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Abstract—This paper proposes a novel Non-Intrusive Load
Monitoring (NILM) method which incorporates appliance usage
patterns (AUPs) to improve performance of active load identi-
fication and forecasting. In the first stage, the AUPs of a given
residence were learnt using a spectral decomposition based stan-
dard NILM algorithm. Then, learnt AUPs were utilized to bias
the priori probabilities of the appliances through a specifically
constructed fuzzy system. The AUPs contain likelihood measures
for each appliance to be active at the present instant based on
the recent activity/inactivity of appliances and the time of day.
Hence, the priori probabilities determined through the AUPs
increase the active load identification accuracy of the NILM
algorithm. The proposed method was successfully tested for
two standard databases containing real household measurements
in USA and Germany. The proposed method demonstrates an
improvement in active load estimation when applied to the
aforementioned databases as the proposed method augments the
smart meter readings with the behavioral trends obtained from
AUPs. Furthermore, a residential power consumption forecasting
mechanism, which can predict the total active power demand of
an aggregated set of houses, five minutes ahead of real time, was
successfully formulated and implemented utilizing the proposed
AUP based technique.

Index Terms—Non-Intrusive Load Monitoring (NILM), Fuzzy
Systems, Usage Patterns, Smart Grid, Demand Side Management
(DSM), Direct Load Control (DLC), Demand Response (DR).

I. INTRODUCTION

IN the recent years, Demand Side Management (DSM) has
become an essential element of the rapidly developing

smart grid; mainly as a result of increasing penetration of
intermittent and variable renewable energy sources such as
solar photovoltaic (PV) and wind. Due to the unpredictable
nature of the generation, maintaining the second-by-second
balance between demand and generation has become a chal-
lenging task, if an expensive reserve service is not maintained.
As reserve services are mainly provided by operating certain
power plants below their rating, this not only underutilizes
its own capacity but also results in them being operated
inefficiently. As a viable solution to this problem, DSM is
considered. DSM tries to reduce/increase the demand either
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by shifting or reducing the consumption so that the available
generation can be utilized efficiently while maintaining a
minimum reserve.

Direct Load Control (DLC) is one attractive option for
DSM which helps the utility to shape the customer energy
consumption profile by remotely controlling customers pre-
agreed set of controllable appliances such as, heat, ventilation,
air-conditioning and smart (HVACS) systems. Even though a
smart meter connected at the consumer premises could make
these HVACS loads flexible, unless the grid operator knows
the amount of flexible load that is available at a given time,
the utilities continue to maintain a large reserve by deloading
generators.

This paper proposes a solution to this problem in the form
of a Load Monitoring (LM) method that can predict the
amount of flexible load available at consumer premises. Using
LM, the set of appliances that are currently turned ON and
their individual energy contributions at a customer premise
is predicted. Even though LM could be achieved by attaching
sensors for each appliance, due to the implementation cost and
the complexity, it is not a feasible solution. In contrast, Non-
Intrusive Load Monitoring (NILM) approaches, in which only
the total power at the entry point to the consumer premise
is monitored to find the load activities [1], involve lower
implementation cost and complexity. Due to these advantages,
NILM methods are gaining popularity.

A. Related Work

Throughout literature, a number of different NILM methods
have been proposed. In general, those NILM methods can
be categorized based on the type of measurements utilized,
as steady state methods and transient state methods. Among
steady state measurement based NILM methods, information
of active power [2]–[5], reactive power [6], harmonic content
[7], [8], and voltage-current trajectory [9], [10] are commonly
utilized. In transient state measurement based NILM methods,
voltage and current [11]–[13], power [14] as well as harmonic
information [15], [16] have been utilized.

NILM methods based on steady state measurements have
the common difficulty of identifying non resistive appli-
ances [1], [17], [18] and appliances which cause non-discrete
changes in power [19]. Transient measurement based NILM
methods have the common drawback of requiring measure-
ments with higher sampling rates in kilohertz range [20]–[22].
Such methods require high communication bandwidths and
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Fig. 1: Overall Flow of the Proposed NILM Algorithm

processing power. Moreover, some of the aforementioned tech-
niques require more than one electrical measurement, resulting
in the need for costly, multi-functional smart meters. Consid-
ering all these factors, for a scalable NILM solution, such
commercial costs and implementation complexities should be
mitigated.

In more recent works, this NILM problem has been further
studied along several different major avenues. In [23], [24],
several multi-label classification techniques based on wavelet-
domain and time-domain feature sets have been evaluated to
address the NILM problem. In parallel, Graph Signal Pro-
cessing based techniques have been utilized in [25]–[27] for
the same purpose. In [28]–[30], event detection and clustering
avenue have also been explored to address the same NILM
problem, based on Subtractive Clustering, Bayesian-Viterbi
Clustering and Dynamic Time Warping techniques respec-
tively. Further, Sparse Coding (SC) and Hidden Markov Model
(HMM) based techniques are also two emerging avenues in
the same research. NILM methods proposed in [31]–[33] are
based on learning a basis for each individual appliance through
sparse coding and dictionary learning. These methods use
Deep-SC, ‘Powerlet’ Learning and Descriptive-SC techniques
respectively. In the recent literature [5], [34]–[40], number of
different HMM-based NILM techniques have been discussed.
Furthermore, a more detailed overview on various such recent
NILM methods have been presented in [23], [41]–[43].

Even though there are many such diverse NILM approaches
suggested in literature [1]–[27], [31]–[44], almost all the
NILM methods estimate the present turned ON appliance com-
bination based on the recently collected set of measurements.
For example, the NILM strategy proposed in [3] decides the
currently turned ON appliance combination based on ten most
recent set of total active power measurements. Most of the
proposed NILM methods completely rely on smart meter
measurements without incorporating any of the activity that
happened in the recent past in terms of load activity and
inactivity. Due to this reason, a single erroneous or unlearned
measurement has the potential to mislead the NILM algorithm.

B. Contributions
As a remedy to the above mentioned common shortcoming

of NILM methods, this paper proposes a NILM method
which adapts itself to the user behavioral patterns rather than
being rigidly dependent on collected measurements or on the
learning period. This proposed NILM method uses the NILM
technique in [2] and improves upon it to gain this added adapt-
ability. Hence, in this proposed novel approach, individual
appliance usage patterns (AUPs) are used to augment the direct
smart meter measurements to identify the currently turned ON
appliance combination.

In this approach, the priori probabilities of individual ap-
pliances at the current time instant are calculated using a
developed fuzzy system. This fuzzy system utilize the pre-
observed historical individual AUPs containing historical ac-
tivity of each appliance as pertaining to the time of day and
turned ON/OFF duration likelihoods.

Further, to calculate the individual appliance priori probabil-
ities, the developed fuzzy system also uses the information of
the turned ON appliance combinations identified in the recent
past.

The individual appliance priori probability is the probability
of that appliance being in the turned ON state at the current
time instant. This key information is appropriately biased for
each appliance depending on the current behavior trends and
then considered in the proposed NILM method to find the most
probable currently turned ON appliance combination.

Hence the proposed NILM method does not solely depend
on collected measurements. To decide the NILM solution
at a certain time instant, apart from collected active power
measurements, it also considers the priori probability values
(given by pre-observed AUPs) of each appliance combination.
As a result of this novel approach, it delivers more accurate
NILM results when compared to very recent NILM methods.

Further, this paper proposes a novel load forecasting tech-
nique which uses the learned usage patterns of appliances
together with the present NILM result to predict the load
profile of an aggregated set of houses a few minutes ahead of
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current time. Since this proposed total load forecasting tech-
nique incorporates both the AUPs as well as the current NILM
solution, it clearly demonstrates the viability of applying the
proposed NILM method and its incorporated AUPs in a DSM
application such as in DLC.

Furthermore, in this paper, implementation and scalabil-
ity aspects of the proposed complete NILM solution (with
forecasting) have been explored. This is a clear contribution
of this paper as none of the NILM methods existing in the
literature have not extensively demonstrated such applicability
and practicality of NILM in DSM.

In the proceeding sections, first, the underlying NILM tech-
nique is summarized under Section II. Then, the improvement
of the NILM algorithm by studying appliance usage pattern
is examined in Section III. Finally, the proposed total power
profile forecasting mechanism is introduced in Section IV.

II. UNDERLYING NILM METHOD USED

A. Overview of the NILM Algorithm

The overall flow of the proposed NILM algorithm is de-
scribed in Fig. 1. The main steps are,

1) Feature extraction from individual appliance power pro-
files (in Reading Set 1 - RS1) by the Karhunen Loève
Expansion (KLE) based technique described in [3].

2) Creation of Appliance/Combination/Power consumption
level signature databases using extracted features.

3) Turned ON appliance combination identification using
initial priori unbiased NILM step (for Reading Set 2 -
RS2).

4) Appliance Usage Pattern (AUP) extraction using the
obtained initial result (of RS2).

5) Evaluation of priori biased NILM method using con-
structed AUP based fuzzily priori biasing technique (for
Reading Set 3 - RS3).

6) Aggregated residential power profile forecasting method
(using the priori biased NILM result and usage patterns).

For the ease of explanation, steps 1-3 are referred to
as “Stage A” of the proposed NILM method. This section
describes the processes involved in Stage A. An in-depth
analysis about this stage can be found in [2]. The final three
steps are referred to as “Stage B” and it is introduced in
Sections III and IV.

Individual appliance power profiles taken from two publicly
available datasets containing real measurements collected from
US and German households were considered for this study.
They are Tracebase Database [45] and Reference Energy
Disaggregation Dataset (REDD) [36]. A publicly available
toolkit named NILM Toolkit (NILMTK) [46] was utilized for
dataset conversion and data pre-processing.

B. KLE based Appliance Feature Extraction

If X =
[
X(n) X(n−1) ... X(n−i+1) ... X(n−N+1)

]T
is a

sliding window (SW) of an individual appliance active power
trace (taken from RS1, at time instant n), its KLE is given by,

X = Qx̄ =

N̄∑
i=1

qTi Xqi (1)

where, q1, q2, ..., qN̄ are the eigenvectors and Q is the eigen-
vector matrix of the Autocorrelation Matrix (ACM) of X.
Further, x̄ is the Karhunen Loève Transform of X.

According to (1), signal X was decomposed into N̄ number
of mutually uncorrelated spectral components which are also
known as Subspace Components (SCs) of X, named hereafter
as, x1, x2, ..., xN̄ where xi = qTi Xqi. Here, qi can be thought
of as a narrow band eigen-filter whose output is sinusoidal
with a center freq of fci and phase angle of θi. Thereafter, the
average amplitude of SC, which is incidentally the eigenvalue
λi, and the phase angle θi formed the complex features for
each SC. This is converted to rectangular form via relations,
Rei = λicos(θi) and Imi = λisin(θi). With that, for each
SW of length N there are N̄ number of SCs denoted by xi
and each of these SCs have three features, namely fci, Rei
and Imi. In order to establish the stationarity within the
SW, parameters N and N̄ has been chosen as ten and five
respectively.

C. Signature Database Construction

Using the feature data obtained from each SW of training
data (i.e. the RS1) for an appliance, 2D histograms were for-
mulated for each center frequency fc. Once these histograms
are normalized, they yield the probability of having a feature;
for instance, (Re1, Im1) at fc = 0.2 Hz for the learned ap-
pliance (say A1). This is denoted simply as an appliance level
Probability Mass Function (PMF) P(A1,fc=0.2Hz)(Re1, Im1).
Utilizing each of these constructed appliance specific PMFs,
a set of appliance combination specific PMFs for each fc for
each possible appliance combination were constructed through
mathematical convolution operation between corresponding
appliance specific PMFs [3]. This gives the probability of ob-
taining a feature when that appliance combination is currently
turned ON.

These generated sets of appliance specific PMFs and ap-
pliance combination specific PMFs form the appliance level
signature database (ALSD) and the combination level signa-
ture databases (CLSD) respectively [47]. Furthermore, in order
to perform the power level disaggregation according to [48]
after the active appliance combination is identified, the power
consumption levels of each and every appliance were studied
and a power consumption level signature database (PCLSD)
was constructed [48].

D. Initial Priori Unbiased NILM Step

The next step of the proposed NILM method is to evaluate
the initial priori unbiased NILM step for the aggregated power
profile of RS2. In this step, every appliance combination was
considered to have an equal priori probability value to be the
currently active appliance combination. Thus, it is called the
priori unbiased NILM step in this paper.

First, as in [3], sliding windows of 10 samples taken from
the aggregated power profile in RS2 were considered sequen-
tially. Such a sliding window is referred to as an observation
sliding window (OSW). Then for each OSW, its corresponding
set of features were extracted in the same way as described
in subsection II-B. After that, these extracted features (i.e.
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the five SCs) were used to find the matching turned ON
appliance combination corresponding to that particular OSW.
The constructed CLSD was utilized for this matching purpose,
where the possible features corresponding to every viable
appliance combination had been stored. This identification
process is summarized in Algorithm 1.

Initially, all the possible appliance combinations were con-
sidered as viable solutions and then appliance combinations
were rapidly reduced based on a “pre-elimination stage”
(PES), a “first elimination stage” (FES), and a “second elimi-
nation stage” (SES). Finally, a Maximum a Posteriori (MAP)
criteria was applied to evaluate the most likely solution.

At PES, the static level of the OSW (i.e. the first SC)
is compared with the minimum static levels obtained for
every possible appliance combination. Then every appliance
combination with a minimum static level larger than the
measured active power signals static level (i.e. within the OSW
in concern) was eliminated. At FES, average power level of
each SC was used to eliminate the appliance combinations
which showed lower maximum possible average SC power
levels [2]. After that, at the SES, for every remaining appliance
combination, probability of generating the current SC of the
OSW was calculated using the PMFs stored in the CLSD.
These values were denoted by P (Zi/Cj) where Zi is the
features of ith SC of an OSW and Cj is the jth appliance
combination. If this likelihood value is not larger than 0.1,
those combinations were also eliminated.

Then at the MAP criteria, probabilities obtained after the
SES were utilized to calculate the most probable appliance
combination which matched all OSW SCs up to the current
iteration. This MAP criteria value is given by,

γCj,i =
P (Cj/Z1,.,i)∑

∀j
P (Cj/Z1,.,i)

, (2)

Algorithm 1 Work Flow of Appliance Combination Iden-
tification in Initial Priori Unbiased NILM Step (for RS2)

1: for each SW in RS2 do
2: Extract features from the SW; #5 SCs: Zi; i = 1, 2, ..., 5;
3: Set i = 1; #Iteration or SC Number
4: Set execution = 1; #Matching Incomplete Yet
5: Set S0 = {Cj : j = 2Napps} #Set of All Combinations
6: Apply the PES to S0 and obtain S1;
7: while execution do #Iterative SC Matching
8: Consider the ith dominant SC : Zi;
9: Apply the FES to S1 or S3 and obtain S2;

10: Apply the SES to S2 and obtain S3;
11: Apply the MAP criteria to S3 and obtain S4; #Get γCj,i

12: if γCj,i > 0.99 then #Matching of Cj upto ith SC
13: Output: Turned ON Appliance Combination = Cj ;
14: Set execution = 0; #Matching Complete
15: else if (i == 5) ∪ (S4 ∈ ø) then
16: Output: Most Probable Solution: argmax(γCj,i , Cj);
17: Set execution = 0; #Matching Complete
18: else
19: i = i+ 1 #Go to Next SC Matching
20: end if
21: end while
22: end for

where,

P

(
Cj

Z1,.,i

)
=

i∏
k=1

P (
Cj

Zk
) =

i∏
k=1

P (Zk
Cj

)P (Cj)∑
∀j
P (Zk

Cj
)P (Cj)

. (3)

Here, P (Zk/Cj) values are taken from the pre-constructed
CLSD and P (Cj) denotes the priori probability of the ap-
pliance combination Cj . In this step, since every appliance
combination was assumed to have an equal priori probability
value, (3) was simplified further by assuming,

∀j, ∀OSWs : P (Cj) = constant. (4)

If the calculated γCj,i
value in (2) is larger than 0.99 for

a certain appliance combination Cj , in a certain iteration i,
then that combination was taken as the identified initial NILM
solution (i.e. the active set of appliances) for that OSW [2].

Finally, after evaluating Algorithm 1 for the RS2, through
the obtained results at the end of Stage A, each Appliance
Usage Pattern (AUP) was observed.

Next section describes how the proposed NILM method in
this paper utilized these observed AUPs to use the full MAP
criteria definition given in (3) without assuming (4).

III. STUDY OF APPLIANCE USAGE PATTERNS (AUPS)

In the NILM method proposed in [2], which was also
used in stage A, the turned ON appliance combination at a
particular time instant was found by considering the most
recent few samples of measurements (i.e. by using the OSW).
This direct dependence between NILM result and the sensor
measurements hinders the accuracy levels. Therefore, as a
remedy, historical AUPs were used to enhance the accuracy
of the NILM method.

For example, due to an anomaly in measurements such
as, sensor measurement noises, interferences or unlearned
behavior of appliances and residential voltage level fluctu-
ations, correctly identified appliance combination given by
a NILM method may get altered by yielding an incorrect
appliance combination for a small duration of time. However,
it is understandable that a sudden changes in the turned ON
appliance combination within a residential building is unlikely.

In the proposed NILM method, an avenue was created to
utilize the observed AUPs from the results of Stage A, in
order to obtain the priori probability values for each appliance
combination for each OSW in Stage B. This section describes
the extracted AUPs, the technique used to calculate the priori
probabilities and the method which utilized the calculated
priori probabilities referred to as the “priori biased NILM
method”.

A. Extracted Different Appliance Usage Pattern Profiles

Vital information was revealed when analyzing the AUPs
obtained from Stage A (See Fig. 1) of the proposed NILM
method. First, by exploring the individual appliance usage
profiles given by the results of Stage A (for the RS2), it
was found that most of the appliances show certain ON
durations followed by certain OFF durations more often. For
example, appliances like Refrigerators, Freezers and Water
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Fountains show specific ON and OFF duration occurrences
more frequently. Further, it was noticed that, some appliances
are in the ON state more commonly during a particular time
period of the day. For example, certain Lamps are more likely
to be in the ON state during the night and in the early morning.
Therefore, in order to interpret AUPs, these three parameters
ON Duration (OnDu), OFF Duration (OFFDu) and Time of
Day (TOD) were used.

In Stage B, results from Stage A were utilized to extract the
ON and OFF durations characteristics of each appliance. Then
the appliance specific histograms for ON and OFF durations
were constructed and converted to corresponding Comple-
mentary Cumulative Mass Functions (CCMFs) as respectively
given by,

PONDu,Ak (t) = P (ONDu ≥ t), (5)

and,
POFFDu,Ak (t) = P (OFFDu ≥ t). (6)

Here, (5) gives the probability of the kth appliance Ak

being used for a duration of time more than t seconds. For
example, ON duration histogram and respective CCMF curve
obtained (PONDu(t)) for the Freezer (FR) is given in Fig.2(a).
According to that histogram, ON duration of the FR takes
a bimodal behavior where it is most likely to show an ON
duration of 5 or 10 minutes. Also FR is less likely to show
an ON duration more than 12 minutes or less than 4 minutes.

Similarly, (6) describes the probability of appliance Ak

being in switched OFF state for a duration of time more than
t seconds. As an example, OFF Duration histogram and the
obtained POFFDu(t) curve for the FR is shown in Fig.2(b).
Note that CCMF curves in Fig. 2 should be read using the
right hand side y-axis.

Then, the first CCMF in (5) was converted into a conditional
Probability Mass Function (PMF) using,

PON,Ak (t) = P (
OnDu > t

OnDu > (t− 1)
) =

PONDu,Ak (t)

PONDu,Ak (t− 1)
, (7)

which gave the probability of the appliance Ak being in the
turned ON state in the current time instant, given that it has
been in the turned ON state for a duration of time t seconds
up till now. Similarly, the probability of appliance Ak being
switched ON in the current time instant after being in the OFF
state for a duration of time t seconds up to now is,

POFF,Ak (t) = 1− POFFDu,Ak (t)

POFFDu,Ak (t− 1)
. (8)

Finally, through tracking the time of day on which the
appliance Ak has been mostly used, a likelihood function
was constructed as PTOD,Ak

(t) which gave the likelihood
of an appliance being used at a given time in a day. Fig. 3
shows the constructed PTOD(t) for the Television (TV) and
washing machine (WM). Following this technique, AUPs were
characterized in terms of three appliance specific likelihood
functions: PON,Ak

(t), POFF,Ak
(t) and PTOD,Ak

(t).

B. Fuzzy Based Priori Probability (PP) Calculating Strategy

As the step after the AUP extraction described in Section
III-A, through the constructed likelihood functions, a fuzzy

Fig. 2: (a) PONDu(t) and (b) POFFDu(t) for FR
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Fig. 3: PTOD(t) for WM and TV

logic based priori probability (PP) calculating technique was
used to obtain the appliance combination specific PP values
P (Cj). Those PP values were used to generalize the evaluation
of MAP criteria in (3) without assuming the constraint in (4).

For an appliance combination Cj = {A1, A2, ..., An} where
n ∈ {1, 2, ..., NA}; NA = number of appliances; and j ∈
{1, 2, ..., 2NA}; its priori probability at the time instant t = t0
was obtained from under the assumption that all appliances
are independent as,

P (Cj)|t=t0=

n∏
k=1

PPP,Ak (t0). (9)

Here, PPP,Ak
(t0) denotes the PP value of the appliance Ak at

time instant t = t0. In order to get this value, first, the history
of the given appliance state (ON or OFF) was used to obtain
the corresponding time duration that the appliance remained
in that state. While executing the proposed NILM method for
each appliance, the state history and the corresponding time
durations were updated and stored. Now, through the con-
structed likelihood functions in (7) or (8), either PON,Ak(t0)
or POFF,Ak

(t0) was found for each appliance Ak depending
on its ON/OFF state. Further, a time of day based likelihood
value for the appliance Ak was also evaluated based on
the constructed likelihood function PTOD,Ak

. Based on the
most recent state of the appliance Ak, one of constructed
Fuzzy Inference Systems (FISs) out of FISON,Ak

in Fig.4
or FISOFF,Ak

in Fig.5 was used to get the PPP,Ak
(t0) value

appropriately.
For the FISs, as shown in Fig. 4 and Fig. 5, piecewise linear

membership functions (MFs) were used. Since the appliance
Ak has the PON,Ak

(t) values biased towards 1, these MFs
were also automatically shifted towards that region in order to
get a better input sensitivity [49], [50]. Similarly, other input
MFs (3 per each appliance) were also decided based on that
automated logic. All output MFs of FISs (2 FISs per appliance)
have the same MF arrangement where MFs have been shifted
outward from 0.5 towards both 0 and 1. This was done in order
to have a more information rich output rather than having a
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result similar to PPP,Ak
= 0.5 where the information content

is less [51].
Furthermore, for each appliance, same two different Fuzzy

Rule Bases (FRBs) have been used for respective two appli-
ance specific FISs. These two FRBs were designed in such a
way that they can eliminate NILM solutions which indicates
sudden appliance state changes that occur at unusual time of
day. This fact is illustrated by the FIS Output Surfaces shown
in Fig. 6. There, since in such incidents PTOD,Ak

value is
near 0, while the PON,Ak

or the POFF,Ak
value is near 1,

FRB has been designed to have a low priori probability value
output for such inputs. Thus, it increases the stability and the
robustness of the NILM solution.

The proposed priori biasing technique in this Section de-
pends on extracted common appliance usage behaviors. How-
ever, as a result of randomness in the human behavior, actual
appliance usages might occasionally deviate from these pre-
constructed appliance usage patterns. Therefore, the usage
patterns may not solely be able to decide the turned ON
appliance combination. As a remedy to this scenario, the
overall priori biased NILM technique uses the usage patterns
only for priori probability biasing. Thus it is not the sole
criteria for determining the turned ON appliance combination.
Therefore, even under random behaviors, this priori biased
NILM algorithm works accurately.

C. The Priori Biased NILM Method

Using the AUP based PP calculation technique discussed in
Sections III-A & B, PP values required to evaluate the MAP
criteria given in (3) were found. To incorporate this priori bias-
ing approach into the priori unbiased NILM method described
in Section II, two additional stages were incorporated into the
Algorithm 1.

First, each appliance state and its present ON or OFF
duration was updated before the PES (in Algorithm 1: line 6)
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Fig. 6: Output Surfaces for (a) FISON,Ak
and (b) FISOFF,Ak

using the NILM solution in the previous time instant. Then,
in the first iteration (i = 1), after the SES (in Algorithm 1:line
10), PP values of all remaining possible appliance combina-
tions were calculated using (9), by utilizing the constructed
appliance specific FISs: FISON,Ak

and FISOFF,Ak
.

With these modifications, the NILM algorithm with the
priori biasing technique as shown in Algorithm 2 was deployed
as step 5 of the proposed NILM algorithm to carry out the load
combination identification for the aggregated power profile:
RS3. Here, from the obtained results, an improvement in the
NILM accuracy levels was observed with the introduction of
the AUP based priori biasing technique for NILM.

IV. TOTAL POWER DEMAND FORECASTING METHOD

Total power demand forecasting is considered as one key
application of NILM for DSM [1]. However, to the best of
authors knowledge, there are no known cases of NILM or even
AUP based approaches been utilized to tackle this problem of
demand forecasting reported in literature. As a viable solution,
this paper proposes a NILM and AUP based approach to
forecast the total demand of a number of houses, 5 minutes
ahead of current time instant. This information enables a DSM

Algorithm 2 Work Flow of Appliance Combination Iden-
tification in Priori Biased NILM Step (for RS3)

1: for each SW in RS2 do
2: Extract features from the SW; #5 SCs: Zi; i = 1, 2, ..., 5;
3: Set i = 1; #Iteration or SC Number
4: Set execution = 1; #Matching Incomplete Yet
5: Set S0 = {Cj : j = 2Napps} #Set of All Combinations
6: Update ON and OFF durations of each appliance;
7: Apply the PES to S0 and obtain S1;
8: while execution do #Iterative SC Matching
9: Consider the ith dominant SC : Zi;

10: Apply the FES to S1 or S3 and obtain S2;
11: Apply the SES to S2 and obtain S3;
12: if i == 1 then #only in 1st iteration
13: Calculate priori probabilities for every appliance combi-

nation in S3 using (9) and constructed FISs;
14: end if
15: Apply the MAP criteria to S3 and obtain S4; #Get γCj,i

16: if γCj,i > 0.99 then #Matching of Cj upto ith SC
17: Output: Turned ON Appliance Combination = Cj ;
18: Set execution = 0; #Matching Complete
19: else if (i == 5) ∪ (S4 ∈ ø) then
20: Output: Most Probable Solution: argmax(γCj,i , Cj);
21: Set execution = 0; #Matching Complete
22: else
23: i = i+ 1 #Go to Next SC Matching
24: end if
25: end while
26: end for
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Fig. 7: tf vs td Profiles of RF for (a) ON and (b) OFF States

aggregator to inform the Transmission System Operator the
amount of DSM available in case of a system emergency.

In the proposed NILM technique, identified ON and OFF
sets of appliances as well as their respective ON or OFF
durations are available for a given time instant. Since pre-
calculated ON or OFF duration based CCMFs given in (5)
and (6) are also available, for each appliance, most probable
ON or OFF durations into the future were calculated for a
constant confidence level value, α, for each time instant. For
illustrative purposes, confidence levels have been chosen as
0.9 and 0.5. These confidence levels are adjustable and the
two values were specifically selected to highlight the impact
of this parameter.

For example, if the NILM method detected that, appliance
Ak has been in the ON state for a duration of td up till
the current instant, then, using the CCMF given in (5) the
turned ON duration tf into the future for that appliance with
a confidence level of α was found using the conditional
probability given by,

α = P

(
ONDu > (td + tf )

ONDu > td

)
=
PONDu,Ak (td + tf )

PONDu,Ak (td)
. (10)

Further, to reduce the execution time, for each appliance
Ak and for each possible ON duration td, corresponding
tf values were pre-stored for few confidence levels such as
α = 0.3, 0.5, 0.7, 0.8, 0.9, & 0.95, during AUP extraction
step. Due to this pre-storing techniques, forecasts with differ-
ent confidence levels can be achieved. Same procedure was
repeated to predict the likelihood of the OFF state tf into the
future for a given confidence level. Fig. 7 shows such pre-
stored curves for the Refrigerator (RF).

Now, these pre-constructed sets of profiles were used along
with the proposed NILM method’s present solution and the
power level disaggregation solution [48], to predict the in-
dividual appliance power profiles ahead from the current
time. Through aggregation of these results for appliances
in a number of houses, the proposed total power demand
forecasting technique was successfully validated.

V. CASE STUDY

Two case studies were carried out to evaluate the proposed
NILM method and the demand forecasting technique.

A. Performance Metrics

The case study utilized the following performance metrics:

1) Appliance Combination Identification Accuracy (Aci):
To asses the overall performance of the NILM method, Aci

value was calculated as the percentage of OSWs where the
turned ON appliance combination was found correctly [2].

2) F-measure (Fm): The F-measure (Fm) [52] was used to
evaluate the accuracy of identifying the states of combination
(Cj), and is given by,

Fm,Cj = 2TP/(2TP + FN + FP ), (11)

where TP , FN and FP , for each identified turned on
appliance combination, are the True Positives, False Negatives
and False Positives. The average Fm,Cj

over ∀Cj in a given
aggregated active power signal is denoted as Afm.

3) Total Power Correctly Assigned (Apa): To evaluate the
performance of the power disaggregation, the “Total Power
Correctly Assigned” (Apa) metric described in [1] and [36]
was used. Metric Apa is formally defined as follows [36]:

Apa,Cj =

[
1−

(
T∑

t=1

n∑
i=1

|ŷt(i) − yit|/(2
T∑

t=1

ȳt)

)]
× 100%, (12)

where ŷt
(i) denotes the calculated mean power level of the

proposed method for ith appliance at the tth OSW while yit
denotes the measured mean power level for ith appliance at
the tth OSW in a given aggregated signal. Moreover, ȳ =∑n

i=1 y
i
t. The average Apa,Cj

over ∀Cj in a given aggregated
active power signal is denoted as Apd. Further, the metric Apa

for estimation of power demand forecasting is denoted as Apf .
4) Average Execution Time (Aet): All algorithms in this

paper were executed on a workstation with Intel Core i5
processor and 16 GB RAM running at 2.3 GHz, with Windows
10 OS. In order to demonstrate the speed of the solution, the
metric Average Execution Time (AET) taken to process an
OSW to generate the NILM result was used.

B. Case Study 1

This case study was carried out to evaluate the NILM
accuracy improvement achieved by AUP based fuzzily priori
biasing. Here, seven tests were carried out by deploying the
proposed NILM method exactly as illustrated in Fig. 1 for the
real data taken from Tracebase and REDD datasets.

1) Procedure: The Tracebase dataset contains 22 different
individual appliance power profiles collected at 1 samples per
second from German households and office spaces. For the
first test, 12 residentially used appliances were purposively
selected from this dataset such that, selected set of appliances
contained 2 or more number of appliances from each appliance
category [2]: “single-state” (SS), “multi-state” (MS), and “con-
tinuously varying” (CV). From the selected set of appliances
by manually aggregating the appliance power profiles a house
was created (HouseT) which had individual and aggregated
power profiles for 52 days. As higher number of different types
of appliances have been used in the case study, real-world
complex conditions have been emulated in the constructed
HouseT.

First ten days of individual appliance power data (RS1) were
used in feature extraction and creation of signature databases.
Then, next 21 days of the aggregated power signal (RS2) were
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evaluated by Stage A of Figure 1 to study the AUPs. Then
from the remaining aggregated power profile data (RS3), priori
biased NILM method was evaluated. Finally, for performance
comparison purposes, priori unbiased NILM method was also
evaluated for RS3.

The REDD dataset contains real measured active power
signals taken from 6 real households in USA, with whole
home, appliance/circuit level data at 1/3 samples per second.
These data from the 6 REDD houses (House1-6) were used
for the evaluation of the proposed NILM method as the next
six tests. For each house, reading sets RS1, RS2 and RS3 were
selected in a similar manner to the previous case (HouseT).
Since these houses consists of different types of loads and
even some unknown loads, viability of the proposed NILM
algorithm under real measurements was validated through this
real world scenario.

2) Results and Discussion: Appliance combination identi-
fication accuracy (Aci, Afm), power disaggregation accuracy
(Apa) and the Average Execution Time (AET-Aet) obtained for
described test cases are given in Table I. From these results,
it was observed that, with the proposed priori biased NILM
method (denoted by PBN), for each house tested, turned on
appliance combinations were identified with more than 86%
accuracy in-terms of Aci and more than 84% accuracy in-terms
of Afm. However, with the priori unbiased NILM method
(denoted by PUN), these two values were 76% and 75%
respectively. So, the improvement due to the introduction of
AUP based priori biasing technique is substantial.

It should be noted that accuracy of the power level disag-
gregation has also been increased by around two percentage
points from using this strategy. Since both priori unbiased and
biased NILM algorithms had used the same power breakdown
technique in [48], this slight improvement should be due to
the increased appliance combination identification accuracy
achieved by the proposed NILM method. Although AET has
been increased by around 30% due to the introduced priori
biasing step in the proposed NILM method, still the AET
is well inside 1s or 3s sampling periods. Thus, real-time
implementation of this strategy is clearly viable.

Furthermore, REDD houses 3-6 contains several unknown
appliances and plug sockets. So, activation of such appliances
should decrease the NILM accuracy levels significantly. The
proposed NILM method was able to produce an accuracy
improvement even under such a challenging scenario. Also,
it should be noted that, in the absence of such unknown
appliances, the proposed method generates NILM results with

TABLE I: Performance metrics comparison between Basic
NILM (PUN) vs AUP based Enriched NILM (PBN)

House
Name

Aci

(%)
Afm

(%)
Apa

(%)
Aet

(ms)
PUN PBN PUN PBN PUN PBN PUN PBN

HouseT 84.2 93.2 82.2 91.6 87.0 90.0 420 640
House1 84.1 93.0 83.1 90.2 85.2 89.8 501 820
House2 83.4 93.7 81.4 91.7 86.2 85.7 315 515
House3 82.4 89.0 81.0 87.2 79.1 82.7 418 627
House4 76.6 86.1 76.5 85.2 76.2 80.2 369 658
House5 76.2 86.3 75.8 84.1 74.6 79.2 357 562
House6 79.1 87.7 78.2 85.7 78.6 80.2 302 501

accuracy levels higher than 93 %. In addition, most NILM
solutions in the literature have actually not used the REDD
houses in concern (4,5 and 6) due to the presence of the
unknown appliances. Even compared to the few that have
used these houses [5], [53], the accuracy level of the method
proposed in this paper is significantly higher [43], [44].

3) Comparison with State of the Art: In order to demon-
strate the strength of the proposed NILM method, obtained
F-Measure values (Afm) and power disaggregation accuracy
(Apa) values were compared among other state of the art
NILM methods. In this comparison, all considered algorithms
have utilized the data taken from publicly available REDD
dataset [36]. Moreover, use of common accuracy metrics such
as Afm and Apa suggested in [52] and [36] enabled this direct
comparison.

Table II summaries the overall average F-measure values
achieved by different state of the art NILM methods including
the proposed method in this paper. Here, for the completeness
of the comparison, fundamentally diverse set of recent and
benchmark NILM methods were used. These approaches have
been summarized in the following paragraph.

In [26] and [27], supervised and unsupervised Graph Signal
Processing (GSP) based two NILM methods have been dis-
cussed. Two benchmark NILM algorithms based on Hidden
Markov Models (HMMs) have been introduced in [5] and
[37]. There, [5] uses an unsupervised HMM algorithm while
[37] uses an additive factorial-HMM to identify the turned ON
appliance combination. Further, NILM via event (i.e ON/OFF
transition) classification is also an emerging technique in the
research. In [30] two such methods have been introduced based
on supervised Decision Tree (DT) classifier and a Dynamic
Time Warping (DTW) based classier. Similarly, [29] define
Bayesian classifier and a Viterbi algorithm to address same
even classification task. Furthermore, [23] explores multi label
classification (ML-KNN) based NILM methods based on both
time domain and wavelet domain feature sets.

As reported in [5], [23], [27], [29], [30], [41], it should
be noted that, the F-measure value of each aforementioned
NILM method has been evaluated considering only certain
set of appliances. In most cases, this specific set is selected
based on the identification accuracy level of each appliance
under the considered NILM method. Further, as mentioned
before, some of these NILM methods do not consider REDD
houses such as House 4, 5 and 6 due to the presence of
unknown appliances. In contrast, the proposed NILM method

TABLE II: Comparison of Obtained F-Measure Values

NILM Method Afm /(%) Remarks
Proposed Method:PBN 88.5 Using all appliances in all

six houses.Basic NILM (PUN) [2] 79.7
Supervised GSP [26] 64.0 Using only 5 most performing

appliances in Houses 2 & 6.Unsupervised GSP [27] 72.2
Unsupervised HMM [5] 62.0 Using only 7 most performing

appliances.Additive FHMM [37] 71.3
Supervised DT [30] 76.4 Using only 9 most performing

appliances.Unsupervised DTW [30] 68.6
Multi-Label KNN [23] 59.1 Using only 9 arbitary selected

appliances.Bayesian Classifier [29] 83.0
Viterbi Algorithm [29] 88.1
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have been evaluated for all houses of the REDD dataset
considering all appliances in each household. Therefore the
proposed NILM algorithm have considered in essence a more
challenging dataset. Despite this challenging nature of the used
data, according to the results shown in Table II, proposed
NILM method have also outperformed all the other NILM
methods in terms of appliance identification accuracy.

Another comparison was carried out to compare the
achieved individual appliance power level disaggregation ac-
curacies (Apa) by different state of the art NILM methods
including the proposed NILM method in this paper. Results
of this comparison are summarized in Table III. Here also,
for the comparison, a fundamentally diverse set of recent and
benchmark NILM methods have been used. These approaches
are summarized as follows.

In [31], two load disaggregation schemes named as the
Greedy Solution and the Exact Solution have been proposed
based on Deep Sparse Coding (SC). In the work [33] another
two NILM methods, named General SC and Discriminative
SC have been proposed. For the load disaggregation task,
another three avenues have been explored in [32], [24] and [36]
which uses ‘Powerlets’ Learning (PED), Temporal Multi-Label
Classification (ML) and Factorial HMM (FHMM) respectively.
Moreover, three HMM based techniques, named Factorial-
Hierarchical Dirichlet Process HMM (F-HDP-HMM), F-HDP
Hidden Semi-Markov Model (F-HDP-HSMM) and Expecta-
tion Maximization FHMM (EM-FHMM) have been proposed
in [35]. Furthermore, in [28], Subtractive Clustering technique
have been evaluated.

From the comparison of the results it is clear that, F-HDP-
HSMM method proposed in [35] and Subtractive Clustering
method proposed in [28] have slightly outperformed the pro-
posed NILM method. However, it should be noted that, these
two methods only have been evaluated for a limited number
of appliances considering only a single household, as reported
in [27], [28], [31], [35]. In contrast, the proposed NILM
method was evaluated on all six houses. Also, in each house,
power profiles were disaggregated for the seven highest power
consuming appliances in each household.

From both comparisons, it can be concluded that, both appli-

TABLE III: Comparison of Obtained Power Disaggregation
Accuracy Values

NILM Method Apa /(%) Remarks
Proposed Method:PBN 84.0 For all six housesBasic NILM (PUN) [2] 81.0

Greedy Deep SC [31] 62.6 Using only Houses 1, 2, 3, 4
& 6 [31].Exact Deep SC [31] 66.1

General SC [33] 56.4
Discriminating SC [33] 59.3

Powerlets-PED [32] 46.5
Temporal ML [24] 53.3

Factorial HMM [36] 47.7
F-HDP-HSMM [35] 84.8 Using only 5 appliances in

the Houses 2 [27].F-HDP-HMM [35] 70.7
EM-FHMM [35] 50.8

With Int. FHMM [38] 66.5 Using only 7 appliances in
the House 2 [27].Without Int. FHMM [38] 65.5

Unsupervised GSP [27] 77.2
Subtractive Clustering [28] 86.0 Using only 6 selected ap-

pliances [28].

ance identification accuracy and the power level disaggregation
accuracy of the proposed NILM method are comparable or
superior compared to existing state of the art NILM methods.

C. Case Study 2

This case study was carried out to validate the proposed total
power demand forecasting technique described in Section IV.

1) Procedure: Real household data taken from REDD
Houses 1, 2 & 3 were used for this study. For each of these
chosen houses, signature databases, and extracted AUPs had
already been constructed (using respective RS1, RS2 data in
the Stage A of the proposed NILM method) for the previous
case study. So, for each house, only the priori biased NILM
method was evaluated (i.e. the step 5) while generating load
forecasts for five minutes ahead of the current time instant.
So, for each house, using its RS2 data, the 5th and 6th steps
of the proposed NILM method were re-evaluated.

Next, for the chosen three houses, data corresponding to
21 different days were selected from their whole house power
profiles (from RS2 of each house). Then these 21 residential
power data profiles (each of length of 24 hours) were con-
sidered as data which belongs to 21 different houses for one
complete day. This was done to demonstrate the viability of
the prediction technique for a large area.

Finally, using appliance level power demand predictions
of each of the 21 constructed houses (during a day), the
total aggregated power demand forecast was estimated with
confidence levels (i.e. α) of 50 %, 70%, 90% and 95%.

2) Results and Discussion: Actual and predicted total
power profiles of the 21 houses are presented in Fig.8. For
demonstration purposes, Fig.8 displays the prediction result
of a 15-minute window out of the power profile which was
actually predicted for one complete day with a confidence
level of 90%. The accuracy of the total aggregated power
prediction of all 21 houses for each 3 hour period from 06:00
to 24:00 is presented in Table IV. Further, sensitivity of the
forecasting accuracy was studied by varying the confidence
level parameter α and those results are also shown in Table
IV.

According to the actual and predicted total power profiles
(See Fig.8), the proposed NILM algorithm has the ability
to identify downward steps in the total power demand more
efficiently when compared to identifying the upward trends.
Here, for many appliances as shown in Fig.2 and in Fig.7,
observed ON durations would be shorter compared to their
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TABLE IV: Total Power Demand Prediction Accuracies Vs
Confidence Level (α) when Time Step Ahead = 5 Minutes

Prediction Accu.
Apa (%)

Time of Day (09:00 - 24:00) Hrs
6-9 9-12 12-15 15-18 18-21 21-24

α = 0.30 74.2 75.7 71.9 76.2 72.9 74.3
α = 0.50 78.8 76.3 73.6 79.3 77.0 78.3
α = 0.70 78.6 76.5 74.9 79.4 78.1 79.1
α = 0.90 79.6 77.2 78.9 78.7 80.2 81.2
α = 0.95 72.6 75.7 70.6 70.4 72.1 73.2
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OFF durations. As a result, it improves the predictability of
instants where appliances are turning OFF compared to the
instants where appliances are turned ON. Thus, prediction of
downward trends in the total power demand by the proposed
NILM method is more efficient compared to forecasting up-
ward steps.

In general, according to the results in Fig.8 and Table
IV, it is clear that the proposed NILM method identifies the
turned on appliance combinations and predicts the total power
consumption of number of houses five minutes into the future
with reasonable accuracy.

Furthermore, since the predicted breakdown is available at
the appliance level in each house, it enables a power system
aggregator to predict both the non-critical appliances that
could be turned off and the amount of Demand Response
achievable, ahead of an event that could create a possible
system emergency. A proper architecture to implement such a
mechanism in large scale is shown in Fig.10 and discussed in
Section V-D.

3) Inferences from Sensitivity Analysis: From the sensitivity
analysis, a trade off between the used confidence level α and
the prediction accuracy was observed. Observations in Table
IV revealed that in order to forecast the total power demand
of 21 houses 5 minutes ahead, using a 90% confidence level
is more accurate than using a 95% or 70% confidence levels.

In order to further investigate this dependence between
accuracy level, confidence level and the forecasting time step
ahead, same experiment was carried out to forecast the total
power demand of 21 houses, both 10 minutes and 15 minutes
ahead. For such time steps, optimum prediction accuracy
levels were achieved when the confidence level is selected
as 80% and 50% consecutively. Results of this investigation
is illustrated in Fig.9.

According to the obtained results, predictions with increased
time step durations ahead are achieved through lowering
the used confidence level. This will slightly decrease the
prediction accuracy as shown in Fig.9. On the other hand,
more accurate predictions for the near future can be obtained
via increasing the used confidence level. This is a logical
observation as in any case, with higher levels of confidence,
it is not possible to predict the behavior far beyond the near
future and vice versa. So, the introduced parameter α enabled
changing the prediction duration further into the future.

D. Some Aspects of Installation and Scalability
Several key aspects have been discussed in this chapter on

the installation and scalability of the proposed NILM method.
1) Installation: The architecture and operation of its hard-

ware installation is illustrated in Fig.10.
Here, for each household, only a dedicated processor unit

with a communication channel is required apart from the smart
meter. Once this residential NILM processor unit is installed
and connected to the smart meter, individual appliance signa-
ture learning and signature database construction phases (i.e.
steps 1 & 2 in Fig.1) are initiated as described in Section II-B
and II-C. Since most of the appliance models are commonly
used in many households, for a large scale implementation,
signatures for such appliance models can be taken from
global databases. Apart from that, unique appliances for the
considered house should be learned individually by turning
each of them ON and observing their power profile for a
duration of few hours. At the end of this signature learning
stage, House specific set of signature databases will be stored
in the processor unit.

After that, steps 3 & 4 (See Fig.1) of the proposed NILM
method will be automatically completed in the residentially
installed processor unit. There, first, priori unbiased NILM
method as described in Section II-D will evaluate the appliance
usages. This method have been verified by the authors, both
in simulations [2] as well as in real-time implementation [47].
Next, using the obtained results, in step 4, appliance usage
patterns of the installed household are extracted and, priori
biasing technique is formulated in the corresponding NILM
processor as described in Sections III-A and III-B.

There onwards, step 5 & 6 (See Fig.1) are continuously
evaluated in the residentially installed processing unit. Here,
the novel priori biased NILM technique described in Section
III-C will evaluate the currently turned ON appliance com-
bination as well as the appliance power level disaggregation.
Further, as described in Section IV, power level forecast for
five minutes ahead of current time value can also be evaluated
for each appliance in the considering household.

2) Increasing Number of Appliances per House: In the pro-
posed NILM method, all the house specific signature databases
are kept pre-stored in the residentially installed processor
unit. There, in constructing the appliance combination level
signature database (CLSD) as described in Section II-C, all
possible appliance combinations for the given set of residential
appliances are considered. So, it was observed that the size of
this CLSD tends to grow exponentially with the increase of
number of appliances in the household.
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Fig. 10: Proposing Overall Hardware Architecture

Table V was obtained by constructing CLSDs for different
number of residential appliances. For this task, real measure-
ments obtained from a laboratory setup was utilized. From the
obtained CLSD sizes and data reading times shown in Table V,
it is clear that even for higher number of appliances, database
sizes will not go beyond the sizes of conventional data storage
device.

Furthermore, when identifying the currently turned ON ap-
pliance combination for an observed sliding window (OSW),
the proposed NILM method (i.e. the Algorithm 2) first starts
by considering all possible appliance combinations as viable
solutions for that OSW. Then onwards, this solution space is
continuously reduced using one pre elimination stage (PES)
and two iterative first and second elimination stages (FES &
SES) as described in the Section II-D & Algorithm 2.

In order to illustrate the strength of these elimination stages,
first, a house was synthetically created with 15 different
appliances taken from REDD dataset. Then, corresponding
CLSD of that house was constructed as described in II-C.

TABLE V: Memory Requirement for Databases

No. of Appliances 10 14 18 20 25
Database Size (MB) 1.750 28.51 450.4 1701 49875
Reading Time (ms) 2.781 3.945 5.012 6.753 15.23

Then, for that CLSD, for all possible static levels of an OSW,
the number of appliance combinations left in the solution space
after each elimination stage in the 1st iteration was observed.
This result is illustrated using a logarithmic plot in Fig.11 (a).
From this result, an exponential drop in the solution space was
observed for every possible static level of an OSW.

Further, considering the actual total power profile of the
created household, a likelihood function was created for the
OSW-Static Level. This is shown in Fig.11 (b). This behavior
conveys the fact that for an actual household, static levels of
observed sliding windows, taken from the total power profile
are more likely to have lower values. For this particular case,
most likely OSW static levels are in the range 0 W - 1000
W (Fig.11 (b)). From this range, to further study the strength
of elimination stages, 400 W and 1000 W static levels were
arbitrarily chosen.

Then, same experiment was carried out while changing the
number of appliances in the household. After that, for the
selected OSW static levels of 400 W and 1000 W, the number
of remaining appliance combinations in the solution space
after each elimination stage was observed. This is shown in
Fig.12.

These observations conveys that, even though the number of
possible appliance combinations grow exponentially with the
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Fig. 12: No. of appliance combinations remaining after each
elimination stage of the first iteration of Algorithm 2 Vs Total
no. of appliances in the household when the Static Level of
OSW is (a) 400W and (b) 1000W

number of appliances present in the house, the used elimina-
tion stages are capable of eliminating appliance combinations
in the solution space in an exponential manner so that final
solution is achieved within few iterations.

3) Increasing Number of Houses per Aggregator: Once the
residential appliances have been classified into critical and
non critical categories [54], [55], using the appliance level
breakdown of the current and forecast power consumptions,
the values of total / critical / non critical power demands can
be calculated for the household as shown in Fig.10. Then, only
these six values are to be transmitted from each household to
the concentrator per every 1 s interval.

For this purpose, required communication bandwidth be-
tween a house and the concentrator is estimated as 256 bps (i.e.
32Bps). Further, monthly consumed data amount is calculated
to be 80 MB per house. From the data concentrators point of
view, in order to monitor 400 houses by one aggregator [56],
a communication bandwidth of 100 kbps is required between
the aggregator and the concentrator. Furthermore, inside the
data aggregator, in order to carryout the data acquisition,
manipulation and storing for 400 households for 1 s sampling
interval, the average execution time was evaluated to be 0.1225
s for the processor mentioned in Section V-A4.

All estimated parameter values confirms the ability to de-
ploy the proposed NILM technique using normal processor
units and conventional communication methods. This proves
the scalability as well as the feasibility of the proposed NILM
technique in a large scale setup.

VI. CONCLUSION

This paper proposes a novel NILM method with enriched
capabilities to not only identify turned-on appliances and their
power consumption levels, but also to adapt itself according
to AUPs. Since this NILM solution does not depend solely on
collected measurements, it produces more accurate and robust
results compared to existing NILM techniques. The ability to
use AUPs in NILM allowed this method to be used to predict
the total power consumption of a number of houses a few
minutes ahead of the present time instant (i.e. real-time). This
has an important practical interest as utilities are reluctant to
utilize DLC for DR due to difficulty of estimating amount of
load available for DR ahead of the real time.

The method utilizes the KL expansion to separate un-
correlated spectral information in active power profiles and
construct signature databases. Further, it incorporates AUPs
via a fuzzy logic based priori biasing technique. Since the
algorithm performs with high accuracy even on power profiles
sampled at low rates, expensive hardware is unnecessary.
Furthermore, from the execution speeds achieved, this is a
viable algorithm for a real-time implementation.
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