mutual connected vertex of both i and j . 

The AA score for ij is therefore based upon the number of con-

ections an individual z (who is a friend of both i and j ) possesses.

f z has a small number of connections, then having z as a common

eighbour of both i and j is rarer than if z had a high number of

onnections. As such, rarer common neighbours increase Score[i,j]

eaning that a link between i and j is more likely. 

The following example illustrates the mechanism by which AA

akes a link prediction: 

• Taking the social network in Fig. 3 , the unobserved links are

identified as: B → C , B → D , C → D and D → A . 
• Taking the unobserved link B → C , examining the friendships

of B and C gives the neighbourhoods �(B ) = { A } and �(C) =
{ A, B } , respectively. 

• As both �( B ) and �( C ) contain agent A , A is identifies as the

only common neighbour of agents B and C . 
• Agent A has three outward links, as such | �(A ) | = 3 and there-

fore the Score [B,C] = 0.910 (3 d.p.). 
• The scores for the remaining unobserved links ( B → D , C → D

and D → A ) are also calculated. The resultant scores are ranked

and the links with the highest scores are most likely to develop

according to the AA link prediction method. 

The example presented is conducted upon a directed network,

owever, the AA method does not consider the effect of reciproca-

ion - a reciprocated tie being one in which the links i → j and j → i
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oth exist, previously defined in Eq. (2) . Returning to our example,

he calculated Score[ B , C ] for the unobserved link B → C does not

onsider that the link C → B exists; this ignore the fact that agent

 may wish to reciprocate the link with C , basing the strength of

he “relation” purely upon the size of the neighbourhood of A . 

.2. Katz 

Developed by Katz (1953) as a method to identify individuals

f status within a group “free from the deficiencies of popularity

ontest procedures”, the method examines not only the number

f “popularity votes” an agent receives, but also the popularity of

he voting individuals. As such, Katz argues that a more accurate

erception of high status individuals in a group may be garnered.

ith respect to link prediction, the popularity votes referred to by

atz may be considered as connections in a network. 

To perform the Katz method, the sociomatrix, X , of a network is

equired. It is well-known that the paths between individuals in a

ocial network may be found by exploiting the powers of the rele-

ant adjacency matrices ( Festinger, 1949 ). For matrices with binary

ntries (such as X ), non-zero elements x 2 
i j 

of the matrix X 

2 indicate

he number of paths of length two being present between agents

 and j ; similarly, a non-zero element x 3 
i j 

of the matrix X 

3 , indi-

ates the number of paths of length three between agents i and

 – higher powers having corresponding interpretations. In terms

f link prediction, a score for an unrealised link between i → j is

alculated as: 

core [ i, j] = 

n −1 ∑ 

l=1 

φ l | path 

[ l] 
i, j | (6) 

hereby | path 
[ l] 
i, j 

| represents the number of paths of length l be-

ween i and j , and φ is the selected dampening factor. The selection

f φ must satisfy the condition φ < 1, with 

1 
φ

being the smallest

nteger value greater than the largest eigenvalue of matrix X . 

The Katz method, much like the AA method, assumes undi-

ected network connections, with the underlying concept assum-

ng that popular individuals are more likely to connect with one

nother – shortening the overall average shortest path length of

he network. To illustrate the calculation of the Katz method, an

xample using the social network in Fig. 3 is as follows: 

• For the calculation of the Katz method, the 4 × 4 sociomatrix X

in Fig. 3 is required: 

X = 

⎛ 

⎜ ⎝ 

0 1 1 1 

1 0 0 0 

1 1 0 0 

0 1 1 0 

⎞ 

⎟ ⎠ 

Elements x 2, 3 , x 2, 4 , x 3, 4 and x 4, 1 are zero, indicating the po-

tentially unobserved links. 
• As the number of agents n = 4 , the maximum path length

for an indirect connection between agents is 3. Therefore the

power of matrices to n − 1 are calculated: 

X 

2 = 

⎛ 

⎜ ⎝ 

2 2 1 0 

0 1 1 1 

1 1 1 1 

2 1 0 0 

⎞ 

⎟ ⎠ 

X 

3 = 

⎛ 

⎜ ⎝ 

3 3 2 2 

2 2 1 0 

2 3 2 1 

1 2 2 2 

⎞ 

⎟ ⎠ 

• The value φ is selected by finding the maximal eigenvalue ( λ)

of X . As λ = 1 . 950 (3 d.p.), the value of 1 
φ

is taken to be 2, al-

lowing φ = 0 . 5 ; this satisfies the requirements of φ < 1 and 

1 
φ

being the smallest integer value greater than the characteristic

root of X . 
• Taking once again the unobserved link of B → C , the Score[B,C]

is calculated as: 

Score [ B, C] = (0 . 5) 1 · 0 + (0 . 5) 2 · 1 + (0 . 5) 3 · 1 = 0 . 375 

• The remaining unobserved link scores are calculated in the

same manner and ranked accordingly. The links with the high-

est scores, are those which are most likely to occur at a subse-

quent timestep. 

.3. Stochastic Actor Based 

The Stochastic Actor Based (SAB) modelling approach is not

 static method such as those of AA and Katz. Rather, Snijders

1996) defines the SAB approach to be a class of models for longi-

udinal network data – ‘actors’ within the network utilising heuris-

ics to optimise their individual goals, subject to a selection of con-

traints. Discrete observations of a network are explored, with the

volution of social ties from G t to G t+1 a result of many small

hanges occurring between the specified time periods ( Carrington,

005 ) – the observed networks assumed to be the result of a

arkov process in continuous time. 

Consider T observations of a social network, represented as the

djacency matricies X t for t = 1 , . . . , T , each observation contain-

ng the same set of n actors. Evolution of the network is solely

odelled from the point of inception X 1 , with the evolution to X 1 

ot being considered. The actions of actors within the network at

 are simulated, changes in friendship ties based upon actor spe-

ific personal objective functions; the process attempting to model

he micro-changes necessary to arrive at the network of t + 1 .

he complete SAB algorithm ( Snijders, 1996 ) is rather detailed and

omplex in its implementation, so in the interests of space is not

epeated here. 

.4. PageRank 

The PageRank (PR) algorithm was developed by Brin and Page

1998) , the founders of Googe. PR analyses the link structure of a

etwork, taking into consideration not only the number of links to

 node, but also the importance of the node sending the outward

ink. The PR ( w i ) for each node i , is such that w i ≥ 0 and w j > w k 

ndicates j is a more important node than k . If H̄ i denotes the set

f nodes that link to i , and H i the set of nodes linked outwardly

rom i , then the PR w i is calculated as: 

 i = 

∑ 

j∈ ̄H i 

w j 

| H j | (7) 

he calculation of w i is recursive and can be initiated with any

elected initial importance scores, iterating until convergence. The

alculation of the PR may be interpreted as a random walk on a

raph; in the context of the internet, a “random surfer” clicks on

ebpage links at random – the resultant probability of arriving at

 page defined as its PR. 

The “random surfer” calculation of PR is useful when impor-

ance scores are necessary for large graphs (such as the internet),

hereby the adjacency matrix of connections X is unobtainable.

owever, if X is known, an adjusted matrix ( M ) may be calculated

ith m i j = 

1 
| H j | if the link j → i exists and m i j = 0 otherwise. The

R calculation may then be expressed as a system of linear equa-

ions Mw = w, with the problem reduced to finding the principal

igenvector of the matrix M . Due to the properties of M , it is pos-

ible to find an eigenvalue λ = 1 which generates a unique positive

igenvector; this eigenvector being the vector of PageRanks ( Page

 Brin, 1999 ). 



268 A. Fetta et al. / European Journal of Operational Research 265 (2018) 263–276 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

(  

c  

2

5

 

a  

t  

t

5

 

g  

t  

t  

i

 

i  

t  

i  

(  

g

 

 

 

 

 

n  

f  

t  
The matrix M is defined as column stochastic if each element

m ij ≥ 0 and the sum of each column is 1, this ensures the exis-

tence of λ = 1 . However, this does not guarantee the existence of

a unique λ necessary for ranking, therefore other requirements of

M need to be satisfied. From Perron–Frobenious theorem ( Meyer,

20 0 0 ), a column stochastic matrix M that is irreducible with m ij ≥ 0,

generates: 

• An eigenvalue λ> 0 with corresponding eigenvector v > 0 . 
• The existence of a dominant eigenvalue λ1 , such that λ1 >

| λ2 | ≥ | λ3 | ≥ · · · ≥ | λn | . 
• All eigenvectors ≥ 0 are a multiple of w . 

Therefore, M also needs to satisfy the condition of irreducibil-

ity, whereby M cannot be placed into block-upper triangular form

through a series of permutations. M may become reducible if dis-

connected clusters of nodes exist in the network. Furthermore,

nodes with an inward link but no outward links, termed as “dan-

gling nodes”, also affect the necessary requirements for a unique

vector of PageRanks ( Ipsen & Selee, 2008 ). 

To ensure the successful calculation of the PR vector, M is

required to represent a strongly connected graph; a graph being

strongly connected if a path from any given node i to j exists. Per-

forming the PR calculation upon a strongly connected graph is not

always possible, as is the case for both web pages and social net-

works. As such, calculation of a new matrix M̄ is required: 

M̄ = (1 − d) Q + dM (8)

where Q is the matrix of elements 1 
n and d is the ‘dampening fac-

tor’, ensuring that m̄ i j ≥ (1 − d) Q which satisfies the required con-

ditions; d is generally selected to be 0.85 ( Bryan, 2006 ). The prin-

cipal eigenvector of M̄ is calculated, returning the required PR. 

To illustrate PR, the following example is conducted upon the

network in Fig. 3 : 

• The sociomatrix X of the network in Fig. 3 is : ⎛ 

⎜ ⎝ 

0 1 1 1 

1 0 0 0 

1 1 0 0 

0 1 1 0 

⎞ 

⎟ ⎠ 

with the number of outward links for each agent: | H A | = 3 ,

| H B | = 1 , | H C | = 2 and | H D | = 2 . 
• The matrix M is calculated where m i j = 

1 
| H j | if the link j → i ex-

ists and m i j = 0 otherwise, giving: 

M = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 1 

1 

2 

0 

1 

3 

0 

1 

2 

1 

2 

1 

3 

0 0 

1 

2 

1 

3 

0 0 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

• Taking d = 0 . 85 with n = 4 , the M̄ matrix is calulated as: 

M̄ = 0 . 15 ·

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 

4 

1 

4 

1 

4 

1 

4 

1 

4 

1 

4 

1 

4 

1 

4 

1 

4 

1 

4 

1 

4 

1 

4 

1 1 1 1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

+ 0 . 85 ·

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 1 

1 

2 

0 

1 

3 

0 

1 

2 

1 

2 

1 

3 

0 0 

1 

2 

1 

0 0 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
4 4 4 4 3 i
M̄ = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

3 

80 

71 

80 

37 

80 

3 

80 

77 

240 

3 

80 

37 

80 

37 

80 

77 

240 

3 

80 

3 

80 

37 

80 

77 

240 

3 

80 

3 

80 

3 

80 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

• The matrix M̄ is in the form that allows for the calculation of

the PR vector. The eigenvector of M̄ corresponding to the dom-

inant eigenvalue is found to be: 

W = 

⎛ 

⎜ ⎝ 

0 . 36816 

0 . 28796 

0 . 20208 

0 . 14181 

⎞ 

⎟ ⎠ 

• Hence, the PageRank of each node is found. As node A has the

highest PageRank, it is therefore the most “important” node in

the network. 

. Agent based simulation 

This section describes the developed Agent Based Simulation

ABS), reported here using the revised Overview, Design con-

epts, Details (ODD) protocol for Agent Based Models ( Grimm et al.,

010 ). 

.1. Purpose 

The aim of the proposed simulation is to take the ASSIST data

nd simulate the evolution of the adolescent social networks over

ime, with an attempt to understand the process by which connec-

ions are modified. 

.2. Entities, state variables and scales 

The simulation is Java based, which is an object-orientated pro-

ramming (OOP) language. As such, the simulation is structured

o have a ‘Main’ class, where the methods necessary for running

he simulation are executed, and an ‘Agent’ class, whereby each

nstance of Agent represents an individual from the ASSIST data. 

Each Agent object has a variable (an array list) relating to the

ndividual’s connections, with access to a global array (socioma-

rix) containing the adjacency matrix of all links for the school be-

ng simulated. When an update occurs, the changing ‘Agent’ object

searching agent) updates its own link information variable and the

lobal adjacency matrix. 

Agents have other attributes, such as: 

• Age – calculated from ‘Date of Birth’, and increases as time pro-

gresses. 
• Sex – drawn directly from data. 
• Smoking Level – the self reported smoking level classified on a

scale from one to six, where a smoking value of one indicates

‘never smoked’ and six representing ‘more that 6 cigarettes a

week’. Again, drawn directly from data. 

While these attributes are recorded in the simulation, the do

ot impact the progression of the model and have been included

or ease in future work. Time is measured on a scale of weeks and

here is no spacial representation at this stage, as only the change

n connections is of importance. 
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.3. Process, overview and scheduling 

The following step-by-step guide describes how a link predic-

ion is made in the ABS: 

• On initialisation, a sociomatrix ( X ) and number of link changes

( ε) are read from the database, giving a network rate of change

ρ = 

1 
ε . 

• At time t an event occurs, with the time between events being

negatively exponentially distributed with parameter ρ . 
• The event signifies that an agent must make a change to their

outgoing links, the agent making the change being selected uni-

formly at random (termed as the ‘searching agent’). 
• The randomly selected agent i (searching agent) receives a

“message” telling them they must make a change, the change

made being based upon the maximisation of i ’s personal objec-

tive function f i . 
• Agent i iterates through the link changes offered by the selected

link prediction method (the ‘testing agents’) from amongst the

4 methods described in Section 4 , finding their maximum f i . 
• Agent i makes one change to their outgoing links, updating X

accordingly. 
• The process repeats until stopping conditions are satisfied, sub-

sequent agents making use of the updated links from previous

agents to make their decisions. 

The advancement of the simulation may therefore be inter-

reted as having a Discrete Event Simulation (DES) structure, as

he system decides when events will occur and the selection of the

gent who must make a change. An important deviation from the

ES structure is that the changes made to the system are agent

ased decisions, the agents selecting the friendship option that

ost suits them (through their personal objective function). As a

esult, agent j must consider the changes made previously by agent

 ; this means agent j ’s decisions may be affected by those of i , po-

entially changing j ’s overall decision. Modelling friendship changes

n the specified manner, means that individual decisions affect the

ystem as a whole; individual connection decisions affecting future

onnections the network. The simulation may therefore be thought

f as an ABS, with discrete event based timing ; a diagram of the

ogic is visible in Fig. 4 . 

.4. Design concepts 

The simulation makes use of six different approaches to link

rediction: 

• Random – the selecting agent randomly selects any other agent

in the simulation for connection. If a connection already exists,

the connection is broken. This method is included for the pur-

poses of providing a baseline to the other link prediction meth-

ods evaluated. 
• Adamic/Adar, Katz, SAB and PageRank – These methods have

been described in Section 4 , the associated algorithms imple-

mented in the simulation. 
• PageRank-Max – A novel approach to link prediction, based on

the PageRank approach. A detailed discussion of this new algo-

rithm may be found in Section 6 . 

.5. Initialisation 

On initialisation, the simulation is required to create multi-

le instances of the Agent class. The user must decide the school

nd timestep for prediction, the simulation accessing the ASSIST

atabase and querying the relevant tables through the use of SQL.

he sociomatrix X and number of changes ε are saved as global

ariables, with the number of Agent objects created based on the
nformation within X . A separate data table is accessed, containing

he properties of the individuals to be simulated (such as unique

d); the information is then applied, giving each agent an identity. 

Each agent then accesses the row in X that represents their con-

ections, storing the agents to whom they send an outlink within

 local variable. The network is then drawn for visualisation pur-

oses, the graphics being able to update each time an agent makes

 change. With the initialisation process complete, a representa-

ion of the school network (at the designated time) is present, the

imulation being able to commence. 

.6. Input data 

The ASSIST data provides multiple observations of a school so-

ial network, therefore, the predictions made may be assessed

gainst real data at later time periods – gaining an insight into the

ccuracy of the predictions. Three waves of data are available ( T 1 ,

 2 and T 3 ), as such, two predictions can be made – that of T 1 to T 2 
nd T 2 to T 3 . 

An Access database has been created for use with the simula-

ion, holding information regarding friendship ties and basic stu-

ent information. The database contains a separate table relating

o the adjacency matrix of social ties, for each school at each time

tep; this allows individual schools to be modelled separately with

ase. 

.7. Software 

The software used for the ABS is Anylogic 6 ( AnyLogic, 2002 )

iven the ease in which it can connect to databases; this being a

equirement when inputting the ASSIST data into the model to cre-

te the social network structures. Furthermore, AnyLogic offers the

ser the ability to expand its basic functionality with Java, which

treamlines the coding of link prediction methods into the simu-

ation. The source code is available at Fetta, Harper, Knight, and

illiams (2017) . 

. PageRank-Max 

Given the potential importance of centrality in message dif-

usion within a social network, it stands to reason that central-

ty may also be of importance to the individuals comprising the

ocial network. We propose a new link prediction algorithm, the

ageRank-Max (PR-Max) method, which provides an individual

erspective of centrality, a searching agent altering its connections

ased upon the personal optimisation of its own eigen-centrality. 

The PR-Max method seeks to find the connection that may im-

rove an agents own PR. On receipt of a message from the envi-

onment, the changing agent ( i ) begins iterating through all agents

n the network as follows: 

• Agent j is selected for testing. 
• The connection from i to j is altered, either by forming a link

or breaking an existing link. 
• Agent i ’s PR is calculated and stored as f i , j . 
• The connection change is reversed. 
• The process repeats. 

Once all possible changes to i ’s connections are assessed, the

reatest value of f i , j is selected – the associated connection

hange being made. The PR-Max method works much like the SAB

ethod, testing the result of an actual change to the network;

owever, it does not require the creation of a model prior to use,

s a transformation of the sociomatix is its sole requirement. The

implicity of the PR calculation means that PR-Max method also

oes not require two waves of network data, being able to predict
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Fig. 4. Simulation logic describing the timing and agent-based decisions. 
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changes in the network without prior knowledge of its evolution;

a diagram of the PR-Max logic is present in Fig. 5 . 

The PR of a webpage decides the ordering in which it is dis-

played on Google (following a search query). Users are said to

be able to manipulate their webpage’s PR by making educated

link choices ( Malaga, 2008 ), with the PR-Max method aiming to

demonstrate this in the context of social relations. Researchers

have attempted link prediction through the use of a ‘Personalised

PageRank’ ( Chen, 2012; Yung, 2012 ), which orders pages differ-

ently depending on what a specific user may find more relevant.

In terms of link prediction, this means that the PR is calculated

differently depending upon the specific searching agent seeking to
ake a new connection; this calculation process does not consider

ptimising an agent’s own PR, which we consider in PR-Max. 

While the careful selection of outward links is said to be im-

ortant, removal of specific links has also been shown to have

n effect on PR ( de Kerchove, Ninove, & van Dooren, 2008 ); this

ives the PR-Max method a sensitivity to link disconnection. The

A, Katz and basic PR implementations do not demonstrate such

xplicit consideration of link disconnection, their focus being pre-

ominantly upon the prediction of new connections. Although the

AB method does account for disconnection, this is subject to

he model generated prior to simulation. Therefore, the PR-Max

ethod may be able to capture elements of network evolution
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ore naturally. The performance of PR-Max is compared to the

ther link prediction methods in Section 8 . 

. Validation 

To gain confidence in the output of the simulation, validation

nd verification procedures have been conducted. As the simula-

ion is attempting to validate social theories around how adoles-

ents connect, the output of the simulation is in itself an evalua-

ion of its validity. This is made evident by attempting to evaluate

he accuracy of the link prediction approaches, against the empir-

cal social network data – discussed further in Section 8 . The fol-

owing sections additonal elements of the validation process, prior

o assessing the accuracy of the results: verification ( Section 7.1 ),

istributions and random sampling ( Section 7.2 ), warm-up period

 Section 7.3 ), number of runs ( Section 7.4 ) and experimentation

pecification ( Section 7.5 ). 

.1. Verification 

Verification is described as a micro-check of the model, where

 test of each individual element is performed. During the creation
rocess, regular checks of the code were carried out - attempting

o ensure the proper implementation of the designated logic. For

ach of the LP method implementations, the associated calcula-

ion of the objective function was performed to ensure calculations

atched. Network visualisation was also used to verify consistency

ith the predictions made. 

.2. Distributions and random sampling 

Statistical distributions and random sampling are used through-

ut the simulation, the values being derived from AnyLogic’s own

uilt in engine. Sampling of random numbers uses AnyLogic’s

efault random number generator, which is an instance of the

Random’ Java class; this being a Linear Congruential Generator

 AnyLogic, 2002 ). During the verification process, a number of runs

ere performed to assess the average number of changes in a se-

ected school network; the confidence interval was calculated, and

s the actual number of changes from the data fell within the

ounds of the confidence interval, the distribution was said to be

cting appropriately. During all testing and result generations com-

on random numbers are implemented between scenarios. 
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Table 1 

Model runtimes (minutes) by link prediction method. 

Random Adamic/Adar Katz SAB Model PageRank PageRank-Max 

Time 

(minutes) 

5.1 6.7 10.9 13.8 15.4 492.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Ranked average precision values. 

Time Measure Adamic/Adar Katz SAB Model PageRank PageRank-Max 

T 2 Correct 3 4 2 5 1 

Missed 2 4 3 5 1 

T 3 Correct 3 4 2 5 1 

Missed 3 4 2 5 1 
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7.3. Warm-up period 

The starting conditions of the simulation (for a selected school

at a given time point) are provided by the initial sociomatrix,

which is read during the initialisation procedure. As such, a warm-

up period is not required, as the agents begin with the required

set up of connections. 

7.4. Replications 

As the simulation has various elements which include variabil-

ity, multiple simulation runs are required. This work makes use

of the confidence interval approach ( Robinson, 2004 ) to select the

number of replications, based on outcome-based precision criteria.

Using the CI method, the required number of runs ( η) is calculated

as: 

η = 

(
100 · S · t (n −1 ,α/ 2) ̂ d · x̄ 

)
(9)

where x̄ and S are the sample mean and standard deviation (re-

spectively), ̂ d the desired percentage deviation of confidence about

the mean, and t n −1 ,α/ 2 from the standard t-distribution with n − 1

degrees of freedom and significance level α ( Robinson, 2004 ). 

A selection if network measures were used to assess the vari-

ability in the outcome based metrics. With a significance level

α = 0 . 05 , the greatest number of runs required was 9.49. Addition-

ally, as a ‘rule of thumb’, ( Law & Kelton, 1999 ) suggest a minimum

of around 3–5 replications are required; should too many replica-

tions be selected, this wastes valuable running time and computing

resources. Given that the identified maximum, 10 replications have

been selected. This is greater than the rule of thumb, but does not

appear excessive. 

7.5. Experimentation specification 

The investigation was conducted across eight intel i3 2120 dual

core machines, with 8 gigabytes RAM. Each set up of the simula-

tion was conducted on an individual machine, parallelised to make

use of the dual cores. An example set up on a machine would be:

School 12, PageRank-Max, T 1 − T 2 . The approximate runtime for

each link prediction method is shown in Table 1 . 

8. Results 

The previous sections have described the creation of an ABS to

predict social network evolution implementing five separate link
Table 2 

Average of all school networks at T 2 and T 3 , displaying 

Highlighted and starred values are significantly different 
rediction methods: Adamic/Adar (AA), Katz, Stochastic Table 2 Ac-

or Based (SAB) Models, PageRank (PR) and PageRank-Max (PR-

ax). This section discusses the results produced from evaluating

ach of these methods, across the breadth of the ASSIST network

chool data, for four different key network statistics: transivity, av-

rage degree, reciprocity and Average Path Length (APL). 

For each of the control schools, a prediction is made from T 1 to

 2 and T 2 to T 3 . The predicted networks at T 2 and T 3 shall be com-

ared with the real data to evaluate their accuracy. The presenta-

ion of results is structured as follows: the precision of each algo-

ithm in predicting the correct links is discussed in Section 8.1 and

he individual network structures are presented in Section 8.2 . 

.1. Precision analysis 

The first method to evaluate the T 2 and T 3 predictions is that

f precision . The precision metric was first proposed by Cleverdon

1972) and has been used in the context link prediction methods

 Lü & Zhou, 2011 ). Precision evaluates the number of correct pre-

ictions, y c , relative to the number of predictions made, y p , such

hat the precision is y c 
y p 

. To benchmark performance, we also gen-

rate a network based upon link predictions made at random (the

andom method). The precision is expressed as a percentage im-

rovement over predictions made at random; positive values in-

icate an improvement in correct predictions, while negative val-

es indicate a reduction. Ten runs of the random method for each

chool network are performed to generate the random predictions.

Also of interest is the number of missed predictions, which ex-

mines the number of friendship changes not made in the pre-

icted networks of T 2 and T 3 , when a friendship change has actu-

lly occurred in the real data. The missed predictions are also ex-

ressed in terms of an increase compared to the random method,

egative values indicating fewer predictions missed. Therefore, two

etrics are calculated for each predicted network: the percentage

ncrease of correct and missed link predictions over the random

ethod. 

Table 2 displays the average precision classified by method at

ach timestep. Each method is then ranked in terms of their pre-

ision performance; ranks are displayed in Table 3 . Values that

re significantly different from random at the 95% level, follow-

ng an independent samples t-test for parametric data or a Mann–

hitney test for non-parametric data, are highlighted and starred. 

The boxplots shown in Figs. 6 and 7 display the correct predic-

ion scores at T 2 and T 3 , respectively. They demonstrate the higher

roportion of correct predictions for the PR-Max method when

ompared with all other selected methods. Overall, the precision
the percentage increase over random predictions. 

at the 95% level. 
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Fig. 6. Box plot of correct prediction proportions for each method at T 2 . Whiskers extend 1.5 times the height of the box, with circular points indicating outliers. Starred 

points indicate extreme outliers. 
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Fig. 7. Box plot of correct prediction proportions for each method at T 3 . Whiskers extend 1.5 times the height of the box, with circular points indicating outliers. Starred 

points indicate extreme outliers. 
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older. 
nalysis has highlighted a number of key outcomes with regard to

he link prediction methods tested, summarised as follows: 

• PR-Max is the method which performs the best in terms of in-

creasing correct predictions, and decreasing missed predictions.
• All methods experience variability in their performance, with

certain methods capturing school-specific network evolution
more accurately – potentially a result of the school’s underly-

ing friendship mechanisms. 
• The PR-Max observes a significant increase in overall average

precision at T 3 from T 2 , adding further weight to the notion

of time sensitivity in friendship evolution – the eigen-centrality

of a student potentially becoming more important as they get
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Table 4 

AES for each link prediction method; highlighted values are significantly different at the 95% level. 

Table 5 

AES ranks for each link predicition method. 

Time Measure Adamic/Adar Katz SAB Model PageRank PageRank-Max 

Transitivity 3 2 4 5 1 

T 2 Average out-degree 4 2 1 3 5 

Reciprocity 2 4 3 5 1 

Average Path Length 4 1 3 2 5 

Transitivity 3 2 4 5 1 

T 3 Average out-degree 5 3 2 4 1 

Reciprocity 2 4 3 5 1 

Average Path Length 5 4 3 2 1 
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8.2. Network structure analysis 

To analyse the predicted network structures, the output of the

10 simulation runs (for each school, at each timestep, for every link

prediction method) are compared with the structural values from

the data. The metrics selected for the analysis (transitivity, average

degree, reciprocity, APL) are not on the same scale as each other;

as such, meaningful comparisons between metrics is not intuitive.

To rectify this issue, a new approach to network comparison is pro-

posed making use of ‘effect size’. 

The effect size is a measure that represents the magni-

tude of a relationship, quantifying the difference between two

groups; it is the central component of a meta-analysis, which

attempts to summarise the finding of multiple investigations

( Hedges & Olkin, 1985 ). The effect size used for this analysis is

Glass’ �, calculated as: 

� = 

x̄ d − x̄ p 

s p 
(10)

where x̄ d and x̄ p are the mean values of a metric from the data

and predicted networks respectively, and s p is the associated pre-

dicted network standard deviation. x̄ p and s p are calculated from

the 10 simulation runs, while x̄ d is taken directly from the data.

To evaluate each method’s performance, a rank for each method is

produced. This is calculated by taking the average absolute effect

size (AES) across schools, for each structural metric. This analysis

is only concerned with the magnitude of effect size, the direction-

ality (overestimation or underestimation) being irrelevant; as such,

the absolute effect size is taken in the calculation of AES. 

Table 4 displays the AES for each method and measure. To

compare AES differences between time steps, paired sample t-

tests (parametric) or paired sample Wilcoxon signed-rank (non-

parametric) tests are performed – the values significantly different

at the 95% level are highlighted and starred. Each method is then

ranked by structural measure, values with the lowest AES achiev-

ing the highest ranks –Table 5 . 

The differences in AES between time steps is apparent from

Table 4 . The APL is predicted significantly differently across all

methods, with predictions being worse for T 3 in AA (139.01), Katz

(99.05), SAB (26.30) and PR (24.74) methods than T ; however, AES
2 
s reduced for PR-Max at T 3 (12.78), this indicating a significant

mprovement in predictions. AES for average degree is also sig-

ificantly different between T 2 and T 3 , with AA (29.25) and Katz

20.01) increasing; once again, PR-Max values improve at T 3 , with

he AES value decreasing significantly. 

The AES values indicate an improvement in the PR-Max struc-

ural accuracy at T 3 . This is further reinforced by the ranks of

able 5 , which demonstrate a movement of out-degree and APL

redictions from last place (5) at T 2 , to first place at T 3 (1). When

he harmonic mean of the individual rankings is taken for each

ethod, PR-Max is placed first across both time steps ( T 2 : 1.7,

 3 : 1.0), however, at T 2 this is very closely followed by the Katz

ethod (1.8). 

The precision analysis of Section 8.1 , placed the Katz method as

ourth overall at both T 2 and T 3 . However, it would appear that

he method performs well in terms of structure at T 2 , ranking first

n APL AES and second for transitivity and average out-degree.

his suggests that, while the specific links in the predicted net-

orks may not be accurate, the overall network structure gener-

ted is more representative than other link prediction methods -

nly being outperformed by PR-Max in terms of transitivity and

eciprocity. The findings demonstrate the importance of consid-

ring the predicted network structure when discussing link pre-

iction methods, potentially providing further insight than simply

onsidering precision. 

Overall, the method structural performance analysis has rein-

orced many of the conclusions from Section 8.1 . There would ap-

ear to be differences in the performance of methods at T 2 and

 3 , suggesting an underlying change in the friendship mechanisms

f adolescents within the ASSIST data. Further evidence of the

trength of the PR-Max method (in predicting network evolution)

s also provided, the method performing particularly well at T 3 . 

. Conclusions 

.1. Using simulation as a tool to explore theories around behaviours 

This paper has outlined the development of a simulation based

ramework, incorporating link prediction algorithms, for applica-
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ion upon adolescent social network data. The simulation em-

loyed four existing link prediction methods: Adamic/Adar, Katz,

AB models and PageRank, and developed a new method PR-Max

ased upon the optimisation of an agent’s eigen-centrality. 

The existing methods selected were chosen due to their suc-

ess in a wealth of prior applications, with the PR-Max method

eing developed to provide an alternative perspective of status. A

imitation of the study may be the selection of only five methods

o explore in depth. However, given the rigorous selection process

f the chosen it was felt that an appropriate representation of the

ost widely used methods was presented. 

The social network analysis offers novel contributions to both

ink prediction and simulation literature. Although the SAB method

ses simulation as an underlying tool for the generation of sta-

istical models, this work is seemingly the first study to structure

he link prediction problem within an ABS framework. The devel-

pment of the PR-Max method also provides a new approach to

ink prediction, whereby agents use eigen-centrality to actively im-

rove their current social situation. Furthermore, this investigation

xpands the current literature relating to social applications of

imulation, signalling a potential future direction for ABS research. 

.2. Pagerank Max is an effective predictor of future social structure, 

hich suggests status is important in friendship selection 

This analysis has concluded that the proposed PR-Max method

as the most successful (of those tested) in predicting the evolu-

ion of adolescent friendships, in terms of both precision and net-

ork structure. 

The PR-Max method highlighted that status may be a key fac-

or in the evolution of adolescent social networks, especially as

he individuals mature. This identifies status (an interpretation of

igen-centrality) as a key focus for future investigations of adoles-

ent social networks. This suggests that a salient part of the ado-

escent friendship making process is the befriending of an individ-

al who will likely increase ones own status. This contributes to

iterature describing adolescent social connection and may impact

uture adolescent peer diffusion studies. 

A further relevant feature of the PR-Max is the process by

hich links were broken, with agent’s removing connections that

egatively impacted upon their eigen centrality. This suggests

riendship degradation is an important factor in social connections,

ith adolescent social networks continually evolving over time.

he results demonstrated the abilities of a simulation based link

rediction structure in gaining insights unobtainable by conven-

ional social network analysis. 

.3. Implications for policy makers and public health managers 

Smoking is a major global health challenge, with 6 million

eaths from tobacco use worldwide per year. Secondary schools

re the common point at which people start smoking, so it is vital

o intervene at this age given the addictive nature of tobacco and

he longer-term health effects. Our conceptual approach and con-

ribution to the problem is in providing a proof-of-concept for tar-

eted interventions driven by social network analysis. We demon-

trate the utility of using emerging sources of social network data

or public heath interventions. 

The ASSIST programme was shown to provide a cost-effective

ethod for reducing adolescent smoking rates. The ASSIST pro-

ramme resulted in a 2.1% reduction in smoking prevalence at 2

ears, and the incremental cost per student not smoking was 1500.

he intervention also affected students beliefs about longer term

moking behaviour, with a lower proportion of students in the in-

ervention schools believing that they would be a smoker at age

6 years. The ASSIST findings, if extrapolated to all 12-year-old
tudents in the UK, would cost £38m but would result in 20,400

ewer adolescent smokers at age 14 years. Placing these results in a

roader context, NHS expenditure on treating lung cancer in 2010

as £261 million in England alone ( Hollingworth et al., 2012 ). 

The research has demonstrated, through the use of ABS and link

rediction methods, the potential importance of eigen-centrality in

dolescent friendships selection. As such, these learnings may be

ed back into future peer-led interventions to aid in the selection of

ppropriate peer supporters. Furthermore, it provides encouraging

esults in demonstrating the ability to predict forward and identify

ighly connected individuals in a social network, informing policy-

akers who to target to diffuse positive public health messages. 
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