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MCR-2 confers resistance to colistin, a ‘last-line’ antibiotic against extensively

resistant Gram-negative pathogens. It is a plasmid-encoded phosphoethanol-

amine transferase that is closely related to MCR-1. To understand the diversity

in the MCR family, the 1.12 Å resolution crystal structure of the catalytic

domain of MCR-2 was determined. Variable amino acids are located distant

from both the di-zinc active site and the membrane-proximal face. The

exceptionally high resolution will provide an accurate starting model for further

mechanistic studies.

1. Introduction

The polymyxin colistin is a key ‘last-resort’ antibiotic used to

treat infections by multidrug-resistant Gram-negative patho-

gens (Biswas et al., 2012; Karaiskos et al., 2017). The positively

charged cyclic peptide of colistin binds to the negatively

charged lipid A headgroup, with the hydrophobic tail inserting

into, and disrupting, the outer membrane (Clausell et al., 2007;

Wiese et al., 2003). A key colistin resistance mechanism is the

production of MCR-1 (Liu et al., 2016), a plasmid-encoded

phosphoethanolamine transferase that has disseminated

worldwide. It is found in clinical strains of Escherichia coli and

Klebsiella pneumoniae (Liu et al., 2016), and in bacteria

producing other resistance determinants, such as carbapenem-

ases (Mediavilla et al., 2016; Haenni et al., 2016), which can

result in essentially untreatable bacterial infections.

MCR-1 catalyses the transfer of positively charged phos-

phoethanolamine onto lipid A, which is subsequently incor-

porated into the outer membrane, reducing the net negative

charge and preventing colistin binding (Hinchliffe et al., 2017;

Liu et al., 2016). It is an integral, metal-dependent inner-

membrane protein, with a large periplasmic domain containing

the catalytic centre and the conserved Thr285 that is likely to

act as the acceptor for the phosphoethanolamine group during

the transfer reaction (Hinchliffe et al., 2017). We recently

described two crystal structures of the MCR-1 catalytic

domain (MCR-1CD), revealing the presence of one (PDB

entry 5lrn; MCR-15LRN) or two (PDB entry 5lrm; MCR-15LRM)

zinc ions in the active site (Hinchliffe et al., 2017), with the

proposed catalytic Thr285 phosphorylated or not phosphoryl-

ated, respectively. Additional MCR-1CD structures have been

reported: two with phosphorylated Thr285 and crystallized

from conditions with a nonphysiologically high zinc content

[PDB entries 5gov (MCR-15GOV; Hu et al., 2016) and 5k4p

(MCR-15K4P; Stojanoski et al., 2016)], and consequently
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containing additional zinc ions, and one with two active-site

zinc ions and both phosphorylated and nonphosphorylated

Thr285 (PDB entry 5grr; MCR-15GRR; Ma et al., 2016). More

recently, the full-length, detergent-solubilized crystal structure

of an MCR homologue (EptA; 36% sequence identity to

MCR-2) was solved (Anandan et al., 2017) with a single zinc

ion, a nonphosphorylated Thr285 and a bound molecule of

dodecyl maltoside (DDM) in the active site. This full-length

structure confirmed the prediction (Hinchliffe et al., 2017) that

the active site is proximal to the membrane.

Two genes closely related to mcr-1 have also been identi-

fied. Firstly, mcr1.2, containing a Gln3Leu substitution, was

found in a K. pneumoniae strain (Di Pilato et al., 2016).

Secondly, mcr-2 was detected in colistin-resistant E. coli

isolated from porcine and bovine samples, with a higher

prevalence than mcr-1 in the porcine samples (Xavier et al.,
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Figure 1
Sequence alignment of MCR-1 (541 residues) and MCR-2 (538 residues). Strictly conserved residues are boxed in white on a red background and highly
conserved residues are boxed in red on a white background. The putative membrane domain is greyed out (residues 1–218). Secondary structure is
indicated above based on the MCR-2CD crystal structure. Residues where mutations reduce MCR-1 activity to basal levels are indicated by red triangles,
and residues that are important to MCR-1 activity (i.e. mutation significantly reduces but does not abolish activity) are indicated by yellow triangles.



2016). mcr-2 is harboured on a plasmid (IncX4) with a high

transfer frequency that appears to lack a fitness cost to the

host and can harbour MCR-1 (Fernandes et al., 2016; Li, Yang

et al., 2016) alongside extended-spectrum �-lactamases such as

TEM and CTX-M (Li, Xie et al., 2016; Falgenhauer et al., 2016;

Lo et al., 2014). MCR-2 (538 residues) is 81% identical to

MCR-1 (Fig. 1), with 101 amino-acid substitutions (61 in the

transmembrane domain and 40 in the catalytic domain) and

three deletions (Met1 and Leu68 in the transmembrane

domain and Gln501 in the catalytic domain; MCR-1

numbering is used throughout). Residues previously identified

as essential (Glu246, His395 and the phosphorylation site

Thr285) or important (Lys333, Glu468 and His478) for MCR-1

activity (Hinchliffe et al., 2017) are strictly conserved in

MCR-2 (red or yellow triangles, respectively, in Fig. 1), indi-

cating a likely identical catalytic mechanism. To understand

MCR diversity, we have solved the crystal structure of the

MCR-2 catalytic domain (residues 217–538; MCR-2CD), which

is 87% identical to MCR-1CD.

2. Materials and methods

2.1. Macromolecule production

To facilitate structural studies, we removed the transmem-

brane domain and synthesized mcr-2 codons 217–538 (Euro-

fins), and subcloned them into pOPIN-F (Berrow et al., 2007)

using the primers in Table 1, resulting in plasmid pOPINF-

MCR2217–538 encoding N-terminally His6-tagged protein

(Table 1). The protein was purified as for MCR-1CD

(Hinchliffe et al., 2017). Briefly, E. coli SoluBL21 cells bearing

pOPINF-MCR2217–538 were induced at 18�C with IPTG

overnight and the protein was purified using Ni–NTA affinity

chromatography. The buffers contained 100 mM ZnCl2

throughout, and the tag was removed by 3C protease cleavage

and captured on Ni–NTA resin. Protein was loaded onto a

Superdex 75 size-exclusion column equilibrated in 50 mM

HEPES pH 7.5, 150 mM NaCl, 100 mM ZnCl2. As for

MCR-1CD (Hinchliffe et al., 2017; Ma et al., 2016), MCR-2CD

eluted from the Superdex 75 column as a monomer. Peak

fractions were concentrated to 15 mg ml�1 by centrifugation.

2.2. Crystallization

Crystallization screens were conducted in MRC 2-drop

96-well sitting-drop plates using commercially available

sparse-matrix screens (JCSG-plus, ProPlex, Structure Screen

1 + 2, Morpheus and PACT Premier from Molecular Dimen-

sions). Crystals were obtained by mixing 0.4 ml protein

solution (15 mg ml�1) with 0.2 ml reservoir solution (0.1 M

KSCN, 30% PEG 2000 MME) and equilibrating against 50 ml

reservoir solution (Table 2), were harvested in reservoir plus

25% glycerol and were flash-cooled in liquid nitrogen.

2.3. Data collection and processing

X-ray data (Table 3) were collected at 100 K on beamline

I04 at Diamond Light Source (DLS), UK, integrated in

DIALS (Waterman et al., 2016) and scaled using AIMLESS

(Evans & Murshudov, 2013) in the CCP4 suite (Winn et al.,

2011).
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Table 1
Macromolecule-production information.

Lower-case letters in the primers indicate overlap with pOPIN-F for In-Fusion
cloning. The His6 tag is in shown in italics and the 3C protease cleavage site is
underlined in the construct sequence.

Source organism E. coli
DNA source Synthetic codon-optimized gene
Forward primer aagttctgtttcagggcccgACCATCTATCACGC-

CAAAGATGCG

Reverse primer atggtctagaaagctttaCTGGATAAACGCAGCA-

CGGTC

Cloning vector pEX-A2
Expression vector pOPIN-F
Expression host E. coli SoluBL21
Complete amino-acid sequence

of the construct produced
MAHHHHHHSSGLEVLGPTIYHAKDAVQTTKPSER-

KPRLVVFVVGETARADHVQFNGYGRETFPQLA-

KVDGLANFSQVTSCGTSTAYSVPCMFSYLGQD-

DYDVDTAKYQENVLDTLDRLGVGILWRDNNSD-

SKGVMDKLPATQYFDYKSATNNTICNTNPYNE-

CRDVGMLVGLDDYVSANNGKDMLIMLHQMGNH-

GPAYFKRYDEQFAKFTPVCEGNELAKCEHQSL-

INAYDNALLATDDFIAKSIDWLKTHEANYDVA-

MLYVSDHGESLGENGVYLHGMPNAFAPKEQRA-

VPAFFWSNNTTFKPTASDTVLTHDAITPTLLK-

LFDVTAGKVKDRAAFIQ

Table 2
Crystallization.

Method Sitting-drop vapour diffusion
Plate type MRC 2-drop 96-well
Temperature (K) 291
Protein concentration (mg ml�1) 15
Buffer composition of protein

solution
50 mM HEPES pH 7.5, 150 mM NaCl,

100 mM ZnCl2
Composition of reservoir solution 0.1 M KSCN, 30% PEG 2000 MME
Volume and ratio of drop 0.4 ml protein solution, 0.2 ml reservoir

solution
Volume of reservoir (ml) 50

Table 3
Data collection and processing.

Values in parentheses are for the outer shell.

Diffraction source Beamline I04, DLS
Wavelength (Å) 0.97949
Temperature (K) 100
Detector PILATUS 6M-F
Crystal-to-detector distance (mm) 187.63
Rotation range per image (�) 0.2
Total rotation range (�) 360
Exposure time per image (s) 0.1
Space group P212121

a, b, c (Å) 44.82, 53.31, 117.51
�, �, � (�) 90, 90, 90
Mosaicity (�) 0.133
Resolution range (Å) 58.75–1.12 (1.14–1.12)
Total No. of reflections 1276800 (31833)
No. of unique reflections 108781 (5133)
Completeness (%) 99.8 (96.8)
Multiplicity 11.7 (6.2)
hI/�(I)i 20.4 (3.4)
Rr.i.m. 0.017 (0.192)
CC1/2 1.000 (0.879)
Overall B factor from Wilson plot (Å2) 8.361



2.4. Structure solution and refinement

Crystallographic phases were solved using Phaser (McCoy

et al., 2007) with MCR-1CD (PDB entry 5lrn) as the starting

model. Variable amino acids were altered to the MCR-2

sequence and the model was completed by iterative rounds of

manual model building and refinement in Coot (Emsley et al.,

2010) and PHENIX (Adams et al., 2010). B factors were

refined anisotropically, except for H atoms and water mole-

cules, which were refined isotropically. Structure validation

was assisted by MolProbity (Chen et al., 2010) and PHENIX.

Details of the refinement statistics are shown in Table 4.

Atomic coordinates and structure factors have been deposited

in the Protein Data Bank (PDB entry 5mx9).

3. Results and discussion

The overall MCR-2CD fold contains three disulfide bonds and

is essentially identical to that of MCR-15LRN (root-mean-

square deviation of 0.54 Å over 314 C� atoms calculated using

PDBeFold; Krissinel & Henrick, 2004; Fig. 2a). A single

residue (Ser330) is a Ramachandran plot outlier, with ’ and  
values of �165.9 and �82.4�, respectively. This residue is

sterically strained by forming a hydrogen bond to Asn329, and

is also a Ramachadran plot outlier in all other MCR-1 struc-

tures. Solvent-accessible loops are largely unperturbed,

although loop 411–424 shifts �4 Å between MCR-15GRR and

MCR-2CD. Based on comparison with the more distantly

related phosphoethanolamine transferases LptA (Wanty et al.,

2013) and EptC (Fage et al., 2014), which have 36 and 35%

sequence identity to MCR-2, respectively, loop 348–365 of

MCR-2 (Fig. 2a) was suggested to be flexible and in an open

conformation for substrate entry (Ma et al., 2016). However, it

makes significant crystal contacts and is in similar conforma-

tions (maximum movement of 1.5 Å) in all physiologically

relevant MCR structures, with low B factors in MCR-2CD

(11.6 Å2). Differences in this loop compared with LptA and

EptC are likely to be because the loop is longer in MCR

proteins (18 residues compared with 15 and four for LptA and

EptC, respectively), and may not be relevant for substrate

entry. The variable amino acids of MCR-2 compared with

MCR-1 are distant from both the active site and the relatively

flat, proposed membrane-proximal face of the molecule

(Fig. 2b). Indeed, most are located on the surface, likely facing

the periplasm, with the exception of Ser459Ala on the central

�-sheet. The Gln501 deletion results in a periplasmic exposed

loop (Fig. 2b), rather than helical turn as in MCR-1, but is also

distant from the active site. The effect of these variable amino

acids on the activity is therefore likely to be minimal.

However, this requires in vitro verification once both recom-

binant full-length enzyme is available and an assay with a

suitable substrate has been developed.

MCR-2CD contains a nonphosphorylated Thr285 and clear

density indicating two metal ions in the active site, modelled as

zinc based on the presence of 100 mM zinc in the purification

buffers and homology to MCR-1, in which zinc was identified

based on X-ray fluorescence scans and density functional

theory calculations (Fig. 3a). As for Zn1 in MCR-1, Zn1 in

MCR-2 is coordinated by Glu246, Thr285 and Asp465 (all with

a coordination distance of 1.92 Å) and His466 (2.04 Å) in a

tetrahedral geometry (Supplementary Table S1). Although

the Zn1 coordination distances are shorter in MCR-2

compared with MCR-1 (Supplementary Table S1; Hinchliffe et

al., 2017), there are no other structural differences around the

Zn1 site, further underlying the importance of Zn1 to enzyme

function. Similar to as in MCR-15LRM (Fig. 3b), Zn2 in MCR-2

forms a tetrahedral geometry and is coordinated by His395,

His478, a tightly bound water molecule (B factor of 11.97 Å2)

and Glu405 from a symmetry-related molecule. In MCR-15LRM

this latter coordination is instead provided by Glu300 owing to

substantially different crystal packing. This further highlights

the likely lack of physiological relevance of the MCR dimer

(Ma et al., 2016; Hinchliffe et al., 2017) but suggests that the

second zinc site can tolerate varying coordinating ligands. The

Zn2 site is unoccupied in the two nonphysiological, high zinc-

content MCR-1 structures reported previously (MCR-15GOV

and MCR-15K4P). MCR-15GRR is similar but contains an

additional water molecule bridging Zn1 and Zn2 (Wat2;

Fig. 3c). However, this water molecule has a high B factor

(51.5 Å2), relatively low occupancy (0.8) and little corre-

sponding electron density and is not in any other MCR

structure, suggesting that it is nonphysiological and should not

be considered in mechanistic discussions.

Superposition with the full-length MCR homologue EptA

(root-mean-square deviation of 0.660 Å over 213 C� catalytic

domain residues; Fig. 3d, left) reveals close structural simi-

larity between the two, as noted previously on comparison of

the catalytic domains MCR-1CD and EptACD (Hinchliffe et al.,

2017; Wanty et al., 2013). Indeed, despite differences in zinc

occupancy (two zincs in MCR-2 and one in EptA), and the

presence of DDM in EptA, the conserved active-site residues

adopt similar conformations, except for small differences of
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Table 4
Structure refinement.

Values in parentheses are for the outer shell.

Resolution range (Å) 48.548–1.120
Completeness (%) 99.8
No. of reflections, working set 108679
No. of reflections, test set 5480
Final Rcryst 0.1334
Final Rfree 0.1453
No. of non-H atoms

Protein 2565
Zinc 2
Solvent 437
Total 3004

R.m.s. deviations
Bonds (Å) 0.008
Angles (�) 1.382

Average B factors (Å2)
Protein 11.57
Zinc 10.48
Solvent 25.79

Ramachandran plot
Favoured regions (%) 97.86
Additionally allowed (%) 1.83
Outliers (%) 0.31



the conserved His395 and His478 residues that coordinate Zn2

in MCR-2CD (Fig. 3d, right). In EptA, His478 coordinates a

DDM molecule, suggesting a possible role for these residues in

positioning the substrate rather than binding a second zinc ion.

However, it cannot be ruled out that physiological substrates

(i.e. lipid A or phosphatidylethanolamine) could replace the

Glu300/Glu405–Zn2 coordination in recruiting a second zinc

ion during the mechanism (Wanty et al., 2013).

The physiological relevance of the second zinc site has yet

to be established, although it has now been observed in three
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Figure 2
Structural comparisons of MCR-1 and MCR-2. (a) Alignment of MCR-15LRN and MCR-2CD, both coloured by secondary structure (loops are in grey,
�-helices in cyan and �-sheets in blue). The MCR-2 active site is shown (Zn spheres are in grey, waters are shown as red spheres and zinc-coordinating
residues are shown as sticks). (b) Positions of variable amino acids (red) in MCR-2. The di-zinc (grey spheres) active site (labelled) is located on the
putative membrane-proximal face. Top: two views of MCR-2 rotated 140�, with variable amino acids shown as sticks. Bottom: MCR-2 surface view, with
orientations as in (a).



MCR crystal structures. Our density functional theory calcu-

lations (Hinchliffe et al., 2017) suggest a two-zinc mechanism

to be feasible for MCR-1, although a one-zinc mechanism was

tentatively more favourable. Resolving this issue will require

accurate and detailed mechanistic and computational studies

of phosphoethanolamine transfer by the MCR family of

enzymes, the latter of which will be greatly facilitated by the

exceptionally high resolution of the current structure. The

MCR-2CD structure also indicates that amino-acid mutations

on the periplasmic facing surface of MCR-1 are well tolerated.

This, together with the wide geographic distribution of MCR-1

and the intense current research in this area, makes it likely

that further clinical MCR variants will be identified in due

course. Thus, achieving full understanding of mobile colistin

resistance will require consideration, including structural and

biochemical characterization, of family members beyond

MCR-1. The current structure represents a first step towards

this goal.
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