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H I G H L I G H T S

• Performance of a distribution network with SOP during an AC fault was investigated.

• Convectional fault analysis using sequence networks was extended to include SOP.

• Network behaviour was analysed for a line-ground, a line-line and a three-phase fault.

• A method to detect AC faults was developed using sequence voltage measurements.

• Dependence of sequence voltages and currents on SOP set-points was investigated.
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A B S T R A C T

Soft Open Point (SOP) is a power electronic device installed in place of normally open points in electrical
distribution networks. This paper investigates the dynamic performance of a medium voltage (MV) distribution
network with a connected SOP, under grid side AC faults. Use of sequence networks was extended to include
SOP, such that conventional fault analysis technique can be used on a distribution network with SOP. A Fault-
Index was defined using symmetrical components of voltages measured at the grid connection point of the SOP.
The network performance was investigated under a line-to-ground, a line-to-line and a three-phase fault. The
behaviour of the network was analysed under different control schemes and various operating scenarios of the
SOP. Furthermore, the dependence of the sequence voltages and currents on the SOP set points was investigated.
Simulations were carried out on an 11 kV generic UK distribution network model developed in PSCAD/EMTDC.
Results show that the convectional fault analysis technique is applicable on a network with SOP, regardless of
the SOP control mode. The Fault-Index, defined based on the local voltage measurements, was effective in
detecting the presence of an AC fault in the MV distribution network. In addition, the need for a non-current
based detection method is illustrated.

1. Introduction

In medium voltage (MV) distribution networks, power electronic
devices have been increasingly deployed due to their applications in
integrating distributed energy resources (DER) [1]. Applications of
power electronic devices such as electronic on-load tap changers, solid
state fault current limiters and Soft Open Points (SOPs) are mainly
under investigation [2,3]. This paper focuses on SOP used in medium
voltage distribution networks.

SOP is a power electronic device installed in place of a normally
open or normally closed point in a distribution network [4,5]. Unlike
conventional switches, the power flow through an SOP is not controlled
through open and close operation of mechanical contactors. Controlled

firing of power electronic switches performs ‘soft’ switching. The de-
sired steady state operation is achieved by regulating the real (P) and
reactive (Q) power flowing through the SOP terminals.

An MV distribution network normally operates in a radial config-
uration. An SOP connects two radial networks retaining the benefits of
the radial and the meshed configurations, whilst avoiding their in-
dividual drawbacks [6]. Loads may be balanced between feeders
without increasing the fault level of an individual radial feeder [7]. An
algorithm to implement network reconfiguration with SOP was pro-
posed in [8]. A method was introduced to determine the optimal SOP
operation using an improved Powell’s direct set method. Authors of
paper [4] proposed a method to determine the optimal installation sites
and capacities of SOPs under normal operating conditions. A mixed
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integer non-linear optimization problem was formulated based on the
typical operation scenarios generated by Wasserstein distance. The
steady state operation of an SOP and the network restoration after a
permanent fault using SOP were investigated in [9]. The authors pre-
sented various operation modes of an SOP during normal network
conditions and further investigated the ‘restoration mode’ after fault
isolation. Applications of SOP for load balancing and voltage profile
management have been investigated in [8,10]. A steady state analysis
framework was introduced in [11] to quantify the benefits of SOP in
normal operation. The optimal operation of MV networks with dis-
tribution generation based on the Jacobean matrix sensitivity method
was investigated in [12]. In [13], the authors investigated the impact of
using an SOP on the feeder automation events on a distribution net-
work. Distribution network operators (DNOs) in the UK such as the
Scottish Power Energy Networks (SPEN) and the Western Power Dis-
tribution are deploying SOP-type equipment in their pilot projects
[14,15]. However, the trials are in their early stage of development.

Existing literature mostly describes the behaviour and benefits of
SOP under the normal network operation and the post fault scenarios.
However, the existing literature does not describe the performance of a
network with SOP during a fault on the network. No attempt has been
seen to incorporate SOP into conventional fault analysis. To fill this gap,
this paper extends the fault analysis technique using sequence networks
to a distribution network with connected SOP.

A method was developed to detect faults in a distribution network
with SOP, using sequence voltage measurements at the grid connection
point of the SOP. A Fault-Index (FI) was defined to quantify the pro-
portion of positive and negative sequence voltage at the SOP grid
connection point. The presence of a fault in the network was de-
termined by establishing a threshold of the FI value. A mechanism to
detect faults is important to achieve proper operation of an SOP.
Conventionally, separate fault management devices are used to detect
the presence of a fault and disconnect the power electronic devices from
the network during AC faults [16]. The method proposed in this paper
is easy to implement since the inputs require only the local measure-
ments at the grid connection point of the SOP. The efficacy of using the
SOP for fault detection, as an alternative to conventional protection
equipment, was investigated.

The sequence networks were verified by analysing the dynamic
performance of a distribution network with SOP during a line-to-ground
(La–G) fault, a line-to-line (La–Lb) and a three-phase (La–Lb–Lc) fault.
The behaviour of the network was analysed under different control
schemes and various operating scenarios of the SOP. Furthermore, the
dependence of the sequence voltages and currents on the SOP set points
was investigated.

2. Back-to-back voltage source converter based Soft Open Point

Various configurations of SOP are discussed in [6], which use back-
to-back voltage source converters (VSCs), unified power flow con-
trollers (UPFC), static series synchronous compensators (SSSC) or multi-
terminal (MT) VSCs. Each configuration has a different operating region
in the P-Q plane. Suitable configuration is selected based on network
requirements.

Fig. 1(a) shows the operating region in the PQ plane for an SOP in
back-to-back VSC configuration. The operating region is represented by
a circle with its radius equal to the total rated apparent power (S) of the
SOP. The VSC based SOP allows control of real and reactive power in all
four quadrants of the P-Q plane. It can facilitate black start, unlike line
commutated converters (LCC) [7]. It also injects reduced harmonic
currents which allow the use of lighter filters. Furthermore, it has been
suggested that back-to-back VSCs is the most cost effective configura-
tion in distribution networks [3,5]. Therefore, an SOP using back-to-
back VSC configuration is investigated in this paper.

The circuit topology of the SOP is shown in Fig. 1(b). It consists of
two VSCs connected through a DC link. The VSC has six arms of

Insulated Gate Bipolar Transistors (IGBTs) connected in a bridge con-
figuration. Each VSC is connected to the grid through an inductor and
an isolation transformer. It is common to use two-level converters for
lower voltage application (medium voltage or low voltage). Multilevel
topologies are predominantly used for higher voltage levels [5].

2.1. Operation and modelling of SOP

Each VSC in the SOP is operated through controlled commutation of
the IGBTs. Pulse width modulation (PWM) is used for the commutation.
P transfer through the VSC is achieved by controlling the phase angles
of the converter terminal voltage with respect to the SOP grid con-
nection point. Transfer of reactive power (Q) is achieved by controlling
the amplitude of voltage at the converter terminal with respect to the
voltage at the SOP grid connection point. Smooth voltages are gener-
ated at the VSC terminals using low pass filters. The DC capacitors limit
the ripples in DC current and provide for decoupled real power ex-
change between VSCs [17].

Fig. 2 shows the average model of an SOP. It is modelled using a
switched equivalent of a VSC, with decoupled AC and DC sides. The AC
side is modelled as a three-phase voltage source (V1 for VSC1 and V2 for
VSC2). The DC side is modelled as a current source in parallel to a
capacitor with the DC voltage Vdc. The direct current (Idc) represents the
real power transfer between the VSCs. The magnitudes of real power
flowing between the terminals of SOP are equal during steady state
operation. This is illustrated by the power balance equation in Eq. (1).
P1 and P2 are the magnitudes of real power transferred across the
terminals of the SOP. Pdc is the DC power transfer through the DC link.

= = = ×P P P V Idc dc dc1 2 (1)

The average model using switched equivalent circuit is sufficient for
this study as it describes the steady state and the dynamic behaviour of
the VSC with sufficient accuracy [18].

2.2. Control of SOP

A number of control schemes for VSCs have been proposed in the
literature, including linear and non-linear methods [19–21]. A classical
two-level dq0-control is used in this study [22]. It is a common control
technique, since it allows the use of linear proportional-integral (PI)
controllers to control the sinusoidal network quantities. This is
achieved by transforming the three-phase (a, b, c) network quantities to
a synchronously rotating reference frame (d, q, 0) using Parks trans-
formation as shown in Eq. (2). T(θ) is the Park’s transformation matrix
(details in Appendix A). Xabc is a vector of three-phase quantities in the
abc frame. Xdq0 is a vector of the converted quantities in the dq0 frame.

= θX T X[ ] [ ( )][ ]dq0 abc (2)

The angle θ is synchronised to the grid angle using the angular
frequency ω, obtained using a phase locked loop (PLL) [18]. ω is cal-
culated using the positive sequence voltage as an input to the PLL.
Details of symmetrical components are elaborated in Section 3.1. The
angular frequency of the rotating frame is controlled such that the re-
sultant θ maintains the quadrature axis voltage (Vq) at zero. The direct
axis voltage (Vd) is linearly controlled to achieve the desired output.

Each VSC is equipped with a separate two-level cascaded control
system, which includes an outer (power) and an inner (current) control
loop as shown in Fig. 3. The outer loop uses PI controllers to regulate
active power (P) or DC voltage (Vdc) through the direct axis variable
and reactive power (Q) or AC voltage (E) through the quadrature axis
variable. The outer loop produces the direct axis (id Ref) and the quad-
rature axis (iq Ref) current reference signals for the inner loop.

The mode of operation is selected between the active power control
(APC) and the direct voltage control (DVC) through switch Sw1.
Similarly, the reactive power control (RPC) or the alternating voltage
control (AVC) is selectable through switch Sw2. Therefore, the SOP
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control modes are switchable between the P-Q, Vdc-Q, Vdc-E and P-E
modes.

The inner loop is used to regulate the values of the current refer-
ences id Ref and iq Ref received from the outer loop. Decoupling signals
are included to eliminate cross-coupling dynamics. The summation of
the inner loop PI controller outputs and the decoupling terms produces
the direct and quadrature axis voltage references, Vd Ref and Vq Ref re-
spectively. The voltage reference signals are then used to generate the
converter terminal voltage (Va, Vb, Vc) through an inverse Park’s
transformation. In the averaged model, the firing operation is realized
through the functional equivalent of the IGBT operation. The modula-
tion index m is defined using Vd Ref and Vdc as shown in Eq. (3). Eqs. (4)
and (5) show the mathematical implementation of the converter
terminal voltages and the DC current flowing through the DC link [16].
ia,b,c are the AC current through phases a, b and c.

⎜ ⎟= ⎛
⎝

⎞
⎠

m V
V
2

d Ref
dc (3)

= ⎛
⎝

⎞
⎠

=V m V k a b c
2

; where , ,k
dc

(4)

= + +I m i i i
2

( )dc a b c (5)

A sustained DC voltage ensures a balanced real power flow between
the terminals of the SOP. Therefore, either VSC1 or VSC2 must control
Vdc for proper operation of the SOP. However, both VSCs cannot control
the DC link voltage simultaneously as this may lead to hunting [18].
Subscripts 1 and 2 are added to the variable names of the SOP to in-
dicate values of VSC1 and VSC2 respectively. The reference values of
the real power (P1 Ref and P2 Ref), reactive power (Q1 Ref and Q2 Ref) and
the AC voltage (E1 Ref and E2 Ref) at terminals of VSC1 and VSC2 are
defined by the user as per network requirements. Any value within the

(a) (b)
Fig. 1. (a) Operating region for VSC based SOP in P-Q plane; (b) IGBT connections for SOP implementation.
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rating of the SOP is permissible. The DC voltage (Vdc Ref) is usually fixed
for an SOP design. This study focuses on analysis of an SOP in combi-
nations of P-Q and Vdc-Q modes only.

A current limiter is used to model the physical current carrying
limitations of IGBTs. The maximum current through the SOP terminals
(imax) is assumed to be 1.5 times its rated current. Eq. (6) represents the
mathematical implementation of the current limiter in the controller.
This ensures that the IGBTs are protected from damage due to over-
current.

+ ⩽i i i( ) ( ) ( )d q max
2 2 2 (6)

3. Fault analysis of network with SOP using symmetrical
components

3.1. Symmetrical components

Fortescue proposed the theory of symmetrical components in 1923
to study unbalanced networks [23]. During a fault, the unbalanced
network can be resolved into three sets of balanced three-phase vector
groups (positive, negative and zero sequences) called symmetrical
components. Positive sequence components consist of balanced three-
phase vectors in normal phase sequence. Vectors in reverse phase se-
quence constitute negative sequence. The zero sequence components
consists of three in-phase vectors. Ignoring the negative sequence
components due to load imbalances, no negative and zero sequence
components exist in t network during normal (no fault) operation.

Although they are not physically present in the network, monitoring
and superimposition of symmetrical quantities can be the basis of un-
derstanding the network behaviour during a fault [24,25]. Eqs. (7)–(9)
show the measured phase voltages (Va, Vb, Vc) expressed as a function
of the symmetrical components (Vp, Vn, Vz). Similar equations can be
written for the currents.

= + +V V V Va
p n z (7)

= + +V a V aV Vb
p n z2 (8)

= + +V aV a V Vc
p n z2 (9)

The complex operator = −a e
πj3
2 ; subscripts a, b, c indicates the

three-phase quantities and the superscripts p, n and z represent the
positive, negative and zero sequence components respectively. Using
these equations, filters are modelled to resolve the measured phase
voltages and line currents into positive, negative and zero sequence
vectors. Details regarding modelling of filters are in Appendix B.

3.2. Fault analysis of a network with SOP

MV radial feeders are typically operated with unidirectional power
flow. The reverse current in the feeder due to the introduction of SOP
could result in a disruption of the protection settings. Therefore the
current settings of the relays between the SOP and the fault need re-
calibration in order to prevent unintended trips of circuit breakers. The
detailed fault dynamic response of an SOP is determined by the hard-
ware implementation (e.g. Back-Back VSC or UPFC) and the controller
design. Because of its capability of fast response and flexible control, an
SOP has a potential to significantly improve fault identification, fault
location, fault isolation, and supply restoration [26]. However, the use
of SOP brings more complexity to the dynamic response to a fault.

A detailed study of the SOP controller design is required to ensure
an improved fault dynamic response of an SOP. In the classical two-
level dq0-control used for the back-to-back VSC based SOP, the outer
loop attempts to maintain the predefined set points. A change in power
flow due to a drop in voltage during AC faults results in an increase in
current reference id Ref and iq Ref. The current limiter ensures the max-
imum rise in the resultant current flowing through the SOP terminals is

limited to imax. The real and reactive power flowing through the SOP
terminals during an unbalanced fault remains nearly the same as the
pre-fault values. However there are ripples due to voltage imbalance in
the feeder, introduced due to the unbalanced fault. In case of a balanced
fault the real and reactive power flows drop due to the substantial drop
in the feeder voltage [7]. The reactive power flowing through the SOP
terminals of the unfaulted feeder remains unchanged. The SOP can
continue to provide reactive power support to the unfaulted feeder
during a fault on one of the feeders, provided a suitable control for Vdc

is used. Analysing the dynamic response of the DC link voltage is not in
the scope of this paper.

In a convectional distribution network, fault studies are carried out
by replacing the fault by a voltage source equal to the pre-fault voltage
at the fault point. Symmetrical components are then used to draw
equivalent sequence networks by considering the fault point to be the
source of imbalance [25]. A low ohmic connection between phases or
between phases and earth constitutes a fault [27]. Open circuits and
high impedance faults are excluded for this analysis.

In order to enable detailed dynamic fault studies on a network with
SOP, the contribution of SOP needs to be included in the sequence
networks. During a grid side AC fault, an SOP viewed from the network
behaves as a current source. The maximum magnitude of current in-
jected from the SOP during a fault is equal to imax, the physical current
limit of the IGBTs. Depending upon the type of fault, positive, negative
and zero sequence currents can be injected from the SOP grid connec-
tion point. A VSC can produce positive and negative sequence currents
using a classical dq0-controller. Zero sequence currents may exist de-
pending on the windings of the isolation transformer. Therefore, the
contribution from the SOP is represented by a current source in parallel
to their respective sequence component in the equivalent sequence
network. The current flowing into the fault is a sum of the current in-
feed from the grid and the current injected from the SOP.

Fig. 4 illustrates the equivalent sequence networks for grid side AC
faults on a network with SOP. The portion in the yellow highlights the
sequence network of the SOP. f indicates the location of the fault on one
of the feeders connected to the SOP terminal. GCP1 is the grid con-
nection point of the SOP and the faulted feeder. Eg1 is the AC grid
voltage at G1. ZTg1 represents the AC grid impedance (including the
distribution lines and the grid transformer) of the faulted feeder. ZTc1 is
the isolation transformer impedance and Zc is the converter impedance.
Superscripts p, n and z represent positive, negative and zero sequence
components.

Fig. 4(a) shows the equivalent sequence network for a line-to-
ground fault (La–G). The positive, negative and zero sequence compo-
nents are in series for such a fault [25]. Zero sequence components exist
in the network only if a ground path is available for the flow of current.
The VSC does not produce zero sequence current since it is connected to
the delta side of the isolation transformer. However, the fault current at
f has a zero sequence component, since the grid transformer and the
SOP isolation transformer are star grounded on the feeder side.

Fig. 4(b) shows the equivalent sequence network for an unbalanced
line-to-line fault (La–Lb). The positive and negative sequence networks
are in parallel to each other for an unbalanced fault [25]. Thus, the
positive and negative sequence voltages are equal in magnitude. There
are no zero sequence components in the network.

The equivalent sequence network for a balanced three-phase fault
(La–Lb–Lc) is shown in Fig. 4(c). Only the positive sequence current is
present in the network. There are no negative and zero sequence cur-
rents since the network is balanced. Due to the nature of SOP, the two
feeder connected through the SOP are decoupled from each other.
Therefore, impedances of unfaulted feeder do not appear in the
equivalent sequence network.

4. Detection of fault and fault-index

In a conventional distribution network without DERs, the rotational
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inertia stored in generators is dissipated during a fault in the form of a
large fault current. Each type of fault is accurately characterized by the
corresponding fault current. Coordination of overcurrent protection
devices is achieved by detailed fault analysis carried out on the net-
work.

Measurements of symmetrical current components are introduced as
an improvement to the convectional over current measurements.
During an unbalanced fault, the negative sequence current is present in
a large proportion as compared to load imbalance. Thus, measuring the
sequence currents is a good method of fault detection. Authors of [28]
defined a function to quantify the negative sequence currents for fault
detection. The method eliminates faulty operation of overcurrent pro-
tection devices due to transient currents in a network. However,
quantification of the negative sequence currents will not be applicable
for balanced faults. In addition, the current based detection method in a
network with SOP will lead to further complication since SOP con-
tributes sequence currents into faults. Thus, a symmetrical voltage-
based method is proposed.

Fault-Index (FI), defined in Eq. (10), is the ratio of the difference
between the root mean square (RMS) values of positive, negative and
zero sequence voltages to the nominal positive sequence voltage for
each phase.

=
− +

FI
V V V

V
( ( ))

( )x
xRMS
p

xRMS
n

xRMS
z

xRMS nominal
p

( ) (10)

x corresponds to phases a, b, c.
The power quality criterion is based on the voltage unbalance factor

(VUF). VUF is the ratio of negative to positive sequence voltages.
Voltage unbalance may occur in a network due to unbalanced system
impedance or due to switching of high loads. They rarely exceed 2%,
for a short duration of time. Engineering Recommendation P29 [29]
states that the VUF does not go above 1.3% for systems with nominal
voltages below 33 kV. To clearly distinguish between voltage imbalance
and a fault, an unbalance of 10% or greater (VUF ≥ 0.1) is assumed to
indicate a fault in the network. Using this inequality in Eq. (10), the
value of numerator is≤0.9. Similarly, the value of the denominator can
be calculated to be ≥1. Thus, a threshold value of FI ≥ 0.9 was cal-
culated for a healthy network. Any value of FI < 0.9 indicates a fault
in the network.

5. Test network

A generic, 11 kV UK distribution network was used in this study
[30,31]. The test network consists of two radial feeders connected
through a 6 MVA SOP. Each feeder consists of three, 1 km sections.

Fig. 5 shows Feeder-1 of the 11 kV test network connected to Feeder-2
through the SOP. Feeder-2 (not shown in the figure) was modelled
identically to Feeder-1 with identical devices and line characteristics.
The model was developed in PSCAD/ EMTDC package.

G1 is the grid infeed point. T1 is a 15 MVA, delta-star grid trans-
former grounded through a 25 Ω resistor on the feeder side. SB1 is an
overcurrent based substation circuit breaker. Zg represents the line
impedance of a section. Each 1 km section has a positive (Zgp), negative
(Zgn) and zero (Zgz) sequence impedance of 0.164 + j0.082 Ω,
0.164 + j0.082 Ω and 0.542 + j0.426 Ω respectively. For simplicity,
the positive and negative sequence impedances were assumed equal. L1
and L2 are uniform lumped loads of 1 MW/ph at power factor of 1. The
rating of the SOP was selected such that it is sufficient to feed the loads
L1 and L2. The isolation transformer (TC1) is a delta-star transformer
with a directly grounded star winding on the feeder side. It is connected
between the converter terminals (CT1) and the grid connection point
(GCP1) on Feeder-1. Zc (0.5 + j1.57 Ω) represents the impedance of the
inductor connected between the converter and the isolation trans-
former. The converters are connected through a DC link at 35 kV, which
consists of two 600 μF capacitors in series. The converter terminals of
VSC2 (CT2) are connected to Feeder-2 through an isolation transformer
identical to TC1 (not shown in the figure).

6. Case studies

The dynamic response of the test network was investigated under
various type of faults. Simulations were carried out for the La–G, La–Lb
and La–Lb–Lc faults at location f on Feeder-1. A temporary fault occurs
at simulation time t= 1 s, for a duration of 0.6 s. The duration of the
fault was selected less than the time needed for the network protection
devices to isolate the fault. Fault resistance was assumed to be negli-
gibly small. Feeder-2 was assumed to be healthy (without fault)
throughout the simulation. The network with SOP was studied under
three main cases.

Case 1: This case verifies the behaviour of equivalent sequence
networks and illustrate their validity for different control schemes of
VSC1, under various operating scenarios of the SOP.

The three-phase voltages and currents measured at GCP1 were de-
composed into symmetrical components for various faults. The
equivalent sequence network developed for each fault was verified by
matching the behaviour of measured values to the expected behaviour
of their respective sequence network.

The sequence voltages and currents at GCP1 are compared under
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different control schemes of VSC1 during a fault (i.e. in the P-Q mode
and the Vdc-Q mode). Extending from Section 2.1, SOP operates in all
four coordinates of the P-Q plane. The SOP operates in one of the four
possible scenarios during normal (without fault) operating conditions of
the network. Each power flow scenario is achievable in the P-Q mode
and the Vdc-Q mode.

(1) No power exchange; The SOP is in an ‘open tie-switch’ configura-
tion with no P and Q exchange between Feeder-1 and Feeder-2;

(2) Q exported to Feeder-1; The SOP operates as a STATCOM providing
Q support to the connected feeder (to Feeder-1 in this scenario);

(3) P imported from Feeder-1 and Q exported to Feeder-1; Q support to
Feeder-1 with controlled P transfer from Feeder-1 to Feeder-2;

(4) P and Q exported to Feeder-1; Q support to Feeder-1 with controlled
P transfer from Feeder-2 to Feeder-1 (reverse direction of P flow as
compared to Scenario 3).

Q import from the feeder to SOP is not considered. Consumption of
Q from the network is detrimental to the voltage profile in a radial
distribution network, and hence not recommended.

Fixed set points are used to simulate the above scenarios. Details of
the set points for VSC1 and VSC2 are in Appendix C. The measurements
were noted for simulation time t= 1.1 s such that no transients are
present. The sequence voltages and currents for the four scenarios are
tabulated. A bar chart for Scenario 4 is used to illustrate the similarities
of sequence quantities in the two modes of operation.

Case 2: This case illustrates the reliability of the FI to detect various
types of faults

The dynamic response of the FI was analysed for a typical fault. FI
was noted for each of the four scenarios in Case 1. The simulations were
repeated for different loading conditions to validate FI under different
loading conditions. The ability to detect balanced, unbalanced and
ground faults was illustrated by comparing FI value to the defined

threshold value. A bar chart was plotted for Scenario 4 to illustrate the
similarities of FI during different modes of operation.

Case 3: This case investigates the dependence of the sequence vol-
tages and currents on the SOP set points

The co-relation between the sequence quantities at GCP1 for dif-
ferent P1 Ref and Q1 Ref set points of VSC1 during a fault, when VSC1 is in
the P-Q mode, is investigated.

The SOP could operate under any permissible set point prior to a
fault. The power transfer through GCP1 during normal (without fault)
operation follows the real and reactive power set points. In order to
examine the effect of real power set point on the sequence components,
simulations are carried out for different values of P1 Ref whilst Q1 Ref

equals to zero. P1 Ref is varied from −5 MW to 5 MW in steps of 1 MW.
The sequence voltages and currents at GCP1 are analysed.

To analyse the results, the sequence quantities are grouped by the
respective sequence. Therefore, the positive sequence voltages (or
currents) during the three faults for different values of P1 Ref are
grouped in one plot. The negative sequence voltages (or currents) are
grouped in the second plot.

Similarly, the effect of reactive power set point is examined by
varying Q1 Ref from −5 MVAr to 5 MVAr in steps of 1 MVAr, keeping P1
Ref at zero. The sequence quantities are similarly grouped for analysis.

7. Simulation results

7.1. Case 1

Table 1 shows the values of sequence voltages (in kV) for the four
operating scenarios of SOP. The magnitude of sequence voltages ob-
served at GCP1, are consistent with the analytical values of the re-
spective equivalent sequence networks. Vp is maximum for the La–G
fault and least for the La–Lb–Lc fault. Vn is maximum for the La–Lb fault.
The magnitude of Vp and Vn are nearly equal for the La–Lb fault. No Vz is

Fig. 5. Generic 11 kV distribution network with SOP (Test network).

Table 1
Symmetrical voltage components (in kV) and FI for two operating mode and various scenarios of SOP operation.

Fault on Feeder 1 @ t = 1 s VSC1 in the P-Q mode VSC1 in the Vdc-Q mode

FI Vp Vn Vz FI Vp Vn Vz

L-G Fault No power exchange 0.15 4.55 1.62 1.97 0.16 4.47 1.45 2.02
Q exported to Feeder-1 0.18 4.80 1.64 2.04 0.18 4.72 1.47 2.10
P imported from Feeder-1 + Q exported to Feeder-1 0.17 4.73 1.64 2.01 0.17 4.61 1.45 2.07
P and Q exported to Feeder-1*,++ 0.17 4.78 1.65 2.06 0.19 4.81 1.49 2.12

L-L Fault No power exchange 0.05 2.68 2.36 0 0.04 2.84 2.57 0
Q exported to Feeder-1 0.07 3.06 2.58 0 0.08 3.22 2.68 0
P imported from Feeder-1 + Q exported to Feeder-1 0.08 3.09 2.57 0 0.06 3.03 2.64 0
P and Q exported to Feeder-1* 0.08 3.12 2.62 0 0.08 3.22 2.71 0

L-L-L Fault No power exchange 0.01 0.07 0 0 0.01 0.10 0 0
Q exported to Feeder-1 0.06 0.48 0.07 0 0.06 0.47 0.07 0
P imported from Feeder-1 + Q exported to Feeder-1 0.06 0.49 0.07 0 0.06 0.48 0.07 0
P and Q exported to Feeder-1* 0.09 0.66 0.09 0 0.08 0.60 0.09 0

* Scenario used for Box plot.
++ Scenario used for dynamic analysis of FI.
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present in the La–Lb–Lc and La–Lb faults. Furthermore, the values are
identical for a type of fault in each scenario.

Similarly, Table 2 shows the values of sequence currents (in kA) for
the four operating scenarios of SOP. The La–Lb–Lc faults are most severe
with saturation current flowing through GCP1. During balanced faults,
the grid voltage is nearly zero. This gives rise to errors in the compu-
tation of θ using PLL, resulting in a non-zero Vq value. Thus, small
negative sequence voltage and currents are noted for balanced faults.
For the La–G fault, Ip and In are nearly equal and considerable levels of Iz

is present in the network. Although the sequence currents flowing from
the grid to the fault point f, remain the same with and without SOP
operation. The sequence currents flowing at fault point f, changes due
to the introduction of SOP at the end of the feeder.

Fig. 6(a) and (b) compares the sequence voltages for two control
modes of SOP. The bar charts illustrate the comparison for Scenario 4.
The bars in blue represent voltage at GCP1 when VSC1 in the P-Q mode
(VSC2 in the Vdc-Q mode) and bars in red represent voltage when VSC1
in the Vdc-Q mode (VSC2 in the P-Q mode).

The positive, negative and zero (if applicable) voltages were ob-
served to be nearly equal for both the modes of VSC operation.

Similar observations are made for currents flowing through GCP1.
Fig. 7(a) and (b) shows the bar chart comparing currents for the two
SOP control modes in Scenario 4. The bars in blue and red represent
currents through GCP1 when VSC1 in the P-Q mode (VSC2 in the Vdc-Q
mode) and when VSC1 is in the Vdc-Q mode (VSC2 in the P-Q mode)
respectively. Currents from the SOP remain mostly unchanged for both
modes of operation, with maximum difference of 0.06 kA between the
respective values.

The trends of sequence values observed for various faults are con-
sistent with the expected behaviour based on the equivalent sequence
networks. It is clear that sequence networks extending classical fault
analysis can be used for a network with connected SOP, regardless of

the control scheme of the VSC connected to the faulted feeder.

7.2. Case 2

Fig. 8(a) shows the dynamic response of the FI for the La–G fault in
Scenario 4. This scenario was selected as an extreme case, since FI value
was highest in this instance. The steady state FI drops well below the
threshold value within two cycles (0.04 s) of the fault occurrence. This
time does not include the measuring, computation and actuation time
needed during real implementation. However, the measurements used
for the calculation are available at the SOP controller for its operation
and control, thus communication delay is negligible. The firing of the
IGBTs can be blocked immediately after the value of FI drops below the
threshold. It can be seen from the paper that the computation burden of
calculating FI is negligible. Therefore the proposed method is con-
siderably faster than the conventional current based detection method
using relay and isolator which usually takes up to thirty cycles (0.6 s) to
detect a fault and isolate the SOP [28]. This illustrates the capability of
the SOP to detect fault effectively.

The Fault-Index values in each of the four scenarios, under different
type of faults are included in Table 1. The validity of FI was further
investigated under different loading conditions. The FI was calculated
for decreasing loading conditions with 75% and 50% of 1 MW/ph load
at 1 and 0.9 power factor. The results are shown in Table 3. The FI
varies between 0.15–0.2 for the La–G fault, 0.04–0.08 for the La–Lb fault
and 0.01–0.09 for the La–Lb–Lc fault for different operating scenarios of
the SOP. The FI was found to be well below the defined threshold of 0.9
for all types of faults, different SOP set points and loading conditions.
Fig. 8(b) illustrates the bar chart comparing the FI values for various
faults. The red line is the defined threshold value of FI. The values are
identical for both control modes. It is clear that FI is a simple and ef-
ficient method of fault detection in a distribution network with SOP,

Table 2
Symmetrical current components (in kA) for two operating mode and various scenarios of SOP operation.

Fault on Feeder 1 @ t = 1 s VSC1 in the P-Q mode VSC1 in the Vdc-Q mode

Ip In Iz Ip In Iz

L-G Fault No power exchange 0.03 0.13 0.90 0.04 0.18 0.92
Q exported to Feeder-1 0.13 0.14 0.93 0.11 0.19 0.95
P imported from Feeder-1 + Q exported to Feeder-1 0.17 0.14 0.92 0.16 0.21 0.95
P and Q exported to Feeder-1* 0.20 0.15 0.93 0.17 0.21 0.96

L-L Fault No power exchange 0.39 0.44 0 0.36 0.37 0
Q exported to Feeder-1 0.33 0.46 0 0.30 0.41 0
P imported from Feeder-1 + Q exported to Feeder-1 0.14 0.40 0 0.1 0.38 0
P and Q exported to Feeder-1* 0.52 0.44 0 0.51 0.43 0

L-L-L Fault No power exchange 0.07 0 0 0.09 0 0
Q exported to Feeder-1 0.72 0.06 0 0.74 0.06 0
P imported from Feeder-1 + Q exported to Feeder-1 0.71 0.06 0 0.75 0.06 0
P and Q exported to Feeder-1* 0.74 0.06 0 0.69 0.06 0
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Fig. 6. Comparison of sequence voltages for different control modes of SOP: (a) Positive sequence voltage; (b) Negative sequence voltage.
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without using any additional devices.

7.3. Case 3

In a distribution network, the injection of real and reactive power
affects the voltage at the node due to their large R and X ratio [24].
Figs. 9 and 10 exemplifies this behaviour in the test distribution net-
work with SOP. Negative values of the set points indicate injection of
power into Feeder-1 from SOP in all the following figures and analysis.

Fig. 9(a) compares the positive sequence voltages for variation of P1
Ref set points and Q1 Ref set points. In the figure the solid line represents

the sequence quantities for range of P1 Ref whist set point Q1 Ref = 0
(marked on lower x-axis and y-axis). Similarly the dotted lines represent
the sequence quantities for range of Q1 Ref with set point P1 Ref = 0
(marked on upper x-axis and y-axis). The red, blue and black coloured
plots indicate the La–G, La–Lb and La–Lb–Lc faults respectively. Fig. 9(b)
shows negative sequence with identical representation.

Vp at GCP1 varies linearly based on the pre-fault operating condition
of the SOP. It gradually drops with an increase in power exported from
Feeder-1 prior to the fault. Conversely, an increase in power injection
from SOP to feeder results in a gradual rise of voltage at GCP1.
However, in comparison to real power injection, the slope of the
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Fig. 7. Comparison of sequence currents for different control modes of SOP: (a) Positive sequence currents; (b) Negative sequence currents.
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Table 3
FI for various SOP operating scenarios under different loading conditions.

Fault on Feeder 1 @ t = 1 s FI for VSC1 in P-Q mode FI for VSC1 in Vdc-Q mode

Per phase loads (L1 and L2) in (MW)

0.75 MW@ 1
PF

0.5 MW @ 1
PF

0.75 MW @
0.9 PF

0.5 MW @
0.9 PF

0.75 MW@ 1
PF

0.5 MW @ 1
PF

0.75 MW @
0.9 PF

0.5 MW @ 0.9
PF

L-G Fault No power exchange 0.15 0.15 0.15 0.15 0.17 0.18 0.17 0.17
Q exported to Feeder-1 0.16 0.16 0.16 0.16 0.2 0.19 0.19 0.19
P imported from Feeder-1 + Q
exported to Feeder-1

0.15 0.15 0.15 0.15 0.19 0.19 0.18 0.18

P and Q exported to Feeder-1 0.17 0.17 0.17 0.17 0.2 0.2 0.20 0.20

L-L Fault No power exchange 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03
Q exported to Feeder-1 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
P imported from Feeder-1 + Q
exported to Feeder-1

0.05 0.05 0.06 0.06 0.05 0.04 0.04 0.04

P and Q exported to Feeder-1 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06

L-L-L Fault No power exchange 0.01 0.01 0.014 0.01 0.01 0.01 0.01 0.01
Q exported to Feeder-1 0.06 0.05 0.06 0.05 0.05 0.07 0.05 0.06
P imported from Feeder-1 + Q
exported to Feeder-1

0.06 0.06 0.06 0.06 0.06 0.05 0.06 0.06

P and Q exported to Feeder-1 0.07 0.07 0.07 0.07 0.07 0.08 0.07 0.07
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voltage drop is slightly greater for reactive power injection. Fig. 9(b)
shows similar results for Vn. Slight droop is observed in variation of
negative sequence voltages for changes in P1 Ref and Q1 Ref set points.
Similar droop is observed for the zero sequence voltage in the La–G
fault. However, the percentage variation is very low over the range of
set points. Therefore, it is approximated that the negative and the zero
sequence voltages at the SOP grid connection point are unaffected by
the pre-fault operating condition of SOP during fault analysis on a
network with SOP.

In the La–Lb–Lc fault, the droop is less evident since the network
voltage during the fault is significantly low. It is noteworthy that the
terminal voltage is nearly zero for zero set points of SOP, illustrating the
open circuit behaviour of the SOP. As illustrated in Case 1, the voltage
values depend upon the type of fault and consequently upon the
equivalent sequence network connection. However, regardless of the
type of fault, the trend of voltage variation is consistent for corre-
sponding change in real and reactive power flow through the SOP
terminals.

Fig. 10(a) and (b) shows the positive and negative sequence currents
with variation of the P1 Ref and Q1 Ref set points. For the La–G fault there
is a steep, linear rise in the magnitude of the currents with rise in P1 Ref

and Q1 Ref regardless of the direction of power flow prior to the fault. In
contrast to the La–G fault the sequence currents in the La–Lb fault has a
nonlinear relation to the set points. In addition, the variation in cur-
rents for changes in P1 Ref and Q1 Ref shows dependence on the polarity
of set points and appears converse to each other.

For the La–Lb–Lc fault, the currents are largely uniform and un-
affected by changes in set points (for non-zero set points). For zero set

point, the behaviour of SOP is consistent with an open circuit with no
current flowing through the SOP.

The variation of currents with changes in set points is similar for a
given type of fault, but varies considerably for different type of faults.
Unlike the sequence voltages, the sequence current injection shows a
nonlinear dependency to the pre-fault condition. Further investigation
is required to generalize the current response of the SOP under different
faults. However, this clearly illustrates the need for a non-current based
method for fault detection at the grid connection point of the SOP.

8. Conclusions

The dynamic performance of a medium voltage distribution net-
work with SOP was investigated, under grid side AC faults.
Conventional fault analysis technique using sequential network was
extended to include SOP. Equivalent sequence networks were devel-
oped for a network with an SOP under a line-ground fault, a line-to-line
unbalanced fault and a three-phased balanced fault. Equivalent se-
quential networks were drawn by combining the sequence components
of the network with the contribution from the SOP. Fault analysis using
this representation was validated on a generic distribution network
with connected SOP. The sequence voltage values at the SOP grid
connection point were found to be consistent and predictable for dif-
ferent operating scenarios whilst operating within the physical limits of
SOP. In addition, the sequence voltages were identical for both P-Q and
Vdc-Q modes of SOP operation.

The FI, defined using the positive and the negative sequence com-
ponents of the voltage at the grid connection points of the SOP, was

Reactive Power (MVAr) (when P 1 Ref =0)
-5 -4 -3 -2 -1 0 1 2 3 4 5

Reactive Power (MVAr) (when P 1 Ref =0)
-5 -4 -3 -2 -1 0 1 2 3 4 5

Po
sit

iv
e 

Se
q 

V
ol

ta
ge

s (
kV

)

0

1

2

3

4

5

6

7

Real Power (MW) (when Q 1 Ref =0)
-5 -4 -3 -2 -1 0 1 2 3 4 5

Real Power (MW) (when Q 1 Ref =0)
-5 -4 -3 -2 -1 0 1 2 3 4 5

N
eg

at
iv

e 
Se

q 
V

ol
ta

ge
s (

kV
)

0

1

2

3

4

5

6

7

Vp (LL fault)
Vp (LG fault)

Vp (LLL fault)

Vp (LL fault)
Vp (LG fault)

Vp (LLL fault)

@ Q 1 Ref =0

@ P 1 Ref =0

Vn (LL fault)
Vn (LG fault)

Vn (LLL fault)

Vn (LL fault)
Vn (LG fault)

Vn (LLL fault)

@ Q 1 Ref =0

@ P 1 Ref =0

(a) (b)
Fig. 9. Sequence voltage for range of P1 Ref set points, Q1 Ref = 0 (solid lines); Range of Q1 Ref set points, P1 Ref = 0 (Dotted lines). (a) Positive sequence voltages; (b) Negative sequence
voltage.

Real Power (MW) (when Q 1 Ref =0)

Reactive Power (MVAr) (when P 1 Ref=0)

Po
si

tiv
e 

Se
q 

cu
rr

en
ts

 (k
A

)

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
-5 -4 -3 -2 -1 0 1 2 3 4 5

Real Power (MW) (when Q 1 Ref =0)
-5 -4 -3 -2 -1 0 1 2 3 4 5

N
eg

at
iv

e 
Se

q 
cu

rr
en

ts
 (k

A
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Reactive Power (MVAr) (when P 1 Ref=0)
-5 -4 -3 -2 -1 0 1 2 3 4 5

ip (LL fault)
ip (LG fault)

ip (LLL fault)

ip (LL fault)
ip (LG fault)

ip (LLL fault)

@ Q 1 Ref =0

@ P 1 Ref =0

in (LL fault)
in (LG fault)

in (LLL fault)

in (LL fault)
in (LG fault)

in (LLL fault)

@ Q 1 Ref =0

@ P 1 Ref =0

(a) (b)
Fig. 10. Sequence current for range of P1 Ref set points, Q1 Ref = 0 (solid lines); Range of Q1 Ref set points, P1 Ref = 0 (Dotted lines). (a) Positive sequence currents; (b) Negative sequence
currents.

A. Aithal et al. Applied Energy 227 (2018) 262–272

270



found to be effective for AC fault detection in a network. The FI
quantifies the unbalance in the network normalized by the nominal
voltage. The consistent behaviour of sequence voltages in the network
make them reliable for fault detection. Currently, FI cannot determine
the type of fault on its own. However, FI and its relationship with the
sequence networks can be utilized to develop the capability of the SOP
to identify different types of faults.

A better understanding of the relationship between the sequence
currents injected during a fault and the network conditions is needed to
achieve proper over-current co-ordination. Each fault type needs to be
analysed individually. This is important to understand the impact of
introducing an SOP to a network with existing protection settings and

feeder automation devices.

Acknowledgements

The authors gratefully acknowledge the Angle-DC project, UK/India
HEAPD project (Grant No. EP/K036211/1) and FLEXIS project. FLEXIS
is part-funded by the European Regional Development Fund (ERDF),
through the Welsh Government. Information on the data underpinning
the results presented here, including how to access them, can found in
the Cardiff University data catalogue at http://doi.org/10.17035/d.
2017.0040699004.

Appendix A
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See Table 4.
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