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Abstract 

Peritoneal dialysis therapy (PD) has a substantial need for biomarker as tools to identify 

patients that are at highest risk for PD-related complications and to guide personalised 

interventions that may improve clinical outcome in the individual patient. In this consensus 

paper, members of the European Training and Research in Peritoneal Dialysis Network 

(EuTRiPD) review the current status of biomarker research in PD and suggest a selection of 

biomarkers that might become relevant for the care of PD patients and which is directly 

accessible in PD effluents. 

Currently used biomarkers collected in a Delphi procedure were first triaged for inclusion as 

surrogate endpoints for a clinical trial (IL-6, IL-8, ex-vivo stimulated IL-6 release, CA-125, 

AOPP). Next, novel biomarkers were selected as promising candidates for proof-of-concept 

studies, and differentiated into inflammation-signature (including IL-17, M1/M2, Treg/Th17), 

MMT-signature (including miR-21, miR-31) as well as signatures for senescence and 

inadequate cellular stress responses. Finally, the need to define pathogen-specific immune 

fingerprints and phenotype associated molecular signatures (PAMS) utilizing effluents from 

clinical cohorts of PD patients, and 'omics technologies and bioinformatics/biostatistics was 

expressed as need for future joint research efforts. 

Biomarker research in PD offers the potential to develop valuable tools to improve patient 

management. However, for all biomarkers discussed in this consensus paper, the association 

of biological rationales to relevant clinical outcomes remains to be rigorously validated in 

adequately powered, prospective independent clinical studies.  

 

Keywords: renal replacement therapy, surrogate markers, peritonitis, epithelial–mesenchymal 

transition, ultrafiltration failure, proteomics 
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Background 

Peritoneal dialysis (PD) is an effective, home-based form of renal replacement therapy that 

promotes patient autonomy. A significant proportion of patients who initiate PD suffer from PD-

related clinical complications that may limit duration of treatment, including peritonitis and 

peritoneal membrane damage.1 PD patients are also at high risk of other serious and life 

threatening illnesses, most notably cardiovascular diseases. Current approaches to patient 

monitoring, however, are mostly limited to approximating delivered dose of dialysis and 

measurements of membrane transport status. Consequently, despite considerable 

improvements in patient management and overall technique survival, there is a substantial 

unmet medical need for biomarkers as tools to identify patients that are at the highest risk and 

to guide personalised interventions in order to improve clinical outcome of PD in the individual 

patient.  

In the clinical context, a biomarker is a proxy of disease mechanisms, which gives relevant 

information for decision-making regarding the diagnosis and/or therapy of a patient. Another 

classical definition is: “A characteristic that is objectively measured and evaluated as an 

indicator of normal biological processes, pathogenic processes, or pharmacological response 

to a therapeutic intervention”.2 This information may become directly obvious from the 

molecular processes that reflect disease status, such as increased levels of inflammatory 

mediators in biological fluids due to increased production and release from inflamed tissues or 

local leukocytes. However, biomarker levels may also reflect mere changes of distribution 

between compartments, such as leakage from intracellular into extracellular, or spill over from 

systemic into local compartments by altered clearance.3 Accordingly, identification and 

interpretation of appropriate biomarkers is not trivial, and the clinical value of attractive 

biomarker candidates is difficult to predict and requires careful preclinical and clinical 

validation.4 

 

This consensus paper focuses on those biomarkers that are thought to be relevant for the care 

of PD patients, but are limited to the “local” peritoneal level, i.e., biomarkers that are directly 
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accessible in PD effluents. In what clinical circumstances would these biomarkers be of 

benefit? Used as a risk-assessment tool (see figure 1), prognostic peritoneal biomarkers might 

help to identify patients that are at highest risk for PD-related complications. For example, 

biomarkers that reflect chronicity of peritoneal inflammatory processes might identify patients 

prone to progressive loss of membrane function. Similar to sepsis research, biomarkers that 

reflect depressed immuno-competence might identify increased infectious susceptibility in PD, 

such as PD-related peritonitis. Monitoring a set of biomarkers that reflects the activity of 

relevant pathomechanisms might thus help to guide therapeutic decisions or, following 

therapeutic interventions, allow early discrimination between responder and non-responder 

subgroups. Introduction of such predictive biomarkers (see figure 1) will likely facilitate the 

implementation of stratified medicine into the clinical setting of PD. For example, a high pro-

inflammatory status in a given PD patient might necessitate the introduction of anti-

inflammatory local therapy by novel PD fluids. However, biomarkers predicting a particularly 

high risk for PD-related complications might also allow a timely switch to alternate forms of 

renal replacement in non-responding patients. Importantly, combinations of these biomarkers 

may also be used as surrogate parameters for well-defined hard outcomes in the clinical 

development for novel PD fluids. Such biomarkers are particularly relevant tools as the “hard 

outcomes” require large studies with several hundred patients observed over several years 

and thus present major logistic and economic obstacles for dearly needed early clinical trials in 

PD.1 Finally, biomarkers might also be implemented as a diagnostic tool. For example, a 

certain pattern of cytokines might reflect the nature of the causative pathogen in peritoneal 

infection and thus allow gaining quick and reliable diagnostic information relevant for 

therapeutic decisions (e.g., the guidance of antibiotic regime).  

 

FIGURE 1  

TABLE 1 
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Several effluent biomarkers, such as CA-125 (believed to represent mesothelial cell mass) and 

IL-6 (indicating local inflammation), have already been shown to be informative at the 

population level in the follow-up of PD patients. However, at present the integration of effluent 

biomarkers into clinical decision making in PD is only modest.5 In this consensus paper, 

members of the European Training and Research in PD Network (EuTRiPD) discuss the 

current status  and prospect of a selection of novel effluent biomarkers.  

 

Hypothesis-Driven Peritoneal Biomarker Research  

The recent development of effluent biomarkers in PD has predominantly been hypothesis-

driven and based on pathologies and pathomechanisms found to be relevant for the course of 

disease in PD. The biomarkers discussed in the following section are primarily related to 

chronic inflammation, peritoneal membrane remodeling and peritoneal infection. 

 

Biomarker research in the context of Chronic Peritoneal Inflammation  

Although not yet used in clinical routine, markers of chronic inflammation should be predictive 

of reduced survival in PD and HD patients, however, use of inflammatory cytokines and other 

related molecules as biomarkers must take into account of the complexity of their function and 

associations in this context. The most thoroughly studied marker of inflammation in PD 

patients is Interleukin-6 (IL-6), which is also a major target for therapy in other diseases.6 

Systemic levels of IL-6 and its soluble receptor are elevated in patients with end-stage renal 

disease (ESRD), and circulating IL-6 levels at initiation of PD therapy predict the mortality 

risk.7 Multiple factors may contribute to circulating IL-6 levels, including persistent or episodic 

bouts of infection-inflammation, obesity, and metabolic alterations. Some of this excessive risk 

also appears to be genetically controlled, with polymorphisms in the IL-6 gene being 

associated with a high IL-6 producer status and reduced survival rates in patients undergoing 

PD. Impaired clearance of IL-6 in patients with severely diminished kidney function may also 

be contributing.  
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Cellular composition of the peritoneal effluent offers a unique view on the tissue-resident 

immune system, and effluent cell and cytokine profiles reflect complex immunological 

interactions active in the peritoneal membrane and cavity in response to chronic PD fluid 

exposure and intercurrent infections. With regards to its role as a peritoneal biomarker, IL-6 is 

increased in the effluent of patients suffering from acute bacterial peritonitis, where IL-6 is 

required for effective bacterial clearance in the acute response to infection.8 Moreover, 

elevated levels of pro-inflammatory cytokines might also be indicative of sub-clinical, 

smoldering infections such as bacterial biofilms on PD catheters.9 Importantly, experimental 

evidence in animal models links persistent peritoneal IL-6 generation to membrane 

change/fibrosis10 and angiogenesis.11 These processes may well bear clinical relevance as is 

suggested by the results of the Global Fluid Study, a multinational, multicenter, prospective, 

cohort study in 959 PD patients with up to 8 years of follow-up. Here it was found that local 

peritoneal and systemic inflammation are uncoupled, and that local, not systemic, 

inflammation is a main determinant of changes in peritoneal small solute transport rate that is 

observed over time.12  

Recently, T helper (Th)-17-mediated inflammatory response, and in particular the cytokine IL-

17, have been shown to play a central role in peritoneal damage.13,14 Experimental modulation 

of the Th17 response and/or enhancing the regulatory T cell (Treg) response may preserve 

membrane function.15-17 Thus, chronic inflammatory damage of the peritoneal membrane can 

be modulated, at least in part, through regulation of the Th17/Treg balance.18 Other cytokines 

are linked to specific PD-associated patient subgroups and characteristics. The chemokine 

CCL18 (also known as PARC, DC-CK1 and MIP-4) had originally been described to be 

predictive of encapsulating peritoneal sclerosis (EPS), but this finding was not confirmed by 

recent studies.19,20 Peritoneal levels of CXCL8 (IL-8) were measured as part of the immune 

fingerprinting during bacterial peritonitis21, yet increased secretion of IL-8 may also be a 

feature of the senescence phenotype (see below). Thus, high readings of inflammatory 

markers such as IL-6 or other cytokines are currently suggested as emerging biomarkers for 
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further clinical development (see table 1) but may require differential interpretations depending 

on the clinical context.12,22-29 

 

Biomarker research in the context of Peritoneal Membrane Remodeling 

Currently, data on peritoneal transport characteristics from the peritoneal equilibration test 

(PET), and in particular their change over time, are used to guide PD patient treatment and 

management. The previously well-discussed candidate biomarker CA-125 was rapidly applied 

to estimate mesothelial cell mass as a surrogate parameter for the peritoneal membrane 

status in studies comparing different dialysis fluids (see table 1), although its utility in this 

context remains contentious.3,5,30 

Peritoneal mesothelial-to-mesenchymal transition (MMT) and inflammation establish a 

feedback loop in which the MMT process may induce inflammatory mediators, which again 

promote MMT.31 Moreover, fibroblast play a role in this process.32 As a result the peritoneal 

membrane undergoes a progressive remodeling with the accumulation of extracellular matrix 

and fibrosis. Peritoneal infections aggravate the peritoneal membrane remodeling process. 

Patients who remain infection-free, however, also evidence PD induced inflammation and 

fibrosis, which may result in loss of peritoneal membrane function and ultimately cessation of 

PD.33,34 Assessment of the progressive morphological alterations would require repetitive 

peritoneal biopsies, which is, however, feasible in clinical routine only at time of catheter 

insertion and at time of subsequent abdominal surgery.35 Alternatively, the ex vivo study of 

effluent-derived mesothelial cells might be useful to monitor peritoneal remodeling.36 Effluent 

mesothelial cells show a progressive loss of epithelial phenotype and acquire fibroblastic 

characteristics through MMT.37-39 MMT is a complex process during which mesothelial cells 

are transformed into fibroblast-like cells with the capacity of producing a wide spectrum of 

inflammation, fibrosis and angiogenesis mediators.33 The ex vivo expression of molecules 

associated with MMT in effluent mesothelial cells is associated with peritoneal transport 

status.40,41 Moreover, levels of MMT-associated molecules in the PD effluent, including VEGF, 
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CTGF/CCN2 and Gremlin-1, were also found to correlate with peritoneal transport.42-44 The 

next goal is to develop a combination of MMT-related molecules that can be measured in the 

PD effluent at once (MMT-Chip) and offer diagnostic/prognostic value. 

Another line of research is the identification of different peritoneal fibroblast phenotypes whose 

features may serve as a fingerprint of changes in the peritoneal membrane during PD. 

Activated fibroblasts (myofibroblasts) originate from several precursors, including mesothelial 

cells, resident fibroblasts, endothelial cells, and circulating fibrocytes and contribute most to 

tissue fibrosis.45 Experiments using inducible genetic fate mapping indicated type I collagen–

producing submesothelial fibroblasts as specific progenitors of -SMA–positive myofibroblasts 

that accumulate progressively in animals exposed to sodium hypochlorite, hyperglycemic 

dialysis solutions, or TGF-1, suggesting an alternative mechanism of peritoneal fibrosis to 

MMT.46 Moreover, fibroblasts expressing Thy-1 (CD90) appear to have an increased ability to 

acquire a myofibroblastic phenotype.32 Thus, the proportion of Thy-1+ and Thy-1− fibroblasts 

residing in the peritoneum may potentially identify individuals who are more prone to 

myofibroblast expansion following peritoneal injury. 

 

Biomarker research in the context of Peritoneal Infection 

Peritoneal infection remains one of the main culprits for technical failure and patient morbidity 

in PD. Whilst white cell counts (WCC) and the proportion of granulocytes in the peritoneal 

effluent are widely accepted as biomarkers for infection47 less progress has been achieved in 

identifying biomarkers that discriminate between infection and non-infectious inflammation. 

Culture-based diagnosis of infection is slow and error-prone, with 20-25% of cultures 

remaining negative despite distinct clinical and biochemical signs of bacterial infection.48 Direct 

identification of pathogens using state-of-the-art technologies such as PCR or mass 

spectrometry with satisfactory sensitivity and specificity remains a challenge.49 Culture-

negative episodes of peritonitis may include cases of sterile inflammation that may not require 

antimicrobial therapy but are often masked by inappropriate sample processing or 
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culture/detection conditions, especially for fastidious organisms and viruses.50 When accurate 

microbiological diagnosis in patients presenting with acute symptoms is not possible, 

peritonitis management is largely empirical, and treatment with broad spectrum antibiotics is 

recommended. Basic biomarkers identify culture-negative episodes, with culture-positive 

infections having greatly elevated WCC values and higher frequencies of granulocytes.21 

Moreover, levels of peritoneal effluent cytokines are lower in culture-negative episodes, with 

e.g., IL-1β and IL-10 showing potential for a distinction from infectious peritonitis.  

When infection is present, biomarkers that are specifically associated with different types of 

pathogens, maybe useful to distinguish fungal, bacterial and viral infections and thus help 

inform the choice of treatment. In the absence of clear diagnostic parameters, prophylactic 

treatment of all peritonitis patients with antifungals has been recommended whenever a 

course of antibiotics is administered.51 In the case of bacterial pathogens, early discrimination 

between Gram-positive and Gram-negative species would greatly reduce prescription of broad 

spectrum antibiotics, Gram stainings of patient samples are routinely performed but lack 

sensitivity.52 The availability of pathogen-specific biomarker signatures, combined with the 

early identification of antimicrobial resistance patterns at the point of care, would represent a 

major breakthrough in the accurate diagnosis and targeted therapy of peritonitis.53 For 

instance, biomarkers of particular relevance for the prediction of Gram-negative infections may 

include comparatively higher levels of the cytokines IL-1β, IL-10 and tumor necrosis factor 

(TNF)-α compared to Gram-positive infections, combined with larger numbers of infiltrating 

neutrophils and elevated frequencies of peritoneal γδ T cells.21 

A biomarker predicting risk for infections might also help to guide clinical decisions to improve 

outcome in PD patients with compromised immunocompetence who are particularly 

susceptible for infectious complications.54-57 In critically ill patients depressed 

lipopolysaccharide (LPS)-stimulated release of TNF-α from whole blood has successfully been 

used to detect systemic immunosuppression and to monitor immunomodulatory therapies.58-60 

In PD, several studies have shown that ex-vivo stimulation of peritoneal macrophages isolated 

from PD effluents results in increased cytokine release compared to constitutive 
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expression.55,61-64 Typical stimuli of cytokine release from peritoneal leucocytes are LPS and 

Pam3Cys as ligands of Toll-like receptors (TLRs); typical read-outs are TNF-α and IL-6 as 

rapidly reacting cytokines of known clinical relevance. Such assays demonstrated an 

improvement of peritoneal macrophage function in patients dialyzed with neutral pH solutions 

compared to patients receiving conventional therapy.55,61-63 Ex-vivo stimulated cytokine release 

in peritoneal effluents is therefore suggested as promising biomarker (see table 1), however, 

prospective studies in larger PD populations are dearly needed to validate these assays as 

surrogate parameters of immune competence and clinical outcome. 

Finally, there is a need for biomarkers to reliably predict outcome of infectious complications of 

PD, to identify patients at risk of downstream complications, recurrent/relapsing infections and 

even death, where extended hospitalization may be appropriate and catheter removal be 

recommended. Moreover, infectious peritonitis might trigger smoldering sterile inflammation, a 

condition requiring timely diagnosis to interrupt the subsequent vicious cycle activating multiple 

of deleterious peritoneal pathomechanisms.65 Different levels of local and/or systemic 

immunocompetence and types of pathogens carry individual risks and outcomes, and as such 

early biomarker-based stratification of patients may ultimately determine improved clinical 

outcomes from infection. In this context the identification of high white cell counts or elevated 

levels of peritoneal Vδ2+ T cells as early predictors of subsequent technique failure are 

promising developments.53,66 

 

Biomarker research in the context of further pathomechanisms relevant to PD 

Cellular senescence is a complex biological program triggered by stimuli that can put the 

integrity of the genome at risk.67 It is characterized by irreversible growth arrest, distorted cell 

morphology and altered cytokine secretion (including increased release of IL-6 and CXCL8).68 

Peritoneal mesothelial cells in mice exposed chronically to PD fluids exhibit a phenotype 

resembling that of senescent cells,69 Likewise, the in vitro exposure of human peritoneal 

mesothelial cells to high concentrations of glucose results in accelerated development of the 
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senescent cell phenotype,70 partly through increased oxidative stress.71 Consequently, the 

appearance of senescent mesothelial cells in the peritoneum may be indicative of peritoneal 

membrane deterioration. However, the clinical exploitation of this concept is hampered by the 

absence of a universal senescence marker 72 and difficulties in detecting senescent 

mesothelial cells in vivo. In this respect, it might be easier to detect senescence among 

mesothelial cells shed to the peritoneal effluent.73 

As oxidative stress is among the leading causes of premature senescence, the expression of 

oxidative stress biomarkers may be useful as surrogate indicators of peritoneal membrane 

deterioration. Oxidative stress is typically defined as a disturbance in the pro-oxidant / 

antioxidant balance in favor of the former.74 Reliable markers of oxidative stress should 

consistently increase or decrease during periods of oxidative stress but not be impacted by 

other cellular processes.75 However, the interpretation of changes in currently measured 

biomarkers of oxidative stress is challenging, as increased cellular antioxidant levels may 

either reflect an improved antioxidant status or a compensatory response to an oxidative 

insult. While several biomarkers of oxidative stress have been tested in PD patients such as 

advanced oxidized protein products (AOPP, see table 1) in peritoneal effluents76-78, the 

comprehensive assessment of a broad panel, especially in the context of cellular senescence, 

remains to be performed and validated in clinical outcome related research. 

The combination of these pathomechanisms may result in abnormal cellular stress responses, 

potentially hampering peritoneal repair and propagating chronic inflammation.79,80 In 

experimental PD, cellular expression of the inducible 27 kDa and 70 kDa heat-shock proteins 

(Hsp27, Hsp72) has been shown to be dampened by PD fluid toxicity and inflammation.80,81 In 

effluent derived mesothelial cell cultures from PD patients, expression of Hsp27 and Hsp72 

was demonstrated to be influenced by in vivo and ex vivo MMT processes.82 Investigating the 

cellular stress responses at the proteome level (see also below) demonstrated an inadequate 

mesothelial Hsp72 expression that could be restored by therapeutic interventions.83 These 

data suggest that the assessment of the adequacy of peritoneal cell stress responses might 

yield promising biomarkers to guide novel therapeutic interventions. To this end, alanyl-
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glutamine dipeptide is currently tested in clinical trials and has been shown to restore 

adequate cellular stress responses (NCT01353638, EudraCT2013-000400-42).84 This 

compound has recently been shown to increase the attachment of N-acetylglucosamine to 

proteins (O-GlcNAcylation) in mesothelial cells and improve the resistance against PD-fluid 

toxicity.85 Accordingly, the monitoring of O-GlcNAc levels in peritoneal cells might evolve as an 

independent novel biomarker for the preservation of peritoneal health in PD. 

 

A particularly interesting approach to establish and/or validate biomarkers is given in the 

pediatric PD population. Chronic renal failure is rare in this age group but in the majority of 

children based on congenital disorders that are mostly limited to the kidneys and the urinary 

tract, i.e. ruling out associated tissue alterations linked to systemic inflammation and aging. In 

a world-wide effort, the International Pediatric Peritoneal Biobank has already collected more 

than 300 parietal peritoneal and 200 omental tissue specimen, which allow for a systematic 

comparison of the peritoneal membrane whole genome and proteome expression pattern in 

health, uremia, and PD. Reference values of the healthy peritoneal membrane ultrastructure 

(0-60 years) reflect major age specific particularities and now provide a framework for future 

histomorphometric analyses and peritoneal transport modeling approaches35. Preliminary 

transcriptomics and proteomics findings obtained from omental arterioles, i.e. of tissue 

samples not directly exposed to PD fluid but giving insight into uremia and PD associated 

pathomechanisms of cardiovascular disease, elucidate the fundamental role of inflammatory 

pathways with distinct elements of the innate immune system being consistently upregulated 

on RNA and protein level.  

 

FIGURE 2  

 

Non-Hypothesis-Driven Peritoneal Biomarker Research (Open “Omics” Approach)  
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Biomarker research based on the alternative “open approach” is increasingly productive due to 

the improved availability of well-curated biobanks holding material from clinical cohorts, and 

due to increasing experience with the use of 'omics technologies and 

bioinformatics/biostatistics in the setting of PD.  

So-called unbiased strategies for biomarker identification may overcome the limitations of 

candidates based on current hypotheses and available literature. Focusing on “known” 

pathomechanisms and measuring surrogates of these pathomechanisms are likely to produce 

more of the same information, and may thus overlook stronger predictors of outcome of 

disease and therapy. 

‘Omics techniques aim to assess all biological molecules of a defined category (proteins, 

nucleic acids, lipids, carbohydrates) in a biological system at the same time, thereby producing 

a snapshot of the investigated sample. The result obtained from omics techniques is therefore 

a system-wide list of absolute or relative abundance values, where usually the number of 

individual features (proteins, transcripts, metabolites etc.) by far exceeds the number of 

samples measured. This undersampling leads to a number of challenges regarding the 

statistical exploration of the data, including the necessity to account for multiple testing of 

hypotheses.  

Importantly, the coverage of all molecules of a given type allows building statistical models not 

only relying on a single marker but on a collection of markers, best discriminating between 

different clinical outcomes, a so-called molecular signature. As single biomarkers can hardly 

reflect the biological complexity of underlying diseases, comorbidities, genetic background and 

context-dependent biological responses, molecular signatures are usually able to outperform 

individual surrogate markers and therefore may represent more relevant biomarkers. 

 

Proteomics in the context of PD 

In the field of PD only a limited number of ‘omics studies has been performed, mostly trying to 

identify pathomechanisms in vitro or in animal models, or individual biomarkers in PD effluent. 

Using in vitro models, proteomics identified a molecular signature of the stress response to 
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PD-fluid exposure based on 60 mesothelial cell proteins, which were then used for evaluation 

of pharmacological interventions 83,86. In animal models, a proteomic signature of extracellular 

matrix (ECM) proteins was employed to characterize the effect of specific gene deletion on 

MMT mechanisms.87 None of these approaches have yet been applied to clinical samples. 

PD effluent represents a particularly attractive material for biomarker research as it contains a 

rich pool of biomolecules that are indicative of the peritoneal transport status as well as of 

peritoneal health, ongoing pathological processes and even the status of underlying disease 

and comorbidities. However, only few studies previously have used proteomics to investigate 

PD effluent,88-99 identifying a very limited portion of the peritoneal proteome. This is due to the 

fact that high abundance proteins originating from plasma mask low abundance proteins like 

cytokines and chemokines as well as proteins from cellular origin. When focusing on these low 

abundance biomarker candidates, depletion strategies are needed such as. affinity-

chromatographic separation or semi-specific precipitation of proteins. A particularly promising 

approach is the application of bead-based depletion and enrichment techniques, such as the 

combinatorial peptide ligand library (CPLL) beads, also called equalizer beads. In this case a 

limited number of binding sites for all potential proteins is available on the surface of the 

beads, so that highly abundant protein species are saturated and the excess is removed 

during the washing steps, whereas low abundant proteins are relatively enriched and therefore 

detectable by analytical techniques such as 2D gel electrophoresis and/or liquid 

chromatography coupled mass spectrometry (LC-MS).100 

 

Transcriptomics in the context of PD 

PD effluent also contains a significant amount of nucleic acids, where messenger-RNA 

(mRNA) transcripts might represent information about the activation status of individual genes. 

Whilst free-floating mRNA in PD effluent is difficult to use as a biomarker due to its limited 

stability, more stable species such as microRNAs should be potentially detectable in PD 

effluent and used as biomarkers. MicroRNAs are short RNAs that bind to specific protein-

coding messenger RNA targets and repress synthesis of their respective proteins. There are 
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more than 2000 microRNAs encoded in the human genome, each predicted to repress the 

synthesis of many proteins. MicroRNAs thus act as a complex layer of repressive regulation 

for protein synthesis, and are critical for normal development, physiological processes, and 

pathological mechanisms. Changes in microRNA expression are strongly linked to 

fibrogenesis in many contexts (reviewed in 101).102-104 In studies of their role in peritoneal 

dialysis to date, miRs -15a, -17, -21, -30, -192 and -377 were associated with peritoneal 

transport characteristics in a cohort of 110 PD patients (reviewed in 105).97,106-108 

 

Metabolomics in the context of PD 

PD effluent comprises of a significant amount of biological metabolites as well as small 

molecules originating from the original PD fluid and potential derivates, such as glucose 

adducts or break-down products of polymer osmotic agents. This fact renders metabolomics a 

particularly attractive technique for generating molecular signatures from PD effluent. Up to 

now a limited number of studies has been carried out, mainly focusing on proof-of-feasibility. 

One study employed gas-chromatography coupled to MS or direct injection MS for generation 

of metabolomics profiles of PD effluent from patients who later developed EPS compared to 

matched controls.109 One of the challenges in metabolomics analysis is the high redundancy of 

small molecule masses based only on their exact mass. Therefore in the second available 

study, a high resolution accurate mass (HR/AM) approach was combined with comparison of 

experimental and in-silico fragmentation of candidate molecules to increase the likelihood of 

unambiguous identification of metabolites increasing in PD effluent during a controlled 4 h PET 

dwell.110 

 

Defining phenotype associated molecular signatures in PD 

Currently only limited data from omics approaches using PD effluent as sample material is 

available. In the future, it would be particularly important to use biobanks generated from well-

defined clinical cohorts in order to define molecular signatures reflecting the pro-inflammatory 
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phenotype and/or peritoneal membrane status as has been discussed above for the 

hypothesis-driven approach (see also Figure 1).  

The amount of data generated from ‘omics techniques can be enormous. Adequate IT 

infrastructure for storage and retrieval of the data as well as streamlined statistical methods 

are therefore a pre-requisite. The statistical analysis approach can either be “supervised”, 

using perfectly described clinical cohorts, linking a clinical phenotype to a molecular signature, 

or “unsupervised”, where algorithms for clustering the data or reducing its dimensions are 

employed to find subgroups of samples which then have to be interpreted on the basis of the 

available clinical data. Hierarchical clustering methods with its diverse range of distance 

measures influencing the character of the analysis, principal components analysis (PCA) 

where the first component explains the most variability in the data on the basis of the original 

variables (loadings) by an Eigen-vector projection of orthogonal dimensions are prominent 

examples of the unsupervised statistical analysis approach. Regarding the supervised 

approach, machine learning techniques, where a training set of samples is used to select, 

weight and combine classifiers which are then applied to a cohort of unknown cases/samples, 

might be of specific use in the future. However, until now the application of such high-end 

statistical approaches is still rare in the field of biomarker research, and even more so in the 

field of PD. Usually, standard test statistics are employed and at best, individual promising 

candidate markers are combined using linear models, which in many cases leads to overfitting 

of the training data, thereby limiting the clinical applicability later on.  

The technical validation of molecular signatures with biomarker potential, if possible using 

orthogonal analytical techniques, as well as the verification of the predictive power of signature 

candidates in independent sample cohorts is crucial to ensure clinical value. Eventually, a 

molecular signature that is translated into clinical use will likely have to be measured using 

rapid and cost-efficient methods, such as clinical chemistry techniques or multiplex ELISA. For 

some applications targeted LC-MS methods might be available as a clinical routine tool in the 

near future, enabling clinical integration of molecular signatures.  
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FIGURE 3  

 

Conclusion and Clinical Outlook  

Biomarker research in PD offers the potential to develop valuable tools to monitor therapy and 

improve patient management. However, for all biomarkers discussed in this consensus paper 

the association of biological rationales to clinically relevant outcomes (= phenotypes) remain to 

be rigorously tested. Comparable to the development of a novel drug, once the biological 

relevance of a candidate biomarker is established in the experimental preclinical setting, a 

preliminary validation in retrospective testing of biomaterials from biobanks or in sporadic 

clinical studies is mandatory. Finally, well-designed clinical trials are required to prospectively 

test the proof of concept and confirm the usefulness of the candidate biomarker in 

independent cohorts.  

Only the strict performance of such clinical development plans will allow to adequately assess 

test characteristics (sensitivity, specificity, negative and positive predictive values) for a given 

biomarker and/or a combination of biomarkers as a prerequisite for their implementation in 

clinical practice. All currently suggested surrogate parameters for clinical PD fluid development 

have to be validated by comparison to their “hard” clinical outcome in sufficiently large case-

control cohort studies. For example, about 350 PD patients would be needed to be followed for 

up to 2 years in an observational cohort study to detect biomarker differences with an effect 

size of 0.3 (=30% of their standard deviations), based on previously reported incidence rates 

of PD-related complications.1,111 In such a trial, follow-up with repeated sample collection is 

needed until sufficient pre-defined complications (such as peritonitis, ultrafiltration failure or 

deterioriation of peritoneal membrane transport characteristics) have occurred. Biomarkers 

would then be assessed in stored samples and compared betweeen PD patients with 

complications (=cases) and PD-patients who did not develop complications over the same 

length of observation (=controls).112 
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These validated biomarkers will then form the accepted basis to define a population of high 

risk for clinical complications, which might particularly benefit from well-defined alternate 

therapies in the context of precision medicine. Ultimately, any biomarker research needs to 

incorporate an analysis of user requirements at the earliest possible time point. Any 

biomarker-based test will be measured by its ability to provide value for money, not only to 

improve patient outcomes but also to save costs for healthcare systems and generate revenue 

for industrial partners. Given the relatively small number of PD patients worldwide compared to 

other patient cohorts those commercial restraints are particularly relevant.  
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Table 1 

Clinical 
Question 

EMERGING BIOMARKER  CURRENT LEVEL OF EVIDENCE 

Is patient at 
risk / does 

intervention 
reduce risk? 

Consensus 
Suggested 
Surrogate 

Biomarker* 

Concept / Hypothesis 
reflecting 

patho-
mechanism 

Observed Associations (with reference) Score* 

Membrane 
Failure? 

IL-6, IL-8  

Peritoneal levels of IL-6 
and IL-8 depend on 

basal activity of 
peritoneal immune cells 

Smoldering 

Inflammation 

Basal levels of cytokines in PD effluents are significantly associated with 
changes on peritoneal membrane transport characteristics, basal cytokine 

levels show no consistent differences between patients treated with 
different glucose-based PD fluids but significantly increased in PD patients 

treated with icodextrin containing regimens.
12,21-29

 

A 

Membrane 
Failure? 

CA-125 

CA-125 is produced by 
mesothelial cells and 

predominantly actively 
released into the 
peritoneal cavity 

Membrane 

Remodeling 

Peritoneal levels of CA-125 significantly decrease during longterm PD, 
CA-125 levels are lower with glucose based acidic single-chamber PD 

fluids than with pH neutral multi-chamber PD fluids or with glucose sparing 
regimens including PD fluids with alternate osmotic agents. 3,5,30

 

A 

Membrane 
Failure? 

Advanced 
oxidized 
protein 

products 
AOPP 

AOPP reflect 
posttranslational 

modification of proteins 
in the peritoneal cavity 
reflecting local stress 

Oxidative 
Stress 

Peritoneal levels of AOPP increase over dwell time and are higher with 
glucose based acidic single-chamber PD fluid than with pH neutral multi-

chamber PD fluid. Levels of AOPP are correlated with peritoneal 
membrane transport characteristics.

76-78
  

B 

Peritonitis? 

Ex-vivo 
stimulated   
cytokine 
release  

Ex-vivo exposure of 
peritoneal immune cells 
to TLR ligands results in 

maximally stimulated 
cytokine release 

Impaired 

Host Defense  

Ex-vivo stimulation of peritoneal macrophages isolated from PD effluents 
results in lower cytokine release in patients dialyzed with glucose based 
acidic single-chamber PD fluid than with pH neutral multi-chamber PD 

fluid.
55,61-63

  

B 

* all published studies report discovery research data and are scored regarding their confirmation level: A: significant association in >3 independent studies with 
>100 PD patients; B: significant association in ≥3 independent studies; C: significant association in <3 independent studies 
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Figure Legends 

 

Figure 1: Prognostic biomarkers help to identify PD patients who are at high risk of 

complications (such as peritoneal membrane deterioration or peritonitis) and should receive 

counteracting interventions (such as novel PD fluids). Predictive biomarkers help to identify 

those PD patients that are most responsive (or unresponsive) to a given intervention.  

 

Figure 2: Biomarker research defined by a “targeted approach” starts hypothesis-driven from 

selected candidates, reflecting cellular mechanisms of interest, in the experimental setting and 

is then translated into the clinical context. Based on current evidence, the consortium selected 

surrogate biomarkers (given in bold) as endpoints to be assessed in a phase II clinical trial of a 

novel PD additive (EudraCT2013-000400-42/AT). The “open omics approach” starts with bio-

material from well-defined clinical cohorts without any prior selection (non-hypothesis-driven). 

Clinical phenotypes to be assessed with molecular signatures (PAMS) as biomarkers were 

divided into pro-inflammatory and peritoneal membrane damage associated phenotypes. The 

pro-inflammatory phenotype was further divided into acute peritonitis and post-peritonitis 

triggered chronic inflammation. The membrane damage phenotype was further divided into 

mesothelial-to-mesenchymal transdifferentiation (MMT) and changes in peritoneal membrane 

function determined by peritoneal equilibration testing. Ideally, the two approaches have to be 

applied iteratively and their results have to be integrated to foster successful biomarker 

research. The definition of biomarkers also reflects the currently available technologies in a 

given research field. Thus, the introduction of omics approaches and advanced statistical 

models to the field of PD is a quintessential prerequisite to describe and define future 

biomarkers in the open approach.  
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Figure 3: Non-hypothesis-driven biomarker research following an open omics approach is 

particularly attractive using PD effluent (PDE) as source for sample material. The cellular 

fraction suspended in PDE can be analyzed using transcriptomics (focusing on mRNA) and 

proteomics techniques. For soluble substances in PDE (dissolved fraction), transcriptomics 

might be particularly attractive for micro RNAs (miRNA). Proteomics techniques can be 

applied but require prior removal of high abundance proteins and/or enrichment of low 

abundant biomarkers, and metabolomics techniques can be employed to quantify both 

endogenous metabolites and small molecules specific to PD fluid exposure. Identified 

molecules from all omics levels can be used for generation of pathogen associated molecular 

signatures (PAMS) using statistical modeling techniques. 
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Figure 1: Prognostic biomarkers help to identify PD patients who are at high risk of complications (such as 
peritoneal membrane deterioration or peritonitis) and should receive counteracting interventions (such as 
novel PD fluids). Predictive biomarkers help to identify those PD patients that are most responsive (or 

unresponsive) to a given intervention.  
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Figure 2: Biomarker research defined by a “targeted approach” starts hypothesis-driven from selected 
candidates, reflecting cellular mechanisms of interest, in the experimental setting and is then translated into 

the clinical context. Based on current evidence, the consortium selected surrogate biomarkers (given in 

bold) as endpoints to be assessed in a phase II clinical trial of a novel PD additive (EudraCT2013-000400-
42/AT). The “open omics approach” starts with bio-material from well-defined clinical cohorts without any 

prior selection (non-hypothesis-driven). Clinical phenotypes to be assessed with molecular signatures 
(PAMS) as biomarkers were divided into pro-inflammatory and peritoneal membrane damage associated 

phenotypes. The pro-inflammatory phenotype was further divided into acute peritonitis and post-peritonitis 
triggered chronic inflammation. The membrane damage phenotype was further divided into mesothelial-to-

mesenchymal transdifferentiation (MMT) and changes in peritoneal membrane function determined by 
peritoneal equilibration testing. Ideally, the two approaches have to be applied iteratively and their results 
have to be integrated to foster successful biomarker research. The definition of biomarkers also reflects the 
currently available technologies in a given research field. Thus, the introduction of omics approaches and 
advanced statistical models to the field of PD is a quintessential prerequisite to describe and define future 

biomarkers in the open approach.  
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Figure 3: Non-hypothesis-driven biomarker research following an open omics approach is particularly 
attractive using PD effluent (PDE) as source for sample material. The cellular fraction suspended in PDE can 
be analyzed using transcriptomics (focusing on mRNA) and proteomics techniques. For soluble substances in 

PDE (dissolved fraction), transcriptomics might be particularly attractive for micro RNAs (miRNA). 
Proteomics techniques can be applied but require prior removal of high abundance proteins and/or 

enrichment of low abundant biomarkers, and metabolomics techniques can be employed to quantify both 
endogenous metabolites and small molecules specific to PD fluid exposure. Identified molecules from all 

omics levels can be used for generation of pathogen associated molecular signatures (PAMS) using statistical 
modeling techniques.  
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