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ABSTRACT BH3 mimetics are anticancer agents that reproduce the spatial arrangement of the BH3
domain of Bcl-2 family proteins. Just like the BH3-only proteins, these compounds bind to the hydro-
phobic cleft of the pro-survival Bcl-2 members such as Bcl-2 or Bcl-xL, and disrupt their heterodimeri-
zation with pro-apoptotic Bax or Bak, sensitizing cells to chemotherapy. In recent years, it has become
clear that Bcl-2 family proteins are engaged in regulation of intracellular Ca21 homeostasis, including
Ca21 release from the intracellular stores as well as Ca21 fluxes across the plasma membrane. Given
that BH3 mimetics shift the balance between the prosurvival and proapoptotic Bcl-2 members, they
might indirectly exert effects on intracellular Ca21 signals. Indeed, it has been reported that some BH3
mimetics release Ca21 from the intracellular stores causing Ca21 overload in the cytosol. Therefore,
the effects of any new BH3 mimetics on cellular Ca21 homeostasis should be tested before these com-
pounds progress to clinical trials. Drug Dev Res 78 : 313-318, 2017. VC 2017 The Authors Drug Develop-

ment Research Published by Wiley Periodicals, Inc.
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BACKGROUND

The evolutionary conserved Bcl-2 (B-cell lym-
phoma 2) protein family consists of about 18 members
very well known for their role in the process of pro-
grammed cell death. Based on their structure and func-
tions these proteins have been categorized into three
groups: (1) the prosurvival members, such as Bcl-2
itself, along with Bcl-xL, Bcl-w or Mcl-1; (2) the proa-
poptotic proteins (Bax, Bak); (3) and a divergent class
of the proapoptotic BH3-only proteins, including Bim,
Bid, Puma, Noxa, and others. Prosurvival Bcl-2 pro-
teins bear four BH (Bcl-2 homology) domains and usu-
ally a transmembrane domain at the C-terminus. Bax
and Bak have three BH domains (BH1–BH3) but their
helix a1 somewhat resembles the BH4 domain of Bcl-
xL [Suzuki et al., 2000]. And the BH3-only proteins
have a single BH3 domain [Chipuk and Green, 2008].
The BH3 domain is an amphipathic a-helix, consisting
of 9–16 amino acids with conserved residues of leucine

(Leu) and aspartic acid (Asp) [Aouacheria et al., 2015],
that is responsible for the interaction with the hydro-
phobic cleft formed by BH1–BH3 domains of the pro-
survival Bcl-2 proteins [Fesik, 2000; Huang & Strasser,
2000].
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In healthy cells, Bak is already inserted into the
outer mitochondrial membrane, whereas Bax is a
cytosolic protein, with the capacity for translocation
to the mitochondrial and ER (endoplasmic reticulum)
membranes upon activation. According to the current
dogma, even activated proapoptotic effectors Bax and
Bak can be sequestrated and neutralized by the pro-
survival Bcl-2 members [Kroemer et al., 2007]. Upon
reception of an apoptotic signal, one or more BH3-
only proteins undergo transcriptional or post-
transcriptional activation. Activated BH3-only pro-
teins either antagonize the prosurvival Bcl-2 mem-
bers (‘sensitizers’ or ‘de-repressors’, e.g., Noxa, Puma,
Bad) or also directly act on the proapoptotic effectors
(‘direct activators’, e.g., Bid and Bim), resulting in
freeing Bax or Bak. The last two undergo conforma-
tional changes and/or insertion (Bax) into the outer
mitochondrial membrane followed by oligomeriza-
tion. This leads to MOMP (mitochondrial outer
membrane permeabilization), which is the key event
in the intrinsic apoptotic pathway [Kroemer et al.,
2007; Chipuk & Green, 2008]. As a result, apopto-
genic factors, such as cytochrome c, become released
from the mitochondria triggering a downstream cas-
cade of events, including caspase activation [Danial
& Korsmeyer, 2004].

Given that increased levels of Bcl-2 proteins have
been reported in different cancer types correlating with
chemotherapy resistance and poor prognosis [Miyashita
& Reed, 1993], Bcl-2 proteins have become a viable tar-
get for anticancer therapy. Substantial efforts in this
field yielded in development of synthetic compounds
binding to the hydrophobic cleft of the pro-survival Bcl-
2 proteins such as Bcl-2 and Bcl-xL, which results in the
inhibition of heterodimerization of the prosurvival and
proapoptotic Bcl-2 family members. This leads to the
release and activation of Bax and Bak, followed by
induction of apoptosis (Fig. 1). Those largely terphenyl-
based compounds have been termed BH3 mimetics as
they reproduce the spatial arrangement of key amino
acids in the BH3 domain. In contrast to their prototypes,
BH3 peptides, BH3 mimetics are characterized by bet-
ter stability and therefore have a greater therapeutic
potential for controlled inhibition of the pro-survival
Bcl-2 members [Lessene et al., 2008].

BH3 MIMETICS

The first BH3 mimetic obtained by molecular
modeling and computer screening, HA14-1, was able
to displace Bax from Bcl-2 and induce apoptosis in
vitro, characterized by loss of mitochondrial potential
and activation of caspases [Wang et al., 2000]. Soon
after, two structurally unrelated groups of BH3

inhibitors (BH3Is), derived from BH3I-1 and BH3I-2,
were discovered in a fluorescence polarization-based
screening [Degterev et al., 2001]. BH3Is were found to
displace Bak peptide from Bcl-xL and induce apoptosis
characterized by cytochrome c release and caspase acti-
vation [Degterev et al., 2001]. In the meantime, the
anticancer effects of gossypol isolated from the cotton
plant (Gossypium) have been attributed to inhibition of
Bcl-2, Bcl-xL, and Mcl-1 [Kitada et al., 2003]. In 2005,
ABT-737 was developed [Oltersdorf et al., 2005]. This
small-molecule inhibitor of Bcl-2, Bcl-xL, and Bcl-w,
was two-three orders of magnitude more potent than
the previous BH3 mimetics. It did not induce apoptosis
on its own, but rather sensitized cells to cell death sig-
nals, demonstrating efficacy with chemotherapeutic
agents and radiation [Oltersdorf et al., 2005]. The oral
bioavailability of this agent was improved even further,
resulting in ABT-263 (Navitoclax), a Bad-like BH3
mimetic, capable of triggering Bax translocation, cyto-
chrome c release, and subsequent apoptosis [Tse et al.,

Fig. 1. Schematic illustration of the intracellular effects of BH3 mim-
etics. BH3 mimetics disrupt the heterodimerization of the prosurvival
(e.g. Bcl-2) and pro-apoptotic (e.g. Bax) Bcl-2 members located at dif-
ferent intracellular compartments such as the endoplasmic reticulum
or mitochondria. Liberation of the proapoptotic proteins leads to (1)
the formation of MOMP (mitochondrial outer membrane permeabili-
zation) followed by the release of cytochrome c from mitochondria,
(2) as well as the release of Ca21 from the intracellular stores.
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2008]. However, both ABT-737 and ABT-263 were
found to induce thrombocytopenia and transient
thrombocytopathy that severely hindered their thera-
peutic use [Schoenwaelder et al., 2011]. Recently,
Navitoclax was re-engineered to create a potent, orally
bioavailable inhibitor selective for Bcl-2, ABT-199
(Venetoclax) [Souers et al., 2013], which has become
the first clinically approved small molecule targeting a
protein–protein interaction for treating CLL (chronic
lymphocytic leukemia) [Green, 2016]. On-going clini-
cal trials using BH3 mimetics are listed in Table 1.

CALCIUM SIGNALING

Ca21 signaling is one of the most important
types of intracellular communication implicated in a
wide variety of biological processes, including cell
proliferation [Borowiec et al., 2014], migration [Wei
et al., 2012], adhesion [Sheng et al., 2013], fertiliza-
tion [Armant, 2015], muscle contraction [Bers, 2002],
neuronal physiology and signal transmission [Brini
et al., 2014], exocytosis [Petersen, 1992] and cell
death [Criddle et al., 2007]. Therefore, it is not at all
surprising that in the past two decades substantial
evidence has accumulated for the role of Bcl-2 pro-
teins in the regulation of multiple aspects of the
intracellular Ca21 homeostasis [Vervliet et al., 2016].
These proteins have been found not only at the mito-
chondrial membranes, but are also present in the
cytosol, at the nuclear envelope as well as at the ER,
the main intracellular Ca21 store [Akao et al., 1994].
They directly interact with Ca21 channels and pumps
affecting Ca21 release and the steady state ER Ca21

levels. For example, depending on the site of interac-
tion, Bcl-2 can act either as a direct inhibitor or sen-
sitizer of endoplasmic IP3Rs (inositol triphosphate
receptors) [Rong et al., 2009; Monaco et al., 2012].
The sensitizing effect is also shared by Bcl-xL and
Mcl-1 [White et al., 2005; Eckenrode et al., 2010].
Further, Bcl-2 and Bcl-xL can directly bind to RyRs
(ryanodine receptors) and inhibit RyR-mediated
Ca21 release from the ER [Vervliet et al., 2014;
Vervliet et al., 2015]. Bcl-2 may either protect the
function of SERCA (sarco/endoplasmic reticulum
Ca21-ATPase) [He et al., 1997], or destabilize it
[Dremina et al., 2006]. At the mitochondrial mem-
branes, Bcl-2 and Bcl-xL have been demonstrated to
directly inhibit mitochondrial Ca21 uptake via
VDAC1 (voltage-dependent anion channel 1), a large
conductance channel permeable to ions and metabo-
lites [Arbel and Shoshan-Barmatz, 2010; Arbel et al.,
2012]; whereas Mcl-1 was shown to have the opposite
effect [H. Huang et al., 2014]. Bcl-2 may also inhibit
mitochondrial NCX (Na1/Ca21 exchanger),

increasing Ca21 retention in this organelle [Zhu
et al., 2001]. Finally, Bcl-2 can suppress PMCA
(plasma membrane Ca21-ATPase)-mediated Ca21

extrusion with important implications for cell fate
[Ferdek et al., 2012].

BH3 MIMETICS AND CALCIUM

Given the above, it might be expected that
pharmacological inhibition of the pro-survival Bcl-2
proteins by BH3 mimetics could, in principle, affect
the intracellular Ca21 homeostasis. Indeed, the
research has demonstrated that the early mimetics,
HA14-1 and BH3I-20, caused a slow and complete
release of Ca21 from the ER, followed by a sustained
elevation of cytosolic Ca21 concentration in pancre-
atic acinar cells [Gerasimenko et al., 2010]. Although
this effect might be beneficial in cancer, in healthy
cells Ca21 overload is undesirable as it promotes cell
death, particularly necrosis [Criddle et al., 2007].
This Ca21 release was shown to be attenuated, but
not completely blocked, by inhibition of IP3Rs and
RyRs as well as substantially reduced by strong intra-
cellular Ca21 buffering. Importantly, inhibition of
IP3Rs and RyRs dramatically reduced BH3I-20-
elicited apoptosis, indicating that Ca21 release from
the ER contributed to cell death induction by this
BH3 mimetic [Gerasimenko et al., 2010]. Similar
effects of Ca21 deregulation by HA14–1 were also
demonstrated in platelets, HeLa and HEK-293T cells
[Akl et al., 2013]. A recent study has shed new light
on this phenomenon by showing that Ca21 responses
induced in pancreatic acinar cells by HA14–1, BH3I-
20 and gossypol were largely diminished in the
absence of Bax, but not Bak or Bcl-2 [Ferdek et al.,
2017], suggesting a regulatory role for Bax in Ca21

release from the intracellular stores (Fig. 1). Of note
is that BH3 mimetics in this study caused not only
apoptosis, but also substantial levels of necrosis in
pancreatic acinar cells, both of which were inhibited
by strong Ca21 buffering, again pointing towards a
Ca21-dependent component in the mechanism of
BH3 mimetic-induced killing. Since global and sus-
tained Ca21 signals are associated with induction of
necrosis, fine tuning of these signals could be useful in
shifting unfavorable necrosis towards more physiologi-
cal apoptosis and thus limiting the side effects of a
BH3 mimetic therapy. This has been achieved by
CALPs (Ca21-like peptides), which, by binding to the
EF-hand motifs, mimic the effects of Ca21, pre-
activating various Ca21-sensitive intracellular targets
such as calmodulin and Ca21 channels and pumps
[Villain et al., 2000]. CALPs partially reduced Ca21

responses induced by BH3 mimetics resulting in
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necrosis inhibition or a significant shift in cell death
towards apoptosis [Ferdek et al., 2017]. This demon-
strates that even a nonspecific inhibition of intracellu-
lar Ca21 fluxes can attenuate pathophysiological Ca21

responses and influence the cell death mode and thus
may improve the outcome of anticancer therapies.

It is worth noting that not all BH3 mimetics can
affect Ca21 homeostasis. A few studies were unable to

demonstrate any significant Ca21 release induced by
ABT-737 in platelets and cell lines [Schoenwaelder &
Jackson, 2012; Akl et al., 2013] or by ABT-199 in
various in vitro models [Vervloessem et al., 2017]. It
remains unclear why some BH3 mimetics trigger Ca21

release from the intracellular stores, whereas others do
not share this effect. Given the strong dependence of
Ca21 responses on the presence of Bax, it is rather

TABLE 1. Clinical Trials on BH3 Mimetics (https://clinicaltrials.gov)

BH3-mimetic Protein Disease target

Active clinical trial
stage

Estimated
completion(Alternative name) target (Additional agent) I II III

ABT-199 Bcl-2 AML (Cytarabine) 1 2019
(Venetoclax*,**) AML (Cobimetinib or Idasanutlin) 1 1 2019

AML (Azacitidine or Decitabine) 1 2020
AML (Azacitidine) 1 2022
Amyloid light chain amyloidosis (Dexamethasone) 1 2021
B-cell lymphoma (Ibrutinib and Rituximab) 1 2020
B-cell lymphoma (Obinutuzumab) 1 2020
B-cell N-HL (Lenalidomide and Obinutuzumab) 1 2021
CLL (Bendamustine and Obinutuzumab

or Bendamustine and Rituximab)
1 2020

CLL or SLL (Ibrutinib) 1 1 2021
CLL (Ibrutinib and Obinutuzumab) 1 1 N/A
CLL (Allopurinol and Ibrutinib) 1 2022
CLL (–) 1 2022
CLL (multiple) 1 2023
CLL (–) 1 2024
CLL or SLL (Ibrutinib) 1 2024
Expanded access program for AML, CLL, MM, N-HL (–) N/A
FL (Obinutuzumab) 1 2020
FL (Ibrutinib) 1 1 2021
FL (Obinutuzumab and Polatuzumab Vedotin) 1 1 2021
MDS (Azacitidine) 1 2019
MDS (Azacitidine) 1 2020
MM (Bortezomib and Dexamethasone) 1 2020
MM (multiple) 1 2021
MM (Carfilzomib and Dexamethasone) 1 2021
N-HL (Ibrutinib) 1 2018
N-HL (multiple) 1 1 2019
N-HL (–) 1 1 2019
Waldenstrom macroglobulinemia (–) 1 2023

ABT-263 Bcl-2 Advanced or metastatic solid tumors (Trametinib) 1 1 N/A
(Navitoclax) Bcl-xL CLL or N-HL (Rituximab) 1 2018

Bcl-w CLL (–) 1 2018
Melanoma or solid tumors (Dabrafenib or Trametinib) 1 1 N/A
Non-small cell lung carcinoma (Osimertinib) 1 N/A
Ovarian cancer (–) 1 2018

AT-101 Bcl-2 CLL (Lenalidomide) 1 1 2018
(R-(-)-Gossypol

acetic acid)
Bcl-xL Laryngeal cancer (multiple) 1 2018

Mcl-1 MM (Dexamethasone and Lenalidomide) 1 1 2021
PNT2258 Bcl-2 B-cell lymphoma (–) 1 2018
S 055746 Bcl-2 AML or MDS (–) 1 2018

AML acute myeloid leukemia; CLL chronic lymphocytic leukemia; FL follicular lymphoma; MDS myelodysplastic syndromes; MM multiple
myeloma; N/A not available on May 29, 2017; N-HL Non-Hodgking lymphoma; SLL small lymphocytic lymphoma.
*New drug Venxlexta for CLL in patients with a specific chromosomal abnormality **, approved by The US Food and Drug Administration
on April 11, 2016; **an orphan drug designation.
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unlikely that off-target effects of early BH3 mimetics
are entirely responsible for this phenomenon.

CONCLUSION

In conclusion, extensive research on inhibitors
of the prosurvival Bcl-2 members yielded a new class
of anticancer agents, showing promise particularly
against leukemia and lymphoma. Initial excitement,
however, slightly faded when the early compounds
showed marked side effects. Some of these effects
have been attributed to deregulated intracellular
Ca21 homeostasis. Despite that, the efforts continued
to tailor the specificity of BH3 mimetics in order to
preserve the anticancer activity and reduce the unde-
sirable effects. This resulted in ABT-199, the first
clinically approved drug targeting a protein–protein
interaction [Green, 2016]. Current clinical trials
attempt to combine BH3 mimetics with existing che-
motherapeutic agents (Table 1). Nevertheless, it
might become essential to establish whether any new
BH3 mimetic deregulates intracellular Ca21 release
in healthy cells. What is more, in order to increase
the safety and efficacy of BH3 mimetic drugs, simul-
taneous application of agents that regulate intracellu-
lar Ca21 homeostasis might be taken into
consideration.
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