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Summary  

Micropitting is a contact initiated fatigue failure on the scale of surface roughness features 

that occurs in lubricated concentrated contacts which are subject to combined sliding and 

rolling motion. It is a significant problem in hardened and ground gears which, due to the 

surface roughness, operate in a micro-elastohydrodynamic lubrication (micro-EHL) regime, 

causing cyclic loads as the roughness features interact. 

To gain a much clearer understanding of the failure mechanism that is associated with rough 

surface elastohydrodynamic lubrication (EHL), a full theoretical model of the lubrication of 

gear contacts under rough surface and micro-EHL conditions is presented in this thesis. In 

addition, the study offers some important insights in to the influence of residual stresses on 

the fatigue life of rough surfaces. This significant residual stress, resulting from plastic 

deformation of rough surface asperities during the initial running-in process, has been 

instrumental in our understanding of the micropitting phenomenon. 

The Abaqus FEA package has been used to perform a full elastic-plastic contact analysis of 

real rough surfaces using profiles taken from the surfaces of unrun test disks, which are used 

in micropitting tests. The analysis provides a detailed view of the plastic deformation, and 

the magnitude and distribution of the residual stress fields at the asperity level. The residual 

geometry and stress field obtained over a range of applied loads are then used to introduce 

the residual stress in elastic fatigue calculations based on Micro-EHL simulations. Fatigue 

damage and fatigue life is then obtained at the scale of the surface roughness asperities by 

using multiaxial and variable amplitude fatigue models based on a critical plane approach. 

The results obtained allow the effects of the residual stress due to running-in to be quantified. 

The analysis method is also applied to test disk experiments to compare the predicted fatigue 

life with the observed onset of micropitting.  
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Chapter 1 Introduction and Literature Review 

 

1.1  Introduction 

This chapter first introduces a general overview of the field of tribology, the specialised area 

of EHL and reports some applications related to modes of surface failure. It will also review 

the literature of tribology relevant to the research. Finally, the aims of the current work and 

the organisation of this thesis are outlined at the end of this chapter.  

1.2 A brief history of tribology 

Tribology is the science and technology of two interacting surfaces in relative motion, and 

of related subjects and practices (Bhushan, 1998). This word derives from the Greek verb 

tribos, which means rubbing. Although the topic of tribology was first reported in 1966, in 

practice the study of tribology has existed since the beginning of recorded history. Dowson, 

(1998) published a comprehensive historical review of tribology from the beginning of 

humanity when friction was used for the generation of fire by percussion of flint stones and 

the rubbing of wood-on-wood. An interesting vision of the technological development of 

tribology relates to the oldest known wheel, which was found in an archaeological 

excavation in Mesopotamia and dates to around 2600 BC (Dowson, 1998). The word 

‘Mesopotamia’ means the land between the rivers (Tigris and Euphrates) and it is located in 

modern Iraq. Figure1.1 shows the oldest known wheel in a copper model of a Mesopotamian 

chariot from Tell Agrab, Iraq (2600 BC). A tomb in Egypt that was dated several thousand 

years BC gives further evidence of the use of the technology of tribology, in this case the 

Egyptians used animal-fat as a lubricant in their chariot wheel bearings. The Greek and 

Roman period brought new technologies and materials, as well as scientific research into 

tribological matters. In Roman civilisation, the use of rolling elements and bronze to reduce 
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friction became a common practice. During and after the Roman Empire, military engineers 

devised both war machinery and methods of fortification using tribological technology. 

 

Figure 1-1 A copper model of a Mesopotamian chariot from Tell Agrab, Iraq (2600 BC) (copyright for 

the image, University of Chicago). 

Many important improvements occurred during the 1500s, particularly in the use of 

improved bearing materials. Early developments in the technology of tribology started in 

Scotland, before moving to Canada and the United States in the 1850s (Dowson, 1998). At 

the beginning of the nineteenth century, the Industrial Revolution saw rapid and impressive 

development of the machinery of production. This enormous industrial growth led to the 

demand for a better understanding of tribology. Finally, modern tribology has seen areas 

such as bio-tribology and nano-tribology emerge and the subject continues to play a 

significant role in manufacturing.  

1.3 Development of elastohydrodynamic lubrication (EHL)  

EHL is a type of lubrication that occurs between the non-conforming contacting surfaces 

that are encountered in heavily loaded machine elements (Dowson and Higginson, 1966; 

Bhushan, 2000; Hamrock et al., 2004). Typical examples of EHL can be found in the gear 

tooth contacts of large reduction gear boxes, rolling element bearings, cams and tappets, and 

many other heavily loaded nonconformal contacts. Nonconforming surfaces generate a 
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concentrated contact over a very small contact area and result in very high contact pressures, 

which can be several GPa in magnitude. Such extreme operating conditions may play a 

significant role in the breakdown of the EHL mechanism. The research in this thesis offers 

some important insights into the effects of residual stresses on fatigue life predictions and 

the damage caused to the components in these lubricated contacts. Under EHL operating 

conditions, the surfaces are separated by an oil film whose function is to reduce wear, reduce 

pitting, remove heat and prevent corrosion. The film thickness in EHL is thinner (typically 

0.5–5 μm) than that in conventional hydrodynamic lubrication (Stachowiak and Batchelor, 

2013). Despite this very thin layer of lubricant film its very high viscosity due to the lubricant 

pressure-viscosity behaviour allows it to be sufficient to prevent metal to metal contact 

between the interacting bodies. The pressure distribution in an EHL application is closely 

related to that found in a dry contact. Hertz (1881) theory determines the size of the elastic 

contact area for a specified non conforming contact giving the contact stress and contact area 

in terms of the elastic properties and load. The deformation of two equal cylindrical lenses 

under an applied load is shown in Figure 1.2. The problem was treated as an elastic non-

conformal contact, which means that the contact happens between bodies that have surfaces 

with very different shapes. This model only considers elastic deformation and it neglects the 

effects of the asperity features of the contacting parts. Hertz theory still provides the basis 

for studies on non-conforming contacts. For smooth surfaces, the Hertzian theory gives a 

maximum subsurface shear stress with a value of about a third of the maximum Hertzian 

pressure. This is the position at which plastic deformation will first occur as the load is 

increased so that in a Hertzian contact the plastic zone is subsurface and contained by elastic 

material that surrounds it. This occurs at a depth well beneath the surface, of the order of the 

contact dimension. By introducing an inverse solution of the Reynolds equation, which gives 

detailed results of the pressure and film thickness, Dowson and Higginson in 1959 found a 
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full EHL numerical solution for the line contact problem, and they later published the famous 

book on EHL in 1966.  

 

Figure 1-2 Deformations of the glass lenses under an applied load a) unloaded, b) loaded (Johnson, 1985). 

 

Over the last three decades, many researchers have tried to predict, model and explain the 

elastic and elastic-plastic behaviour of material in order to get a better understanding of the 

deformation of bodies that touch each other at one or more contacting points. Komvopoulos 

et al., (1993) developed a model by using the Abaqus FEM program to understand how a 

changing load can cause a deformation that varies between the fully elastic and fully plastic 

regimes. Up to four load cycles of a load of up to three hundred times the yield load were 

performed in order to assess contact pressure, surface and subsurface stresses, as well as 

plastic zone initiation. In addition, the influence of strain hardening and residual stresses on 

deformation characteristics were investigated. The evolution of the contact pressure was 

found to depend on the strain hardening characteristics and accumulated plastic deformation 
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at a specific load, rather than the elastic modulus. Furthermore, Komvopoulos et al., (1993) 

found that, as with a smooth surface,  in Hertzian contacts, the plastic zone is initially only 

found in the subsurface but it grows and penetrates to the surface as the load increases. As 

the load increases even further, the area of maximum plastic strain moves radially outwards 

and toward the surface, just inside the edge of the maximum contact radius (Komvopoulos 

et al., 1993).  

As part of the wider investigations into single point analysis, a study was carried out by 

Kogut and Etsion, (2002) to investigate the contact of a deformable sphere against a rigid 

flat. The finite element method was employed to analyse this contact by using the ANSYS 

5.7 package. Asymmetry was adopted so that the hemisphere was modelled as a quarter 

circle while the flat took the form of a line. The material was assumed to be elastic-perfectly 

plastic with identical behaviour under tension and compression. The Von Mises yielding 

criterion was used to analyse local transition from elastic to plastic deformation. The 

maximum interference applied was 110 times that for first yield (the critical interference), 

as shown in Figure 1.3. The outcomes from this study show that completely elastic contact 

models are not always sufficient to understand what happened during contact analysis 

(Kogut and Etsion, 2002). 
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Figure 1-3 Elastic-plastic boundaries on the sphere surface (Kogut and Etsion, 2002). 

 

In figure 1.3 the symbols, a, r, 𝜔,  and 𝜔𝑐 , respectively, are defined as: the radius of contact 

area, the radial coordinate, the  interference and the critical interference. 

The earliest and simplest research into the micro contact model was carried out by 

Greenwood and Williamson, (1966). This model adopted a contact approximation for curved 

elastic bodies. The authors used a new approach to measuring surface topography which is 

significant in modelling contact problems. This model assumed that asperities had a given 

statistical height distribution (Gaussian distribution) and a uniform radius of curvature for 

all asperities. Their model assumed that the deformation of each asperity is not affected by 

the deformation of the others. The Hertzian approach was used in this study to model a 

deformable half-space and a deformable sphere in order to calculate contacting area, load 

and pressure distributions (Greenwood and Williamson, 1966). A criticism of GW model is 

the use of the same radius of curvature for all contacting asperities while in the actual case 

the solution required a radius of curvature for each asperity (Jackson and Streator, 2006).The 

GW model has been adopted by many researchers because it provides an effective rough 

contact model and introduced a plasticity index that determines the critical load at which the 

deformation changes from elastic to plastic mode.  
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In the following the plasticity index 𝜓   which was defined by Greenwood and Williamson 

will be defined as;       𝜓 =
𝐸′

𝐻
√

𝜎

𝛽
 ≤ 0.6 for elastic behaviour. 

Where 𝐸′ is the equivalent elastic modulus of the two contacting surfaces, 𝐻is the 

indentation hardness of the softer of the two surfaces, 𝜎 is the standard deviation of the 

asperity hight distribution and 𝛽 is the typical radius of an asperity. It has also been gradually 

employed and improved by researchers to investigate other contacting issues involving 

rough surface features. 

The first analytical model on the contact of rough curved surfaces was accomplished by 

Greenwood and Tripp, (1967) who employed the Hertzian theory of elastic contact between 

spheres by considering one of the spheres to be rough, so that direct contact occurs, as in 

practice, at a number of discrete microcontacts. It was found that the Hertzian results are 

valid at sufficiently high loads. 

One of the first models attempting to specify the transitory state between elastic and plastic 

behaviour was proposed by Chang et al. (1987). This model is commonly referred to as the 

CEB elastic-plastic model, which is based on work by Tabor (1951). The main characteristic 

of the CEB model is the volume conservation of an asperity control volume during plastic 

deformation. The contact area of a plastically deformed asperity at any given interference 

was calculated at the point where material yield first occurs. The GW elastic model and the 

CEB elastic-plastic model give close results for the true contact area at both very low and 

very high values of the plasticity index.  

The GW model has been employed by Beheshti and Khonsari, (2012) to examine dry rough 

line-contact features, such as pressure distribution and area of contact, as shown in Figure 

1.4. The model involves a simultaneous solution of the asperity interaction with the elastic 
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bulk deformation of the surface using the Newton–Raphson technique. The results show that 

the important factors in the analysis of the rough surface are the pressure distribution and 

total load. In addition, the elastic–plastic microcontact models give a lower maximum 

normal pressure distribution and a greater real contact area compared to the predictions of 

the GW model. 

 

Figure 1-4 Contact of a rough surface with an ideally smooth flat surface (Beheshti and Khonsari, 2012). 

 

Gelinck and Schipper, (1999) extended the model of Greenwood and Tripp, (1967) to the 

rough line contact problem. This model provides convenient empirical formulas for the 

contacting parameters, such as maximum pressure and contact area. Good agreement was 

found between the two models for a variety of parameters, including contact dimensions and 

pressures.The surface roughness was found to be significantly affected by the deformation 

of a line contact problem. Jackson and Streator, (2006) extended  the GW model to examine 

the contact of rough surfaces by incorporating the effect of asperity deformations at multiple 

scales into a simple framework for modelling the contact between nominally flat rough 

surfaces. This model provided an estimation of the real contact area as a function of contact 

load and is compared to the GW model. The fast Fourier transform (FFT) was used to 

calculate the real asperity density and asperity radius, which are considered to be the most 

important parameters for describing the surface topography.The results show a greater non-

dimensional contact area as a function of the non-dimensional surface load than the GW 
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model. This resulted in a somewhat different trend between load and contact area, as shown 

in Figure 1.5. The most interesting aspect of this graph is that the GW curve reflects a near 

linear relationship between area and load, with a slope of 0.969 in the log–log scale. 

However, the application of the multi-scale model show almost perfect linearity with slopes 

of 1.00 in the log–log domain. Note that a slope of unity reflects a direct proportionality 

between load and area. 

 

Figure 1-5 Comparison of elastic rough surface contact model ( Jackson and Streator, 2006). 

 

Supplementary research has been conducted by Jackson and Green, (2005). This study 

examined asperity contact and the von Mises criterion was used to define the yielding of the 

material. Finite element methods were used to model the case of an elastic-perfectly plastic 

sphere in frictionless contact with a rigid flat. The contact region was meshed by 100 contact 

elements. The meshed contact area was also managed to ensure that at least 30 contact 

elements were in contact for each applied interference (i.e., maximum contact radius error 

of 3.3%). These are, in essence, very stiff springs attached between surface nodes and they 

only activate when penetration into the rigid flat is detected. It is important to assign a large 

value of stiffness for these contact elements so that negligible penetration occurs between 
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the surfaces. However, using high stiffness can result in convergence problems. The results 

agree closely with Hertz theory at small interference, as shown in Figure 1.6. 

 

Figure 1-6 Predicted average pressure to yield strength ratio for various models ( Jackson and Green, 

2005). 

Further investigations were conducted on an elastic–plastic sphere and a rigid flat. For 

example, Kadin et al., (2006) found that the majority of plastic deformation takes place in 

the first loading, while most of the secondary plastic flow may occur at the beginning of the 

first unloading. Furthermore, Kadin et al., (2006) examined a range of materials and 

concluded that this behaviour has significant effects on the results. Yielding in the first 

unloading cycle was highly affected by the changing mechanical properties, such as the 

Poisson’s ratio and strain hardening. However, there are certain drawbacks associated with 

the changing material properties concerning the relation between the Poisson’s ratio and high 

values of interference. This behaviour can be seen clearly when increasing the Poisson’s 

ratio, which leads to increasing interference, as shown in Figure 1.7. The reason for this 

behaviour is still not clear to researchers. 
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Figure 1-7 Effect of the Poisson’s ratio on the interference ( Kadin et al., 2006). 

Similar related research to the study of rigid contact problems has been accomplished by 

examining a rigid body in contact with rough surfaces. This kind of theoretical model has 

been improved by Peng et al., (2013). In this model, a finite element method has been used 

to establish the elastic–plastic contact model of rough surfaces. This study investigated 

behaviour of a single asperity with a rigid body, as shown in Figure 1.8. The effects of 

material properties and surface topography were also examined. This study ignored the strain 

hardening effects. The elastic contact zone and contacting load differed from Hertz theory 

by about 3.2%. As previously described, the yield stress has significant effects on single 

asperity contact behaviour. Increasing material yield stress will minimise the contact area 

and contact load. 

 

Figure 1-8 Schematic of the contact of the statistical rough surface ( Peng et al., 2013). 
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Early studies of real rough surfaces were based on the assumption of dry rough contact; see 

for example,Webster and Sayles, (1986); Lubrecht and Ioannides, (1991); Snidle and Evans, 

(1994). Each one of these studies used numerical methods to investigate the contact 

behaviour of real rough surfaces. The contact pressures at micro-asperity contacts were 

found to be much higher than the nominal Hertzian pressure, as shown in Figure 1.9. This 

method has the advantage of simplicity and it can cope with both continuous and 

disconnected contacts. 

 

Figure 1-9 Results of simulated contact between a run-in, ground elastic surface and a rigid flat ( Snidle 

and Evans, 1994). 

Another group studying rough surface contacts looked more specifically at the evolution of 

the true contact area under increasing squeezing (Yastrebov et al., 2015). This model enabled 

the researchers to compare the numerical results both with asperity-based models at light 

pressures and with Persson’s contact model (2002). for the entire range of pressures. In 

addition, this model has the advantage of simplicity and speed, and it can be used to assess 
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the effect of roughness parameters under increasing squeezing pressure from zero up to full 

contact. 

As has been previously discussed, no surface is perfectly smooth. The incorporation of 

surface roughness into the dry contact problem has proven to be challenging and, therefore 

this was an active area of research before the lubricated contact problem was introduced. 

Further progress in the analysis of dry contacts incorporated with surface roughness was 

made in a series of investigations where the plastic behaviour of real rough surfaces was 

investigated ( see for example, Jamari et al., 2007; Jamari and Schipper, 2006a; Jamari and 

Schipper, 2007a; 2007b; 2008; Almuramady and Borodich, 2016 and 2017). They described 

several experiments to confirm their prediction models and to evaluate different contact 

surfaces, including elastic, elastic-plastic and fully plastic surfaces. This was carried out by 

examining contact parameters, such as contact area, load and pressure. The rough surface 

was measured using an optical interference microscope technique before and after 

application of the contact load. Good agreement was found to occur between the Jamari and 

Schipper’s, (2008) proposed model and experimental work. The repeated stationary contact 

load of rough surfaces was also considered (Jamari and Schipper, 2008). The results of the 

latter model showed that the tips of the most prominent asperities are plastically deformed 

during the initial loading cycles, as can be seen in Figure 1.10. 
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Figure 1-10 Profile of the matched and stitched isotropic surface: a) x- profile at y = 120 μm and b) y -

profile at x = 129 μm ( Jamari and Schipper 2008). 

 

1.4 Real rough surface in lubricated contacts 

The previous sections introduced the incorporation of surface roughness into the dry contact 

problem. In reality, many mechanical systems contain lubricated rolling/sliding contacts in 

some shape or form, especially when they operate in heavily loaded contacts. Consequently, 

to study the roughness effects in lubricated contacts, transient roughness behaviour has to be 

investigated inorder to examine the development of pressure and film thickness within the 

EHL contact analysis. It is believed that the transient effects that occur in gears due to the 

roughness of the surface which move relative to the contact and have features greater than 

the predicted oil film, cause interaction of surface asperities generating pressures that are 

well in excess of the dry Hertzian pressure. Consequently, the majority of power 

transmission components tend to operate in a regime that can be termed as “mixed” or 

“micro” EHL, in which there is a significant interaction of roughness asperities on the two 

contacting surfaces. Accordingly, the mixed EHL regime plays a vital role in the occurrence 

of surface failures of gears, such as pitting, micropitting and various other types of surface 

distress in which the asperities on the two surfaces come into contact (Johnson, 1989). 

Therefore, it will become increasingly essential to consider the nature and influence of such 
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contact mechanisms and their potential effects on the condition of the surface and on the life 

of contacting components. 

Over recent years, a number of different solution approaches have been introduced in an 

attempt to understand the effect of incorporating a real surface into EHL models. Some of 

the main methods that have enabled rapid progress in this field are described in this section. 

The early works that modelled the incorporation of surface roughness into the EHL contact 

were based upon the work of Lee and Cheng, (1973); Ai and Cheng, (1994) and Jiang et al., 

(1999). 

Lee and Cheng’s, (1973) work sheds some light on the effect of surface roughness on EHL, 

where a single, one-dimensional asperity was run against a smooth contact surface for the 

conditions of pure rolling and moderate slide roll ratios. Their results showed that there was 

a considerable amount of direct contact occurring between the two surfaces, where the inlet 

pressure increases from the ambient value to a very high pressure in a short distance. This 

was followed by Lubrecht et al., (1986), who developed the multigrid, or multilevel, method. 

This method is a powerful technique that overcomes the speed difficulties encountered using 

single mesh level iterative solution techniques. It was used to investigate the effect of the 

roughness features at moderate and high loads, finding that the deformation is larger for 

transverse roughness comparing to the longitudinal roughness model. 

Venner, (1991), using Lubrecht et al’s. (1986) multilevel method, also investigated two-

dimensional roughness features by developing solvers for both the EHL line and point 

contact problem. Point contact modelling of the EHL problem was achieved using optically 

measured three-dimensional rough surface profiles as input data by Zhu and Ai, (1997). It 

was found that, for the circular contact case simulation, surface roughness features and 

orientation do not have a significant effect on the average film thickness but they do 

significantly affect the contact pressure and asperity deformation. However, Zhu and Ai’s, 
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(1997) analysis was done under conditions of relatively thick films and they did not consider 

mixed lubrication conditions. 

As previously stated, the trend to include real surfaces means that the film thicknesses have 

tended to become very small and the scale of surface roughness features can be of the order 

of, or greater than, the predicted film thickness, and so metal to metal contact has occurred. 

This situation in which surface roughness significantly affects the performance of the contact 

leads to the regime of mixed lubrication. 

Zhu and Hu, (2001a; 2001b); Hu and Zhu, (2000); and Masjedi and Khonsari, (2015) 

developed numerical models to obtain a solution to the micro-elastohydrodynamic 

lubrication (micro-EHL) problem under heavily loaded conditions. The results indicate that 

the surface topography and orientation may noticeably influence the asperity contact area 

and load sharing in the mixed lubrication regime. Hu and Zhu, (2000) presented a new 

numerical model for lubricated contact that is simple and robust, capable of handling three-

dimensional measured surfaces that are rough and moving at different rolling and sliding 

velocities. It was found that when compared to the smooth surface solution, the same 

isotropic surface roughness could make the lubrication film thicker under the pure rolling 

conditions but made it thinner under the simple sliding condition. Evans and Hughes, (2000) 

developed the differential deflection technique, which reformulates the deflection equation 

in a differential form. The Laplacian of the deflection is obtained for a semi-infinite body 

subjected to a pressure loading. The method is applicable to both the line and point contact 

EHL problems. It was shown that the effect of pressure in a differential form is extremely 

localised compared to the direct approach. The advantage of this formulation is that it is not 

necessary to consider all pressure influences actively in the fully coupled problem. The 

results showed that the introduction of roughness produced large pressure spikes that are 

much greater than those seen in smooth surface solutions. 
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Elcoate et al. (2001), developed a fully coupled method using real roughness from gear tests 

and dealt with situations where asperities are separated by oil films that are ten or more times 

smaller than the size of the roughness features. The novel coupled approach actually solves 

for the two key variables—that is, pressure and film thickness—simultaneously within the 

solution scheme using both of the fundamental EHL equations. 

Some novel approaches in tackling the micro-EHL problem were developed by Tao et al., 

(2003) and Holmes et al., (2003a, 2003b). They performed numerical analysis using real 

rough surfaces taken from the gear surface at multiple load stages and this analysis involves 

metal to metal contact within a consistent mass conserving numerical approach. These 

measurements showed that with increased running time and increased applied load, the 

roughness tips of the surface reduced and a significant amount of plastic deformation occurs 

during the first load stage of both gears. The asperity features become almost uniformly 

flattened, leaving rounded areas. Holmes et al., (2005) also developed a mixed lubrication 

model using a transient analysis technique where direct contact of asperities was found to 

occur between surfaces with various loading and running histories. Their results highlight 

the fact that the increased sliding velocities resulted in reduced levels of contact, as shown 

in Figure1.11. However, levels of contact were found to increase towards the transverse 

edges of the contact ellipse. It was thought that this higher occurrence of contact was due to 

transverse leakage of lubricant occurring at the transverse edges of the Hertzian contact, 

which causes a reduction in the lubricant film thickness. The contour plots show the results 

for the point contact EHL problem using the coupled method over a range of slide roll ratios 

at the same mean entrainment speed. The contact count, denoted by Q, and the slide roll 

ratio, denoted by 𝜉. 
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Figure 1-11 Contours of contact count rate Q/ms for the transient analysis (the heavy curve indicates a 

Hertzian dry contact area) ( Holmes et al. 2005). 

The solution method used by Holmes et al., (2005) has been extended by Weeks, (2015) to 

consider measured three-dimensional rough surfaces and calculated contact rates. It was 

found that the contact rates were skewed towards the transverse edges of the contact zone 

where similar results were obtained for transverse extruded surfaces (Holmes et al., 2005), 

as shown in Figure 1.12. 

 

Figure 1-12 contact plot for fully rough solution ( Weeks, 2015). 
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A recent study of real rough surfaces has been done by Evans et al., (2013), who employed 

the coupled solution method in a simulation of gear tooth contacts. The authors particularly 

highlight the effect of including real rough surfaces in the micro-EHL analysis. It was found 

that surface roughness may significantly affect the lubrication performance, film thickness 

and fatigue damage accumulation. 

More recently, significant investigations have been undertaken into the mixed lubrication 

problem including roughness affects (see, for example, Morales et al., 2015; Dong et al., 

2016; Pu et al., 2016; and Feng et al., 2017). 

1.5 Lubrication regimes 

Lubrication may be defined as any means that is capable of controlling friction and wear of 

interacting surfaces in relative motion under load. Gases, liquids, and solids have 

successfully been used as lubricants. Considering the nature of motion between moving or 

sliding surfaces, there are different types of mechanisms by which lubrication is achieved 

(Robinson etal., 2016). They are classified as: boundary, mixed and hydrodynamic 

lubrication, as shown in Figure 1.13. 

 

Figure 1-13 The Stribeck diagram for a journal bearing. η is the lubricant viscosity , ω the rate of 

rotation, and p the nominal bearing pressure (Williams, 1994). 
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1.5.1 Boundary lubrication 

This condition can occur in a starved contact. Boundary lubrication is a condition in which 

the solid surfaces are so close together that the contact occurs at a number of isolated surface 

asperity features. The load is mainly carried by the surface in contact (asperities), so full 

contact (material- material contact) occurs in the equivalent Hertzian contact area. As the 

load increases, speed decreases or the fluid viscosity decreases in the Stribeck curve, and the 

coefficient of friction can increase sharply and approach high levels (about 0.1 or much 

higher). In this regime, the friction behaviour is controlled by an extremely thin film of 

lubricant and the boundary film can be attached to the surface of one or both of the contacting 

bodies. Effective boundary lubricant molecules are long chain molecules with a chemically 

active end group that will attach to the bearing surface, as shown in Figure 1.14. 

Under this regime, the failure in the lubricant layer which is attached to the surface occurs 

by adhesive and chemical wear. Boundary lubricants form an easily sheared film on the 

bearing surfaces, thereby minimising adhesive wear and chemical wear ( Bhushan, 2013). 

 

Figure 1-14 Boundary lubrication films. 
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1.5.2 Mixed lubrication 

The transition between the hydrodynamic/elastohydrodynamic and boundary lubrication 

regimes is known as a mixed lubrication, in which the contact load is shared between the 

contacting asperities and the hydrodynamic pressure in the lubricant film. In this regime, the 

lubricant film is present (Evans et al. 2009) but is insufficient to separate the surfaces 

effectively, resulting in asperity direct contact. Mixed lubrication provides much smaller 

film thicknesses compared to hydrodynamic lubrication or EHL. Reduced lubricant film 

coincides with increased contacting load and contact pressure if the other parameters are 

kept constant. This characteristic is considered the basic reason for the significance of mixed 

lubrication. This lubrication regime is illustrated schematically in Figure 1.15. 

 

Figure 1-15 Model of mixed lubrication ( Stachowiak and Batchelor, 2013). 

 

1.5.3 Hydrodynamic lubrication 

Hydrodynamic (HD) lubrication is sometimes called fluid-film or thick-film lubrication. In 

this type of lubrication regime, a thin layer of fluid is pulled through the contact because of 

viscous entrainment and is then compressed between the contacting surfaces, creating a 

sufficient (hydrodynamic) pressure to support the load without any external pumping. HD 

lubrication is considered as the ideal lubricated contact system because the lubricating films 
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are normally many times thicker (typically 5–500 μm) than the height of the irregularities 

on the bearing surface and metal direct contacts do not occur. Most commonly, contact is 

found in hydrodynamic lubrication regime where the pressurisation of the lubricant film 

results when contacting components with a convergent interface geometry slide (or roll) over 

a deposit of lubricant on their surface (Sherrington, 2009).  

1.6 Running-in  

When freshly machined surfaces are first loaded together, they have an initial settling period, 

where the asperity peaks are removed. This is called ‘running-in’ and is stated by Hutchings 

and Shipway, (1992) to be a series of processes during which the parameters of friction and 

wear for contacting bodies stabilise. These parameters are influenced by the rough surface 

features which change due to plastic deformation and mild wear. In addition, chemical 

changes that occur in the lubricant and tribo-films that form on the contacting surfaces also 

affect friction and the wear rate. The most aggressive contacting asperities are loaded beyond 

the elastic limit which results in surface topography modification due to a combination of 

mild surface wear and plastic deformation (Teer and Arnell 1975a; Johnson 1995; 

Akbarzadeh and Khonsari 2011). Thus, the components that are running against one another 

at lower loads and sometimes lower speeds results in reduced friction between the contacting 

components (Ostvik and Christen, 1968). Bishop and Snidle, (1982) performed experimental 

tests that investigated the running-in process as well as the scuffing limit for 

circumferentially ground steel disks. Their experiments showed that the harder disk was 

virtually unaffected by the running-in process, but roughness features of the less hard disk 

are modified considerably at the same load. The most striking result to emerge from this 

work is that the running-in process is rapid.  Clarke et al., (2016), using in-situ profilometry, 

were able to quantify the range of surface heights present on transverse ground hardened 

steel surfaces under mixed lubrication conditions. They also found that the running-in is a 
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rapid process, where the tips of the most prominent asperities are plastically deformed during 

the initial loading cycles; this is shown schematically in Figure 1.16. Thus, the resulting 

finish has a significantly skewed height distribution, with valley features retained and 

asperity tips that are less prominent and more rounded. 

 

Figure 1-16 The running-in process, showing the changes in the surface topography due to plastic 

deformation (Clarke et al., 2016). 

 

It has become clear in these works that the shape of asperity tips is an important factor in 

their running in and subsequent hydrodynamic performance.  

Examples of the importance of considering running in when commissioning new surfaces 

can be seen in the work of Sherrington and Hayhurst, (2001). Experiments carried out 

monitoring both the wear particle debris density and friction coefficients made in dry sliding 

pin-on-disk tests. A period of running-in was applied for the pin/disk interface to ensure that 

the contact between the test pin and the disk was one of full contact before measurement of 

friction coefficients and debris improvement occur. Results showed that during running-in 

process the friction between the pin and disk did not have a steady value, rather it varied 

unexpectedly thorough a range of sliding conditions. 
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Blau, (2006) claimed that the initial period of the running-in process could change the 

subsurface microstructure of the contacting components due to plastic deformation, causing 

a degree of work-hardening. However, the majority of studies have concentrated on the 

geometric modifications in the asperities structure because this has the most immediate 

implications for the hydrodynamic performance of the interface. 

The interest in running-in for the current project is the effect of this phenomenon on residual 

stresses at, or near, the surface due to the plastic deformation. This could be a significant 

factor in fatigue damage estimation and, thereby, affect the fatigue life of the contacting 

components of real rough surfaces in a micro-EHL regime.  

Early experimental investigations have highlighted the importance of considering running-

in of lubricated surfaces because during this process the surface profiles changed 

significantly due to a smoothing of the asperities by plastic deformation (Wang et al., 2000; 

Nogueira et al., 2002; Zhu et al., 2007; Evans et al., 2013). 

The geometric modification in asperity shape during the running-in process is most 

commonly defined by the use of the arithmetic average roughness parameter. The average 

roughness (Ra) is used as a descriptor of the profile height deviations from the mean line. 

Barber et al., (1987) investigated experimental testing aimed at examining the running-in 

process as well as scuffing, using a number of contacting surfaces, with a range of Ra values 

attained using honing and polishing techniques. It was found that when subjected to loading 

the surface modification data show a significant reduction following the first 10 minutes of 

loading, where all materials reached a condition of nominally steady-state wear quite rapidly. 

The modification of the Ra value is shown in Figure 1.17. It is worth noting that the time of 

10 minutes required to reach steady state will reflect the time taken to reach steady state 

temperature in the test. This does not contradict the observation that running in is a very 
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rapid process. However, in the wear test there will be a changing oil film thickness as the 

test component temperature changes.   

 

Figure 1-17 Average roughness parameter on cylinder liners versus time for a variety of different grey 

iron surface finishes (Barber et al., 1987). 

 

More recently, the variation in the average roughness has been demonstrated by the work of 

Horng et al., (2002) when performing experimental disk on block tests, using a range of 

contacting loads and surface finishes, with little reference to plastic deformation during 

contacting bodies. A recent investigation into micropitting failure due to running-in was 

introduced by AL-Mayali et al., (2016), who incorporated the plastic deformation that takes 

place during the initial stage of running-in of gears into a full EHL solver and fatigue 

simulations by using a commercial finite element software (ABAQUS). Upon inspection of 

their results, it was found that the residual rough surface deformation only affects the asperity 

peaks and does not extend to the valley features. Bosman et al., (2011) made further progress 

in the analysis of the running-in process, where an elastic-plastic contact solver and a friction 
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model were used in the analysis of the running-in of lubricated concentrated point contacts. 

However, this study’s model is based upon the approach that the plastic deformations are 

small and, therefore, the results of the elastic-plastic model are unrealistic for large plastic 

strains. 

1.7 Gear modes of failure  

The classical failure mode of surfaces in rolling contact components include plastic 

deformation, contact fatigue, pitting, micropitting and scuffing. The complex failure 

processes in rolling contact fatigue make it difficult to separate individual failure modes. 

This work will concentrate on a set of prominent failure modes of gears caused by rolling 

contact fatigue, which operate in the micro-EHL or mixed lubrication regime. 

Contact fatigue is a surface damage process and can be defined as the mechanism of crack 

propagation caused by the cyclic stress field within the rolling-contact bodies, which 

eventually leads to subsurface plastic strain building up with increasing cycles, until a fatigue 

is eventually generated. The major rolling contact fatigue modes are described in the 

following subsections. 

 

1.7.1 Pitting 

Pitting is the development of pits or shallow cavities on the surfaces of the gears (Chue and 

Chung, 2000). It is well established that pitting of gear teeth is a surface fatigue phenomenon 

where the material undergoes cyclic contact stress. Fatigue failure is created at local stress 

raisers within the surfaces of components; for example, impurities, inclusions, micro-cracks 

or dislocations in the crystal structure. 

Under cyclic loading, the local stress exceeds the yield stress of the material, which then 

becomes work hardened. If the loading continues, the material will fracture and this will 
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cause a crack that will itself act as a further stress raiser. This process will continue as the 

crack propagates, which has a tendency to increase rapidly. This causes the material to 

rupture, resulting in pitting of the surface. If pitting continues to increase, then the surfaces 

become modified, which increases vibration and can lead to complete failure of the gear 

teeth. However, pitting is increasingly being observed in hardened steel gears, occurring on 

the scale of the roughness asperities. Pitting is on a much larger scale than micropitting, with 

pits measured in microns and often associated with plastic deformation due to the running 

in process. An example of this is given in Figure 1.18. 

 

Figure 1-18 Micrograph of pitting failure on gear tooth surface (Aslantas and Tasgetiren, 2004). 

 

1.7.2 Micropitting 

Micropitting (as shown in Figure. 1.19) is a type of surface fatigue that is associated with 

roughness effects under mixed lubrication conditions (Evans et al., 2013). Pitting failures 

occur on the working faces of gear teeth, but can also occur in rolling element bearings. This 

type of fatigue leads to destructive wear, which can take place within the first few hours of 

running. There has previously been a tendency to regard micropitting as a secondary wear 

problem and more attention has been concentrated on pitting, which occurs due to contact 

fatigue at the Hertzian scale. Micropitting is on a much smaller scale than general pitting, 
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with pits measured in microns and normally characterised by local plastic deformation due 

to the running-in process. This pitting will cause the creation of small pits, typically a few 

microns in dimension: 10–30 µm in diameter and 5–10 µm deep (Evans et al., 2013). 

Micropitting is more severe in the dedendum of the teeth, where it gives a frosted or matted 

appearance in comparison to regions without damage. 

 

 

Figure 1-19 Micropitting predominantly in the dedendum region of a helical test gear tooth ( Evans et 

al. 2013). 

 
Some recent work in tackling the micropitting problem were studies by Li and Kahraman 

(2013 and 2014). They developed the boundary element approach (BEM ) contact models 

for rough surfaces under both the line contact and point contact problems. This approach is 

used in the stress model to fully capture the measured three-dimensional features for the 

rough contacting surfaces and the variations in the near surface stress concentrations. These 

stresses were then used in a fatigue model using a multi-axial fatigue criterion for predicting 

micro-pitting failures of lubricated rough contacts under combined rolling and sliding 

conditions.  In these two studies, the nearly singular behaviour of the stress kernels was 

developed to improve the numerical accuracy and efficiency in the integration for the stress 
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computation. However, they state that the existence of the strong singularity demands 

significant amount of computational time in the subdivision process that follows. 

An additional significant parameter in evaluating micropitting performance is the level of 

sliding experienced at the contact; a greater level of sliding has been connected with poorer 

micropitting performance where the reason for this could be due to a higher rate of pressure 

cycling as asperities pass one another and also due to the shear-thinning behaviour of the 

lubricant (Li and Kahraman, 2013). Examples of this can be seen in micropitted gears where 

fatigue damage has a tendency to establish towards the root of the dedendum, where sliding 

is considered to be greatest (Bull et al., 1999). This was quantified in the work of Qiao et al., 

(2008) where comparisons of calculated fatigue for different slide roll ratios were made. 

Alongside the advances in simulations, experimental work into micropitting has also been 

conducted. Results from experimental rolling contact fatigue work have shown micropitting 

failure to be heavily dependent on the surface roughness effect, where it is considered the 

driving force behind the high subsurface stresses and micropitting initiation (Li and 

Kahraman, 2011). 

In addition to the high subsurface stresses introduced by the surface roughness, it is also 

known that crack initiation and propagation are linked to microstructural changes occurring 

in areas near to the material surface at the asperity level (Oila and Bull, 2005). 

Oila and Bull (2005) claimed that a general feature seen in micropitted failure is the presence 

of small circular or semi-circular regions with diameter in the order of microns or tens of 

microns which have experienced material changes due to significant plastic deformation. 

Results from both experimentation and simulation have strongly associated micropitting 

failure with the surface topography (Evans et al., 2013). They found that micropits are 

typically 10–30 µm in diameter and up to 10 µm deep. In the current research, the calculated 
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micropits due to plastic deformation are shallower and about 5 to 10 µm deep, but these 

dimensions are those measured with a profilometer stylus rather than using (AFM) 

evaluations, which is compatible with Evans et al., (2013). Cracks occur at the tips of the 

asperities and extend at a shallow angle (typically 10–30°) to the surface (Li and Kahraman, 

2011). These observations are confirmed by results obtained in the current work. The current 

research results shows that the positive maximum residual principal stress vectors act at 

angles that are tangential to the surface or at shallow angles of up to 35° to the surface. They 

are found at the outer edge of the asperity land and may be instrumental in forming the pits.  

Brandao et al. (2012) developed a surface contact model for gear teeth by using a numerical 

simulation of an actual FZG spur gear micropitting test to assess surface cracking from a 

fracture mechanics perspective, and later a combined model, which took account of both 

wear and surface contact fatigue damage at asperity level (Brandao et al. 2015). In their 

paper, the numerical analysis is based on a model that takes overpressure effects due to 

mixed or boundary film lubrication into account, caused by the interaction of aggressive 

asperity features of the contacting surfaces. They then calculated sub-surface stresses, in 

order to determine the time-history of stresses and employed the Dang-Vang multi-axial 

high-cycle fatigue criterion to calculate micropitting experienced by the spur gear tooth 

flanks. They compared their results to a gear test, and found qualitative agreement.  In 

general, the findings in these studies has revealed similar damage area characteristics to 

those reported in the current research as will be seen in fatigue damage analysis of chapters 

5 and 6. 
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1.7.3 Scuffing  

Scuffing is an adhesive failure that is associated with high speed and heavily loaded 

lubricated contacts, and is particularly common in gear teeth. High speeds can be expected 

to enhance film thickness, but they are also associated with high sliding speeds in gears. This 

results in high temperatures being developed, which lowers oil viscosity. 

Kweh et al. (1992) used two sinusoids of different period and amplitude to simulate real 

roughness behaviour. The most striking result to emerge from the results of this work was 

that a significant degree of asperity deformation and corresponding ripple in the pressure 

distribution was found. In addition, it was found that the roughness features underwent less 

proportional deformation than the waviness feature. 

Experimental work on the determination of the scuffing limits of material in a two disk-

scuffing rig was conducted by Patching et al., (1994). Their scuffing tests were performed 

on a disk with a ground surface with roughness orientated transverse to the direction of oil 

entrainment. It was found that the scuffing scar occurred at the edges of the effective contact 

area and was visible as a darker band located towards the edge contact track. It was also 

found that scuffing did not appear to start at the position of highest contact pressure, or 

highest transient or ‘flash’ temperature generation, but was located at the relatively lightly 

loaded edge. This phenomenon forms the basis for a physical model of scuffing, as described 

by Evans and Snidle (1993). 

In another study, Holmes et al., (2005) found that the primary cause of scuffing failure in 

gear tooth contacts was the breakdown of the EHL film as a result of direct contact between 

the contacting surfaces, as can be seen in Figure 1.20. Holmes et al. (2005) also suggest that 

this failure mode is associated with roughness effects and film thinning in gears at the scale 

of surface asperities features. In general, the failure approach of scuffing is based on the 

failure that occurs due to intermittent contact through the lubricating oil film because of 
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asperity contact, poor entrainment or disruption of the oil film. Furthermore, it has been 

established that whether or not rolling contact gives rise to scuffing can also be related to the 

local increase in temperature in the adjacent metal during gear contacts (Stolarski et al., 

2002). This increase in temperature reduces the oil viscosity, which in turn decreases the oil 

film thickness and promotes further asperity contact. The beginning of scuffing implies a 

situation that is both thermally and mechanically unstable, and its development tends to 

‘snowball’ progressively.  

 

Figure 1-20 A photograph of a test disk taken from the experiential showing a track subject to scuffing 

damage, the Hertzian contact ellipse for the operating load at which scuffing occurred is also shown 

(Holmes et al. 2005). 
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1.8 Research objectives 

The general objective of this thesis is to model mixed EHL line contact and to estimate the 

fatigue life at the asperity level for the actual test programme that was carried out in a 

micropitting test. The principal aims of this thesis are to investigate the possible 

consequences of the surface contact fatigue of residual stress fields resulting from plastic 

deformation of surface asperities, and to compare the predicted fatigue life with the observed 

onset of micropitting in the test. 

The key elements of the work in this study which is concerned with  the fundamental aspects 

of computing fatigue at the asperity contact level include: a mixed transient EHL model to 

determine the instantaneous surface contact pressure and lubricant film thickness at each 

point in the computing mesh, a stress field prediction model to calculate elastic stress for 

line contact problem (2D plane strain) and a shear strain model that is used to predict the 

number of loading cycles, which are required for micropitting fatigue to appear on the 

contacting surfaces. To include the residual stress due to running-in in these analyses a FEA 

elastic-plastic contact model was developed and a suitable strategy for combining its results 

with the fatigue analysis was implemented. 

1.9 Thesis organisation 

This thesis has seven chapters. A brief description of the remaining chapters follows. 

Chapter 2 is devoted to examining the abilities of the ABAQUS FEA software system to 

model the contact of a rough surface. This incorporates the real rough surfaces that are used 

in the micropitting tests for full elastic-plastic contact analysis. The results of this analysis 

will determine the detailed nature of deformation, and the magnitude and distribution of the 

residual stress field at the asperity level. These residual stresses may have a significant effect 

on the fatigue life of the real rough surfaces. In addition, this chapter describes various key 
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aspects for generating a predictive finite element model that is capable of capturing a very 

large strain due to the asperity residual deformation. 

Chapter 3 describes the techniques employed and the results obtained in the simulation of 

dry elastic/plastic contact of rough surfaces using the profile taken from the surfaces of a 

twin disk rig. These results focus on the asperity residual deformation and stress field, which 

remain following unloading of the model. The amount of plastic residual deformation that 

the asperities have experienced in the experimental work is also compared and correlated 

with the finite element analysis. 

Chapter 4 introduces an overview of the concepts and theories of fatigue, which are 

developed for rolling contact fatigue. It will also investigate the capability of some well-

known multiaxial models in fatigue life prediction. These models are evaluated numerically 

in the area near the rough surfaces to capture the possible high-stress gradients due to 

asperity contact. In the current study, multiaxial fatigue criteria based on the critical plane 

approach are employed to perform fatigue analysis for the EHL line contact with rough 

surfaces. 

Chapters 5 and 6 deal with the numerical evaluation of contact fatigue performance with 

and without residual stress using critical plane approaches and different affecting 

parameters. In particular, Chapter 5 applies multiaxial fatigue criteria, while Chapter 6 uses 

a shear strain based model that incorporates cumulative damage analysis. 

Chapter 7 summarises the main conclusions of this study, and also makes some 

recommendations for future work. 
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Chapter 2  Modelling techniques suitable for residual stress with 

Abaqus  

 

2.1 Introduction 

This chapter describes the approach used for elastic-plastic contact modelling using the 

Abaqus Finite Element (FE) package. Representative profiles have been selected from the 

experimental work for both disks used in a two disk testing machine. A set of FEA contact 

analyses were carried out to select the best nominal loading for estimating the residual stress 

field associated with the level of asperity modification observed in experimental work. These 

residual stresses, which develop in the material during running-in, may have a significant 

effect on the fatigue life of the surfaces. 

The residual stress field will be combined with the stress resulting from EHL analysis to give 

improved indication of damage and assess surface fatigue life. This work to examine elastic-

plastic contact analysis depends on the roughness profiles, which can also be taken from gear 

teeth at locations that interact during the meshing cycle. The approach can therefore be 

extended for use in failure analyses including micropitting tests. 

2.1.1 Numerical analysis of contact problems in Abaqus  

Generally, contact is the study of deformable bodies that contact each other at a minimum 

of one contacting point during simulation process, so contact stress is transmitted between 

two bodies when a load is applied. Contact problems are normally based on the continuum 

contact (bulk components) with many nodes in contact under load. Such contact may cause 

local deformation and shear, but it causes little bending. On the other hand, structural contact 

happens when there are a few nodes in contact at one time and contact causes bending. 

Contact problems can be classified into two classes. 

General Contact: with a single interaction description, contact is forced over many or all 

sections of a model. This type of contact allows the user to define contact between many or 
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all areas of a model with a single interaction and can span many disconnected regions of a 

model.  

Contact Pairs: Two surfaces can be described only by contact pairs. This type of analysis 

requires more careful definition of contact where every possible contact pair interaction must 

be defined as shown in Figure 2.1. This is the method chosen for the current research. 

 

Figure 2-1  contact domain a) general contact; b) contact pairs, (Abaqus 2013) 

 

A contact problem in Abaqus CAE software package / 6.12V requires; definition and 

creating of model parts that may be in contact, model meshing ,definition of pairs of surfaces 

that interact (contact interactions), specifying property assignments of the surfaces in contact 

with each other, specifying contact properties including mechanical properties (friction), 

thermal properties, yield stress, plastic strain ,Young’s modulus. The solution scheme makes 

use of an algorithm to control contact interaction during the simulation and this allows same 

factors to be specified for example, convergence tolerances associated with contact. 

In many contact applications, a user can use default Abaqus settings for each of the 

parameters listed above to reduce convergence problems as shown in detail in the next 

sections. 

a) b) 
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2.1.2 Creating the model parts      

This section illustrates the development of basic contact modelling utilising Abaqus. At the 

first stage of the contact simulation, the real unrun roughness profile is superimposed on a 

38.1 mm radius circle to form a 2D deformable part that represents the contacting part of the 

twin disk rig. Having taken unrun roughness profiles from a twin disk rig, 1.5mm sections 

of the filtered unrun gear surface profile were imported to Abaqus using a Python script, to 

create a 2D deformable part. The final model contained four separate parts that formed the 

part of the disk to be analysed, the group assembly function was used to join them to create 

the rough roller part that is loaded in plane strain against a rigid plane. This basically loads 

the rough roller part against a reflection of itself in the rigid counterface so that the profile 

asperities are aligned with their reflected counterparts. This rough deformable body was then 

brought into contact with the rigid plane by applying a small displacement to the lower edge 

of the elastic-plastic part in a plane strain analysis. Making contact between the two parts is 

a necessary first step in the Abaqus process. This displacement was then removed in the 

following steps, to be replaced by a distributed force applied to the lower edge in the next 

analysis step. The rough deformable body was subjected to a range of loads using distributed 

force values of 500 MPa, 750 MPa, 1250MPa and 1500 MPa using an elastic-plastic analysis 

incorporating strain hardening . These loads were removed in the following steps, bringing 

the two parts out of contact so that the residual stress and deflection could be observed. Then 

the best nominal loading was selected for estimating the residual stress field associated with 

the deformed asperity features. 

 The residual stress field, residual profile shape and x,y coordinates of the nodes can be 

extracted corresponding to the specific load for further analysis to be carried out based on 

the results. This model has several aspects that must be sufficiently detailed to be able to 

capture the important phenomena and obtain a significant correlation between the 

experimental and the simulation results. For example, theoretical assumptions, the 
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experimental conditions and other important items, including mechanical properties, 

element types and their resolution, FE mesh, applied loading, convergence and boundary 

conditions. These issues must not be complex otherwise this would increase the time cost 

for running. The next sections will describe the steps of simulation of rough surface contact 

model in detail. 

2.1.3 Meshing element type and their effect 

Abaqus CAE, or "Complete Abaqus Environment" gives a wide range and variety of 

elements for different contact problems and analysis types. The Abaqus element is 

characterized by different parameters such as number of nodes (depends on element shape 

and way of interpolation), degrees of freedom per node (depends on the field variable), 

formulation (small- and finite-strain shells) and integration method (reduced and full 

integration). Selection of the element family from the Abaqus library requires some 

background on the theory and application of finite element analysis (FEA). Generally, for 

different problems and analysis methods there are some rules on the element selection and 

the user should take that into consideration during the construction of a model. For example, 

solid elements may be used for linear and nonlinear analysis including contact, plasticity, 

and large deformations. Also, shell and membrane elements can be used in some special 

applications, but require a good level of understanding about the theories of shells and 

membranes. In this research the element type CPE4 (4 node, quadrilateral, plane strain, 2D 

element) was adopted for the rough surface model simulation. This type of element is 

strongly recommended by Abaqus in relation to contact modelling and high stress field 

gradients. Quadratic elements have corner nodes and midside nodes and do not deal with the 

non-linear contact problem as efficiently as linear elements. From an engineering 

perspective, not only does the element type affect the result accuracy, but also the mesh size 

selection has a significant influence on the Abaqus modelling construction that will be shown 

in the next sections.  The mesh size significantly affects the accuracy of the numerical 
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simulation results and because of that it is essential to choose the best meshing strategy in 

modelling the rough surface. Yastrebov et al., (2011) studied the effect of mesh transition 

away from the contact surface as shown in Figure 2.2, with this model consisting of 

thousands of nodes and spending hundreds of hours to complete. Bryant (2013) also used 

Abaqus finite element software to investigate the mesh resolution effects. Different mesh 

sizes were adopted in the current research and it was found that when the mesh spacing was 

reduced below 1 μm mesh generation became problematical, as some of resulting asperity 

features caused high levels of element distortion in spite of the adaptive meshing used. It 

was decided to accept that the surface features of interest were obtained with a profile having 

a 1 μm spacing and this was then the finest element size used in the FEA analysis. 

Meshing a rough surface using a 0.5 μm mesh resolution caused more element distortion 

under load which directly affected the convergence of the solution. Therefore, a 1.0 μm mesh 

resolution was found to be suitable to model the rough contacts problem, whilst keeping 

acceptable running times as shown in Figure 2.3. In the current research a 1.0 μm resolution 

size mesh was used for the rough profile for all the loads to determine residual asperity 

deflections. These models were found to have less element distortion and reasonable 

computation times as well . 

 

Figure 2-2 mesh transition model: a) illustration of the transition mesh from 1 to 9 elements; b) mesh of 

the rough surface 54 x 63 (Yastrebov et al. 2011). 
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Figure  2-3 Contours of normalised residual direct stress in the x direction ; a) 1.0 μm resolution, b) 0.5 

μm resolution (Bryant, 2013). 

 

2.1.4 Managing mesh characteristics  

A finite element mesh should be able to accommodate changes in element sizes from region 

to region. Abqaus FEM packages require a mesh to be conforming, where neighbouring 

elements share a whole edge or a face. The number of elements and mesh resolution at the 

surface is significant in terms of the accuracy of the analysis at the asperity level and the 

localised stresses in the surrounding material. To generate an adequate mesh and gain a high 

resolution at and near the contact area for the rough roller part that contains odd geometric 

shapes and curvature, the geometry was first divided into shapes that are more easily 

processed by the pre-processor tool. Then a suitable algorithm was selected to control 

meshing of the partitioned geometry part. The mesh is controlled by using the partition tool 

sets to improve mesh quality. This allowed different mesh densities to be more effectively 

implemented in the various regions of the model. For instance, a finer mesh was used around 

the contact area between the rough part and the analytical rigid part, whilst a coarser mesh 

was used in areas remote from it. To avoid discontinuity in results occurring at partition 
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edges, the transition between these different regions was kept smooth. Figure 2.4(a) shows 

the rough middle part mesh resolution with continuous transition in element size based on 

the partitioned zone. Figure 2.4(b) shows a schematic of the rough part assembled together 

with the surrounding three support parts. The boundary conditions used were roller supports 

on the transverse boundaries of the assembled model. Small vertical displacement applied to 

top base of rough surface to initiate contact. The pressure load was applied to the base and 

the assembled part was restrained by contact with a rigid plane parallel to the base as shown 

in the Figure 2.4(b). The rough middle part shown in Figure 2.4 had a finite element mesh 

that consisted of 48208 nodes and 47741 linear plane strain quadrilateral elements (CPE4). 

The mesh in the smallest section at the surface level is hidden in the figure because at the 

scale presented in the figure, the mesh size is too small to be seen. The rough roller part 

(middle part) was divided into five different mesh density zones where zones a - c were at 

respective distance of  0.01 mm, 0.03 mm and 0.05 mm from the rough surface. In addition, 

the last two zones were located at a depth of 0.5mm and 1.0 mm below the surface. Zone a-

c had the finest mesh around the contact area and all others zones had gradually coarser 

meshes as the distance from the rough surface increased. This mesh density transition 

enabled the mesh to be conforming without the introduction of distorted elements. The other 

three parts that are used to restrain the transverse expansion of the central part elastically 

were modelled with coarser mesh sizes and were then tied to the main body using the 

constraints tool set. 
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Figure 2-4 showing (a) the rough middle part mesh resolution with continuous transition in element size 

based on the partitioned zone, (b) a schematic of the rough part assembled together with the surrounding 

three support parts. 

 

a) 

b) 
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2.1.5 Adaptive meshing and distortion control 

In many nonlinear contact problem simulations the material undergoes very large plastic 

deformations which distorts the finite element mesh and the quality of the residual stress 

results will deteriorate.  In such a modelling situation it is essential to use the adaptive 

meshing technique (ALE) to periodically minimize the distortion in the mesh during the 

simulation. This technique is a tool set that maintains a high-quality mesh by generating a 

smoother mesh at regular intervals to reduce element distortion and to ensure good element 

aspect ratios. At the load cases corresponding to complete contact of the rough roller part it 

was noticed  that excessive elements distortion happened when a mesh spacing of 0.5𝜇𝑚 

was adopted and so a standard 1.0 𝜇𝑚 mesh spacing was adopted in the current research to 

determine the residual asperity deflections and stress fields. The mesh topology is 

maintained the same, the total number of elements and nodes and the connectivity of the 

mesh do not change or alter i.e., elements are not destroyed or created when the ALE is 

activated. Once the user chooses the region of the model that will use adaptive meshing, the 

algorithm is automatically performed. Figure 2.5 shows an example from Abaqus, (2010a) 

on how adaptive meshing minimizes the distortion that develops in the surface mesh of a 

rough roller part. It was found that increasing both the number of sweeps and ALE frequency 

gives the most satisfactory results. The frequency can be defined and specifies how often the 

mesh smoothing taken place. On the other hand, the number of sweeps controlls the number 

of mesh sweepings the ALE adaptive mesh undergoes during the simulation process. 
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Figure 2-5 Axisymmetric forging problem with adaptive meshing, a) mesh at start of analysis, b) without 

adaptive meshing, c) with adaptive meshing (Abaqus 2010a). 

 

2.1.6 Penetration of master surface to slave surface in contact analysis 

The general contact algorithm in Abaqus/Standard is based upon the interactions and 

constraint characteristics applied to master and slave surfaces. The user must define a master 

and a slave surface for each contact pair. Moreover, it is recommended that analytical rigid 

surfaces and rigid element-based surfaces must always be master surfaces. Master surfaces 

should be more coarsely meshed, while the slave rough part surface should be more finely 

meshed and has lower stiffness. The master-slave contact algorithm places no restrictions on 

the master analytical rigid surface; it may penetrate the slave surface between slave nodes, 

as illustrated in Figure 2.6. The contact interaction and penetration definition between the 

surfaces can be specified using one of two approaches; node-to-surface discretization and 
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surface-to-surface discretization. A node-to-surface approach is based on each single slave 

node interacting with a group of master surface nodes. Thus, the slave nodes are assumed 

not to penetrate the master surface, while the nodes of the master surface can penetrate into 

the slave surface. Bryant, (2013) found that the node-to-surface discretization method 

provides less accurate residual stress results than the surface-to-surface discretization as 

shown in Figure  2.7, because the shape of both master and slave surfaces are not considered 

in the contact formulation. Therefore, to avoid such problems the surface-to-surface 

discretization method was chosen for the current research. Additionally, in this method the 

features of both master and slave surfaces are considered and that minimises the localized 

penetrations, as well as providing more accurate results for both the residual stresses and 

residual deflection results. 

 

Figure 2-6 Definition of master and slave surfaces. 

 

 

Figure 2-7 Contact pressure plots for surface-to-surface and node-to-surface contact discretization 

method (Bryant, 2013). 
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2.1.7 Strain hardening 

To specify the elastic-perfectly plastic or elastic-plastic behaviour, Abaqus requires yield 

stress and plastic strains to be defined in terms of true strain and the true stress instead of 

nominal stress and nominal strain. If plasticity behaviour has not been specified for the 

Abaqus contact analysis, the stress/strain relationship will behave linearly. The elastic-

plastic calculation of stress and strain distributions at low strains are based on linear 

elasticity. The onset of strain hardening is attributed to plastic behaviour and happens at a 

stress level regarded as the first yield stress (Batdorf and Budiansky, (1949) ;  Cook et al. 

(1989); Bryant et al., (2012) for example). Any subsequent increase in stress with increased 

strain occurs according to linear strain hardening. In this approximation, the tangent 

modulus, ET, characterises the stress-strain relationship post-yield. 

 This modulus quantifies the level of ‘‘hardening” or ‘‘softening” of the model material that 

normally happens when it begins to yield, Shankar and Mayuram, (2008). In the model 

described in section 2.1.2, the elastic-plastic behaviour was defined as elastic perfectly 

plastic as the initial attempt of finite element simulation for the contact of rough part pressed 

against the rigid body. However, that analysis aborted and experienced convergence 

difficulties in obtaining solutions when the model reached a particular deformation. This is 

related to the stiffness degradation problem of model material associated with elastic-

perfectly plastic behaviour. So, the concept of a linear strain hardening behaviour will be 

adopted for the current research to accommodate the material behaviour and to avoid the 

numerical convergence problems that occur with the elastic-perfectly plastic approach. In 

addition, this is helpful in terms of controlling the penetration and contact interaction during 

the simulation. A value of 50 GPa was used for the tangent modulus (ET) in the current 

research, giving ET / E   ratio of 0.25. However, Kogut and Etsion, ( 2002 ) found that  the 

majority of practical materials have ET / E ≤  0.05, the strain hardening behaviour 

was chosen to be a relatively large value in the current simulation to evaluate its effects. This 
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gives a clear picture for a judgment of the suitability of the assumption of elastic- plastic 

behaviour. The strain hardening behaviour can be defined in Abaqus by using the property 

module, and is specified in the edit materials menu as shown in Figure 2.8 a. 

 

 

Figure  2-8 Stress-strain relationships; a) Abaqus/CAE 6.13 "Edit Materials" menu for linear strain 

hardening , b) linear strain hardening (ET / E = 0.25). 

a) 

b) 
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The stress strain behaviour is specified by a table that gives a piecewise linear stress-strain 

curve. The example of Figure 2.8 specifies a strain of 0.11521 that will be achieved when 

the von Mises stress is 10.0 GPa in the right and left columns, respectively in the edit 

materials menu. This high true von Mises stress value of 10 GPa is chosen in order to ensure 

the required plastic behaviour is monitored throughout the material without any extension of 

elastic-perfectly plastic behaviour. 

The mathematical calculation of initial strain input is calculated by using the following 

relationship. 

𝜀 =    𝜎/𝐸 (2.1) 

 

However, the elastic- plastic approach uses the true stress and strain, instead of the nominal 

stress and strain, as the latter does not take into account the instantaneous change of cross-

sectional area as the model material deforms plastically. The true stress (is the applied load 

divided by the actual cross-sectional area) and strain takes this factor into account. They can 

be expressed as follows. 

𝜎𝑡𝑟𝑢𝑒 =  𝜎𝑛𝑜𝑚 (1 +  𝜀𝑛𝑜𝑚) (2.2) 

 

𝜀𝑡𝑟𝑢𝑒 =  𝑙𝑛 (1 +  𝜀𝑛𝑜𝑚) (2.3) 

 

The true strain must then be converted into the true plastic strain in terms of recoverable 

strain (true stress/E) and true strain as shown in equation below. 

ε𝑡𝑟𝑢𝑒
𝑝𝑙 = ε𝑡𝑟𝑢𝑒

 −
𝜎𝑡𝑟𝑢𝑒 

𝐸
 

(2.4) 
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 Abaqus expects the true strain and stress data to be entered in the properties table in the 

right and left columns, respectively. Abaqus interpolates linearly between the data points 

provided.  

2.2 Repeated load contact modelling of real rough surfaces 

One of the methods used to reduce, improve the surface topography and stabilise the rates 

of scuffing and friction for contacting elements is commonly named ‘running in’. It is 

normally performed at lower loads and lower velocities, resulting in reduced friction 

between the contacting components and improvement in the surfaces under contact occurs 

rapidly.  

During this research the author had the benefit of interaction with colleagues who were 

investigating the running-in process experimentally. The first of these studies is reported in 

Weeks (2015) and in Clarke et al. (2016) and Clarke et al. (2016). 

Weeks used transverse ground disks in the elliptic contact illustrated in Figure 1.20. His tests 

were focused on the running-in process including the effect of load and speed. Tests were 

carried out with short running times and the disks were measured in the circumferential 

direction in the as-manufactured form and then after each load stage. These loads stages are 

referred to as LS1, LS2, ……etc and full details are given in Weeks (2015). 

When a pair of disks had been run-in to a stable condition they were then used in a test 

sequence where the running speed was increased to a maximum in a sequence of 3 minute 

stages. It was then ramped down through the same stages to complete the test. A test of this 

sort gave a sequence of operating conditions that ran in a steady state with a speed dependent 

temperature. 

Weeks was studying contact resistance and its dependence on steady state operating 

conditions. The second experimental project is ongoing and will be reported in due course, 
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Hutt (2018). Hutt has extended the study to include measurement of Acoustic Emission.  As 

part of his study he conducted an endurance micropitting test where run-in surface were run 

for total of 1,000000 cycles in a serious of steps with surface profile measurement after each 

step. 

The current author was able to assist Weeks in his tests and to conduct a number of the 

profile measurements. These profiles were used in the current research together with 

measurements taken by Hutt of the endurance test. 

During the pre-run phenomenon the highest peaks of the rough surfaces are removed or 

become flattened, and the asperity features will deform plastically until the bearing area is 

sufficiently large to support the applied load.  However, the change in heights begins to level 

off in the following stages of running and the difference in plastic deformation between final 

stages is relatively insignificant. The FEA modelling of the multiple loadings contact of the 

rough surfaces involved in the research inorder to approximate the running-in phenomena in 

gears. In the current work two axially ground disks were used for the running-in process 

over a period of time. It was concluded that running-in happened in, literally, a small number 

of the rotations of rough surface disks.  Subsequent running over a long interval, did not 

produce further noticeable plastic deformation in the surfaces. Figure 2.9 shows a series of 

relocated profiles aligned by using the deep valley features for the unrun profile, as well as 

load stage 1 and 2 taken from the slow surface of an axially-finished disk at the same load. 

The largest geometric changes in the surface topography of the aggressive asperities can be 

noticed when comparing the unrun profile with that measured after the first load stage. 

Differences in the asperity shape following the first stage of running and the next stages are 

observed to be negligible and the changing of surface heights begins to level off. These 

findings strongly support the hypothesis that the running in process with rough contacting 

surfaces is not only a general flattening of asperities, but also an accommodation phenomena 
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where the plastic deformation of asperities is found by the interaction with corresponding 

asperities on the other contacting surfaces.  

This point of view of rapid surface profile modifications is further supported by the results 

of elastic, contact  solutions (micro-EHL) for fast and slow rough surface disks in 

rolling/sliding contact, as will be considered  more fully  in the next chapters. The results of 

the micro-EHL modelling  shows that when fresh unrun ground gear tooth surfaces are 

brought together at normal operating loads of the order of 1.4 GPa nominal Hertzian 

maximum pressure, the maximum contact pressures at asperity contacts are far in excess of 

the corresponding smooth Hertzian values.  This is caused during a transient simulation due 

to interaction of aggressive asperity features. Figure 2.10 illustrates a typical result gained 

from modelling of elastic-plastic contact using the ABAQUS FEA software system of the 

test rig disks used for Figure 2.9. The deepest valley feature for the pre and post running 

profiles shown at x = 3.85 mm in Figure 2.9 appears at x = 0.13 mm in Figure 2.10. The 

residual deflections of the roughness profile at different load stages of the same load in 

Figure 2.10 are basically coincident at the scale of the figures. An elastic/plastic model is 

used for the simulation of repeated loadings of the same roughness profiles and the applied 

load is such that the plastic deformation of the  asperities is of the same order as that seen 

from comparison of the measured disk in the running-in process. Figure 2.10 shows a 160 

μm length of the as manufactured roughness profile with two multiple loadings stages and 

Figure 2.11 shows a shorter (50 μm) length of the same roughness profile at a larger scale 

which shows more details. The two residual roughness profiles are almost identical and 

subsequent applications of the same load resulted in insignificant additional plastic 

deformation at the asperities due to the application of the second load. This is because the 

majority of the residual plastic deformation occurred in the first loading event and this 
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numerical behaviour is confirmed by the observation and evaluation of running-in 

experiments in Figure 2.9. 

 

 

Figure 2-9 a series of re-located profiles taken from the slow disk showing the effect of running-in on the 

development of plastic deformation in the surface, each load stage is 27 seconds in duration; LS1 is load 

stage1 and LS2 is load stage 2. 

 

 

Figure 2-10 Elastic/Plastic contact simulation: Unrun roughness profile (red) with residual deflection 

after first load application (blue) and second load application (black).  
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Figure 2-11 two rough asperities in greater detail. 

 

Figure 2.12 shows the contact pressure distribution obtained from elastic/plastic contact 

simulation when the first and second load are applied. It is clear that there is an insignificant 

difference in the asperity contact pressures due to the second application of the same load. 

Small differences in the contact pressure occur in some heavily loaded asperities as can be 

seen, between x = 0.22 mm and x = 0.23 mm; x = 0.23 mm and x = 0.236 mm. It was found 

that the magnitude of contact pressures for some asperities is slightly in excess the limit of 

approximately 3σy given by Williams, (1994). This happens because some elements undergo 

considerable distortions that lead to an increase in the frequency and magnitude of contact 

pressures distribution at the prominent surface asperities. 
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Figure 2-12: a) FEA contact pressure distributions obtained for the load stage 1 and 2; b) Percentage 

difference. 

 

Figure 2.13 shows the stresses in a short section of rough surface resulting from 

elastic/plastic contact during loading and subsequent removal of the load. In this figure the 

detailed residual stress distribution and deflection shape which results at the complete 

contact load step is shown for the different asperities in the section. The complete contact 

load step is the case where the load causes the contact area to extend over the whole of the 

rough surface profile of the middle part of the model as illustrated in section 3.3.1. In 

addition, the positive principal stress vectors and the maximum principal stress at the 

removed load (residual) step are also described in Figure 2.13.  The objective of this figure 

is to show the effect of (tensile) maximum principal stress and residual stress at the asperity 
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level on the rough surface. These are argued to cause crack initiation and fatigue failures as 

described by Olver, (2005). The von-Mises stress distribution is shown in the Figure 2.13d 

assuming the yield stress value is 1.6 GPa and the plastic deformation is indicated by the red 

contour area. It is noticeable from this plot that the residual deflection has a corresponding 

residual stress associated with it at significant asperity features. It seems possible from 

Figure 2.13b that the positive tensile principal stress at the surface and beneath the surface 

can potentially cause fatigue crack initiation at the scale of the surface asperity features. 
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Figure  2-13 elastic/plastic contact simulation: a) Unrun (red) and after elastic plastic loading (blue); b) 

Positive principal residual stress vectors; c) Most positive principal stress and d) Von Mises stress. 

 

 

 

 

 
 



66 

 

2.3 Conclusion 

This chapter describes the approach used for modelling elastic-plastic contact with strain 

hardening using the ABAQUS FEA software system to create the rough roller part that was 

then loaded in plane strain against a rigid plane. Representative surface profiles were 

selected from the experimental work for both unrun disks and a set of FEA contact analyses 

was carried out to select the best nominal loading for estimating the residual stress field 

associated with the level of asperity modification observed in experimental work. The 

residual stresses which developed in the material may have a significant effect on the fatigue 

life of the surfaces as will be considered in the next chapters. The residual stress field will 

combine with the stress resulting from EHL loading to give an improved indication of 

damage and to assess surface fatigue life and will be described in the fatigue assessment 

chapters. Simulation results of multiple loadings at the same load for the same surface show 

that the majority of the residual plastic deformation at an asperity level occurred in the first 

loading event and applications of the same load in the following stages (two stages) resulted 

in an insignificant amount of further plastic deformation. 
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Chapter 3 Extracting roughness profile from experimental tests and 

modelling by Abaqus/ CAE 6.12 

 

3.1 Introduction 

Generally, all surfaces in engineering applications are considered rough surfaces. Such 

surfaces that come into contact, will have some contact at the asperities to support the normal 

load. In addition, elastic or plastic deformation of smooth and rough surfaces will happen 

when the two bodies touch each other at the tips of one or more asperities. It has been 

suggested that such asperities have significant effects on the behaviour of engineering 

systems, having influence on stress fields , friction, real contact area, Micro-pitting and 

failure. 

It has been claimed by many scientists (see for example, Lee and Cheng’s, (1973); Zhu and 

Ai, (1997); Tao et al., (2003) that asperity contact leads to adhesive contacts resulting from 

an interaction in the contact area. Furthermore, at the start of contact between rough surfaces, 

contact normally happens at a few asperities in order to support the normal force. By 

increasing the normal force, the average distance between the two rough surfaces become 

smaller and the area of contact increases gradually to support the increase in load by 

additional contact force. Such higher load may lead to a significant deformation located in 

the contacting zone of asperities with associated stresses at the surface and subsurface 

developing to resist the applied forces. This deformation can be elastic or elastic-plastic and 

depends on many parameters such as, the normal force, shear force, contacting area of the 

rough bodies and their mechanical properties. These stresses may be considered to be in the 

elastic phase before the yield point is reached. When the stresses exceed this limit the rough 

body will deform plastically. Increasing the interaction of asperities will result in larger 

surface and subsurface stresses. Using Abaqus, a model can be constructed which 

incorporates elastic and plastic asperity deformation. The technique used in this research is 
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a plane strain problem. This is appropriate for the case in which the dimension of the 

problems in one direction is very large as compared with the other two directions.  

This chapter describes the modelling of rough surfaces to provide a prediction of residual 

deformation as a result of changes in the surface asperity features due to plastic deformation. 

Profiles from real surfaces were used to analyse the behaviour of the measured surface 

roughness under a load. This part of the study shows the initial phases of modifications that 

the manufactured surface experience. In general, it seems that from the surface roughness 

measurements the surface roughness topography experienced a significant degree of residual 

plastic deformation at asperity tips 

 

3.1.1 Rough surface topography. 

Twin disk test rigs are widely used to study lubricated contacts and a rig of this form was 

used in this study. The disks normally have rough surface characteristics. Such surfaces have 

irregular asperities that are different in height and width. A typical solid surface includes a 

range of spatial frequencies as shown schematically in Figure 3.1. The high frequency or 

short wavelength components are referred to as roughness or primary texture with micro 

geometric imperfections, which are caused by the machining process such as, cutting, 

grinding, spark and erosion. The medium-frequency or medium-wavelength component is 

known as waviness or secondary texture. It is normally caused by vibration, workpiece 

deflection or undesirable machine tool effects which are always present in manufacturing 

solid surfaces where the guiding or the cutting machine is not perfect. Finally, in many cases 

the original profile may also contain significant form errors such as a curve or radius which 

results from departure from the intended shape of the surfaces.  
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Figure 3-1 Surface topography including (Roughness, Waviness and Form), ( Raja.2002). 

 

3.1.2 Surface texture measurements 

The most significant step in analysing the contact problem is the surface roughness 

measurement. This measurement can be accomplished in one of two common techniques 

which are available today for measuring and analysing surface roughness. Firstly, optical 

methods are used to provide an optimal picture for the surface topography from which very 

fine details may be identified. This techniques provide a roughness with a quantitative 

average representation. Non-contact surface roughness measurements are preferred in some 

areas because some materials are soft, fragile, and chemically sensitive in direct stylus 

contact, or a roughness measurement in more than one direction is needed in some 

engineering applications. Secondly, a stylus profilometer contact method which measures 

the variation in stylus position when the stylus and surface are in physical contact and the 

stylus is drawn over the surface. The most important feature of this technique is that it is 

simple to use, no difficulty arises during the calibration process and it gives an excellent 

quantitative measurement of surface topography. Moreover, this method gives a direct 

representation of the surface in terms of a surface profile. Also, the stylus technique is often 

beneficial in unclean environments where non direct contact methods may result in 

http://www.zygo.com/?/met/applications/surfacefinish/surfacefinish.htm
http://www.zygo.com/?/met/applications/surfacerough/surfacerough.htm
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measuring surface debris instead of the surface characteristics themselves. However, the 

surface profile may be distorted to some degree by the stylus tip geometry (Bhushan, 2013), 

as shown in Figure 3.2. The most common surface profilometers are the Talysurf range of 

instruments provided by Taylor Hobson. Profilometers are used to measure the roughness, 

wear and damage of mechanical parts which are in service. The device consists of a diamond-

tipped stylus which is moved gradually over the surface and the signal from a special high 

resolution displacement transducer which is included in the stylus location system measures 

the amount by which the stylus is raised or lowered at any given point. This is recorded and 

digitised as asperities and valleys. The work reported in this thesis uses surface roughness 

measured with a stylus profilometer and the surface roughness profiles before and after 

running the test disks were obtained. The test disks are ground in the transverse direction.  

Circumferential roughness profiles were taken by a portable profilometer mounted on the 

test rig as shown in Figure 3.3.The shape and size of the stylus are normally important 

elements that affect the data acquisition from the operating surfaces. The stylus tip used has 

a radius of approximately 2µm and is made from diamond. 

 

Figure  3-2 Distortion of profile due to stylus tip (Bhushan, 2013). 

 

 

 



71 

 

 

Figure 3-3 Photograph of the profilometer in the back position 

 

3.1.3 Filtering the raw profile 

The raw profile as shown in Figure 3.4 was obtained from the profilometer and is 

representation of the surface topography including profile characteristics other than those 

that are smaller than the tip radius of the stylus. Some of them may be undesirable after 

measuring the surface roughness. It is therefore essential to decide which profile should be 

considered in any assessment of roughness. Analysing the raw profile and removing the 

unwanted longer wavelength features that include waviness and form, requires high pass 

filtering of the raw data. The process used to describe the filter phase is called the “cut-off 

length”, thus a filter having a cut-off length values of 0.25mm will normally suppress any 

irregularities which have a wavelength greater than 0.25mm. The cut-off to be adopted 

depends on the type of surface being assessed and the size of the contact area. The filtering 

process creates the mean line of the profile which is removed so that the roughness remains. 

Filtering is carried out digitally and can include more one type. The type of filtering which 

is currently used in this research is a Gaussian filter with cut-off length 0.25 mm, which 

normally has 50% transmission at the cut-off length. The aim of this process is to remove 

waviness elements and the form of the disks, leaving the roughness profile for evaluation. 
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Gadelmawla et al., (2002) state that surface roughness parameters play a major role in 

surface geometry definition and helps to provide a clear picture of the surface topography. 

The arithmetic average height parameter, Ra, is considered the most significant parameter 

that is used to describe the deviation of roughness from the mean line as shown in Figure 

3.5. The arithmetic average height parameter can be defined in the form of 𝑅𝑎 = ∑|𝑦𝑖| /𝑁𝑖, 

where 𝑦𝑖 represents the peak heights which are measured from the mean line and 𝑁𝑖 total 

number points of the profile. The unrun roughness profile has an average roughness (Ra) 

between 0.3 and 0.4 µm. 

 

 

Figure 3-4 Measuring raw profile including waviness and form. 

 

 

Figure 3-5 Definition of the arithmetic average height (Ra), (Gadelmawla et al., 2002). 
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3.1.4 Description and extracting profiles of experimental work. 

To investigate the asperity contact behaviour it is essential to develop analyses of data from 

experimental work in order to make a comparison with numerical models by using Abaqus 

FEM and monitoring the evolution of the surface roughness topography. Thus, Finite 

Element contact analysis is used to investigate the plastic deformation occurring at surface 

asperity features in order to quantify the level of residual stresses developed in the material. 

Twin disk rig roughness profiles were acquired by using a Talysurf surface profilometer 

prior to and following each loading case during a running-in experiment. The operating 

conditions assumed in the experimental work is shown in table (1) in chapter 5. Profiles were 

extracted in the axial direction at four circumferential positions on the disks, where 

relocation was achieved by engraved lines on the face sides of the disks. These marked 

locations were lined up with a reference mark in taking measurements before and after 

running in the test rig, so the approximate circumferential position was known. Such 

adjustment only provides nominal relocation in the circumferential direction. Precise 

relocation of profiles taken at different loading stages of the experiments was accomplished 

by using alignment of the unique deep valley features of the profiles in the trace direction. 

For initiating a set of profile measurements, the Talysurf unit was set in terms of, run-up 

length 0.3mm, data length 8mm, spacing 0.5μm, measurement speed 0.25mm/s and a 

Gaussian filter with a cut off 0.25mm was applied to produce the roughness profile. Profile 

data from the running in experiment was acquired from the fast and slow test disks for the 

run and unrun disk at different load stages. These acquired profiles (unrun /as manufactured, 

run stage2, run stage 18) are shown in Figure 3.6.  



74 

 

The profiles measured at LS2 (load stage 2) have run-in and are stable after three short 30 

second loading periods. LS18 (load stage 18) was measure after a number of longer running 

in periods. 

This graph provides a clear picture for comparisons of profiles and shows that a significant 

amount of residual plastic deformation has occurred at some asperities. It confirms that 

adjusting the profiles to nominally realign deep valley features in the z direction gives an 

appropriate and acceptable result for comparisons purposes.  

This graph also shows a significant change in the surface features and most asperities in the 

run profile do experience large plastic deformation at the asperity level .This takes place 

very rapidly in first stages of loading. In addition, the large asperity peaks have been reduced 

in amplitude and become rounded as the tests progress with increasing the running time, 

resulting in a more negative skew in the surface height distribution in comparison with the 

un-run surface profile. However, most of surface asperities achieved a stable topography 

following the initial loading stages. Jamari and Schipper, (2007b) discussed the process of 

changing the asperities topography and they concluded that the plasticity may be initiated 

either at the surface (asperities) or in the bulk depending on the contact condition. 

 

Figure 3-6 Surface roughness profiles taken from ground disk for unrun /as manufactured (red), 

run/stage 2 (blue), run/ stage 18 (black). 
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3.2 Creating the finite element model  

To make an analysis using a finite element model of real rough surface contact by using the 

Abaqus program, the unrun (freshly manufactured disk) surface profile is superimposed onto 

a profile of a smooth roller of radius 38.1 mm. This particular radius was chosen as it equals 

the actual radius of the test disks to be used later for a comparison between real life measured 

deformations and those obtained using finite element simulation techniques. These steps 

were carried out using the procedures described in the following sections. 

 

3.2.1  Rough roller model construction method  

The real unrun rough profile is superimposed on a 38 mm radius circle to form a 2D 

deformable part that models, the contacting part of the twin disk rig as shown in Figure  3.7 

a, b and c . The un-run rough roller profiles were imported to Abaqus using a Python script 

that was used subsequently to create a finite element 2D plane strain model. The rough 

profile was centred and aligned, so that the x- axis zero was located at the centre of the 

profile as illustrated in Figure  3.7 a. This profile was then used as input data for developing 

a macro to form a 2D deformable part as described in the next section. 

 

 

 

 

 

 

 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwj8odC6yvXMAhVFFywKHZt8AvwQFggpMAE&url=http%3A%2F%2Fwww.solidsmack.com%2Fcad%2Fhow-to-easily-create-multi-curve-features-using-boundary-surfaces-solidworks%2F&usg=AFQjCNHzH1SLhHBV7N6pNzNZ2dhIJ8iJhw
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Figure 3-7  Rough roller model construction method; a) Unrun surface roughness profile, b)smooth 

roller profile, c) rough roller profile. 
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3.2.2 Importing profiles into Abaqus/CAE and creating a two-dimensional model 

To simulate the contact of real rough surfaces, measured rough surface profiles must be 

imported to Abaqus. The un-run rough roller profile was imported to Abaqus using a Python 

script, and used to build 2D deformable part. To provide a significant powerful way to solve 

this problem, a macro was used in Microsoft Excel to create a Python script that would create 

a finite element 2D plane strain model in Abaqus. If the modifications are required, the user 

can then implement them on the part as necessary e.g. (creating sections, defining materials, 

etc.…) and proceed with creating a FE model in Abaqus/CAE in the same way as with any 

other part.   

 

3.2.3 Python and the Abaqus scripting interface 

Previous work by researchers at Cardiff tribology group has developed a python script file 

by using an Excel workbook containing embedded macros to write the Abaqus python script 

file to create a part having the measured roughness. In the current study, this script has been 

employed to solve the problem of micro-EHL. This workbook gives the user the ability to 

specify the rough surface profiles data, and the model part dimensions, while the base python 

file includes the   required code that is essential for every part creation. The excel spreadsheet 

contain four sheets: “options”, “results here”, “transform” and “out”. Figure 3.8 shows part 

of the “results” sheet which contains the required roughness profile for the part. The details 

of the part to be created in Abaqus are entered in sheet options shown in Figure 3.9. The 

cells that must be completed by the user in that sheet can be defined as results from, excess 

depth and are named and highlighted, e.g. “Excess depth” and “resolution”. The x coordinate 

of the start and end of the rough profile required in Abaqus must be specified in C22 and 

E22 respectively. The transform sheet contains the Python scripts to transform the specified 

rough surface profile and part dimensions into the required coordinates for Abaqus. To create 

the model part in Abaqus running a script is required which is achieved by clicking “run 
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script” from the start up screen or running a script from the command line interface. The 2D 

deformable rough roller part is then created and ready for further steps in the analysis. 

 

Figure 3-8 Roughness profile sheet in the Excel workbook, containing embedded macros and rough 

surface profile. 
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Figure 3-9  the option selection sheet from the Excel workbook. 

 

 

The final model contains three separate parts that form the part of the physical disk to be 

analysed. The central part has the rough surface profile whereas its two neighbours, which 

do not make contact with the rigid plane under load, have smooth surfaces. Also, a single 

rectangular part which is located underneath the central part was created and set up to give 

greater depth as necessary to make the assembled part large enough to behave as  a semi-

infinite body. The group assembly function was used to create one single part as shown in 

Figure 3.10 that is then loaded in plane strain against a rigid plane. This is equivalent to 

loading the disk against a mirror image of itself. Figure 3.11 shows the portion indicated A 

in Figure 3.10 at a higher vertical resolution and Figure 3.12 shows the surface of portion A 

in the form that will be used for illustration of the loaded results. 
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Figure 3-10 the rough surface contact model after the assembly.  

 

 

Figure 3-11 a large scale of section A of Figure (3-10)-red colour is 2 mm roughness profile. 
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Figure 3-12   Unrun rough roller profile 2 mm long from Abaqus. 

 

 

3.3 Determination of residual profile from Experiment and comparison with 

Abaqus finite element contact analysis 

 

3.3.1 Introduction 

In order to compare and correlate the amount of plastic residual deformation that asperities 

have experienced in the experimental work with the finite element analysis, the surface 

roughness profiles before and after loading were required. Thus, it is crucial to relocate the 

profiles such that the surface roughness is aligned in order to examine the level of plastic 

deformation. Those profiles, can be seen in Figure 3.13, where the black and blue profile in 

graph represent the fully loaded step and load removal step in the Abaqus analysis, 

respectively. The surface profile measurement before and after loading are shown in the 

Figure 3.14. 
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Figure 3-13 Rough roller at various stages of the elastic/plastic contact analysis 

 

As has been previously discussed, only asperity peaks are affected significantly by the plastic 

deformation and this residual deformation does not extend to the valley features. For that 

reason the deep valley features in the pre and post running profile are used as standard 

reference points for realignment and comparison of the profiles in the trace direction. The 

level of residual deflection that occurred after the running in process was determined by 

comparing the profiles to quantify the proper level of residual stress to which the deformed 

asperities would be subjected. Therefore, comparison between the plastic residual 

deformations associated with the pre and post running profiles for the different applied loads 

extracted from the real surface and from the Abaqus simulation required a series of processes 

and a special technique for comparison. The following are the steps in the procedure for 

accomplishing an accurate comparison and evaluation of the pre and post running profiles 

in the running-in process. 
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3.3.2 Realignment of experimental profiles in the trace direction 

Results from both experimentation and simulation profiles have clearly medicated plastic 

deformation at the asperity level. This is seen in Figure 3.14 which shows pre and post 

running profile results from the running-in process during one of the experiments. 

 

Figure 3-14 Profile for unrun (as manufactured) in red and following run in blue. 

 

As noted above, the adjustment in the trace direction was achieved by using recognizable 

deep valley features located between asperity features. It can be seen in this figure that, the 

local valley features are relatively unaffected by the contact loading. However, there are 

some valley features that   have been shifted in the vertical direction (z). For example, those 

between x = 2.55 mm and x = 2.6 mm, x = 2.95 and x = 3 mm, x = 3.7 mm and x = 3.75 mm. 

This tendency for deep valley features to rise could be due to the Gaussian filtering process, 

where the Talysurf software which was used would output data relative to the mean line 

which was calculated for each surface measurement. Moreover, it has been claimed by 

Pullen and Williamson, (1972) that a trend for valley features to rise may be due to other 

factors such as, a combination of material conservation; the surface material which is 
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deformed plastically being redistributed to regions not in considerable contact. Also it seems 

likely that the relative sizes between the profilometer stylus and the deep valley features may 

have a significant influence on the measured valley topography (Gohar and Rahnejat, 2008) 

as shown in Figure 3.15. 

 

Figure 3-15 Profilometer stylus size effect, (Gohar and Rahnejat, 2008). 

 

So the trace direction adjustment achieved by using identifiable local valley features that 

separate the significant surface asperity features was not enough to determine the level of 

residual deflection and the residual stress field that should be extracted for analysis. A further 

vertical adjustment was required to correlate and compare the profiles to give the actual level 

of residual profile shape and residual stress associated with asperity features. 

 The next section will highlight the necessity of adopting a new technique for comparison in 

order to accurately quantify the level of residual deformation experienced by the asperities. 

3.3.3  Connection lines technique to relocate the deepest valley features vertically 

This method relies on identifying the deepest valley feature for the pre and post running 

profiles then connecting those significant valley bottoms with a curve, as shown in Figure  

3.16 a ,b and c. It can be clearly seen from the graph 3.16 c that, there is a noticeable 

fluctuation in the relative valley bottom heights between the run and unrun profile for some 

valleys. Factors contributing to this are variation in the sub surface valley plastic 

deformation, differences in the mean lines of the profiles obtained by Gaussian filtering, and 
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finally surface impurities such as, dissolved solids, iron or other metallic particles that have 

been retained on the disk surface during measurement process despite the cleaning process 

used. 

The connection lines for the deepest valley bottom points for all profiles (run, unrun and 

Abaqus residual deformation profiles) were determined with the same discrete data points 

with a 0.5 μm resolution using the MATLAB simulation fitting tool. This, tool provides an 

interpolation type called shape-preserving interpolants. Thus, when the user selects ‘shape-

preserving interpolants’ for fitting to data, Matlab uses a piecewise cubic Hermite 

interpolation for the fitting process. Therefore, in the resulting fitted data, each pair of 

consecutive data points is connected by a different cubic polynomial. The relative difference 

between the deepest valley connection curve line of the unrun profile and the other profiles 

were thus determined independently. This allowed the unrun deep valleys to be considered 

as benchmarks and the other profiles to be realigned relative to those valleys. Figure 3.17 

illustrates the connection line curve and the difference between them for the run and unrun 

profile. This difference has then been added to the post running profile to achieve the final 

position for the realignment process, as shown in Figure 3.18. Comparing Figures 3.18 and 

3.14 shows the effectiveness of this new approach. 
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Figure  3-16 Connection line curves concerning the deepest valleys; a) unrun- as manufactured, b) 

following running and c) unrun , run profile and connection line curves. 
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Figure 3-17 Connection line curves and their relative height difference 

 

 

 

Figure 3-18 Final alignment for the unrun and run profile by adding the corralling line curve difference 

to the running profile. 
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3.3.4 Abaqus and experiment profiles alignment 

The technique of using the connection line curves for vertical realignment was also used for 

the residual surface profiles obtained from the Abaqus analysis at the load removal stage. 

This was done for each of the  sequence contact loads The loads used for the FEA analysis 

are referred to in terms of the distributed pressure of 500 MPa, 750 MPa, 1250 MPa, and 

1500 MPa applied to the 6 mm length of the lower boundary the FEA model. Figure 3-19 

shows the deep valley features remain undisturbed throughout the loading process. 

Moreover, it is interesting to note that , some valleys do not align accurately with each other, 

this is because some judgement needs to be made about choosing the appropriate valleys for 

the correction process, for example, those which are located approximately between x = 

2.87-2.89 mm , x = 3.35-3.36 mm and x = 3.74-3.76 mm. This issue can be observed in 

Figure 3.20 which shows more details at a larger profile direction scale. 
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Figure 3 -19 Final alignment of residual shape profiles for the range of applied loads. Also shown are the unrun and load stage 2 experimental profiles 
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Figure 3-20 Final alignment of residual shape profiles of Figure (3-19) at a larger 3 sections profiles direction scale.  
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3.4 Modelling details of finite element analysis package used for the contacting 

problems. 

3.4.1 Introduction 

This section describes the methodology   used for elastic-plastic contact modelling with the 

Abaqus finite element software. Generally, for finite element analysis contact conditions are 

considered a special parameter of discontinuous constraint behaviour, allowing nodal forces 

to be transmitted from one model part to another. This constraint has a discontinuous 

situation   because it is utilized only when the two part surfaces come in to direct contact. 

Technically speaking, when the two model parts are separate, no such constraint is required. 

The contact analysis must therefore detect when and where two surfaces are in contact and 

apply the contact constraints accordingly.  

This study highlights the contact problems in two dimensional, line contacts. This approach 

for modelling contact problems is considered appropriate for ground test gears where the 

surface topography is normally consistent with a two dimensional, plane strain assumption.     

This chapter describes modelling of a dry contact problem between a rigid plane and rough 

elastic- plastic roller. This is equivalent to loading the deformable rough body against a 

second deformable body that is the mirror image of the first. 

The basic idea behind using a rigid part rather than a second deformable body is that it halves 

the number of degrees of freedom involved in the analysis. It is also an effective way of 

loading the asperities as each prominent asperity makes direct contact with an identical 

asperity on the counterface. 
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3.4.2 The Abaqus CAE software package / 6.12V 

A full Abaqus analysis normally includes three prominent phases, and these are classified 

as: pre-processing which is an interactive CAE activity, simulation which involves using 

Abaqus/Standard and Abaqus/Explicit and post- processing where the finite element analysis 

results are visualised using the Abaqus viewer tool. 

3.4.3 Pre-processing stage 

This stage can be defined as an interactive pre-processor that is used to establish the finite 

element model. In addition, the model of the physical contact problem is created with the 

associated input file. This can be achieved by using the graphical tools available with CAE 

package. Also an Abaqus input file analysis can be created easily using a text editor directly. 

In this stage the discretised part geometry is defined, mechanical properties, boundary 

conditions, type of analysis and element type are specified. 

 

3.4.4 Simulation with Abaqus/standard 

This is the stage in which Abaqus/Standard or Abaqus/Explicit solves the finite element 

problem which is defined in the model. This is a nonlinear problem due to the unknown 

contact area and elastic plastic elements and is therefore an iterative process. The output data 

are stored in binary files in preparation for post processing. The simulation time depends on 

many parameters such as, the complexity of the contact problem being solved, the computer 

System requirements, and the computer power consumption. For the reasons outlined 

previously the running time may take from minutes, to several hours to complete the analysis 

specified in the input file. 

3.4.5 Post- processing (visualizing the finite element analysis result) 

Visualizing of the results generally occurs interactively using Abaqus/Viewer which 

provides a graphical display of the analysis. At this stage the fundamental variables can be 

specified for presentation such as, displacements, stresses and forces. There are a variety of 
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options for displaying the results in Abaqus/Viewer that include animation tools, deformed 

and undeformed shape plots, contour plots, material orientations and harmonic animation. 

3.5 Abaqus /CAE working environment /6.12 V 

Abaqus/CAE provides a complete modelling and visualization environment for finite 

element analysis. Users can efficiently manage and create, edit, monitor, diagnose, and 

visualize the result. Abaqus/CAE can be divided into modules, where each module 

characterizes a logical aspect of the modelling technique. 

Figure 3.21 shows the graphical user interface of Abaqus/CAE version 6.12V. Abaqus has 

a number of methods and techniques in which modelling and presentational tools can be 

utilised. The majority of the basic modelling options can be achieved by using the buttons 

directly alongside the modelling viewport. There are sets of modelling tools available within 

Abaqus/CAE, and these tools and their key features are described and discussed in more 

detail below: 

 

Figure 3 21 Graphical user interface of Abaqus/CAE. 
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The part: This model is used to define and mange geometry of parts and for creating the 

model drawing by using simple CAD functions. It can also make partitions by splitting the 

created parts into regions. This tool allows the user to choose or create either a dependent 

part instance or an independent part instance, as illustrated in Figure 3.22.  

Property: The Abaqus user can use and specify the property model to achieve the following 

tasks: materials definition, assign sections, orientation of parts. Each part or model must 

have a section assigned to it. The material editor is used to specify all the information that 

defines each part, as shown in Figure 3.23. 

The step module: In this step parameters can be altered, and the user can control and define 

a sequence of analysis steps or changes in the way parts of the model interact with other 

parts. In addition the user can choose which outputs are required in each analysis step of the 

simulation from the field output request tool, the area of the model from which they will be 

output can be specified as well. This module is also used to define adaptive mesh regions 

and specify controls for adaptive meshing in those regions that experience significant 

element distortion during analysis. 
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Figure  3-22 Abaqus/CAE Part module. 

 

 

Figure 3-23 Abaqus/CAE Property module. 
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Interaction: This module is used to define and control interactions between different parts 

in the assembly or between a specific region of a model and its surroundings, by selecting 

possibly interacting surfaces and defining the approach in terms of how the Abaqus package 

will deal with them. That is necessary because Abaqus/CAE does not have the ability to 

recognize mechanical contact between a part model and other regions. Abaqus includes the 

use of more than one mechanism of analysing and dealing with interactions, and these 

methods are classified as surface-to-surface contact, self-contact, general contact. 

Load module: This module defines the type of loading and application region, creating and 

modifying prescribed boundary conditions for the problem. There are many types of load 

cases, loads, predefined fields and boundary conditions that can be applied to model parts. 

The user has to specify in which analysis steps loads and boundary conditions are activated. 

Mesh: This module includes tools that allow the user to generate and control the finite 

element meshes on parts created within Abaqus/CAE by specifying mesh characteristics and 

mesh density. Furthermore, the mesh tool allows the user to select an element shape and 

meshing approach, create a mesh and seed a part instance that meets the requirements of the 

problem be analysed. The mesh module utilises a variety of finite element techniques to 

evaluate mesh quality based on element shape and to check for numerical analysis problems. 

 

Job: When the user has completed all of the task requirements including defining a model 

for analysis, defining the geometry of the model, applying load, assigning material 

properties, and defining the type of contact, the Job module is used to submit and analyse a 

model of the problem. In addition, this module is beneficial in terms of managing the analysis 

and viewing a basic plot of the analysis results, checking and monitoring progress of the 

execution of the analysis job.  
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Visualization: This module provides graphical display for the results of a job analysis, in 

particular, contour plot on the deformed shape, and a symbol plot. The other benefits of this 

module are its ability to control and specify what information is required to be placed in the 

output database, scale factor animation and history or x-y data. 

 

3.6 Conclusion 

In this chapter the basic principles of the connecting line curves technique to relocate the 

deepest valleys features was introduced. This approximation is based on the concept of a 

smooth alignment curve that passes through deep valley bottom positions that are only 

slightly affected by the plastic deformation happening at the asperity tips, whereas the tips 

of prominent asperities are deformed plastically in the first few cycles of loading. The main 

finding is that the difference in connecting line curves for the profiles is clear and allows 

vertical realignment to be achieved so that the plastic deformation behaviour at the contact 

surface can be evaluated easily. The existence of a small scatter in the profile difference 

might be due to the noise during roughness measurement. This approach of profiles 

alignment allows the level of plastic deformation at significant asperity features to be 

observed and quantified correctly corresponding to the asperity shape changes evaluated by 

experimental measurements. There are some instances where profile features appear not to 

align. Reasons for inconsistency between roughness profiles could be due to misalignment 

in the axial direction when using the profilometer between tests. Alignment can still be made 

between the most noticeable asperity features, but as the surface profiles are not perfectly 

axially extruded there is inevitably some variation in the axial direction. 
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Chapter 4 Basic theories of fatigue: A review 
4.1  Introduction 

Contact fatigue is a common mechanism for failure of the surfaces in an EHL system, where 

the components of machines are frequently subjected to repeated loads, resulting in cyclic 

stresses that can lead to microscopic damage to the contacting surfaces. Contact fatigue 

differs from classic structural fatigue (bending or torsional) in that it results from a contact 

or Hertzian stress state. Conventional micropitting is considered as a major cause of failure 

in gears and is associated with roughness effects on the scale of surface asperities. Surface 

roughness is decreased through reduction of both asperity heights and asperity sharpness 

through pitting and local plastic deformation. Therefore, when roughness is present, it is 

necessary to assess the fatigue life quantitatively using a fatigue model, which takes account 

of the true surface loading.  

The first section of this chapter presents an introduction to some of the principles of fatigue. 

The basic elements of fatigue are then introduced, such as mean stress effects, multiaxial 

fatigue and variable amplitude fatigue. Finally, some theories of fatigue and a review of 

some of the models that have been developed for rolling contact fatigue will be presented. 

The numerical evaluation of fatigue performance for real rough surfaces in lubricated 

rolling/ sliding contact will be reported in Chapters 5 and 6. 
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4.2 Principles of fatigue 

4.2.1 Fatigue life models 

Fatigue failure is initiated at local stress raisers within the material, such as impurities, 

inclusions, micro-cracks or dislocations in the crystal structure. Under cyclic or fluctuating 

loading, the local stress exceeds the yield stress of the material which then causes progressive 

failure associated with micropitting. These micropits have a diameter in the order of microns 

or tens of microns (Oila and Bull, 2005). There are three stages of fatigue crack: initiation, 

propagation, and final fracture (Verdu et al., 2008). The fatigue crack develops below the 

surface at the asperity level, until a region of metal is separated to some extent from the base 

metal by the crack growth. This ultimately results in the loss of pieces of metal from the 

contact surface (Bhushan, 2013). Hence, any cracks that initiate at the asperity surface as a 

result of tensile stresses can develop and lead to surface contact fatigue. The conditions for 

the nucleation of rolling contact fatigue and the rate of advance of the dominant fatigue crack 

are strongly affected by a wide range of mechanical, microstructural and environmental 

factors. Furthermore, there are many important factors which affect fatigue life, such as the 

type of the applied loading (bending or torsion), loading mode (constant or variable 

amplitude loading, surface topography (rough, smooth), stress concentration, residual stress, 

corrosion, mean stress and load (Loewenthal, 1984). It has been assumed that a thorough 

understanding of the factors that affect the fatigue life of components will allow for a more 

effective prevention of fatigue failure and this will enhance our understanding of 

micropitting nucleation. Consequently, many researchers have paid considerable attention 

to the rolling contact fatigue (RCF) that occurs in a variety of components subjected to 

rolling contacts, such as rolling-contact bearings, gears, cam, and rail wheel contacts in 

railways. RCF has been described as: “The mechanism of crack propagation caused by the 
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near-surface alternating stress field within the rolling-contact bodies, which eventually leads 

to material removal” (Ahmed, 2002). 

The first analytical model to evaluate the RCF problem was introduced by Keer and Bryant, 

(1983). In this model, two-dimensional fracture mechanics were used to develop a fatigue 

life model for rolling/sliding Hertzian contacts. The authors assumed the crack initiation life 

to be small in comparison to the fatigue crack propagation life. In addition, their approach is 

based on assuming that stresses having a Hertzian distribution travel through the contact 

half-width such that one passage corresponds to one cycle of rolling. Vincent et al., (1998) 

also investigated the effect of crack initiation based on the dislocation pileup idea. They 

included in their model the effect of all of the stress components as well as residual stress 

effects. Crack initiation, crack propagation, and micropitting was examined by Zhou et al., 

(1989) using a two-disk rig in rolling and sliding contacts. The results of this paper have 

shown how surface cracks can initiate and propagate with increasing contact pressure along 

the whole contact area. 

The rolling contact fatigue mechanism is affected by a large number of factors and many 

studies have been conducted to assess the roles of these parameters. For example, Oila and 

Bull, (2005) have carried out experiments using a twin disk machine to assess the impact of 

several factors, such as material, surface finish, lubricant, load, speed and slide-to-roll ratio 

on micropitting initiation. It was found that the load has a significant influence on the 

initiation of micropitting whereas the slide-to-roll ratio has a significant effect on 

micropitting propagation. Harris and Yu, (1999) investigated load ratings and fatigue life 

prediction of rolling bearings based on the Lundberg-Palmgren theory. They found that there 

was a significant positive correlation between the surface shear stresses and fatigue lives. 

The inclusion of surface traction along with Hertzian normal pressure was found to 

significantly increase subsurface octahedral shear stress.  
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The influence of the lambda ratio, which can be defined by 
ℎ𝑚𝑖𝑛

√𝜎1
2+𝜎2

2 

 , where ℎ𝑚𝑖𝑛 is the 

reference film thickness calculated using the Dowson and Higginson formula for smooth 

surfaces and 𝜎1 , 𝜎1 are the root mean square of roughness of the two surfaces in contact, 

was investigated by Sharif et al., (2012) in rolling fatigue contacts, where it is considered as 

a significant factor in determining damage performance. It is believed, based on results from 

this simulation, that increasing the lambda ratio significantly reduces the level of damage for 

the prominent asperity features, where higher lambda ratios results in less asperity contact. 

An additional highly significant factor in evaluating rolling contact fatigue performance was 

proposed by Li and Kahraman, (2013), which is the level of sliding experienced at the 

contact. The most striking result to emerge from the results data is that poorer micropitting 

performance has been associated with a higher level of sliding, where the reason for this 

could be due to a higher rate of cyclic load as the asperities pass one another along the 

contacting zone. 

More recently, significant investigations have been undertaken into the rolling contact 

fatigue, some of which have included roughness affects (see, for example, Rycerz et al., 

2017; Ekberg et al., 2016; Li and Wagner, 2016; Terrin et al., 2017; Paulson et al., 2017; 

Walvekar et al., 2017). 

4.2.2 Fatigue stress cycle 

The stresses observed in a fatigue test may be of a simple repetitive form as it is cycled 

between maximum and minimum values, as shown schematically in Figure 4.1. This figure 

shows the fatigue cycle of a sinusoidal waveform with a nonzero mean stress. In this case, 

the stress range, the stress amplitude and the mean stress, respectively, are defined as: 
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minmax   , 
22

minmax 






a

, 
2

minmax 



m

          (4.1) 

Generally, stress varies periodically over a given range (  ) between limits 
max  and 

min

, which can also be regarded as the sum of a static stress (the mean stress, 
m ) and a cyclic 

stress of zero mean varying between two values opposite in sign but equal in magnitude (the 

stress amplitude, 
a ). 

 

Figure 4-1 the fatigue stress cycle,(Dowling, 1998). 

The following ratios of two of these variables are sometimes used: 

max

min




R  , 

m

aA



            (4.2) 

where R is called the stress ratio and A is the amplitude ratio. With this definition, R can 

range from −1 to +1 (Suresh, 1998). 

 Fully reversed loading, R = −1 

 Partially reversed loading, −1 < R < 0 

 Zero-to-tension fatigue, R = 0 

 Loading between two tensile stresses, 0 < R < 1 

 Static loading, R = 1 
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Materials subject to cyclic loading generally exhibit either cycle hardening or cycle softening 

(Hassan and Kyriakides, 1994). A number of relations have been proposed to characterise 

the phenomenological cycle-dependent deformation and fracture behaviour of metals in 

terms of the initial state and the test conditions. The stresses that are needed to enforce the 

strain limits usually change as the test progresses. Some materials reveal cycle dependent 

hardening, which means that the stresses are increased, while others show cycle-dependent 

softening, or a decrease in stress with increasing numbers of softening cycles, as shown in 

Figure 4.2. The purpose of fatigue tests is to produce a stabilised stress-strain hysteresis loop 

(Dowling, 1998), which is shown in Figure 4.3. The steady state cyclic deformation 

resistance of a metal is conveniently described by the cyclic stress-strain curve, this is shown 

in Figure 4.4. Such a curve is obtained by connecting the tips of stable hysteresis loops for 

companion specimens tested at different strain amplitudes. A line connecting the tips of the 

loops is called the cyclic stress-strain curve, which represents a relationship between stress 

amplitude 
a  and strain amplitude 𝜀𝑎for cyclic loading. 

The stress range is ∆𝜎, and the elastic portion of the strain range is related to  ∆𝜎 by the 

elastic modulus E. Summing the elastic and plastic portions gives the total strain range, ∆𝜀: 

ppe
E




 


           (4.3) 

If the resulting cyclic stress-strain curve is above the monotonic stress-strain curve, then the 

material is one that cyclically hardens, while cyclic softening exists if the cyclic curve is 

below the monotonic curve. A mixed behaviour may also occur, with crossing of the curves 

indicating softening at some strain levels and hardening at others. 
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Figure 4-2 Cyclic material behaviour under (a) stress control and (b) strain control (Landgraf, 1970). 
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Figure 4-3 Stable stress–strain hysteresis loop, (Dowling, 1998). 

 

Figure 4-4 Cyclic stress–strain curve defined as the locus of tips of hysteresis loops. Three loops are shown, A-D, B-

E, and C-F. The tensile branch of the cyclic stress–strain curve is O-A-B-C, and the compressive branch is O-D-E-

F (Dowling, 1998). 

 

The relation between the elastic strain amplitude ea and plastic strain amplitude pa, can be 

expressed by the Ramberg-Osgood equation, where H  and n  are the cyclic strength 

coefficient and cyclic strain hardening exponent, respectively.  

n
aa

paeaa
HE















1


           (4.4) 
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4.2.3 The fatigue life of materials 

The fatigue life of a component is defined as “the total number of cycles or time to induce 

fatigue damage and to initiate a dominant fatigue flaw which is propagated to final failure” 

(Suresh, 1998). In this thesis, the fatigue life is expressed in terms of total life. Wöhler’s S-

N curves are the basis of the Stress-Life approach, where the fatigue data are usually obtained 

from a fully reversed, constant amplitude fatigue test. 

The stress-life approach to fatigue is also introduced as a concept of a fatigue limit or 

endurance limit, which represents a stress level below which the material does not fail and 

can be cycled infinitely. A complete S-N curve may be divided into two modes: first, the 

high-cycle (low stress) range, which induces primarily elastic deformation in a component 

that is designed for long life (i.e. in the so called high-cycle fatigue (HCF) applications); and 

second, the low-cycle (high stress) range, which is characterised by a low cyclic fatigue 

(LCF) life time. In the latter approach, considerable plastic deformation occurs during cyclic 

loading; for example, the fatigue life is markedly shortened as a consequence of high stress 

amplitudes or stress concentrations. 

HCF curves are usually displayed on a log-log plot with nominal stress amplitude as a y-

coordinate against the total cycles to failure (N) as the x-coordinate, as shown in Figure 4.5. 

As mentioned previously, the HCF models are empirical (i.e. they are based on statistically 

processed results of a series of tests). The stress-life relationship can be described by relating 

the stress amplitude in a fully reversed cycle to the number of cycles leading to failure 

(Basquin relation), as in Dowling (1998) and Suresh (1998): 

 b
ffa N2            (4.5) 

where f is the fatigue strength coefficient and b is the fatigue strength exponent. 
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As shown in Figure 4.5, the fatigue limit or endurance limit, 𝜎𝑒, is a property of materials 

where the specimen may be cycled indefinitely below this stress amplitude level without 

causing failure. For test specimens that do not exhibit such behaviour, a fatigue endurance 

limit is often defined as a specific long life; say 108 fatigue cycles (Dowling, 1998). 

Another important term is fatigue strength, which is used to specify the highest stress that a 

material can withstand for a given number of cycles without breaking. For example, the 

fatigue strength at 108 cycles is the stress amplitude corresponding to 𝑁𝑓 =108. 

In LCF, loading that typically causes failure in less than 104 cycles is associated with 

localised plastic behaviour in metals; therefore, a strain-based parameter should be used for 

fatigue life prediction in metals. Logarithmic scales are used to allow a convenient graphical 

representation of the strain- life relationship, where the total strain amplitude a is the 

ordinate and the number of cycles to failure Nf is the abscissa, as shown in Figure 4.5. A 

commonly used equation that describes the behaviour of low-cycle fatigue is the Coffin-

Manson relation (Suresh 1998): 

c

ffpa N )2(            (4.6) 

The elastic strain amplitude is related to the fatigue life by the Basquin relationship: 

b

f

fa
ea N

EE
)2(





           (4.7) 

where f  is the fatigue ductility coefficient, c is the fatigue ductility exponent. (Note that 

powers b and c are intrinsically negative.) 

Combining the equation of the cyclic strain amplitude, Equation (4.4), with the fatigue life 

correlations for the high-cycle regime, Equation (4.5), and for the low cycle regime Equation 

(4.6) leads to: 
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c

ff

b

f

f

a NN
E

)2()2( 


 


           (4.8) 

 

Equation (4.8) is considered to be the basis for the strain-life approach to design against 

fatigue failure Suresh (1998). The strain life equation is shown schematically in Figure 4.6 

as being asymptotic to the two straight lines corresponding to Equations (4.5) and (4.6) at 

long and short lives, respectively. Figure 4.6 also indicates the transition fatigue life, 2𝑁𝑡. 

This is the life at which the cyclic elastic strain range equals the cyclic plastic strain range. 

bc

f

f

t
E

N










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








1

2



          (4.9) 

At short lives, 2𝑁𝑓 <  2𝑁𝑡 , plastic strain will predominate, and ductility will control the 

fatigue performance. At long life, 2𝑁𝑓 >  2𝑁𝑡 , the plastic strain will be less  than the elastic 

strain, and strength will control the fatigue performance. 

    

 

Figure 4-5 Stress-life relationship. 
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Figure 4-6 Strain-life relationship (Note that both 𝛆𝐚and 𝐍𝐟 are in log scales, and powers b and c are negative and 

their lines are accordingly illustrated), (Dowling, 2013). 

 

4.2.4 Determination of fatigue properties 

The strain-life Equation (4.8) requires four empirical constants (f, b, f, c). Several points 

must be considered in attempting to obtain these fatigue parameters from fatigue data: 

 Not all material may be represented by the four-parameter strain-life equation. 

 The four fatigue parameters may represent a curve fit to a limited number of data 

points. So, the actual values of these parameters may be changed if more data are 

included in the fitting process. 

 The fatigue parameters are found from a set of data points over a given range. 

Therefore, when extrapolating fatigue life, a massive error may occur 

corresponding to data located outside the required range. 

The parameter values obtained for several material tests are available in references Zahavi 

and Torbilo (1996); BS 3518-1 (1993); BS 3518-3 (1963); and ASTM STP 1122 

(1992).From Equation (4.4), the plastic strain term of the cyclic stress-strain curve gives 
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n

paa H
            (4.10) 

From Equations (4.4) and (4.8) the following properties may be related and those of the 

cyclic stress-strain curve (Dowling, 1998). 

c

b
n        ,     

 n
f

f
H









          (4.11) 

However, using power law relationships in Equation (4.11) is strictly a matter of 

mathematical convenience and is not based on a physical phenomenon. 

The fatigue strength coefficient for steels with hardness below 500 Brinell Hardness Number 

(BHN) Zahavi and Torbilo (1996) can be approximated in MPa using the ultimate strength 

of the material, u (Bannantine, 1990); that is, 

345 uf            (4.12) 

 

The fatigue ductility coefficient can be approximated by the true fracture ductility, f, in a 

tension test (Bannantine, 1990), as 













RA
ff

%100

100
ln           (4.13) 

where RA is defined as the reduction in area at failure. 

The fatigue ductility exponent (c) for steel is not as well defined as the other fatigue 

parameters, where Boardman (1990) found that c is about -0.6 and the fatigue strength 

exponent b is usually about -0.085. However, Suresh (1998) found that c varied between -

0.5 and -0.7, and b is in the range of -0.05 to -0.12. Based on an energy approach, Morrow 

determined b and c (Hertzberg, 1976) as 
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1
           (4.14) 

Where n  is the cyclic strain hardening exponent. Morrow found n   to vary between 0.15 

and 0.18 for several alloys. 

4.3 Mean stress effects on fatigue life 

Mean stress is equal to the average of the maximum and minimum stress during a fatigue 

load cycle. Significant amount of data on fatigue life is obtained for the case of a zero mean 

stress, which means that the load cycle is completely reversed. However, fully reversed 

stress cycles with a zero mean stress are not always representative of many applications 

(Suresh, 1998). Scientifically, the effects of mean stress level on the cyclic deformation and 

fatigue life are considered to be significant for many applications, where it is seen to 

influence fatigue lives. The mean stress either increases the fatigue life with a nominally 

compressive loading or decreases the fatigue life with a nominally tensile loading, as shown 

in Figure 4.7 (Fatemi et al., 2000). 

 

Figure 4-7 Effect of mean stress on fatigue life (Fatemi et al., 2000). 

 

To take into account the mean stress effects, a normalised amplitude-mean diagram can be 

represented by employing different combinations of the stress amplitude and mean stress 
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providing a constant fatigue life, such as in Figure 4.8. The most interesting aspect of this 

graph is that most of the data are located between the straight and curved lines. The straight 

line is the modified Goodman line, and the curve is the Gerber parabola. Furthermore, the 

bottom left line of the graph is the Soderberg model, where equations for design are 

described, respectively, by the following expressions (Suresh, 1998): 

1
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m
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          (4.15) 
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          (4.17) 

The observations with the advantages and disadvantages of the foregoing models for the 

effects of mean stress on fatigue life can be found in Zahavi and Torbilo, (1996); Dowling, 

(1998); Suresh, (1998). Closer inspection of the curves in Figure 4.8 shows that the line ACB 

is considered to be the most suitable for design purposes (Zahavi and Torbilo, 1996). The 

reason for this choice is that in fatigue design the Soderberg line is overly conservative 

whereas the Gerber curve is dangerous. 

 

Figure 4-8 Normalised amplitude mean diagram (Dowling 1998). 
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4.4 Multiaxial fatigue approaches 

The safety and durability of components has become more important than before because 

the sudden failure of complex systems (such as gear systems, automobiles, and bearing units) 

may cause fatigue for engineering structures and components, which are subjected to 

multiaxial cyclic loading. Multiaxial fatigue assessments are often complex due to 

complicated geometries and the mode of applied loads, whose directions change during a 

cycle of such loadings. In addition, the multiaxial loading has to be identified with the 

existence of more than one principal stress component. 

Multiaxial fatigue models are usually dependent on uniaxial fatigue test data to estimate life 

corresponding to experimental results. Consequently, several multiaxial fatigue approaches 

have been developed to reduce the complex multiaxial loadings to an equivalent uniaxial 

loading. In this section, multiaxial fatigue criteria are discussed for both the stress-based 

approach and the strain-based approach.   

 

4.4.1 Stress-based approach 

4.4.1.1  Effective stress approach 

The effective stress approach was proposed to predict multiaxial fatigue life at the early 

development of multiaxial fatigue research and still remains significant. According to this 

approach, a two- or three-dimensional stress state is reduced to an effective scalar parameter, 

usually by using either the Tresca criterion or the von Mises criterion. The stress-based 

criteria are more suitable in predicting long life (high-cycle) fatigue failure (Sines and Ohgi, 

1981). The amplitude of the effective stress (Dowling, 2013) can be written as 
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aaaaaaa             (4.18) 

 

where ia (i = 1, 2, 3) are the amplitudes of principal stresses, in terms of the amplitudes of 

the stress components. 

An alternative form of the effective mean stress is given by the von Mises criterion based on 

the octahedral shear stress, 

     2
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2
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2
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mmmmmmm             (4.19) 

For fluctuating multiaxial stresses, Equation (4.19) can be written in terms of the 

amplitudes of directional stresses: 

       222222
6

2

1
zxayzaxyaxazazayayaxaa             (4.20) 

To calculate the fatigue life, 𝑁𝑓, the Basquin exponent b and the fatigue strength coefficient 

f   in Equation (4.5) are used in combination with the following stress-life equation for 

multiaxial stresses (Dowling, 2013). 

  b
fmfa N2            (4.21) 

 

One of the major criticisms of this effective stress concept is that the differing effects of axial 

tensile and compressive mean stresses, which are found from multiaxial fatigue experiments, 

may not be accurately estimated. Moreover, these criteria are unable to derive a quantitative 

orientation of fatigue cracks with respect to the loading axes (Suresh, 1998). 
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4.4.1.2 Criteria involving multiaxial fatigue 

There is not yet a universally accepted model in spite of a great number of multiaxial fatigue 

criteria, which were presented by Garud, (1981); Brown and Miller, (1973); You and Lee, 

(1996); Papadopoulos et al. (1997); Miller et al.,(1985) . The major stress-based criteria (i.e. 

criteria for high-cycle fatigue) are described in the following subsections.  

Sines Criterion: 

Sines criterion (1959) uses the amplitude of second invariant of stress tensor deviator (which 

corresponds to the von Mises stress) as the basis (i.e. the mean value of the hydrostatic 

stress), and can be written as: 

  mhaJ ,,2           (4.22) 

Fatigue failure occurs if this inequality is not fulfilled. The parameters   and   can be 

obtained from a repeated bending test as: 

3
3


ab

af




  ; af            (4.23) 

 

where af is the fatigue limit for pure torsion and ab is the repeated bending fatigue limit. 

The Sines high-cycle fatigue criterion correctly captures the fatigue test observations: first, 

the fatigue limit in torsion is independent of a mean shear stress; and second, the endurance 

limit in bending varies linearly with a static normal stress. However, the equations suggested 

by Sines need verification under out-of-phase loadings or other factors to predict the fatigue 

behaviour more accurately (You and Lee, 1996). 
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Crossland Criterion 

Crossland (1956) proposed the amplitude second invariant of the deviatoric stress tensor and 

the maximum hydrostatic pressure during multiaxial loading as the governing variables in 

the crack initiation process, which can be written as: 

  max,,2 haJ           (4.24) 

 

The parameters   and   can easily be obtained from a torsion test or a fully reversed 

bending test. The limitations of the theory of Crossland are that it shifts the mean values of 

the fatigue index error to the non-conservative side. In addition, its mean values are under 

out-of-phase loading (Papuga, 2012). 

4.4.1.3 Critical plane approaches 

A critical plane approach is employed when the loading is nonproportional to a significant 

degree. In this approach, stresses during cyclic loading are determined for various 

orientations (planes) in the material. The plane on which the tensile normal stress or the shear 

stress is a maximum is used to predict fatigue failure in the materials. In general, determining 

the orientations of the critical planes for multiaxial loading with cyclic stress can become 

very complicated due to the changing fatigue properties. However, as reviewed by Chu et 

al. (1993), Fatemi et al. (2000) and Van et al. (2013) some simplifications can be applied for 

a given material or loading situation by noting that most fatigue cracking initiates at the 

surface level, as will be discussed in more detail in the following section. 

A summary of the multiaxial fatigue criteria based on the critical plane approach, such as 

the Findley criterion, the Matake criterion, the Dang Van criterion and the McDiarmid 

Criterion is given in Table 4.1 and they can be written in a general form as: 
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  BA           (4.25) 

Fatigue failure occurs if the inequality is not fulfilled. Parameters A and B are related to the 

stress components on the critical plane and   and   are material constants. These 

parameters can be found from the endurance limits, which characterises the applied stress 

amplitude below which a material is expected to have an infinite fatigue life. 

Table 4-1 Parameters of Equation (4.25) for Findley, Matake’s, Dang Van’s and McDiarmid’s criteria 

Criterion A B     Hypothesis 

Findley a n,max 1/2

/2





afaf

afaf





 

1/2 afaf

af





 

Fatigue damage of material is 

due to a linear combination 

of normal stress and shear 

stress amplitude in the 

critical plane. 

Matake a n,max 1
2


af

af




 

af  

The equivalent shear stress 

should be calculated on the 

plane with maximum shear 

stress amplitude. 

Dang Van a (t) h (t) 
2

3
3 

af

af




 

af  

The parameters responsible 

for crack nucleation along 

slipping bands are 

microscopic shear stress in 

the grain area and the 

microscopic hydrostatic 

stress. 

McDiarmid cp,a cp, max 
u

af





2
 af  

The maximum shear stress 

range and the normal stress in 

the critical plane are 

significant. 

 

Where a and n,max are the shear stress amplitude and maximum value of the normal stress 

on the critical plane, respectively. af and af are the endurance limits under fully reversed 

bending and fully reversed torsion, respectively. The linear criterion proposed by Dang Van 

uses the current values of the microscopic shear stress amplitude on the critical plane, a(t), 

and hydrostatic stress, h(t), which are independent of the critical plane orientation and t is 

time.  
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4.4.2 Strain-based approach 

4.4.2.1 Critical planes of failure in multiaxial loading 

Extensions of critical plane strain criteria have been proposed by many researchers. These 

developments are based on significant observations. First, the alternating shear stress and 

strain on the critical plane are the major cause of fatigue in multiaxial loading. Second, the 

mean or maximum values of the normal and shear stress and strain components on the critical 

plane are significant minor contributors to fatigue failure. Consequently, numerous models 

of the critical plane strain criterion that take the effect of the normal mean stress have been 

proposed. One interesting criterion was applied by Fatemi and Socie (1988) to incorporate 

mean stress using the maximum value of normal stress during a cycle to modify the damage 

parameter. In this criterion, fatigue damage is due to the shear strain amplitude influenced 

by the maximum normal stress, which is expressed as  
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where  
2

maxΔγ
  refers to the amplitude of shear strain on the critical plane, and 𝜎𝑛

𝑚𝑎𝑥 refers to 

the maximum tensile stress which is normal to the critical plane. K is a material constant, K  

= 0.6 to 1.0, G is the shear modulus, and γσ  is the yield strength for the cyclic stress-strain 

curve. The shear fatigue strength, f , and shear fatigue ductility coefficient, f , are found 

from fully reversed torsion fatigue tests in pure shear. In addition, 0b and 0c are shear fatigue 

strength and shear fatigue ductility exponents, respectively. 

 

4.4.2.2 Smith, Watson and Topper (SWT) criterion 

Smith and co-authors proposed a simple form of a damage parameter, SWT, which is a 

reasonable model for tensile stress dominated cracking (Dowling, 2013). This model was 

originally developed as a correction for mean stresses in uniaxial loading situations. The 
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SWT model is based on strain-life test data obtained with different mean stresses, which 

includes both the cyclic strain range and the maximum stress. It is expressed as follows 

(Dowling, 2013): 
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          (4.27) 

where maxσ the maximum normal is stress on the critical plane and 𝜀𝑎 is the amplitude of 

normal strain for the same plane as maxσ . The product aεσmax  is assumed to be constant for 

a given life. If it is assumed to be zero, then Equation (4.27) predicts infinite life.  

This model is used widely and is a common approach in most commercial fatigue analysis 

software, where it has been shown to better correlate mean stress data during multiaxial 

loading for a wider range of materials and it is, therefore, regarded as more favourable for 

general use (Carpinteri et al., 2003). Furthermore, the SWT model can also be used in the 

modelling of both proportionally and non-proportionally loaded components for materials 

that fail mostly due to planes of high tensile stress (mode I). 

 

4.5 Fatigue from variable amplitude loading 

Variable amplitude fatigue crack growth is a very significant aspect during each operating 

cycle, especially with respect to EHL contact fatigue problems. Hence, a form of variable 

amplitude time history analysis should be introduced to achieve accurate lifetime 

predictions. In general, loading above a certain level can eventually lead to a significant 

damage of the component, which causes microscopic rearrangements at the atomic scale. To 

deal with variable amplitude loading, several major issues have to be elucidated. First, how 

to relate the damage accumulation to a time history of load or nominal stress for a material 

considered. Second, how to identify cycles within a given time history and sum up partial 
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damages which result from these different stress levels. To achieve this, a cumulative 

damage theory must be considered. The basic steps of identifying cycles can be handled in 

a comprehensive manner by cycle counting, as will now be discussed. 

 

4.5.1 Cycle counting for irregular histories 

Cycle counting methods are often used to reduce the random load history into a series of 

discrete events, which can be analysed using the test data obtained for constant amplitude 

fatigue loads. A number of cycle counting methods have been introduced over the years, 

which include level crossing counting, peak counting, simple range counting, and the 

rainflow counting method, Suresh (1998). Some of these methods are employed in the 

analysis of fatigue data to reduce a spectrum of varying load into a set of simple, uniform 

data histograms with constant amplitude cycle. Amongst these cycle counting algorithms, 

the rainflow-counting algorithm is considered to be one of the best approaches for finding 

half-cycles within a given time history (Dowling, 2003). This method was invented by 

Matsuishi and Endo (1968), and is considered to be the basis of the development of an overall 

cycle counting algorithm for estimating fatigue damage of components that is caused by 

randomly fluctuating loading histories. A variety of variations of the rainflow counting 

method for highly irregular variations of load with time have been developed by Dowling 

(2003), Suresh (1998), Musallam and Johnson (2012), Downing and Socie (1982), and 

Amzallag et al. (1994). 

The traditional rainflow counting method defines cycles as closed stress-strain hysteresis 

loops, without elaborate local stress-strain analysis. An example of the rainflow cycle 

counting method can be seen in Figure 4.9. The sequence of reversals 1 to 7 is registered in 

the order (4–3), (6–5), and (2–1). In addition, this plot shows an irregular stress history that 

consists of a series of peaks and valleys, which are points where the direction of loading 
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changes. Consequently, such an irregular stress history leads to the stress–strain path, as 

shown in the middle plot that forms the closed hysteresis loops shown at the right. 

 

Figure 4-9 the stress-strain hysteresis loops extracted from the rainflow counting algorithm (Anthes, 1997). 

 

These results can be used in conjunction with the Palmgren-Miner rule to predict the fatigue 

life of engineering components that are subjected to variable amplitude loading. The basis 

of this theory is the linear damage concept: 

                       
fi

i

i
N

N
D             (4.28) 

Failure is predicted to take place when the total damage is  

                    1 
fi

i
i

N

N
DD              (4.29) 

Where the iN  is the number of cycles accumulated and   fiN  is the average number of cycles 

to failure.
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4.6 Cyclic shakedown limits 

Under repeated application of the load, as for example occurs in rolling element bearings, 

gears, cam-followers, and rail-wheel contacts, the fatigue life of these components may be 

expected to depend upon the progress of plastic deformation. This process is described as 

shakedown and the maximum load for which it occurs is identified as the elastic shakedown 

limit (Williams et al., 1999). Generally, the shakedown process makes the pure elastic 

condition become the steady cyclic load state, whereby initial plastic deformation introduces 

residual stresses (Johnson, 1985). Such residual stresses are considered to be protective when 

the surface zone yields in tension during loading, so the residual surface stress will be in 

compression after unloading. On the other hand, these residual surface stresses can be 

developed in the sub-surfaces level of tribological contacts, which enables loads that are 

sufficiently large to cause initial plastic deformation to be accommodated purely elastically 

in the longer term. This means that the residual stress pattern, which was induced during 

shakedown process, builds up and reaches a stabilised state, so that it does not make any 

additional deformation under further cyclic loading. The stabilised stress cycle is then purely 

elastic. The influence of these residual stresses on crack growth and fatigue requires better 

understanding. From this perspective, the current research sheds light on the potential effect 

of the results obtained for plastic deformation and residual stress fields of the real surface 

asperities on fatigue damage under lubricated contact condition. 

The development of plastic strain behaviour under cyclic contact loading is divided into four 

different regimes, as shown in the Figure 4.10, and as described in the following definitions: 

(1) Perfectly elastic: this occurs when the maximum normal contact pressure is below the 

‘elastic limit’, the behaviour will be perfectly elastic. 
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2) Cyclic plastic straining: here the material experiences steady, reversed cyclic plastic 

strains. In this mode of plastic strain development, the progressive accumulation of plastic 

strains is suppressed. 

(3) Ratcheting: here the plastic strain magnitude increases continually with the load 

cycling, which eventually leads to incremental collapse. 

(4) Elastic Shakedown: here plastic flow occurs during early cycles and subsequent material 

response is entirely elastic. No cyclic plasticity occurs in this regime. 

 

 

 

Figure 4-10 The effects of cyclic loading on the material: (a) perfectly elastic, (b) elastic shakedown, (c) plastic 

shakedown, (d) ratcheting (Fouvry et al.,2001). 

a) b) c) d) 
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4.7 Conclusion 

In this chapter, some of the most widely used contact fatigue models are outlined and 

discussed to enhance our understanding of RCF. Some of these models are presented in this 

chapter for surface loading due to the EHL mechanism in the area near the surface asperities 

of the simulated body and they also incorporate methods for the accumulation of fatigue 

damage. A discussion of the various mechanisms by which crack propagation retardation 

occurs in components under variable amplitude cyclic loading was also presented in this 

chapter. It is suggested that variable amplitude-loading can have a distinctly different effect 

on the characteristics of fatigue damage growth than on fatigue crack initiation. One of the 

more significant findings to emerge from this review is that the strain-life theory is a 

comprehensive approach that is recommended for both low-cycle and high-cycle contacting 

fatigue problems. 
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Chapter 5 Fatigue analysis – applying multiaxial fatigue criteria 

based on critical plane approach 
5.1 Introduction 

It is now well established that during pure rolling lubricated conditions micro pits can be 

found on the surface of gears and rolling bearing (Johnson, 1987). This type of surface 

damage arises as a result of repeated deformation of micro-volumes of the mechanical 

components under cyclic contact loading (Kragelsky et al., 2001). Such contact scenarios 

involving repeated contacts and complex time-varying loadings are considered as multiaxial 

rather than uniaxial loading states. However, uniaxial fatigue test data can be used for 

prediction of fatigue life using a number of available models. Many multiaxial fatigue life 

estimation criteria have been proposed to reduce the complex multiaxial stress mode to an 

equivalent uniaxial stress state. The criteria based on the critical plane approach are 

considered the most appropriate to provide effective fatigue life estimation in these 

circumstances (Fatemi and Socie 1988). In this chapter, multiaxial fatigue criteria based on 

the critical plane approach are adopted to model fatigue analysis for the micro-EHL transient 

problem in rough gear contact problems. Also, the rough surface EHL in Line Contact 

analysis which provides the surface loading for the analysis is introduced.  
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5.2 EHL line contact fatigue analysis 

5.2.1  Introduction 

Results of the transient micro-EHL solutions for the two rough surfaces in rolling/sliding 

contact provide the transient variation of the surface loading applied to the disks. This 

enables the stresses below the rough contact surface to be calculated, and this stress history 

for the disk material enables evaluation of the fatigue models considered. Results of the 

micro-EHL modelling, which gives the full time-varying behaviour of lubricant pressure and 

film thickness, have been used to predict the fatigue life and accumulated damage at the 

scale of surface asperity features. To accurately understand the contact mechanics of the 

surface micropitting phenomenon it is essential to find the detailed tooth loading in terms of 

asperity pressure, shear stress and the local subsurface stress components under conditions 

of elastohydrodynamic lubrication (EHL). Dowson and Higginson, (1966) provided the first 

numerical solutions to this problem for smooth surfaces, which is considered the normal film 

creation mechanism in gear tooth contact analysis. Transient micro-EHL solutions taking 

surface roughness in to account have been used in the current research instead of smooth 

surface EHL because the local EHL mechanism may fail in the most severe cases of thin 

films/high roughness where transient direct solid interaction happens between prominent 

asperities. This is known as mixed lubrication regime where the tooth load is carried by a 

combination of fluid film pressure and boundary-lubricated asperity encounters. Different 

novel approaches have been made to predict transient asperity interactions for elliptical 

contacts and mixed lubrication problems. In this work the coupled differential deflection 

method developed by Elcoate et al., (2001) ; Holmes et al., (2003 a); Holmes et al., (2003 

part b) ; Holmes et al., (2004) successfully modelled the micro-EHL transient problem in 

which the mean asperity height was at least an order of magnitude greater than the minimum 

lubricant film thickness. 
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5.2.2  Micro-Elastohydrodynamic theory 

Real gear surfaces operating under typical industrial conditions of load, speed and oil 

viscosity are considered as operating under mixed lubrication conditions. This condition can 

be summarised as occurring when the roughness features are far greater in height than the 

predicted EHL film thickness. This section shows some numerical formulations for EHL 

line contact with real rough surfaces. The coupled numerical solution technique for 

estimating the pressure and film thickness distribution in micro-EHL conditions is briefly 

described in this section. This unified solution method will be used as the EHL analysis tool 

in this thesis. A classical EHL model comprises an equation describe the flow of the fluid 

such as Reynolds equation or the Navier-Stokes equation in this work the Reynolds equation 

is applied, the film thickness equation (also referred to as the elastic deformation equation), 

the force balance equation, and equations describing the viscosity-pressure-temperature and 

density-pressure-temperature relations. 

5.2.2.1 The Reynolds equation 

Reynolds' equation is the equation that describes the relationship between the film thickness 

and the lubricant pressure for conditions of full film lubrication. This equation was first 

proposed by Reynolds in 1886 and is referred to as Reynolds' equation. It can be derived 

from first principles by applying conservation of momentum, conservation of mass and 

conservation of energy (Pletcher et al., 2012). It is a combination of two physical principles; 

the Navier-Stokes equations for the motion of a viscous fluid and the continuity equation 

which is based on conservation of mass in the fluid.  

A number of simplifying assumptions are made that result in the Navier Stokes equations 

being reduced to a balance between the pressure gradient forces causing motion of the fluid, 

and the viscous resistance to that motion.   These are as follows. 
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1.    The Reynolds number is small so that flow is laminar and the inertia terms (rates 

of change of momentum) for the fluid may be ignored. 

2.    There is no slip at the solid/lubricant boundaries. 

3.    The fluid is Newtonian so that shear stress is proportional to the shear strain rate. 

4.    Pressure, density and viscosity do not vary across the film. 

5.    The film thickness is much smaller than the Radius of Relative Curvature of the 

lubricated contact. 

6.    The film thickness is much smaller than the dimensions of the lubricated contact. 

Assumptions 5 and 6 describe the geometric nature of lubricated contacts and contribute to 

the smallness of the Reynolds number set out in Assumption 1.   Assumption 2 is general in 

fluid mechanics and is justified by experimental evidence.   Assumption 3 is not strictly true 

when a contact is subjected to high sliding velocities but is generally reasonable in fluid 

mechanics.   Assumption 4 may be relaxed without changing the nature of the resulting 

equation, but is generally made except when considerations of thermal effects within the 

film become necessary. 

Reynolds equation, including non-Newtonian shear thinning based on the Eyring model, was 

developed by Conry et al., (1987) by considering the equilibrium of an element of flow 

subjected to viscous shear and using  the continuity of liquid principle . With the adoption 

of rough surfaces, transient modes should be used due to the time varying geometries of 

contacting rough solids. In the following treatment the two- dimensional isothermal transient 

Reynolds equation is derived after Conry et al., (1987) incorporating the time-dependent 

squeeze-film action. The case shown in Figure 5.1 where the two surfaces are separated by 

a molecularly thin lubrication film is considered. By considering a small element of lubricant 
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in the form of control volume as shown in Figure 5.2, the equation of equilibrium in the x-

direction can be written as shown in equation (5.1). 

 

Figure 5-1 Section at the centre of the contact in the entrainment direction. 

 

The control volume in the above Figure 5-1 is subject to forces due to pressure and shear 

stress acting on its boundary as shown in the Figure 5-2. 

 

 

 

Figure 5-2 Forces acting on control volume. 
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 (5.1) 

 

Where the shear stress is  = xz and yx  can be assumed negligible due to scale effects as 

lubricant shear happens predominantly in the z direction. Assuming that the pressure p stays 

constant across the film thickness, integration of Equation (5.1) results  
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(5.2) 

 where 2 is the shear stress acting on the boundary of surface2. The constitutive equations 

of the Eyring fluid (Kim et al., 2001), that relates shear stress to shear strain rate, neglecting 

the elastic shear term, is  
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The parameter 𝜏0 in equation (5.3) is the representative stress or Eyring stress and is the 

shear stress that corresponds to the onset of significant non-Newtonian behaviour. The 

Eyring stress is assumed to be constant. Substituting Equation (5.2) into Equation (5.3) and 

integrating gives the velocity of the lubricating fluid as 
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Defining the mid-plane at (z = h /2), Equation (5.4) can be simplified to 
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Applying the boundary condition 1uu hz    , the relative sliding velocity of the two 

contacting surfaces can be found by 
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The shear stress at the mid-plane can be found from 

 















sinh
sinh

0

21

0 h

uum









 

(5.7) 

The Mass flow rate in the x-direction between the surfaces per unit length at the centre of 

the control volume can be defined as  
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(5.8) 

Substitution of Equation (5.5) into Equation (5.8) and integrating gives 
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Substitution of Equation (5.7) into Equation (5.9) leads to 
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The total flow M is divided into two terms, firstly Couette Flow M C, which is caused by the 

movement of the surfaces. Secondly the term containing the pressure gradient is called the 

Poiseuille Flow M P which is caused by the variations in pressure. By defining a 

dimensionless factor as  
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Equation (5.9) can be simplified to the following form 
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The continuity equation in terms of M can be expressed as 
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Substituting equation (5.12) into equation (5.13) and rearranging provides 
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(5.14) 

  

This equation is the transient Reynolds equation based on the Eyring equation for the 

lubricant relating its pressure with the fluid film thickness, and the elastic deflection of the 

surfaces under the action of pressurised lubricant. Term S is the non-Newtonian factor which 
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depends on pressure, film thickness, sliding speed and pressure gradient. Considering shear 

thinning using the Eyring model, the S factor is available in closed form taken from Hughes 

et al., (2000) as follows 
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The representative stress 𝜏0 , for the current thesis is taken as constant although it is known 

to be weakly dependent on the pressure. As 𝜏0 approaches infinity so Σ approaches zero and 

it can be shown that S(x) approaches unity, therefore returning equation (5.14) to the 

Newtonian fluid formulation. The last term in equation (5.14), which is the only time 

dependent term, is called the squeeze film term.  This terminology arises from squeeze film 

dampers where the pressure is generated by the movement of parallel solid surfaces towards 

each other when the gap in between is filled with damping fluid.    

5.2.2.2 Elasticity equation 

A typical centreline section of film thickness in the entrainment direction for the EHL contact 

problem is shown in Figure 5.1. The film thickness profile is given by  
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(5.16) 

 

where the expression (x, t) is the measured roughness at x taken from a profilometer 

measurement for the fast and slow rough disks, hg is the undeformed geometry that is 

assumed to be a parabola, and he is the elastic deformation of the contacting surfaces due to 

pressure distribution p. It is assumed that the contacting bodies behave as semi-infinite 

bodies, as the size of the contact is usually small compared to the remainder of the solid 

body. Finally hf is a constant and its value controls the separation of the surfaces. 
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5.2.2.3 The viscosity and density equation 

The equation which relates the lubricant viscosity to its pressure, is called the viscosity 

equation. In tribology the key effect of viscosity is the shear stress and it is considered as the 

most important lubricant property (Williams, 1994). The simple and most widely used form 

of this equation is known as the Barus equation, developed by Barus (1893).The equation is 

of the following exponential form: 

𝜂 = 𝜂(𝑝) = 𝜂0  𝑒𝑥𝑝(𝛼𝑝) (5.17) 

Values of the pressure viscosity exponent (𝛼 ) and the viscosity at atmospheric pressure 𝜂0  , 

vary with temperature . For systems that operate over a restricted range of temperatures the 

variation of viscosity with temperature is of minor importance so long as the appropriate 

viscosity can be obtained for the application. However, lubricant viscosity may change 

dramatically under a high pressure and this makes the Reynolds equation highly non-linear 

and significantly more difficult to deal with numerically. The Barus viscosity equation is not 

suitable for simulation at high pressure as it overestimates the viscosity. A more realistic 

equation for high pressure exists in the form of the Roelands equation (Stachowiak and 

Batchelor, 2005), which can be expressed as: 

 ]1)1)[(/ln(exp 00  Zp  (5.18) 

Where   and  are constants, Z is the Roelands pressure viscosity parameter, and p and 

𝜂0  are in units of Pa and Pas respectively. The constant Z can be found from   by comparing 

the Roelands equation and Barus equation as pressure distribution, p approaches to zero as 

shown below (Kreyszig 1999): 
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The pressure - density relationship is given by the Dowson and Higginson (1966) formula 

and Evans et al. (2013) .The equation takes the following form: 
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Where 𝛾 and 𝜆 are the pressure coefficients of compressibility. 

5.2.2.4 EHL solution techniques 

Solving the elastohydrodynamic lubrication (EHL) point and line contact problem is possible 

by discretization of the Reynolds and elastic deflection equations. The current research is 

based on numerical analysis of EHL contacts using a novel coupled differential deflection 

formulation developed by Cardiff Tribology Group (Hughes et al., (2000); Elcoate et al., 

(2001); Holmes et al., (2003a, 2003b, and 2005)). The efficiency of this method is validated 

under transient conditions by Hughes et al., (2000) and Holmes et al., (2003a).The advantage 

of the novel differential deflection method is that the full coupling of the hydrodynamic and 

elastic deflection equations is made possible by using this formulation where the two 

equations are solved as a coupled pair of differential equations. 

5.2.2.4.1 Differential deflection method 

The elastic deflection equation is utilized in the differential form developed by Evans and 

Hughes, (2000). The evaluation of surface deflection is needed in order to determine the film 

thickness in the lubricated contact analysis. This can be achieved by solving equation (5.16) 

which contains the elastic deflection which is a convolution integration of pressure 

multiplied by the appropriate weighting function: 
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The integral in equation (5.21) can be calculated numerically for any general pressure 

distribution such as that which happens in the contact between two moving roughness 

features. As a result of numerical discretization, this integral can be reduced to a simple 

quadrature by summation of influence coefficients multiplied by the pressure value at all 

points of the solution domain (Evans and Hughes, 2000) ,which is given by the following 

expression: 
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 The influence coefficients gk-i  in equation (5.22) depend on the contacting surface  material 

elastic properties and the quadrature form used for the pressure.The technique of evaluating 

the influence coefficients was developed by Kong (2001). Evans and Hughes, (2000) 

developed the conventional deflection equation to the form given in equation (5.22) for the 

second derivative of u. Adopting this method leads to localisation of the effect of pressure 

on the deflection calculation in comparison with the classical method described by equation 

(5.22). The differential form of the deflection is written as: 

 




k

kik

i pf
x

xu
2

2 )(

 

(5.23) 

Where the 
ikf 
 are defined as the differential influence coefficients. The influence 

coefficients in this quadrature formula are available in closed forms in Evans and Hughes, 

(2000). The advantage of such a modification can be seen by comparing the differential 

influence coefficients (g and f), where the f  coefficients decay significantly faster than the g 

coefficients as the indices j increase from zero. This shows that the impact of pressure on 

the second order derivative of the deflection is highly localised. With the differential 
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deflection method, the film thickness equation (5.16) takes on the following differential 

form: 

 












k

kik pf
Rxx

h 1
2

2

2

2 
 (5.24) 

  

5.2.2.4.2 The coupled method 

The coupled method is used so that the Reynolds and elastic film thickness equations can be 

numerically solved as a set of simultaneous equations. Discretised equations (5.14) and 

(5.24) can be written as: 

i

n

k

kk

n

k

kk RhBpA
cc


 00

 (5.25) 

i

n

k

kk

n

k

kk EhDpC
cc


 00

 (5.26) 

In equation (5.25): 

pk and hk are the values at the neighbouring mesh points. 

𝐴𝑘 are the Reynolds equation coefficients of pressure. 

𝐵𝑘 are the Reynolds equation coefficients of film thickness. 

𝑛𝑐 is the number of coefficients involved in the formulation. 

𝑅𝑖, is the right hand side, that has a zero value for steady state conditions. 

The coefficients 𝐴𝑘 and 𝐵𝑘 involve the fluid properties of density and viscosity i.e. ρ, η and 

S in equation (5.14). The value of viscosity is highly pressure dependent and to solve the 

equation the fluid properties are obtained at each mesh point using pressure and film 
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thickness distribution for an outer loop. Equation (5.25) and (5.26) are set up using the 

current outer loop values to determine the 𝐴𝑘 and 𝐵𝑘 values. 

In equation (5.26) 𝐸𝑖 , includes the near pressure contributions to the discretised equations 

which are included in the numerical calculation, and the other contribution are evaluated for 

the outer loop of pressure distribution.  The discretised equations which are defined by the 

Reynolds and elastic film thickness can be then written in terms of the two key variables, 

pressure and film thickness, as a pair of simultaneous equations in the variables 𝑝0 and ℎ0 

in the form : 

iRhBpA ˆ
0000   (5.27) 

iEhDpC ˆ
0000   (5.28) 

The coupled solution method solves this pair of equations simultaneously for each node in 

the computational mesh. There are two methods available for solving this pair of equations. 

Either equations (5.28) and (5.29) are solved iteratively using Gauss Seidel or a direct 

elimination method can be used. In the current research equations (5.27) and (5.28), are 

solved iteratively as a pair of simultaneous equations for p0 and h0  so that   the ‘new’ values 

of p0 and h0  can be calculated from the  following expressions: 

0000

00
0

ˆˆ

CBDA

BEDR
p iinew




  (5.29) 

0000

00
0

ˆˆ

CBDA

CRAE
h iinew




  (5.30) 

 

These equation are applied to each point in turn to obtain a converged solution for the time 

step. Convergence is rapid with a relatively high under-relaxation factor possible. 
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 In some contact situations in the iterative time step scheme the value of  
newh0  obtained from 

equation (5.30) is negative at some mesh points, when this occurs the fluid film is unable to 

separate the surfaces. The film thickness then has its value set to zero and equations (5.29) 

and (5.30) are replaced by  

00
ˆ CEp i

new  , 00 newh  (5.31) 

 

This effectively sets a new boundary condition, h = 0 at the point and applies the Reynolds 

equation and deflection equation subject to that boundary condition. In this way the method 

determines where asperity contacts occur dynamically at each mesh point and in each time 

step. This technique is considered as a further advantage of the application of the coupled 

differential deflection approach. Every mesh point through each iterative sweep is assumed 

to be in a full film condition at each time step unless the iterating equations (5.29) and (5.30)   

result in a negative value for 
newh0 at that mesh point. The approach of the coupled iterative 

scheme is able to deal with the difficulties in simulation of EHL contact problems between 

surfaces that have aggressive asperity features. These cause significant variation in both 

pressure and lubricant film thickness as will be seen in the next section. 

When the equations (5.25) and (5.26) have been solved in this way the outer loop pressure 

and film thickness distribution are updated using a relaxation process. The 𝐴𝑘 and 𝐵𝑘 terms 

are then re-calculated and the equations are solved once more. 

This sequence of operations is repeated until the outer loop pressure has converged, which 

means that the solution for the current time step has been obtained. The outer loop pressure 

and film thickness distributions then become the first outer loop value for the next time step. 
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The right hand side of equation (5.25) is calculated for the newly converged time step and 

the procedure to solve the next-time step then starts. 

5.2.2.5 Numerical results of transient EHL contact analysis 

Evaluation of the fatigue model considered depends on the results of the transient micro-

EHL solutions for the fast and slow rough surface disks in the rolling/sliding contact. Results 

of the micro-EHL modelling, which gives the full time-varying behaviour of lubricant 

pressure and film thickness, have been used to predict the fatigue life and accumulated 

damage at the scale of surface asperity features. 

In the current research, the application of the coupled differential deflection method, 

developed by Tao et al., (2003) and Holmes et al., (2003a, 2003b), was adopted for the 

analysis of micro-EHL in test rough gear surfaces. This was used as part of a study of 

micropitting and fatigue damage accumulation calculations, with and without including the 

residual stress.  A pair of run-in profiles was selected for simulating the “rough on rough” 

rolling/sliding contact conditions and they are shown in Figure 5.3. The roughness profiles 

were taken from profilometer traces from run-in axially finished crowned disks. Tests were 

run using these two disks running at different peripheral speeds of 0.798 m/s and 0.479 m/s.  

This corresponds to a slide-roll ratio of 0.5. These representative profile sections were 

repeated and extended by creating longer multiprofiles with the joins between the repeated 

representative profiles made at deep valley features to ensure that no new artificial asperity 

features were created in the multi profile. The purpose of using multiprofiles is to reproduce 

all the asperity interactions for the two surfaces during the Micro-EHL contact simulation.  

  



 

 

141 

 

Figure 5-3 the representative profile section used in EHL simulations: a) Slow disk and b) Fast disk. 
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The results of the micro-EHL simulation are transient evaluations of lubricant pressure, 

surface shear stress and film thickness in the contact zone. The surface shear stress at direct 

asperity contacts is found from the asperity contact pressure. The time-dependent pressure 

and shear stress results are then used to predict the surface loading experienced by both 

contacting components. The transient analysis starts from the corresponding smooth surface 

steady state solution as an initial condition. The roughness profiles are then gradually fed 

into the contact from the inlet boundary. For each time step a converged solution of the 

pressure and film thickness with the current surface geometry is obtained. The lubricant 

pressure and film thickness values for the previous time step are used as starting values for 

the next time step during the solution process. An evaluation of the time varying surface and 

subsurface elastic stress distribution is then undertaken to build up the stress history for the 

disk material. This is a post processing step for the converged EHL analysis. The problem 

parameters assumed in the analyses are shown in Table1, which correspond to the operating 

conditions in the experimental test. 

Table 1 Operating conditions assumed in micro-EHL simulation 

Fast surface peripheral velocity( ms-1) 0.798 

Slow surface peripheral velocity( ms-1) 0.479 

Maximum Hertzian contact pressure (GPa) 1.4 

Lubricant viscosity (Pas) 0.0257 

Eyring shear stress (MPa) 10.0 

Young’s modulus (GPa) 207 

Poisson’s ratio 0.3 

Hertzian contact dimension, a (mm) 0.469 

Radius of surfaces 1 and 2 (mm) 38.1 
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The EHL simulation results of the steady state smooth surface are shown in the Figure 5.4 

.This figure shows the pressure, film thickness distribution, in-contact cavitation and 

deflected smooth surface profiles for the smooth surface steady state solution. The mesh size 

adopted in the micro-EHL simulations is ∆x = a/200, where a is the Hertzian contact semi-

dimension (a =0.469 mm). The inlet zone of the contact is to the left hand side of the plot 

and the outlet area of the contact corresponds to the right hand side of the graph. It is clearly 

seen from this graph that the lubricated Hertzian contact area is divided into three regions, 

firstly, the inlet region which ends at approximately x/a = -1, where the lubricant is entrained 

and hydrodynamic pressure is generated. Secondly, the Hertzian zone that starts at x/a = -1 

and ends just before x/a = 1. In this area the two surfaces are parallel and separated by an 

essentially constant film thickness. Finally, the outlet region, which starts at the film 

constriction and pressure spike before x/a = 1. Here the film pressure tends to push the 

lubricant flow toward the outlet region. Overall, these results indicate that the amount of 

lubricant within the EHL contact zone is managed by the inlet and continuity of lubricant 

can only be kept if there is a local restriction in the outflow, which causes a constriction to 

occur near the outlet. This constriction and pressure spike are close to the outlet region of 

the contact (x/a > 1) but are difficult to see on the graph due to the scale used. The smooth 

surface solution in Figure 5.4 includes all the key features of an EHL contact simulation as 

explained by Dowson and Higgingson (1966). 
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Figure 5-4 Steady state smooth surface solution at a typical timestep: Pressure distribution (red curve), film 

thickness distribution (blue curve),  The black curve indicates full film conditions(upper position) or cavitated film 

conditions(lower position) at each mesh point  and deflected surface profiles (green curves). 

 

Figure 5.5 shows the pressure, film thickness distribution and deflected rough surface 

profiles at a single time step during a transient simulation of two roughness profiles. This is 

an example timestep when the roughness has passed through the contact zone. The 

boundaries for the calculation are x = -2.5 a and x =1.5 a , the profiles are offset for clarity 

so that the relative magnitudes of the surface roughness asperities and the film thickness can 

be appreciated. The pressure, p, at micro asperity contacts is clearly much higher than the 

Hertzian semi-ellliptical pressure  and in this time step high extreme pressure spikes of 3, 4 

and 3.25 GPa occur at positions x/a = - 0.8, - 0.23, 0.1, respectively, where the prominent 

surface asperities can be seen to be in close interaction. The black curve indicates the contact 

condition at each point in the mesh for the timestep. It has three levels correspanding to 

Region 1 Region 2 Region 3 



 

145 

 

cavitated film (lower level), full film(central level) and direct contact(upper level). For the 

smooth surface result in Figure 5.4, only the full film and cavitated conditions occur with 

cavitation occurring at the exit to the Hertizian zone. In Figure 5.5, there are three occurences 

of direct asperity contact of x/a = -1, x/a = - 0.8 and x/a = 0.3. The contact of x/a = - 0.8 is 

associated with an extreme pressure but the others are not. 

 

 

 

Figure 5-5 Illustration of a typical time step during the micro-EHL simulation: Pressure distribution (red curve), 

film thickness distribution (blue curve), the black curve indicates contact conditions (contact, full film, and 

cavitation),  and deflected surface profiles (green curves). 
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A significant feature which is seen in micro-EHL solutions, is the phenomena of micro-

cavitation which relates  to cavitation at the roughness asperity level. An example of this is 

seen just befor the exit. 

The EHL simulation results of the two rough surfaces in contact are shown in Figure 5.6 a. 

This graph shows the transient contact events happening during the micro-EHL analysis for 

the representative profile in a series of traverses of the contact zone. Contact between rough 

asperities in the EHL simulations were counted and accumulated relative to the surface 

roughness profile. In this way the number of time steps where contact happened was found 

for each point in the EHL profile. In this graph the results of five traverses are shown for the 

representative roughness profile. The roughness surface profile is shown as the lower of the 

curves in the figure with black colour. The five traverse count curves of surfaces are offset 

from each other by a ‘count’ value of 100 for clarity and they are aligned with the 

representative roughness section. The total number of time steps required for a point on the 

rough profile to pass the Herzian contact width is 800. Prominent asperities are seen to have 

high count values. Examples of this in Figure 5.6 (a) can be seen located at profile positions 

values of 274, 512 and 1164 µm. For other traverses the contact counts at those profile 

location are relatively lower. Figure 5.6 b, illustrates the corresponding count of the number 

of time steps where maximum contact pressure values p > 3 GPa occurred. The same 

prominent asperities are observed to experience high count values. The variability between 

traverse results are caused by the differences in the counterface asperity positions for each 

traverse. 
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Figure 5-6 a) Profile contact count for five traverses of the contact zone and b) Profile high pressure count (p > 3GPa) for five traverses of the contact zone. 
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5.2.2.6 Contacting body stress analysis 

 

This section describes the procedure for determining the  surface loading history in terms of  

contact pressure and surface shear stress for stress analysis to determine material stress 

history at the surface and subsurface. The mixed EHL time step results are used to calculate 

the stress history at the lubricant/solid interface and for a block of the near surface material 

as it passes through the load bearing zone. At each timestep in the EHL analysis stored values 

of pressure, film thickness and surface traction are used to determine subsurface stress and 

strain history at each point in the representative block of material. The following convolution 

integrals are used to calculate the instantaneous distribution of subsurface elastic stress and 

strain. 

 

         (5.32) 

 

The dimensions of the block are chosen to be 2.68 𝑎 parallel to the surface and 𝑎 

perpendicular to the surface. The mesh for the block of material is set up for stress evaluation 

in such a way that the finest mesh is used near the surface to capture the possible high stress 

gradients due to asperity contact and that significantly improves the accuracy of the 

numerical simulation results. In the current research, the blocks of material were discretized 

with a mesh of 201 uniform points in the x direction parallel to the surface as shown in 

schematic illustration in the Figure 5.7. In the vertical direction perpendicular to the surface 

the depth of the EHL block is divided into three different mesh density zones. The first zone 
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starts at the surface and has a uniform fine mesh with 31 grid points over 0 ≤ 𝑧 ≤ 0.06 𝑎 . 

The second zone has a spacing of 0.005a over range 0.065𝑎 ≤ 𝑧 ≤ 0.1 𝑎 . The third zone 

has a coarser spacing of 0.1a .  

 

Figure 5-7 Schematic illustration of the material block mesh used in stress analysis. 

 

The roughness irregularities can increase the local surface stresses to levels that are much 

higher than the maximum Hertzian pressure. This effect gradually decreases further down 

from the surface. This can be clearly observed in the results of stress analysis as shown in 

the Figure 5.8, its amplitude in the surface layer is evelated to the level comparable to its 

maximum alternating amplitude within the subsurface region. These observations are largely 

consistent with the earlier work done by (Sheng and Ahmet, 2011).  

This result is significant at the subsurface level z/a < 0.1, where the high stress concentration 

is induced directly by the surface roughness. It has been believed that such localized extreme 

stress concentration is associated with the occurrence of the fatigue damage, in the form of 
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surface and subsurface micropitting, surface crack formation (Fujita and Yoshida, 

(1981);Yoshida et al., (1994); Yoshida and Konishi, (1995)). It can be seen from the Figures 

5.9, 5.10 and 5.11 that S11, S22 and S12 all have negative values since the contacting bodies 

are under compression. Here 𝑆11   = 𝜎𝑥𝑥 , 𝑆22   = 𝜎𝑧𝑧 and 𝑆12   = 𝜎𝑥𝑧 . Basically,the 

compressive stress is greatly increased and its location moves toward the rough surface when 

the roughness feature is considered. Figure 5.10 shows 𝜎𝑧𝑧 which is equal to the pressure at 

the surface. The subsurface stress and strain history at each point in a representative block 

of material will be used to search for the critical plane and assess the fatigue damage as will 

be discussed in more detail in the next section. 

 

 

Figure 5-8 Rough surface contacts: a) Tangential traction; b) contours of horizontal stress component S12. 
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Figure 5-9 Rough surface contacts: a) EHL pressure distribution; b) contour of horizontal stress component S11. 

 

Figure 5-10 Rough surface contacts: a) EHL pressure distribution; b) contour of vertical stress component S22. 
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Figure 5-11 Rough surface contacts: a) EHL roughness profile; b) contour of horizontal stress component S12. 

 

5.3 Fatigue and damage theory based on critical plane approach 

Multiaxial fatigue failure criteria can be divided into three approaches i.e. stress, strain and 

energy-based criteria. Among these approaches, one criteria called the critical plane 

approach is considered significant. This plane is defined as the plane that is subjected to 

maximum damage. The Multiaxial fatigue failure criteria based on the critical plane 

approach reduces a multiaxial stress state to the equivalent uniaxial one. The aim of this 

approach is to combine the normal and shear stresses acting on a fixed plane within a material  

and to use these to identify the plane most vulnerable to fatigue failure. Findley (1956) 

introduced the term ” critical plane” and verified fatigue stress criteria based on the critical 

plane approach. Fatigue model criteria based on the critical plane approach are used to 

calculate fatigue life as well as fatigue fracture plane orientation. Three criteria based on the 

critical plane approach, the Findley criterion, the Matake criterion, and the Dang Van 
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criterion, are applied to the Micro-elastohydrodynamic line contact fatigue calculations in 

the current research. 

Since many influencing parameters affect the fatigue analysis, there is no universally 

accepted multiaxial fatigue approach to achieve fatigue analysis (Fatemi and Socie, 1988). 

However, it has been reported that more accurate fatigue damage predictions are often 

achieved using a critical plane approach (Chu, 1995). Therefore, the critical plane approach 

is considered to be the most effective criteria and will be used  in this chapter for analysing 

fatigue damage in mixed lubrication line contacts. The concept of the critical plane approach 

is based on the hypothesis that the fatigue crack initiates in slip systems of maximal shear 

stresses and, in the short crack stage, it propagates along these planes which have normal 

stresses that open the crack tip (Bannantine and Socie, 1992). 

The  criteria of  Findley, Matake, and Dang Van  are based on the assumption that the fatigue 

process is driven by a linear combination of a measure of shear stress, A, and a measure of 

normal stress, B. Fatigue can be expected to occur in a set number of cycles if this linear 

combination exceeds a fixed level. They can be written in the general form of as 

  BA  (5.33) 

where the condition corresponds to a known probability of enduring 107 cycles without 

fatigue occurring. Parameters   and    are material coefficients and   take different values 

for the different criteria. They are determined from the endurance limits under fully reversed 

bending and fully reversed torsion tests so that equation (5.33) is an equality when applied 

to those tests. The parameters that are used in these criteria are given in Table 2, where a is 

the shear stress amplitude, n,max is the maximum value of the normal stress on the plane, 

and h is the hydrostatic stress. af and af are the endurance limits under fully reversed 

bending and fully reversed torsion tests, respectively. 
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Table 2 Expressions of parameters for criteria based on the critical plane approach  

Criterion A B     

Findley a n,max 
1/2

/2





afaf

afaf




 

1/2 afaf

af




 

Matake a n,max 1
2


af

af




 

af  

Dang Van a (t) h (t) 
2

3
3 

af

af




 

af  

 

These criteria suggest that the critical plane orientation coincides with the maximum shear 

stress amplitude, where the maximum value of this linear combination occurs. 

There are two aspects to be considered when applying the critical plane approach to estimate 

fatigue lifetime under multiaxial approach. Firstly, determining the orientation of the critical 

plane based on parameters A and B. Secondly, to assess the fatigue behavior using Equation 

(5.33). From Table 2, it can be clearly seen that calculation of the amplitude and mean value 

of the shear stress acting on the plane under consideration is needed to apply these fatigue 

criteria.  

Since the transient micro-EHL solution is a plane problem, only the x-z plane is examined 

in the current research. As shown in Figure 5.12, the normal and shear stress history on the 

critical plane through a material point can be calculated at time (t) from the directional 

components by using Timoshenko and Goodier, ( 1973). 

 cossin2sincos)( 22

xzzxt   (5.34) 

 cossin)()sin(cos)( 22

xzxzt   (5.35) 
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Figure 5-12 the orientation of the critical plane 

 

Consider a candidate plane (the critical plane is not known) which is defined by θ in 

Equations (5.34) and (5.35) which is the angle between the normal to the plane and the x-

axis. From the stress history of each material point the amplitude and the mean shear stress 

on the plane are found by     

2

minmax 



a

 (5.36) 

2

minmax 



m

 (5.37) 

where max and min are the maximum and minimum values of the shear stress on the plane, 

respectively obtained during the loading history in the orientation,θ, under consideration. 

After parameters A and B are calculated the critical plane at a point is the plane which has 

the maximum value for BA  . The next step is to evaluate the fatigue failure condition and 

a fatigue parameter (FP) can be determined from equation (5.38) as 



BA
FP


  (5.38) 
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Thus when the FP in equation (5.38) is greater than unity, fatigue failure  can be expected 

to occur with corresponding probability .  

For the Dang Van fatigue criterion, since both A and B use current stress values, the fatigue 

parameter is  








 




BA
FP

t
max  (5.39) 

The critical plane for each particular case can be determined by maximisation of the right-

hand side of equation (5.39).  

Since the critical plane through a given material point is not known before the analysis, FP 

is  calculated on all the candidate planes in order to establish the critical plane. The above 

analysis methology has to be repeated for all the material points to be analysed.  

5.4 Interpolation of residual stress  

In order to use the residual stress calculated in the Abaqus FEA analysis for consideration in 

the fatigue calculation, it is essential to transfer the residual stress field calculated for surface 

asperities using the ABAQUS finite element (FE) package to the fatigue calculation. Such 

residual stresses which have developed in the material may have a significant effect on the 

fatigue life. This residual stress field is combined with the stress resulting from EHL analysis 

to give an improved indication of damage and to assess surface fatigue life. This is done by 

using an interpolation procedure that enables each asperity feature to have the correct 

residual stress distribution according to the loading that gives the best fit to the measured 

residual deflections. The stress information for Abaqus could only be plotted using the 

contour plotting tool with in Abaqus. The requirement was to interpolate this stress field 

onto the mesh which would be used for the evaluation of stress based on the EHL model’s 
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surface loading from timestep to timestep. The EHL mesh used had a spacing of a/200 which 

was 2.45 µm for the contact load adopted. 

The interpolation process involves two steps: 

(a)- Expressing each Abaqus stress point position (x,z) in terms of x (unchanged) and a 

modified z, the distance from the rough surface. 

(b)- Interpolating each component of the Abaqus stress field from the new x,z coordinates to 

the regular mesh of x,z coordinates adopted for the EHL stress evaluations. 

Step (a) is referred to as, flattening and is illustrated using Tecplot’s triangulation process 

for comparison purposes only. 

The best settings for interpolation from the non-structured Abaqus mesh to the structured 

EHL fatigue calculation mesh have been determined by a lot of careful evaluation and 

checking using a typical Abaqus stress field.  This process includes two steps defined above. 

Step (a) is to extract the residual stress field at each FEA node by tabulation within the 

Abaqus system. This table also gives the nodal coordinates for each of the mesh points in 

the residual unloaded position at the end of the analysis FEA. The coordinates of the surface 

points are extracted separately from Abaqus using the “path tool”. The surface position is 

established for each x coordinate required by linear interpolation of the surface points. This 

z value is subtracted from the z coordinate of the stress point to achieve the objective of step 

(a). Figure 5.13 shows the  rough surface flattening process, i.e. the form and residual 

roughness is removed and the data remains on an unstructured mesh. 

 The second step is to interpolate from the unstructured mesh to the uniform mesh to be used 

for fatigue failure analysis. An existing Gaussian interpolation software programme was 

developed  to accomplish this process in the current  research. This code  finds the 
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interpolated value at a mesh point  in the regular mesh by considering a circle centred at the 

point and considering the values of the stress field component at each of the unstructured 

mesh points that are located within the circle. These contribute to the interpolated value 

according to the reciprocal of their distance from the regular mesh point. The radius of the 

interpolation circle is changed according to the fineness of the unstructured mesh. The radius 

is specified in terms of the finest resolution of the high density mesh and this is used for the 

interpolation along with a minimum number of points condition. This was a minimum of 

four points for the current analyses. If there are fewer than the minimum number of points 

specified for interpolation, the programme doubles the radius until the condition of the point 

is satisfactory. The interpolation programme was designed to differentiate between the low 

and high density of interpolation points and then a convenient interpolation circle radius was 

assigned for each zone  (the high density mesh dimension and low density mesh dimension). 

 

Figure 5-13 Rough surface flattening: a) model after flattening process b) model before flattening 

process, Von_Mises stress unit is MPa. 
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Figure 5.14 shows a comparison between the contour plot result gained by the Gaussian 

interpolation software programme and  a contour plot of the von Mises stress as produced 

by the Abaqus FEA system using the calculated values at each mesh point, these figures 

should have the Abaqus result as (a) and the interpolated result as (b). Figure 5.14 a  is for a  

0.5 mm sample length of the surface and for 201 points in the x-direction in the  moving 

material box inside the EHL analysis. In this figure the radius of interpolation for the fine 

and course mesh area was 2 µm and 3 µm , respectively. These settings were able to provide 

a good reproduction of the intensity value of stress and smooth contours in the area located 

between z = - 0.02 mm to z = - 0.044 mm when compared to the data as produced by the 

Abaqus FEA system in Figure 5.13 (b). However, it gives poor contours in the area which 

has a high mesh density in between z = 0.0 and z = -0.01 mm. In addtion, this plot does not 

capture the detailed information of the possible high stress gradients due to asperity contact 

near the surface that can be seen in Figure 5.14 a at x = - 0.01 mm, -0.08 mm, -0.16, -0.34 

and at x = -0.41 mm. In order to achieve the appearance of fine detail on the interpolated 

version of the stress data in the area which has a high density of mesh near the surface, it is 

necessary to increase the number of a points inside the  EHL mesh moving box to 401 and 

501 as shown in Figures 5.15 and 5.16, respectively. The advantage of the latter technique 

is that more detail can be presented at the subsurface level and using approximately the same 

mesh size of  EHL. In this way, the interpolation software programme can  give smooth 

stress contours on the subsurface of the model as shown in Figure 5.15. This figure used 401 

points in the moving  box and using 2 µm and 3 µm radius of interpolation values for fine 

and course mesh, respectively. This can effectively capture detailed information about the 

stresses in the near surface area which has a high mesh density and examples of this can be 

seen at  at x = - 0.01 mm, -0.08 mm, -0.16, -0.34 and at x = -0.41 mm. Figure 5.16 which 

used 501 points in the moving  box was not able to pick up the values of a high stress 

component and give smooth contours in the same area which has a high density near the 
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subsurface level. Thus, to capture detailed stress data the current research used 401 points in 

the moving box and 2 µm radius for the FEA’s densely meshed area and used the 3 µm 

radius for the low density area as shown in Figure 5.15. 

 

 

Figure 5-14 von Mises stress contours 201 points with radii of interpolation for fine and coarse meshes 

of 2 µm and 3 µm, respectively: a) Abaqus result, b) Interpolation result. 
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Figure 5-15 von Mises stress contours 401 points with radii of interpolation for fine and coarse meshes 

of 2 µm and 3 µm, respectively: a) Abaqus result, b) Interpolation result. 

 

Figure 5-16 von Mises stress contours 501 points with radii of interpolation for fine and coarse meshes 

of 2 µm and 3 µm, respectively: a) Abaqus result, b) Interpolation result. 
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5.5 The Process of applying the critical plane model 

The evaluation of any particular fatigue model using multiaxial fatigue criteria based on the 

critical plane concept  involves using the stress history for the material  as it passes through 

the contact area. In such a model if the FP is unity or above, fatigue failure is likely to happen 

after 107 loading cycles. The fatigue parameter is evaluated based on the stresses 

encountered during one pass of the representative volume through the EHL contact area. To 

evaluate the fatigue failure based on the critical plane approch, such as the Findley criterion, 

the Matake criterion, and the Dang Van criterion the  following steps are taken for all the 

material points to be examined: 

1. Read the stress history for all the evaluation points in the material block considered 

for EHL analysis. 

2. For each evaluation point in turn use the stress component history to calculate the 

strain history by using Hook’s law as follows : 

    zxx vvv
E

  11
1 2

 (5.40) 

    zzz vvv
E

  11
1 2

 (5.41) 

 
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





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12
 (5.42) 

 

3. Consider each potential critical plane orientation in turn which is defined by θ, the 

angle between the normal of the plane and the x-axis. Obtain normal and shear stress 

history, and in the same way calculate normal and shear strain on the critical plane 

respectively according to Timoshenko and Goodier (1973) as:   

    

 cossin2sincos 22

xzzx   (5.43) 
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              cossinsincos 22
xzxz                                                                                (5.44) 

 cossinsincos 22

xzzx   (5.45) 

    


cossinsincos
22

22
xz

xz   (5.46) 

4. Evaluate a    , n,max, a (t) and  h (t) for the plane considered and calculate the fatigue 

parameters for each of the fatigue models. 

5. FP has to be examined on all the candidate planes in order to identify the critical 

plane for the point considered for each model. The critical plane is defined as the 

material plane where 


BA
FP


 is a maximum for that point. 

6. Evaluate the fatigue failure using equation (5.38). If FP is greater than unity at a 

point, fatigue failure is likely to happen in Nf  cycles at that point. 

7. Produce contour plots of the FP values obtained at each point in the material. 
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5.6 Numerical results for critical plane models without and with residual stress 

A number of fatigue analyses of the critical plane approach were used and compared for the 

EHL line contact with rough surfaces. The results of three such models of the fatigue process 

are presented here namely the Findley, the Matake, and the Dang Van criteria. The fatigue 

failure is postulated to occur for 107loading cycles when the fatigue parameter (FP) is unity. 

The parameters for the fatigue model applied are given in Table 3. 

Table 3 Parameters used for transient EHL line contact analysis. 

K Material constant in equation (5.29) 1.0 

G Shear modulus (GPa) 80 

𝜎𝑜
′  Yield strength for the cyclic stress-strain curve (GPa) 2.293 

𝜏𝑓
′

 Shear fatigue strength coefficient (GPa) 1.15 

𝛾𝑓
′  Shear fatigue ductility coefficient 0.831 

b Fatigue strength exponent - 0.091 

c Fatigue ductility exponent - 0.6 

𝜎𝑎𝑓 Fatigue limit for bending (MPa) (𝑁 = 107) 695 

𝜏𝑎𝑓 Fatigue limit for torsion (MPa) (𝑁 = 107) 401 

a Hertzian semi-contact dimension (mm) 0.469 

ξ Slide roll ratio = (u1 − u2) *2 /(u1 + u2) 0.5 

𝑝𝑜 Hertzian contact pressure (GPa) 1.4 

 

The parameters values of  𝜏𝑓
′   and 𝛾𝑓 

′    were estimated from the fatigue strength coefficient 

𝜎𝑓 
′  = 2 GPa and the fatigue ductility coefficient 𝜀𝑓

′= 0.48 for pure shear conditions as 
𝜎𝑓

′

√3
⁄  

and  √3𝜀𝑓
′  , respectively,( Dowling 1998). 
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The EHL block material used for the two rough surfaces is SAE4340 (BS970:En24) whose 

hardness is HB = 409 and ultimate tensile strength is 𝜎𝑢= 1470 MPa (Zahavi and Torbilo 

1996). The steel used in the fatigue experiments was not the same, but it was assumed these 

parameters as typical values. In addition, its fatigue limit at 𝑁 =  107cycles under fully 

reversed fatigue loading (bending) can be assumed by (Ciavarella and Maitournam, 2004)  

6954097.17.1  HBaf (MPa) 

and the fatigue limit under fully reversed torsional loading through each cycle can be 

approximated by (Dowling 1998) 

401577.0695
3


af

af


 (MPa) 

The fatigue damage value can be considered progressive and localised over the material and 

its variation can be illustrated as a contour plot. The results reported in this section are based 

on two rough surface profiles for the fast and slow discs discussed in the experimental work. 

The two rough surface profiles run against each other in a transient EHL analysis so that 

comparisons could be made between the same portions of roughness profile as shown in the 

previous plot Figure 5.3.  The slower rough profile is examined critically because its 

asperities are subject to a higher number of stress cycles during the EHL contact analysis 

than are those of the faster disk. 

Figures 5.17 and 5.18 show the overall results for the slow disk surface for the Dang Van 

fatigue parameter, the Matake fatigue parameter and the Findley fatigue parameter without 

residual stresses and with  residual stresses , respectively. Figure 5.17 b, c and d shows the 

contours of high values of the fatigue parameters without residual stresses for the three 

fatigue criteria. The rough surface profile is seen in the upper plot and the black dotted 

headed arrows labelling to the rough surface correspond to ten asperities which have highest 

FP values. It can be seen that high levels of damage occurred at the scale of the asperity 
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features at positions corresponding to aggressive asperity loading within 107 rotating cycles, 

such as depths of 0.07a (33 µm). It can be seen from Figure 5.17 b that the calculated fatigue 

parameters by using the Dang Van criterion are slightly lower than the Matake and Findley 

fatigue parameter.  It can be noticed that the Matake criterion and the Findley criterion give 

almost the same results. In addition, they predict a more aggressive damage, because they 

are highly dependent on the shear stress, therefore, the roughness effect is more responsive 

by these criteria. Fatigue failure regions (in red colour) are those where fatigue parameter ≥ 

1. It is clear that damage regions are concentrated near the surface of particular asperity 

features for the three criteria considered; at x/a = -0.57, x/a = -0.92, x/a = 1.11 and x/a = 

1.28, for example. Figures 5.18 b, c, d shows the corresponding result when the Abaqus 

residual stress is included in the fatigue analysis. It was found that for some asperities the 

fatigue life for the models involving residual stress was shorter than the fatigue life obtained 

using the same model without the induced residual stress. However, there are differences of 

an order of magnitude in the calculated fatigue parameter for the three criteria adopted. 
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Figure 5-17 Contours of fatigue parameter (FP) for fatigue at 𝟏𝟎𝟕 cycles – without residual stresses: a) EHL profile, b) Dang Van, c) Matake, and d) Findley criteria 
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Figure 5-18 Contours of fatigue parameter (FP) for fatigue at 𝟏𝟎𝟕  cycles – With residual stresses: a) EHL profile, b) Dang Van, c) Matake, and d) Findley criteria 
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Figures 5.19 through 5.30 present the fatigue parameter calculated with and without residual 

stress at a larger scale and more detailed contour comparisons for the three criteria 

considered. The roughness profiles which are seen in the upper part in the Figures 5.19 a, 

5.23 a , and 5.27 a were termed as load stage 2 shown in black and load stage18 shown in 

red. Load stage 2 is following a further 30 seconds of loading of the two rough surfaces, the 

asperities during this stage experience comparatively little plastic deformation. In addition, 

the asperity features become almost uniformly flattened having rounded lands while the 

valley features remain relatively unchanged as high contact loads happen predominantly 

between interacting asperities. However, Load stage 18 appears to show a large amount of 

modification and it is thought that surface fatigue is the mechanism causing these prominent 

modifications at the level of valley regions, which are the result of the removal of material 

these can be most clearly identified at x/a = 1.28,  x/a = 1.11,  x/a = 0.69,  x/a = 0.06,  x/a = 

- 0.27 and  x/a = -1.2. Some of the experimentally observed micropits seen in Load stage18 

were found to occur at positions that had high calculated fatigue parameters. This shows that 

residual stress can have a significant effect on the fatigue and more detailed comparisons 

indicate that where this happens it tends to occur near the surface of the material. This 

observation is in good agreement with the fatigue results obtained from the critical plane 

approach models and with the fatigue experimental profile (Load stage 18). It has been 

shown clearly in all magnified sections the compressive residual stresses are often 

intentionally introduced into material to improve the fatigue strength at long lives and this 

is considered a protective environment. However, the risk comes from the high tensile 

residual stresses that increase the failure near the surface of aggressive asperity feature as 

shown clearly in the magnified section in Figure 5.20. Furthermore, deeper in the subsurface 

the material is hardly affected by the roughness, for example at depths of 0.2a where the 

damage is decreasing at this level. 
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Figure 5-19 slow disk- contours of fatigue parameter (FP) at 𝟏𝟎𝟕  cycles using the Findley Criterion, 

target load is 1.4 GP: a) Surface profile; EHL – black, LS18 (experimental) - red; b) Damage without 

residual stress, c) Damage with residual stress. 

 

 

Figure 5-20 slow disk: Findley fatigue parameters for 𝟏𝟎𝟕  loading cycles at the close proximity to the 

contact surface; part a) Damage without residual stress, part b) Damage with residual stress. 
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Figure 5-21 slow disk: Findley fatigue parameters for 𝟏𝟎𝟕  loading cycles at the close proximity to the 

contact surface; part a) Damage without residual stress, part b) Damage with residual stress. 
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Figure 5-22 slow disk: Findley fatigue parameters for 𝟏𝟎𝟕  loading cycles at the close proximity to the 

contact surface; part a) Damage without residual stress, part b) Damage with residual stress. 
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Figure 5-23 slow disk- contours of fatigue parameter (FP) at 𝟏𝟎𝟕 cycles using the Matake Criterion, 

target load is 1.4GP: a) Surface profile; EHL – black, LS18 (experimental) - red; b) Damage without 

residual stress, c) Damage with residual stress. 

 

Figure 5-24 slow disk: Matake fatigue parameters for 𝟏𝟎𝟕  loading cycles at the close proximity to the 

contact surface; part a) Damage without residual stress, part b) Damage with residual stress. 
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Figure 5-25 slow disk: Matake fatigue parameters for 𝟏𝟎𝟕  loading cycles at the close proximity to the 

contact surface; part a) Damage without residual stress, part b) Damage with residual stress. 
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Figure 5-26 slow disk: Matake fatigue parameters for 𝟏𝟎𝟕 loading cycles at the close proximity to the 

contact surface; part a) Damage without residual stress, part b) Damage with residual stress. 
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Figure 5-27 slow disk- contours of fatigue parameter (FP) at 𝟏𝟎𝟕  cycles using the Dang Van Criterion, 

target load is 1.4GP: a) Surface profile; EHL – black, LS18 (experimental) - red; b) Damage without 

residual stress, c) Damage with residual stress. 

 

 

Figure 5-28 slow disk: Dang Van fatigue parameters for 𝟏𝟎𝟕 loading cycles at the close proximity to the 

contact surface; part a) Damage without residual stress, part b) Damage with residual stress. 
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Figure 5-29 slow disk: Dang Van fatigue parameters for 𝟏𝟎𝟕  loading cycles at the close proximity to the 

contact surface; part a) Damage without residual stress, part b) Damage with residual stress. 
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Figure 5-30 slow disk: Dang Van fatigue parameters for 𝟏𝟎𝟕 loading cycles at the close proximity to the 

contact surface; part a) Damage without residual stress, part b) Damage with residual stress. 
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A summary of the application of the critical plane approach criteria to this analysis is 

presented in Table 4, which records ten asperities which have highest fatigue parameter (FP) 

values. The ten asperities are labelled with numbers of 1 to 10 and identified by the 

distinguishing arrows in Figure 5.18 a. It can be seen from the data in Table 4 that the Findley 

criterion and the Matake criterion reported almost the same FP values. Using the Dang Van 

criterion, the calculated results are slightly lower for this case study. What is interesting 

about the data in this table is that all three critical plane approach criteria agree closely on 

which asperities are those most likely to experience fatigue and, which are not likely to 

experience fatigue. 

Table 4 Ten identified asperities with highest fatigue parameter values by three fatigue criteria.  

Index 

Findley Matake 
Dang Van 

 

FP Asperities 

No. 

FP Asperities 

No. 

FP Asperities 

No. 

1 1.9305 3 1.953 3 1.4742 3 

2 1.8486 10 1.8683 10 1.4319 10 

3 1.7222 9 1.7421 9 1.3369 9 

4 1.6721 4 1.6921 4 1.3174 4 

5 1.6409 1 1.6605 1 1.2183 1 

6 1.5807 5 1.5996 5 1.2018 5 

7 1.5207 6 1.5311 6 1.1536 6 

8 1.3957 8 1.4044 8 1.0966 8 

9 1.3256 7 1.3323 7 1.0414 7 

10 1.1715 2 1.1831 2 0.96081 2 
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Figures 5.31 to 5.34 show the FP values plotted against x/a at a different depth levels z/a = 

0.0, 0.008, 0.01, 0.016, 0.024 and 0.5 using these criteria. When the fatigue parameter 

exceeds unity at a position, fatigue failure is expected to occur. Closer inspection of these 

plots show that the FP values have their greatest variation at and near the surface, such as 

depths of 0.008a (3.75 µm) and 0.01a (4.69 µm), due to the effect of roughness where the 

highest damage values are found at this depth level. At increasing distance from the 

roughness surface, for instance at depth of 0.5a (234.5 µm), FP curves become flat and lower 

where the stress is seldom influenced by the roughness.  

  

 

 

Figure 5-31 Distributions of fatigue parameter (FP) with residual stress at 𝟏𝟎𝟕  cycles at different depth 

levels by using Findley criterion; a) full scale plot and b) large scale plot from x/a = - 0.5 to x/a = +0.5. 
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Figure 5-32 Distributions of fatigue parameter (FP) with residual stress at 𝟏𝟎𝟕   cycles at different depth 

levels by using Findley criterion at larger scale plot from x/a = - 0.5 to x/a = +0.5. 

 

 

 

Figure 5-33 Distributions of fatigue parameter (FP) with residual stress at 𝟏𝟎𝟕  cycles at different depth 

levels by using Matake criterion; a) full scale plot and b) large scale plot from x/a = - 0.5 to x/a = +0.5. 
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Figure 5-34 Distributions of fatigue parameter (FP) with residual stress at 𝟏𝟎𝟕   cycles at different depth 

levels by using Dang Van criterion; a) full scale plot and b) large scale plot from x/a = - 0.5 to x/a = +0.5. 

 

5.7 Conclusion 
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Chapter 6 Fatigue analysis – applying variable amplitude 

multiaxial fatigue criteria 

 

6.1  Introduction 

A rough EHL contact simulation procedure to estimate the cumulative fatigue damage is 

established in this section. In the passage of the surface material through the EHL contact, 

different asperity interaction events will occur due to the relative rolling motion of the 

surfaces and as a result there will be a number of interactions so that the material is subjected 

to variable amplitude cyclic loading. These cycles are different and are potentially in 

different axial orientations. The model needs to relate to this loading pattern and does so by 

using a fatigue life model to determine the amount of damage caused by each cycle. 

The critical plane approach is used in this procedure, which is built upon a strain-life model 

that is used to establish the damage associated with each effective loading cycle. The model 

used in this work is that of  Fatemi and Socie, (1988). In such a model, the stresses and 

strains are calculated during cyclic loading for all of the planes in the material, and the 

maximum cyclic shear strain range with the maximum normal strains drive the fatigue crack 

initiation of the surface materials. It has generally been recognized that critical plane models 

often achieve better predictions for fatigue damage assessment. This chapter presents a 

variable amplitude multiaxial fatigue model calculation for the EHL line contact with rough 

surfaces based on a critical plane approach. 

 

 



 

184 

 

6.2   Fatigue models based on critical plane approach 

Several models based on the critical plane approach have been developed for estimating 

fatigue life in the material, where the stresses and strains normal to the crack plane might 

have a major effect on the behaviour, accelerating the growth if they tend to open the crack. 

This situation has led to a number of proposals for critical plan approaches.  

The model adopted in this work is Fatemi and Socie’s fatigue model, (1988) which is based 

on the assumption that the damage will occur according to its parameters’ effect that is 

shown in equation (6.1), which are a combination of a normal direct stress and shear strain. 
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Where  
2

maxΔγ
  refers to the amplitude of shear strain on the critical plane, and 𝜎𝑛

𝑚𝑎𝑥 refers 

to the maximum tensile stress which is normal to the critical plane. Parameter k   is a 

material constant with the range, 0.6 < k < 1.0. The model is applied over a mesh of points 

within the block of material and at each of these points; it is applied to planes of all 

orientations in turn. In the simulation process the planes are rotated in one-degree steps and 

the orientation that gives rise to the largest accumulated damage value is the critical plane, 

and the value of D for the point is this maximum value. The value of damage obtained for 

each material point is based on all of the equivalent loading cycles identified during one pass 

of the material point through the EHL contact. 

Chu, (1995) highlights the need to find the link between shear strain and normal stress 

components by developing a model that combines both shear and normal components. This 

model allows the number of loading cycles to failure Nf, to be calculated for the effective 

loading cycle. 
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This model was developed for the material with mixed cracking modes; cracks are initiated 

and grown on the maximum normal planes for tension loading, at high strain but on the 

maximum shear planes for torsion loading. Chu’s model proposes that the fatigue is 

predicted by the strain life relation, which is described by equation (6.2); 

 
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fff

b

f

f

a NN
E
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




 22
2

2

max 


  (6.2) 

Where the maximum stress and the strain amplitude are defined by max and a , respectively, 

which are normal to the crack plane; the shear strain and the shear stress range are defined 

by  and  , respectively, on the same plane. J is a material constant, which can be obtained 

from tension/torsion tests. He determined the critical plane and the largest damage parameter 

from the transformation of strains and stresses onto planes spaced at equal increments. For 

fatigue life prediction of rolling contact fatigue creation, Johnson, (1989) strongly claimed 

that the cracks take place in shear under hydrostatic compression. Therefore, the Fatemi and 

Socie, (1988) shear failure model may be considered the more appropriate model for 

assessment of variable amplitude multiaxial fatigue damage in this research. 

6.3 Fatigue damage evaluation procedures. 

The evaluation of any particular fatigue model involves using the stress history for the block 

as it passes through the EHL contact zone. To evaluate the total-life the following steps are 

taken for each point in the fatigue calculation area: 

1. Read the stress history for all the evaluation points in the material block considered 

for EHL analysis. 

2. For each evaluation point in turn use the stress component history to calculate the 

strain history by using Hook’s law as follows : 
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3. Consider each potential critical plane orientation in turn which is defined by θ, the 

angle between the normal of the plane and the x-axis. Obtain normal and shear stress 

history, and in the same way calculate normal and shear strain on the critical plane 

respectively according to Timoshenko and Goodier (1973) as: 

 cossin2sincos 22

xzzx   (6.6) 

              cossinsincos 22
xzxz                                                                             (6.7) 

 cossinsincos 22

xzzx   (6.8) 

    
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22

22
xz

xz   (6.9) 

4. Determine the effective loading cycles based on the shear strain history. Finding the 

corresponding stress level for each effective loading cycle. These cycles are counted 

by using the rainflow method developed by Amzallag  et al. (1994). 

5. For each cycle identified in step 4 in turn, determine the shear strain amplitude 𝛾𝑎 , 

normal strain amplitude 𝜀𝑎 ,and the maximum normal stress 𝜎𝑛 . 

6. Calculate the fatigue life, fN  as per the Fatemi and Socie shear model for the current 

cycle of strain by solving equation 6.10. 
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Where  
2

maxΔγ
  refers to the amplitude of shear strain on the plane considered, and 𝜎𝑛

𝑚𝑎𝑥 

refers to the maximum tensile stress which is normal to the plane. Parameter k   is a material 

constant with the range, 0.6 < k < 1.0. The fatigue damage associated with the current cycle 

will be determined on the candidate plane as: 

f
cycle N

damage
1

  (6.11) 

The total damage sustained from the cyclic loading is obtained using the Palmgren-Miner 

(1924) rule 

f

cycles
loading
effective
all

N
ΣD

1
  

(6.12) 

This is the damage value for the current candidate plane and a value of D equal to unity then 

corresponds to fatigue failure. The process is repeated from step 3 for each candidate critical 

plane orientation and the results used to identify the plane that has the highest value of D, 

Dmax. This is the critical plane for the evaluation point being investigated, and Dmax is the 

value of the accumulated damage at that point. 

7. Repeat from step 1 for each evaluation point in the material in the fatigue evaluation 

area.  

8. Finally determine the fatigue life of the component material and plot the value of 

Dmax for each point in the fatigue evaluation area as: 

maxD
N f

1
  (6.13) 
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6.4 Weibull cumulative density function (CDF) 

The Weibull distribution is a theoretical model that is successfully used in statistical analysis 

to estimate the failure probability. The Weibull distribution model is a tool to develop the 

probabilistic analysis because of its ability to provide reasonably accurate failure analysis 

and failure calculations with extremely small sample data. The three-parameter Weibull 

distribution can be used to describe the probability density function F (D) of damage at any 

specified depth. These distributions are useful in comparing results for different conditions 

when presented in the cumulative form F (D). This function is skewed towards low damage, 

and the Weibull distribution is thus an appropriate stochastic model to use for this purpose. 

The cumulative density function for this distribution has the form:  
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D

DF  (6.14) 

Where  is the scale parameter,  is the shape parameter and  is the location parameter. If 

 = 0, the 3-parameter Weibull distribution becomes the 2-parameter Weibull distribution. 

 

6.5  Cracking mechanisms in multiaxial fatigue 

It has been suggested by Brown and Miller (1973) that there are two different mechanisms 

for crack propagation at surfaces of materials subjected to multiaxial fatigue loading on the 

basis of the orientations of the crack planes of maximum shear strain amplitude with the free 

surface. This process is described in more detail by Suresh, (1998) based on the figure 

reproduced as Figure 6.1.  

 Figures (6.1 a and e) show a cubic element of material subjected to multiaxial strain cycles 

as well as the free surface plane. Figures (6.1 b and c) present the planes of maximum shear 

strain amplitude. There are two stages of crack growth in the materials, and they are called 
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stage I and stage I I cracks. Stage I crack is initiated by the single shear process at the free 

surface and progresses during subsequent cycling. In these plots, the shear stress acts parallel 

to the free surface, and there is no shear stress acting on the normal direction to that surface. 

The unit normal vectors to the planes of maximum shear strain amplitude are located on the 

material surface plane. Under these conditions, the cracks propagate more in a direction 

parallel to the surface than normal to the surface, thereby increasing the aspect ratio of the 

crack. This mechanism of crack propagation is called ‘case A' by Brown and Miller (1973). 

 

Figure 6-1 Schematic illustrations of case A and case B fatigue cracking in multiaxial fatigue: (a) and (e) show 

multiaxial strains, (b), (c), (f) and (g) denote planes of maximum shear strain amplitude and the planes and 

directions of stage I crack growth for case A and case B. (d) and (h) show the planes and directions of stage II crack 

growth for case A and case B, respectively( Suresh,1998).      

 

For most materials, stage II crack growth occurs because of simultaneous or alternating slip 

including more than one processes slip system. At this time, the direction of crack advance 

and the plane on which it occurs are as shown in Figure (6.1 d). In the  Figures (6.1 f and g 

) , the stage I cracks initiate at the surface and propagate at 45° angles into the material, and 

this mode of cracking has been termed ‘case B’.  Fatemi and Socie (1988) determined that 
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the peak normal stress to the plane of maximum shear strain amplitude effects the 

propagation of stage I crack under a variety of multiaxial loading conditions.  

6.6  Fatigue analysis results and discussion 

In this section, the fatigue damage calculations with and without residual stress were carried 

out for the EHL line contact of rough surfaces of test disks from the experimental work. The 

effect of the FEA residual stress for the same profiles and used for the fatigue damage 

calculations were investigated. The procedure to estimate the fatigue damage of a material 

subjected to variable amplitude multiaxial loading is used which is based on the Fatemi and 

Socie (FS) shear strain based critical plane model. The parameters used to specify the EHL 

problem are the same as given in Table 3 in Chapter 5 unless otherwise specified. For 

damage modelling the material SAE4340 steel (BS970:En24) has been used where material 

properties can be found in Zahavi and Torbilo (1996) which are shown in Table 1. Dowling 

(1998) specifies the shear fatigue ductility coefficient and shear fatigue strength according 

to the following expression: 

3

f

f





 , ff   3  (6.15) 

 

   Table 1 Material parameters of SAE4340 steel. 

b -0.091 'f 0.48 

c -0.60 'f 2.0 GPa 

E1,E2 200 GPa 'o 827 MPa 

K 1.0 1, 2 0.3 

 

A sample roughness profile approximately 1mm long was taken from each disk and a mixed 

EHL transient analysis was carried out to determine the surface loading during the passage 

of the slow and fast surface profiles. This was used to determine the stress history at each 
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calculation point in the material. The stress/strain history at each point was broken down into 

a number of cycles as discussed in section 6.3. The damage for the trial was calculated 

according to equation 6.1and the accumulated damage for each calculation position a 

sequence of evaluation planes was considered where one degree increments of 𝜃 were used 

for each candidate plane orientation in the range 0 < 𝜃 < 1800. For each orientation of the 

evaluation plane the damage for each cycle was calculated using equation 6.1 and the 

accumulated damage for the loading history was obtained using equation 6.13. This was 

repeated for each evaluation plane and the critical plane for the evaluation point was the 

plane, which lead to the maximum value of D. In this way, the value of damage and the 

critical plane orientation was established for all evaluation points in the material volume 

considered. 

6.6.1  Damage distributions with and without residual stress  

The fatigue analysis results for the slow disk are presented in Figures 6.2 to 6.5. 

 Figure 6.2 shows the overall results for the material volume considered for the slow surface 

loading contact zone. It presents contours of calculated damage for a single traverse of the 

contact zone. The roughness profile is shown together with damage contour plot for the cases 

where residual stress is and is not included in the calculation. The plots show areas of 

relatively high accumulated damage exceeding 10−5 in concentrated areas close to the 

surface within the approximate range 0.0 < z/a < 0.07, indicating fatigue in 105 cycles. It 

can be seen that these concentrated areas are located beneath asperity features. A detailed 

comparison of the results obtained with and without including residual stresses is presented 

in figures 6.3 to 6.5. What is interesting about the data in these contour plots is that there is 

a significant increase in the assessed damage values compared to the Findley, the Matake, 

and the Dang Van models. For example, those prominent asperities at a larger scale located 

at x/a = -0.58, x/a =-0.8, x/a =-0.9, x/a =-0.1, x/a = -0.3, x/a = 1.28, where indicated fatigue 
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in fewer than 105 cycles is apparent at and below the surface whereas FP values of unity in 

the Findley, the Matake, and the Dang Van results correspond to fatigue in107cycles. 

The larger scale plots in figures 6.3 to 6.5 show that including residual stress in the 

calculation of damage can change the peak values considerably. This is not detrimental in 

all cases but is clearly so for the asperity at x/a =1.34 in figure 6.5, for example. The damage 

results suggest that the mechanism of deterioration seems to be micropitting associated with 

the plastic deformation of the prominent asperities. One of these areas  have been associated 

with areas of high residual tensile stress (Bryant et al., (2012), Alshahrany, (2015)). The 

current results have been verified by comparison between the numerical calculations and 

experimentally observed micropitting data, where micropitting, which has been observed in 

the tests, was found to occur at positions that had high-calculated fatigue damage. Therefore 

for practical purposes, these new valley features can be deemed very close to crack initiation. 

This can be seen in Figure (6.2 a) where the new valley features appeared to occur at the 

locations of previously observed asperities for the fatigue profile shown in red colour. An 

example of this can be seen at x/a =0.05, x/a=0.7, x/a=1.15, x/a= 1.28, x/a= -0.45 and x/a= 

-1.17. On observation of micropitted data presented in this work it is clear that fatigue 

damage occurs on certain asperity tips while other tips remain free of pits. The finding that 

emerges from this case study is that accumulate damage are localised near the surface of 

specific asperity features at shallow depths. 
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Figure 6-2 slow disk- contour of log10 (D) using Fatemi and Socie criterion, target load is 1.4GP: a) 

roughness profile; EHL- Black and Fatigue profile- Red; b) Damage without residual stress, c) Damage 

with residual stress, accumulated damage, 𝟏𝟎−𝐧, indicating fatigue in 𝟏𝟎𝐧 cycles. 
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Figure 6-3 slow disk- contour of log10 (D) using Fatemi and Socie criterion at the close proximity to the 

contact surface; parts a) Damage without residual stress, parts b) Damage with residual stress. 
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Figure 6-4 slow disk- contour of log10 (D) using Fatemi and Socie criterion at the close proximity to the 

contact surface; parts a) Damage without residual stress, parts b) Damage with residual stress. 
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Figure 6-5 slow disk- contour of log10 (D) using Fatemi and Socie criterion at the close proximity to the 

contact surface; parts a) Damage without residual stress, parts b) Damage with residual stress. 

 

Figures 6.6 to 6.9 compare the damage value that the points experience in the fatigue 

calculation with and without residual stress for the faster moving rough surface in passing 

through the contact zone without and with residual stresses. The length of profile considered 

is 2a where a is equal to 0.469 mm. The contours level are chosen to vary logarithmically in 

value as D varies by up to five order of magnitude between the areas found have the most 

and least calculated fatigue damage. It can be seen that the accumulated damage calculated 

is concentrated near the surface of the prominent asperity features. It was found from the 

results that in some asperities more fatigue damage was apparent on the fast surface when 

the residual stress was included; an example of this is seen at x/a = -0.6, x/a = 0.1 and x/a = 

0.25. It was found that after a relatively modest number of load cycles (approximately   105 

), a degree of fatigue had initiated near the surface of prominent asperities. Comparing the 

accumulated damage for the faster and slower surfaces, it is clear that the damage to the 

slower surface is greater than that on the faster surface. This is because asperities of the 
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slower moving surface are subject to higher numbers of loading cycles in EHL contact than 

are those of the faster moving surface. 

 

 

Figure 6-6 fast disk- contour of log10 (D) using Fatemi and Socie criterion, target load is 1.4GP: a) 

roughness profile; EHL- Black and Fatigue profile- Red; b) Damage without residual stress, c) Damage 

with residual stress, accumulated damage,  𝟏𝟎−𝐧, indicating fatigue in 𝟏𝟎𝐧 cycles. 
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Figure 6-7 fast disk- contour of log10 (D) using Fatemi and Socie criterion at the close proximity to the 

contact surface; parts a) Damage without residual stress, parts b) Damage with residual stress.  
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Figure 6-8 fast disk- contour of log10 (D) using Fatemi and Socie criterion at the close proximity to the 

contact surface; parts a) Damage without residual stress, parts b) Damage with residual stress. 

 

 

Figure 6-9 fast disk- contour of log10 (D) using Fatemi and Socie criterion at the close proximity to the 

contact surface; parts a) Damage without residual stress, parts b) Damage with residual stress. 
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Figure 6.10 shows the effect of different entrainment speeds on the fatigue damage 

distribution. It is evident from this figure that the fatigue damage increases as the speed 

decreases; this is because of the reduction in lubricant film thickness in the contact area. This 

is accompanied by a significant proportion of the fatigue damage associated with the 

prominent asperity features present on slow rough surface as shown in the Figure 6.10 b; an 

example of this can be seen at x/a =0.05,   x/a =0.7 ,x/a = 1.15, x/a =1.28, x/a =-0.45 and 

x/a =-1.17. This is related to the pressure cycling that individual asperities undergo as they 

traverse the EHL contact zone.  
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Figure 6-10  Contour of log10 (D) using Fatemi and Socie criterion at different entrainment speed : a) roughness profile; EHL- Black and Fatigue profile-Red, b) 

0.638     m/s, c) 3.192 m/s and d) 6.384 m/s, , accumulated damage, 𝟏𝟎−𝐧, indicating fatigue in 𝟏𝟎𝐧 cycles. 
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Figure 6.11 shows the cumulative Weibull distributions of damage with residual stresses in 

terms of 1-F for the slower surface for a range of entrainment speeds at the maximum 

damage depth of z = 0.02a. The damage probability curves are plotted so as to give the 

probability that the damage level is greater than the abscissa value. The meaning of these 

curves can best be stated simply by reference to the probability distribution curve for 

entrainment speed= 0.638 m/s which passes through the accumulated damage D =10−6 ,   1-

F = 0.25. This means that about 25 % of material points at the depth z = 0.02a have calculated 

damage equal or greater than D = 10−6 during a single pass through the EHL contact zone. 

It is apparent from these curves that the calculated damage is greatest at the z/a = 0.02 level 

as might be expected from examination of Figure 6.11. However, at the greater speed, 6.384 

m/s the level of damage has reduced by two or three orders of magnitude in comparison. 

This observation is in good agreement with the results presented in Figure 6.10.The most 

interesting aspect of these curves is that in each decrease in the value of entrainment speed 

the distribution curve shifts to the right corresponding to an increase in the expected value 

of D. 

 

Figure 6-11 Cumulative damage distributions at a depth of z/a = 0.02 beneath the surface for a series of 

entrainment speed values. 
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Figure 6.12 shows comparisons of the Weibull cumulative damage distributions for the 

slower surface at six different depths corresponding to z/a = 0.002, 0.004, 0.01, 0.05, 0.065, 

0.1 (this range includes the zone of highest accumulated damage identified in the contour 

maps results). These curves for cumulative damage distribution are plotted so as to give the 

probability that the damage level is greater than the abscissa value corresponds to a single 

meshing cycle (a single pass through the EHL contact). Thus for the z/a = 0.01 case, for 

example, about 15 % of material points at that depth experience calculated damage greater 

than 𝐷 = 10−6 during a single pass through the EHL contact zone, so that 15% of the 

material would experience predicted fatigue in 106 gear rotational cycles, or less at that 

depth. 

 

Figure 6-12 Cumulative damage distribution for the slow surface at a series of depths below the 

surface. 

 

To study the effect of residual stress due to plastic deformation of rough surface, the Weibull 

cumulative damage distributions is used to quantify the damage at the asperity level. Figure 

6.13 shows the Weibull cumulative damage distributions for the slow disk corresponding to 
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Figure 6.2 at two different depths corresponding to z/a = 0.02 and 0.04 (this range includes 

the zone of highest damage associated with the prominent asperities). Taking the curve for 

a depth of z/a =0.004 for damage without residual stresses (solid line in red colour), in this 

case, 10 % of the material at the depth considered has 𝐷 = 10−6 . However, including 

residual stresses in the calculated damage indicates a decline in the predicted damage, for 

example, 3 % of the material at the depth considered has𝐷 = 10−6. Thus, there is a clear 

reduction in the level of cumulative damage at that depth when the residual stresses are 

included by approximately 7 % thus corresponds to fatigue occurring in 106 repetitions of 

the loading experienced. 

 

Figure 6-13 Cumulative damage distribution for the slower surface corresponding to damage with and 

without residual stresses at a series of depths below the surface. The solid lines are for damage without 

residual stresses, and the dashed lines are for damage with residual stresses. 

 

Figure 6.14 shows the influence of changing the value of a material constant ( k ) in the 

Fatemi and Socie model for the slow disk with residual stresses. The surface roughness 

profile of the material volume is shown above the sequence of contour damage maps. The 

vertical (z) scale of the damage map is shown as a fraction of the corresponding Hertzian 
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contact semi-dimension a where the high damage zones are quite localized at that asperity 

level. Generally, fatigue failure zones for the most prominent asperity are coloured red when 

𝐷 ≥ 5.00E−6  correspond to a single meshing cycle (a single pass of the trial material 

through the EHL zone). It is clear that the volume of failure zones (red colour) is seen to 

decrease significantly with increased k values which are concentrated close to the surface 

within the approximate range    0 ≤ z/a ≤ 0.05. Since there is a direct proportion between the 

material constant and the effect of the normal stress it is clear that the value of  𝜎𝑛
𝑚𝑎𝑥  in 

equation (6.1) is negative (compressive stress) in the asperity level that has a high failure 

zones, so that the factor (
y

nk


 max

1 )   is reduced as k is increased. Calculating the fatigue 

damage corresponding to k = 0 makes a significant difference to the value of calculated 

damage where the damage appears to be more extensive with the scale of surface roughness 

features. This is occurring because the normal stress has no effect and in this case, the Fatemi 

and Socie model responds only to the shear strain amplitude.  

Figure 6.15 shows the cumulative Weibull distributions of damage in terms of 1-F for the 

slower surface with residual stresses at a series of material constant ( k ) values and maximum 

damage depth of z = 0.05 a. In general decreased k values lead to greater damage 

probabilities and shifts the damage probabilities curve to the right corresponding to an 

increase in the expected value of D. This observation is in agreement with the results 

presented in Figure 6.14.  
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Figure 6-14 Contours of Accumulated Damage based on the Fatemi and Socie fatigue model at different 

material constant for slow disk with residual stresses ; a) EHL profile, b) k=1, c) k=0.8, d) k=0.6 and e) 

k= 0. 
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Figure 6-15 Cumulative damage distributions at a depth of z/a = 0.05 beneath the surface for the slower 

surface corresponding to damage with residual stresses for a series of material constant ( k ) values . 

 

The effect of viscosity on fatigue damage is shown in Figure 6.16. It can be seen that the 

fatigue damage decreases with increased 
0
.With lower viscosities, the highest damage 

occurs at the level of the surface roughness asperities. At the lower values of 
0
 for example 

0.005 regions of relatively high damage (red zones, D > 5E-6) are concentrated close to the 

surface within the approximate range z/a = 0 – 0.08. This phenomenon is due to the reason 

that higher lubricant viscosity usually leads to an increase of the EHL film thickness; as a 

result, the interaction between the aggressive asperity decreases and thus local micro-EHL 

conditions, which occur at the contact interface, becomes weak. This conclusion is in good 

agreement with the significant work performed by Rico et al. (2003). 
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Figure 6-16 contours of subsurface damage calculated for the section of the slower moving surface for 

three 0 values; a) 0.005 Pa.s, b) 0.015 Pa.s and c) 0.0277 Pa.s. 
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6.6.2 Results for a micropitting endurance test 

The influence of roughness on the fatigue damage can be further investigated by the use of 

different rough profiles and different working conditions. This was achieved by modelling 

test disk profiles from an endurance test carried out by Hutt (2018) at steady state load and 

speed conditions. Profile data from the running in process was acquired from the fast and 

the slow test disks and used for the EHL analysis at the constant experimental conditions. 

The test was performed at a single speed to remove speed and temperature dependent 

variations from the predicted life. 

Contours of damage obtained for a section of material of 2a a within the slower and faster 

surface are shown in Figures 6.17 to 6.18, respectively. The upper part of each figure is the 

corresponding shape of the rough profile considered which was measured after the first load 

stage and is run-in. Also shown is the measured profile after 100,000 cycles (LS4) and after 

1,000000 cycles (Fatigue profile). It is clear that the asperities sustain calculated damage 

levels that are significantly higher than those experienced by the surrounding material. The 

profiles, which were taken from the micropitting test at a slide to roll ratio of 0.5, show the 

first formation of new valley features on both surfaces occurred after a relatively low number 

of load cycles of the order 30,000 on both surfaces ( In the experiment the previous 

measurement stage was at 30,000 cycles). Examples of this can be seen in Figure 6.17 at x/a 

= -0.8, x/a = 0 and x/a = 0.65, and in Figure 6.18 at x/a = -0.25, x/a = -0.18 and x/a = 1.  

Closer inspection of the profiles in Figures 6.17 and 6.18 show that micro-pits were found 

across the entire width of the contact area and tended to be concentrated at positions of 

previously prominent asperities. In addition, it can be seen from these figures that the 

accumulated damage calculated is concentrated near the surface of the prominent asperity 

features within the approximate range 0.0 < z/a < 0.08 .  
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The micropit damage features are seen to be present at the 100,000 cycles measurement stage 

and have been initiated at a lower number of cycles. The results of the damage accumulation 

model indicate a life between 10,000 and 32,000 cycles for the brown contour area, and 

between 32,000 and   100,000 cycles for the red contour area. The model results are therefore 

of the same order as the observations. This is encouraging given that the model is for two 

run-in surface profiles that in all probability did not run against each other in the actual 

micropitting test. 

Figure 6.19 compares the damage contours for the slower surface obtained for a series of 𝜂0 

values; that is, 𝜂0= 0.002, 0.006, 0.015 and 0.027 Pas corresponding to slide roll ratio= 0.5. 

The regions of failure zones of relatively high damage (red zones, ≥ 10−5) are seen to 

decrease with increased 𝜂0. It is clear that increasing viscosity will improve the fatigue 

performance. This happens because increasing viscosity usually leads to a significant 

increase in lubricant film thickness and as a result the interaction between the asperities will 

decrease leading to a reduction in the intensity of asperity interactions. A 14 fold increase in 

viscosity to 0.027 Pa s causes increasing in the calculated life of the points subjected to the 

highest damage by approximately two orders of magnitude.
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Figure 6-17 Slow disk—Contour of log10 (D) using Fatemi and Socie criterion, accumulated damage, 𝟏𝟎−𝒏, indicating fatigue in 𝟏𝟎𝒏 cycles. 
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Figure 6-18 fast disk—Contour of log10 (D) using Fatemi and Socie criterion, accumulated damage, 𝟏𝟎−𝒏, indicating fatigue in 𝟏𝟎𝒏 cycles. 
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Figure 6-19 Contours of log10 (D) of sub-surface damage calculated for the section of the slower moving 

surface for different lubricant viscosity; b) 𝛈𝟎= 0.002 Pa.s, c) 𝛈𝟎= 0.006 Pa.s, d) 𝛈𝟎= 0.015 Pa.s and e) 

𝛈𝟎= 0.027 Pa.s. 

 

The effect of 𝜂0 on damage probabilities is seen in Figure 6.20, which shows the cumulative 

damage distributions at a high damage depth level of z/a = 0.03 for each value of 𝜂0 

considered. It can be seen that the fatigue damage decreases with increased 𝜂0 and shifts the 

damage probabilities curve to the right, corresponding to an increase in the expected value 

of D. This observation is in good agreement with the results presented in Figure 6.19. It is 
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clear that introducing the lowest viscosity lubricant considered to the contact causes a 

reduction in the calculated damage by at least two orders of magnitude. 

 

 

Figure 6-20 Cumulative damage distributions for slow surface at a depth of z/a = 0.03 beneath the surface 

for a series of 𝜼𝟎 values, the viscosity unit is Pa.s. 
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6.7  Conclusion 

A numerical procedure to analyse the cumulative fatigue damage in a rough EHL contact 

has been developed. The procedure is based on the critical plane approach and the Fatemi-

Socie shear strain model. The Palmgren – Miner linear damage accumulation rule is used to 

compute the cumulative damage for each effective loading cycle. The numerical results have 

shown that the residual stress due to running-in of asperities does cause changes in the 

damage prediction and calculated fatigue life of the rough surfaces. These changes can be 

significant at some asperities but are not necessarily detrimental. The numerical results have 

also shown that the volume of failure zones is seen to decrease significantly with increased 

k values, which are concentrated close to the rough surface. The slower moving surface has 

a greater tendency to become micropitted at the asperity level. This is because the  slower  

rough surface is subject to higher numbers of stress cycles during contact analyses compared 

to the faster rough surface. This is in agreement with the results obtained by Qiao et al. 

(2008), and Alshahrany, (2015). The use of  high-viscosity lubricant generates has a greater 

resistance to micropitting because of their thicker EHL films. Therefore, higher loads will 

require higher viscosity, while lower loads allow for lower viscosities. Speed can also have 

an effect on micropitting and surface fatigue. At lower speeds, the film thickness will 

decrease, whilst, at higher speeds, the film thickness can increase.  
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Chapter 7 conclusions and future work  

7.1 Conclusions  

The present study makes several contributions towards an understanding of the basic 

mechanism of micropitting initiation in gear tooth surfaces based on incorporating the 

asperity residual deformation and residual stress field into fatigue simulations under realistic 

operating conditions. Various aspects of this procedure are presented in detail in the previous 

chapters. 

Numerical simulation of the fatigue model depends on the results of the transient micro-EHL 

solutions for fast and slow rough surface disks in rolling/sliding contact. Therefore, micro-

EHL simulations were carried out using the coupled solution method incorporating a 

differential deflection technique. Real (or measured) roughness is included in a transient line 

contact analysis. The numerical results of the EHL model show that the time dependent 

pressure experienced at the encounters between run-in surface asperities are far higher (often 

by a factor of three or more) than estimated on the basis of the theory of smooth surfaces 

(Hertzian). 

Elastic stress analysis was performed for the line contact problem (2D plane strain) to 

evaluate sub-surface elastic stress and strain distribution histories experienced by the 

contacting components. Numerical results have shown that the areas of high stress cycling 

located at a shallow depth are consistent with the observed depth of micropits. 

A simulation of repeated loading at the same load and surface was performed to approximate 

the running-in process that takes place when freshly manufactured surfaces are first brought 

into contact. Simulation of further loading/unloading/loading cycles at the same load shows 

that the overwhelming majority of the changes in the residual asperity shape occur in the 

first loading cycle and there is an insignificant amount of additional plastic deformation of 
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the asperities due to the second application of the same load. The findings of this numerical 

investigation confirmed the findings of a recent experimental study described by Clarke et 

al. (2016). 

Abaqus finite element analysis (FEA) was used to perform a dry contact elastic/plastic 

analysis based on real surface roughness profiles, which were taken from two steel disks that 

were used in experiments where the roughness profiles were acquired from profilometer 

traces. The numerical results have shown that regions of surface and subsurface residual 

tensile stress were found to occur close to heavily loaded asperity contacts. The effects of 

including such asperity residual stresses in fatigue calculations were examined by carrying 

out a range of fatigue analyses, both with and without the residual stress field. 

Fatigue damage with and without the residual stress field was determined to establish the 

possible effects of asperity plastic deformation on subsequent high-cycle fatigue behaviour. 

This evaluation was performed by applying multiaxial fatigue criteria (the Findley criterion, 

the Matake criterion, and the Dang Van criterion), and the Fatemi and Socie (1988) shear 

strain model utilising the rainflow counting approach to break down the load history into 

effective loading cycles and the cumulative damage theory to determine the life of each part 

of the material. The main findings to emerge from this study are that: 

 Including asperity residual stress in fatigue calculations does cause significant 

changes in the damage prediction and calculated fatigue life for the rough surfaces. 

These changes can be significant at some asperities, but they are not necessarily 

detrimental. 

 The slower rough surface has a greater tendency to become micropitted at the 

asperity level when compared with the faster surface. This happens because the 
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asperities of the slower surface are subject to higher numbers of stress cycles during 

their passage through the EHL contact zone than are those of the faster surface. 

 High-viscosity lubricant has a greater resistance to micropitting because of its thicker 

EHL films. 

 Speed can have a significant influence on fatigue lives and damage accumulation 

where the results demonstrate that increased speed has a positive effect on the fatigue 

lives, as thicker lubricant films are generated leading to less severe asperity 

interactions. 

 The line contact surface loading response can be significantly different for the two 

rough surfaces, which have nominally the same level of roughness. 

 Plane strain fatigue and damage accumulation analysis shows that the predicted 

damage with and without residual stress fields is concentrated at asperities that are 

only a few microns deep. This supports the hypothesis that micropitting failure in 

gear teeth is mostly due to fatigue occurring at the level of the surface roughness 

asperities. 

 Prominent asperities are subject to a high risk of damage because the damage value 

is affected by the asperity height and shape. 

 Some of the experimentally observed micropits were found to occur at positions that 

had high calculated fatigue damage. 

 The most obvious finding to emerge from this study is that the micro-EHL model 

results and Micropitting test results of the contacting disks were shown to agree well 

in terms of predicting the number of loading cycles that are required for the initial 

micropitting to occur. 

 All the plastically deformed region features identified by Oila and Bull (2005) in 

their material metallurgical analysis can be seen to correspond to the circular band 
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area of the residual stress and the corresponding damage as shown previously in the 

chapters 5 and 6. 

 Large amounts of plastic deformation of asperities resulted in surface and subsurface 

regions of high residual tensile stress at the asperity level. The position of these 

residual tensile stresses aligns well with the position at which cracks initiate in the 

detailed experimental studies of Oila and Bull (2005). 
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7.2 Future work 

 To allow simple modelling of a plane strain problem by using Abaqus software, the 

asperity features were considered to be two-dimensional. However, the asperity 

features are usually three-dimensional and modelling them as such will provide the 

most accurate representation of modelling the asperity contact problem. 

 It may be necessary to model higher asperity overlaps and also incorporate the effect 

of sliding asperity interaction to be representative of an experimental test condition 

that is based on the physical mechanisms of material plasticity and surface traction 

effects. 

 Further research should focus on measuring residual stresses for contacting surfaces 

asperities in-depth and in both longitudinal and transversal directions, especially in 

the early contact stages of the running-in process. Modelling residual stresses is 

considered to be a significant step for understanding how the residual stress 

distribution evolves during the plastic deformation process. 

 In the EHL model, asperity features were considered to be two-dimensional for 

simplicity. Although this is not an unreasonable assumption, more research using 

three-dimensional roughness state is needed to model the EHL and rolling contact 

fatigue and, thereby, improve our ability to efficiently predict micropitting damage. 

 The effects of surface chemistry and tribofilms during asperity/asperity contacts have 

not been considered in the current lubricated contact model. Where they act as a 

‘third body’ they can have a remarkable influence on both the friction behaviour and 

the micropitting performance. These findings suggest that it will be necessary to 

combine the solid and fluid mechanics of rolling/sliding contacts with the behaviour 

of interacting surface asperities at the molecular level. 
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 Much uncertainty still exists about the relationship between the mechanical effects, 

such as the influence of internal fluid pressure on crack growth, and the effect of 

material discontinuities at grain boundaries on the EHL problem. Therefore, it would 

be interesting to assess the effects of such issues to enhance our understanding of 

micropitting initiation. These damages could be related to the effect of lubricating oil 

seepage inside cracks as discussed by Omidvar and Ghorbanpoor, (1998). 

 A thermal analysis of the EHL solution should be included, especially at high rolling 

speed and high slide roll ratio, where such thermal influences may become 

significant. 
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