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Abstract

In this work we present some uniqueness and cloaking results for a related pair

of inverse problems. The first concerns recovering the parameter q in the Bessel-

type operator pencil, over L2(0, 1; rdr), formally given by

−1
r

d
dr

(
r

d
dr

u(r;λ)
)
+ q(r)u(r;λ) = λw(r)u(r;λ) (0 < r < 1)

from (a generalisation of) the Weyl–Titchmarsh boundary m-function

m(λ) = −
u′(1;λ)
u(1;λ)

.

We assume that both w and q are singular at 0. We prove q is uniquely deter-

mined by the sequence m(−n2) (n = 1, 2, 3, . . .), using asymptotic and spectral

analysis and m-function interpolation results. For corollary we find, in a half-

disc with a singular “Dirichlet-point” boundary condition on the straight edge,

a singular radial Schrödinger potential is uniquely determined by Dirichlet-to-

Neumann boundary measurements on the semi-circular edge.

The second result concerns recovery of three things—a Schrödinger potential

in a planar domain, a Dirichlet-point boundary condition on part of the boundary,

and a self-adjointness-imposing condition—from Dirichlet-to-Neumann measure-

ments on the remaining boundary. With modern approaches to the inverse con-

ductivity problem and a solution-space density argument we show the boundary

condition cloaks the potential and vice versa. Appealing to negative eigen-value

asymptotics we find the full-frequency problem has full uniqueness.
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‘Τηλέμαχ᾿, ἄλλα μὲν αὐτὸς ἐνὶ φρεσὶ σῇσι νοήσεις, ἄλλα δὲ καὶ δαίμων

ὑποθήσεται.’

– ῞Ομηρος

‘Telemachus, some things you will think of yourself, and others the gods

will put into your mind.’

– Homer1

1 Ἀθήνη, or Athena, in ᾿Οδύσσεια, or Odyssey, Book III, Line 26 (ca. C8 BCE)
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1

Introduction to inverse problems

‘Can one hear the shape of a drum?’

– Mark Kac1.1

“Definition”. We call two problems inverses of one another if the formulation of each

involves all or part of the solution of the other. Often, for historical reasons, one of the two

problems has been studied extensively for some time, while the other is newer and not so

well understood. In such cases, the former is called the direct problem, while the latter

is called the inverse problem.

This oft-quoted definition1.2 was first put down by Keller [76]. Examples of

inverse problems arise naturally in physics, though only within the last century

has their framework become mathematically well formalised.

Such physical examples range from the famous (X-ray tomography, ultra-

sound computer tomography) to the lesser-known (electrical impedance tomog-

raphy (EIT), land-mine detection, inverse wave scattering) or the abstract (“hear-

1.1The American Mathematical Monthly, (1966) [74].
1.2‘Definition’ is intended here with a looser, not-necessarily-mathematical meaning.
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ing” shapes of resonators). Since the first X-ray images of internal physiology,

there has been great medical interest in developing techniques for non-invasive

imaging. More generally, the determination of material properties or object lo-

cations from scattered radiation or far-/near-field effects has manifold applica-

tions, including but not limited to astronomy, flight control and military systems,

oceanography and geological surveying1.3. Much time and resource has been in-

vested in developing methods of recovery of such material properties, usually

involving numerical procedures applied to measured data, which return mathe-

matical models describing the desired properties.

Of paramount importance, however, is assurance of the uniqueness of the re-

covered solution. Without such a guarantee the recovery efforts may turn out to

be in vain. If the recovered “solution” is radically different from the real answer,

yet both return the same measured data, there could be inconvenient or even dis-

astrous consequences such as faulty prediction of extreme weather, malfunction-

ing flight equipment or failure to locate a malignant tumour. On the other hand,

there has been a recent surge of interest in the concept of invisibility cloaking and

its applications, which is an example exhibiting precisely the non-uniqueness that

could cause so many problems in the aforementioned cases. A great deal of effort

has recently been made to realise the theory of cloaking in practical terms, and

the interested reader is directed to the substantial and detailed review of this, and

the underlying theory, available in [59].

As worthwhile and popular as recovery procedures and practical cloaking

devices are, in this thesis we will focus almost entirely on the mathematical is-

sue of uniqueness, in the case of some newly formulated and connected inverse

1.3A selection of detailed review articles or books covering these particular topics is as follows:
X-ray tomography [97], ultrasound tomography [43], EIT [105, Ch. 12], landmine detection [96],
inverse scattering [1], hearing the shape of a drum [74], astronomy [39], flight control/simulation
[106], oceanography [138] and gravimetry [141]. Of course these topics are not the focus of this
thesis, and are simply included for the reader sufficiently interested to read further.
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problems. By way of a preliminary introduction we will now describe in Section

1.1 one of the earliest inverse problems mathematically related to our new work.

This will illustrate the concerns faced by those working on problems of this na-

ture, motivating a general definition of solvability. Subsequently, in Section 1.2

we will outline the novel problems worked on in this thesis. To conclude the

chapter we will describe in Section 1.3 the structure of the rest of the thesis and

provide a list of symbols defined.

1.1 The inverse conductivity problem

In the 1940s the engineer A. P. Calderón worked for the Argentine state oil com-

pany, Yacimientos Petrolı́feros Fiscales. Whilst there he conceived the problem

of determining the conductivity in a medium from measurements of current and

voltage made at the boundary of said medium. His original aim was the location

of oil reserves, but the ideas generated in response to his problem have found

numerous other applications, notably in EIT1.4, for example in locating malig-

nant tumours, known to have a different conductivity to surrounding healthy

tissue. For a recent detailed survey of Calderón’s problem, focusing on analytic

approaches to uniqueness, see [129].

Consider a volume Ω of material in the Earth’s crust, with surface boundary

denoted Γ, a subset of the full boundary ∂Ω ofΩ. Calderón envisaged embedding

electrodes at a grid of points on Γ, passing an input set of currents through the

electrodes into the crust, and then measuring the resulting potential differences

between pairs of points in an interspersed grid on the surface. From these mea-

surements he hoped to determine the material conductivity in the entire volume.
1.4It is worth pointing out for the attentive reader that strictly speaking tomography involves

reconstruction from “slices” through the medium, by which definition EIT is a misnomer. The
name has stuck by historical convention. For a brief discussion of this issue and a detailed survey
of some numerical approaches, see [93].
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This set-up is a discrete approximation to inputting a current function all over

the continuous surface, and measuring on the same surface the voltage function.

This is mathematically formalised as follows.

The input current function h is set to be the normalised normal derivative on

Γ of the voltage density in the volume Ω, and the output voltage then represents

the restriction of this voltage density back to the surface. Making such a measure-

ment is equivalent to solving the conductivity boundary-value problem



−∇ · (γ∇u) = 0 in Ω,

u = 0 on ∂Ω\Γ,

γ∂νu = h on Γ

(1.1.1)

for the voltage density u in all ofΩ, then restricting to u �Γ. Repeating this process

for every (admissible) h produces in this case what is called the current-to-voltage

map on Γ; in general such a map is referred to as a Neumann-to-Dirichlet map, as

it maps the normal derivative, called the Neumann data-set, to the trace, called

the Dirichlet data-set. In modern notation, this is usually denoted Nγ,Γ : h �→ u �Γ.

More generally, Ω is taken to be a bounded domain in Rn, with a sufficiently

smooth boundary ∂Ω (usually, though not always, Lipschitz) containing the con-

nected and (relatively) open subset Γ, referred to as the accessible boundary. The

conductivity γ is assumed to be positive and uniformly bounded from above and

below. For mathematical reasons one usually prefers to work with the negative

of the inverse map, called Dirichlet-to-Neumann, and denoted Λγ,Γ. With these

considerations Λγ,Γ is well defined on the domain H1/2(Γ) and has range the dual

space H−1/2(Γ). Calderón’s problem, then, is thus:

Inverse Problem. Given the map Λγ,Γ, recover the conductivity γ everywhere in Ω.

Whilst there has been prolonged and deep study of this problem and the ram-
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ifications of results concerning it, for brevity of this introduction we save our

survey of the state-of-the-art for Section 2.4. Instead we outline two key features.

The first is explained by the following example.

Example 1 (Alessandrini, 2007 [5]). LetΩ = B1(0) be the ball in Rn with centre 0 and

radius 1, and set γε(x) = 1 + χB1/2(εe1)(x) for every 0 ≤ ε < 1/4, where e1 = (1, 0, . . . , 0)T.

Then

‖γ0 − γε‖L∞(Ω) = 1 (0 < ε < 1/4).

For each 0 ≤ ε < 1/4 define Λγε,∂Ω : H1/2(∂Ω) � h �→ −∂νuε ∈ H−1/2(∂Ω) where uε

solves 
−∇ · (γε∇uε) = 0 in Ω,

uε = h on ∂Ω.

As is proven in the reference, one can show that there are constants C > 0 and 0 < δ < 1

such that

‖Λγ0,∂Ω −Λγε,∂Ω‖L(H1/2(∂Ω)→H−1/2(∂Ω)) ≤ Cεδ (0 < ε < 1/4).

The above example demonstrates there can be instability in determining γ

from Λγ,Γ in the L∞-norm, even when we take data on the full boundary. How-

ever, we have the following pair of theorems, describing the second aforemen-

tioned feature.

Theorem 1.1 (Caro–Rogers, 2016 [36]). Let n ≥ 3 and Ω ⊂ Rn a bounded domain so

that ∂Ω is Lipschitz. Suppose γ1 and γ2 ∈ C0,1(Ω), and are both bounded from below by

c > 0. If Λγ1,∂Ω = Λγ2,∂Ω then γ1 = γ2.

Theorem 1.2 (Astala–Päivärinta, 2006 [9]). Let Ω ⊂ R2 be a bounded domain. Sup-

pose γ1 and γ2 ∈ L∞(Ω) and both are bounded from below by a constant c > 0. If

Λγ1,∂Ω = Λγ2,∂Ω then γ1 = γ2.

These theorems1.5 establish uniqueness of the conductivity from knowledge
1.5They are, at the time of writing, the best results yet for full-boundary uniqueness. For a
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of the Dirichlet-to-Neumann map on the whole boundary.

Calderón’s problem illustrates a property common to many physically in-

spired questions, namely failure of the solution to satisfy one or more of the three

given criteria: existence, uniqueness and stability. In particular inverse problems

frequently act in this disagreeable fashion. We now give a definition to formalise

these concepts. We use a general classification of many problems (e.g., mathe-

matical or physical in nature) given succinctly by Hadamard [64] and which can

be written as follows:

Definition 1.1. Suppose U and V are topological spaces, and T : U→ V is a continuous

mapping between them. We consider the problem of finding u ∈ U given some v ∈ V

(called the data) such that T(u) = v. We say that this problem is ill-posed if any of the

following three conditions are violated:

1. a solution always exists, i.e., for each v ∈ V there is u ∈ U such that T(u) = v;

2. any solution is unique, i.e., if T(u1) = T(u2) for some u1 and u2 ∈ U then u1 = u2;

3. any solution u depends continuously on the data v, i.e., if there are u ∈ U and

v ∈ V with T(u) = v, then for any open set O ⊆ U containing u there is an open

Õ ⊆ V containing v such that Õ ⊆ T(O).

If all are satisfied then we say the problem is well-posed.

Whilst well-posed problems are the easiest to understand and solve, common-

ly—as observed above, in at least one key example—in physics and applied math-

ematics one encounters ill-posed problems. There are various methods of ap-

proaching the latter, usually involving some techniques for restoration of well-

posedness. We will not study these techniques, however the methods can be

found in the literature, e.g., [48, 104, 126].

review see Section 2.4.
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1.2 Singular boundary conditions and pencils

We now outline, briefly and roughly, the original problems of this work, which

are linked to Calderón’s in the following way. Consider again the conductivity

boundary-value problem (1.1.1), and let γ be a twice continuously differentiable

conductivity on Ω. Then with the substitutions

u = γ−1/2v, q = γ−1/2∆γ1/2, g = γ1/2h (1.2.1)

we may derive the Schrödinger form of (1.1.1):



(−∆ + q)v = 0 in Ω,

v = 0 on Γc,

v = g on Γ.

The Dirichlet-to-Neumann operator on Γmay then be realised as the map

Λq,Γ : H1/2(Γ) � g �→ −∂νv �Γ∈ H−1/2(Γ).

In 2008 Berry and Dennis [21] considered the Helmholtz equation

−∆u = k2u on Ω

where the two-dimensionalΩ is one of two domains: the unit disc D or the upper

half-plane H. They imposed the following boundary condition, written using,

respectively, polar and Cartesian coordinates:


κ(ϑ)u(1, ϑ) + ∂ru(1, ϑ) = 0

(
ϑ ∈ [0, 2π)

)
, Ω = D,

κ(x)u(x, 0) − ∂yu(x, 0) = 0 (x ∈ R), Ω = H,

7
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where κ is real-valued and 2π-periodic. Then they made a crucial observation:

when κ is allowed to have a (non-empty, discrete set of) simple pole(s), the spec-

trum of the associated operator1.6

D(Lκ,Ω) := {u ∈ L2(Ω) | ∆u ∈ L2(Ω), (κu + ∂νu) �∂Ω= 0},

Lκ,Ωu := −∆u,

fills the real line, and entirely comprises eigen-values of Lκ,Ω. This would be con-

tradictory if Lκ,Ω were self-adjoint1.7, since the eigen-functions of a self-adjoint

operator must be countable.

Marletta and Rozenblum offered a resolution to the “paradox” in 2009 [99],

showing that a related operator is not actually self-adjoint by working roughly as

follows. Consider the special geometry of the unit half-disc1.8

Ω1 = {(x, y) ∈ R2 | x2 + y2 < 1, x > 0}

with boundary ∂Ω1 divided into the straight portion Γ1 and semi-circular Γi:

Γ1 = {(0, y) | y ∈ (−1, 1)};

Γi = {(x, y) | x2 + y2 = 1, x > 0}.

Then, for a fixed ε > 0, the operator

D(�) := {U ∈ L2(Ω1) | ∆U ∈ L2(Ω1),U �Γi= 0, (U + εy∂νU) �Γ1= 0},

�U := −∆U, (1.2.2)

admits decomposition, via separation of variables, into the orthogonal sum of

1.6We will more precisely define what we mean by operators on Hilbert space in Section 2.1.
1.7See Section 2.1.
1.8The notation is for consistency with Chapter 4.
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ordinary differential operators

D(�0) :=
{
u ∈ L2(0, 1; rdr)

∣∣∣ r−1
(
ru′(r)

)′
+ ε−2r−2 ∈ L2(0, 1; rdr),u(1) = 0

}
,

�0u(r) := −1
r

d
dr

(
r
du
dr

(r)
)
− 1
ε2r2 u(r),

D(�n) :=
{
u ∈ L2(0, 1; rdr)

∣∣∣ r−1
(
ru′(r)

)′
− n2r−2 ∈ L2(0, 1; rdr),u(1) = 0

}
,

�nu(r) := −1
r

d
dr

(
r
du
dr

(r)
)
+

n2

r2 u(r) (n ≥ 1).

Their key observation is that of all the �n, only �0 is not self-adjoint, possessing a

one-dimensional deficiency space1.9.

To find self-adjoint restrictions of � they added a boundary condition to the

definition of �0. Taking the function u0(r) = sin
(
ε−1 log(r)

)
from the kernel of �0

they formed the new operator

D(�′0) := D(�0) ∩ {u ∈ L2(0, 1; rdr) | [u,u0](r)→ 0 (r→ 0)},

�′0u(r) := −1
r

d
dr

(
r
du
dr

(r)
)
− 1
ε2r2 u(r). (1.2.3)

Here [u, v](r) := r(uv′ − u′v)(r) is the associated Lagrange bracket. Then the or-

thogonal sum of �′0 and �n (n ≥ 1) generates the self-adjoint partial differential

operator

D(�′) =
{
U ∈ L2(Ω1)

∣∣∣ ∆U ∈ L2(Ω1),U �Γi= 0 = (U + εy∂νU) �Γ1 ,
∫
Ω1

u0∆U = 0
}
,

�′U = −∆U.

We may add a real-valued Schrödinger potential1.10 q to form the boundary-

1.9The reasoning behind this and the other claims in this section will be given in Section 3.5.
1.10It will be taken from a class of functions to be defined more precisely in Chapter 3; in partic-

ular, we will allow q to be singular as its argument approaches 0.
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value problem 

(−∆ + q)U = 0 in Ω1,

U + εy∂νU = 0 on Γ1,

[U,u0] = 0 at 0,

U = g on Γi.

(1.2.4)

Provided 0 is not in the spectrum of the operator underlying this problem1.11,

(1.2.4) uniquely determines a solution u for each g ∈ H1/2(Γ), since said operator

is a self-adjoint perturbation of �′. Thus we may form the Dirichlet-to-Neumann

operator Λq,Γi : H1/2(Γi) � g �→ −∂νu �Γi∈ H−1/2(Γi).

Now suppose this Schrödinger potential is radially symmetric, q(x) = q(|x|).

Then the separation of variables decomposition may again be performed, and one

finds that in the basis of angular eigen-functions on Γi the Dirichlet-to-Neumann

operator Λq,Γi takes the form of the diagonal matrix



m(−λ0) 0 0 · · ·

0 m(−λ1) 0 · · ·

0 0 m(−λ2) . . .
...

...
. . . . . .



in which the diagonal terms are all point evaluations of (a suitable generalisation

of) the Weyl–Titchmarsh m-function for the problem


−1

r

(
ru′(r;λ)

)′
+ q(r)u(r;λ) = λ

1
r2 u(r;λ)

(
r ∈ (0, 1)

)
,

SA[u](r) → 0 (r→ 0).
. (1.2.5)

Here SA[u] denotes the Lagrange bracket [u,u0](r) = r(uu′0 − u′u0)(r) if the ordi-

1.11For the class of q considered in this work, this operator has discrete spectrum. Moreover
regarding the inverse problems considered, it does not matter whether we recover q or q − λ for
some fixed λ, meaning for our purposes we can translate 0 out of the spectrum of this operator;
see the hypothesis on p. 114.
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nary differential equation has two dimensions to its L2(0, 1; rdr)-solution space,

whilst it is identically 0 if not1.12; the λn are angular eigen-values for the operator

underlying (1.2.4) and are given by the sequence λ0 = −ε−2, λn = n2 (n ≥ 1). The

m-function is then defined (for any λ ∈ C\R) to be m(λ) = −u′(1;λ)/u(1;λ) for any

non-trivial solution u(· ;λ).

As we shall see, the ordinary differential problem (1.2.5) may be written using

a pencil of operators. Roughly, the operator L, whose action on u(r) is formally

given by − 1
r

(
ru′(r)

)′
+ q(r)u(r), and P0, whose action is the multiplicative 1

r2 u(r),

densely defined over the Hilbert space L2(0, 1; rdr), may be assembled into

(L − λP0)u(· ;λ) = 0,

which is formally identical to the differential equation in (1.2.5). If we could de-

termine q from knowledge of m(−λn) for every n then we would have solved

the inverse Schrödinger problem in this case of special geometry and singular

boundary condition.

More generally, we can consider the multiplicative operator formally pre-

scribed by Pu(r) = w(r)u(r) where w(r) = r−ν
(
1 + o(1)

)
and ν is some non-negative

parameter. The pencil it generates, L − λP, turns out to behave similarly over

L2(0, 1; rdr) to L−λP0. Inspired thus, the first inverse problem we will consider is

as follows:

Inverse Problem 1. Let m(−λn) be given for each n ≥ 0, and w(r) be known to satisfy

asymptotic equivalence with r−ν for some ν ≥ 0 (in particular, w is not necessarily known

exactly, although its growth parameter ν is). Determine q in the interval (0, 1).

The following is then related to Inverse Problem 1, so we will also examine it.

1.12These cases are traditionally referred to as limit-circle and limit-point. A classical introduction
to the terms is in Section 2.2, whilst the details of the case at hand may be found in Chapter 3.
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Inverse Problem 1′. Given Λq,Γi , recover q in Ω1.

Another class of problems we will consider is thus. We take the boundary-

value problem (1.2.4) and “embed” its spatial domain Ω1 into the larger Ω, with

q now only being radially symmetric in Ω1 and more arbitrarily specified else-

where. Again, we take ∂Ω to be sufficiently smooth, and Γ a connected subset of

∂Ω. We require moreover that Γ ∩ Γ1 = ∅, and we extend f (y) = εy to the rest of

∂Ω\Γ so that it presents no simple zeros. Next we take not only u0 from earlier

but also v0(r) = cos
(
ε−1 log(r)

)
, and let β ∈ R parameterise the boundary condi-

tion [u,u0+ βv0](r, ϑ)→ 0 (r→ 0). Now our Dirichlet-to-Neumann operator takes

the form Λq, f ,β : H1/2(Γ) � g �→ −∂νu �Γ∈ H−1/2(Ω) where u uniquely solves



(−∆ + q)u = 0 in Ω,

u + f∂νu = 0 on ∂Ω\Γ,

[u,u0 + βv0] = 0 at 0,

u = g on Γ.

Thus, the second inverse inverse problem we will examine is as follows:

Inverse Problem 2. Let Λq, f ,β be given. Determine the potential q, the singular bound-

ary condition f and the self-adjointness-imposing condition β.

Most of the purpose of this thesis is to investigate the question of uniqueness

for both Inverse Problems 1 and 2. Without giving away the spoiler of our meth-

ods, we simply state now that we will find an affirmative answer for the first and

a conditional answer for the second. The latter we interpret as being a cloaking

result, in which choosing f appropriately may “hide” the q to which it is adjoined.

The final inverse problem considered in this work aims to restore full uniqueness

to the triple (q, f , β). We achieve this by introducing a spectral parameter to the
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problem, thus modifying our input data and consequently Inverse Problem 2.

Consider the full-frequency spectral Dirichlet-to-Neumann map Λ(λ) := Λq−λ, f ,β,

mapping H1/2(Γ) � g �→ −∂νu(· ;λ) �Γ∈ H−1/2(Γ) with u(· ;λ) uniquely solving



(−∆ + q)u(· ;λ) = λu(· ;λ) in Ω,

− f∂νu(· ;λ) = u(· ;λ) on ∂Ω\Γ,

[u(· ;λ),u0 + βv0] = 0 at 0,

u(· ;λ) = g on Γ.

In the final stages of the thesis we will prove a full uniqueness theorem for the

following:

Inverse Problem 2′. Let Λ(λ) be given for every λ ∈ R. Determine q, f and β.

1.3 Outline

The remaining work is roughly divided into three parts. The first, Chapter 2, con-

tains the introduction to the necessary preliminary material for understanding

the other two parts. We will briefly run through the parts of the spectral theory

of self-adjoint operators in a Hilbert space that we will need later on. The focus is

on the finicky question of self-adjointness, and in particular the realisation of self-

adjoint restrictions of symmetric operators. A great rôle will also be played by

the spectral theorem for diagonalisation of self-adjoint operators. Following this,

we will need to describe roughly the techniques for analysing one-dimensional

second-order formally symmetric boundary-value problems, usually referred to

as Sturm–Liouville type, since we will need to adapt such techniques to our situa-

tions. Specifically we will briefly cover the ideas developed by Weyl, Kodaira and

Titchmarsh [134, 135, 136, 78, 127] for classifying such equations by the number

of linearly independent solutions.

13
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A natural and useful continuation of this line of thought is into the inverse

spectral theory of Sturm–Liouville problems. We will need to run through the

state-of-the-art regarding the uniqueness theorems for this, which are named af-

ter Borg and Marčenko [23, 101]. In particular we will focus on the recent ap-

proach by Avdonin, Mikhaylov and Rybkin [14] using boundary control meth-

ods, as it will play an important part in our own proofs.

We conclude the preliminary work with a survey of the work on uniqueness

for Calderón’s problem, starting in three dimensions and moving down to two, in

which our last two inverse problems lie. In two dimensions we will concentrate

on the recent work of Imanuvilov, Uhlmann and Yamamoto [67], who examine

recovery from partial data, and to whose work our own problem is linked.

The second part of the three, in Chapter 3, is a detailed exposition of original

work on the aforementioned second-order pencils, namely a proof of uniqueness

for Inverse Problem 1. We develop a classification, analogous to that of Weyl–

Kodaira–Titchmarsh, by which we may classify such pencils by the dimension

of their solution-space. This allows us to define our boundary data rigorously,

represented here as a single m-function.

As mentioned in our introductory descriptions, we want to recover the co-

efficient of a differential equation from discrete values of the m-function. Our

method is via interpolation of the m-function from these values; in a certain clas-

sical case an interpolation formula exists, and we will simply derive another ver-

sion of it for a different case. The final proof of uniqueness will follow by ap-

propriately transforming our differential equation and then applying the Borg–

Marčenko theorem. To conclude the chapter we will link the result back to the

inverse problem inspired by the Berry–Dennis–Marletta–Rozenblum work.

In Chapter 4 we will disseminate the third and final main part. To start with
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we will define precisely the underlying boundary-value problem for which In-

verse Problems 2 and 2′ are defined. Subsequently we will define special oscil-

latory solutions to the boundary-value problem, and we will need to show den-

sity of these in a “fuller” set of solutions. These results, along with an adapted

version of some of the Imanuvilov–Uhlmann–Yamamoto theorems, will prove

conditional uniqueness—or, alternatively, cloaking—for Inverse Problem 2.

To draw a satisfying close to this conditional uniqueness, we will spend the

remainder of that chapter developing an argument involving the asymptotics of

negative eigen-values. This will establish a proper uniqueness result for Inverse

Problem 2′, in the case of full-frequency data. Finally, in Chapter 5 we will offer

our concluding thoughts on the work as well as ideas for future research.

In the Appendices we will collect some important results that would have

otherwise detracted from the coherence of the presentation in this thesis. Some of

these are novel and necessary to a complete understanding of the original work

here, whilst others are simply existing results, either with the proof omitted and

referred to, or included in a hopefully clearer style. Also attached is a collection

of MATLAB codes that were utilised to illustrate the cloaking in Chapter 4.

We assume the reader is familiar with basic concepts in complex analysis

(holomorphy, contour integration, residues, etc.), spectral theory on Hilbert spaces

(spectrum, adjoint, compactness, resolvent sets and operators, extensions, spec-

tral theorem), the theory of ordinary differential equations (unique continuation,

fundamental systems, Wronskians, transformations) and the theory of partial dif-

ferential operators (in particular Sobolev spaces of integer and non-integer or-

der). Although we mention in passing some concepts—for example, pseudo-

differential operators—familiarity with them will not be necessary. Since there is

often variability in different authors’ notation, and since we also introduce some

new notation, for the rest of this introduction we fix a list of symbols and notation.
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Dramatis Personae

N - the natural numbers 1, 2, 3, . . .;

x - a point (x1, . . . , xn)T in Rn;

z - an n-tuple (z1, . . . , zn)T of complex numbers;

xT,AT - the transpose of a vector x or matrix A;

z ·w - the scalar product of two complex n-tuples z and w, given by

z1w1 + . . . + znwn;

A - the topological closure of A ⊆ Rn, i.e., the intersection of all

closed sets containing A;

int(A) - the topological interior of A ⊆ Rn, i.e., the union of all open sub-

sets of A;

∂A - the boundary of A ⊂ Rn defined to be A\int(A);

Ω - a bounded domain, i.e., an open, simply connected, bounded

subset of Rn; in R2 also a domain in C via (x1, x2)↔ x1 + ix2;

Ω′,Ω0,Ω1,Ω2 - subdomains of Ω, i.e., subsets that are domains;

Γ,Γ′,Γ j - connected subsets of boundaries ∂Ω, ∂Ω′, etc., taken to be open

with respect to the (n − 1)-dimensional manifold topology of the

boundary;

Γc - the relative interior of the complement in ∂Ω of Γ;

z, f - the complex conjugate of the complex number z or function f ;

√
· - the square root in C, with branch cut on (0,+∞);
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dρ, ρ; dx,dx - a measure on R, or increasing function; Lebesgue measure on R

and Rn;

d
dx
,

d
dr

, etc. - one-dimensional derivatives with respect to x, r, etc.;

∂ j, ∂r, ∂ϑ - partial derivatives: in Rn with respect to the Cartesian variable

xj, and in R2 with respect to the polar variables r and ϑ;

∂z, ∂z - derivative operations in C: given, in terms of Cartesian coordi-

nates x1 and x2, by (∂1 − i∂2)/2 and (∂1 + i∂2)/2;

∇,∆ - the del operator in Rn, returning (∂1, . . . , ∂n)T, and the Laplacian

in Rn, given by ∇ · ∇;

∂ν - the normal derivative on a C1 part of the boundary of a spatial

domain, defined to be ν · ∇ where ν is the outward-directed unit

normal to said boundary;

Λq,Γ, Λ̆γ,Γ - Dirichlet-to-Neumann operators on Γ;

Λq, f ,β(λ) - the spectral Dirichlet-to-Neumann operator on Γ for Berry–Dennis-

type and self-adjointness-imposing boundary conditions on Γc;

H - usually a Hilbert space;

〈·, ·〉H, ‖ · ‖H - the inner product and norm on H, the former linear and conju-

gate linear in respectively the first and second slots;

T∗ - the Hilbert-space adjoint of a linear operator T;

λ - spectral parameter;

σ(T) - the spectrum of a linear operator T;

σd(T) - the isolated eigen-values of T with finite multiplicity;

�(T) - the resolvent set of T.
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2

Preliminaries and existing work

‘The beginner [...] should not be discouraged if he finds that he does not have

the prerequisites for reading the prerequisites.’

– Paul Halmos2.1

We will deal with inverse problems of both a spectral and non-spectral na-

ture. In this chapter we will present much of the material requisite to a broad

understanding of some differential problems in these areas. Broadly speaking,

this will include a brief reminder of some elements of spectral theory, including

the famous spectral theorem for self-adjoint operators, von Neumann’s theory of

self-adjoint realisations, as well as the concrete example of these that is the anal-

ysis of second-order ordinary differential operators. The first two are covered in

Section 2.1 and the third in Section 2.2. To maintain a light tone in these sections

we will focus on illustrating the results with examples. In Section 2.3 we review

developments in the inverse spectral theory of Sturm–Liouville operators, with a

focus on some recent results. We conclude the chapter in Section 2.4 by examining

developments regarding the aforementioned inverse conductivity problem.

2.1Measure Theory (1950).
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2.1 Spectral theory

Everything in this section can be found in any “good” reference on the topic. In

the author’s opinion one of the most lucid texts is Reed and Simon’s treatise on

mathematical physics, and in particular the first two volumes [116, 115]. Other

good options include [92, 47, 19].

First, we remind the reader what we mean by spectrum, and the various ways

it may be decomposed. Consider a linear operator T, closed, densely defined and

mapping between Banach spaces X and Y, i.e., T : D(T)→ Y with D(T) = X. The

spectrum of T is the set σ(T) comprising all λ ∈ C such that T − λ fails to have a

bounded inverse. We also refer to C\σ(T) as the resolvent set of T, and denote it

�(T) := {λ ∈ C | T − λ is boundedly invertible on all of Y}.

Spectral theory consists largely in the study of the relationship between T and

σ(T), alongside certain other spectral quantities. There are many different types

of spectrum that can be defined, all of which have different qualitative properties

and arise, roughly speaking, from consideration of how “badly” T fails to have a

bounded inverse. We will describe a simple decomposition, parts of which play

some rôle in later calculations.

We say λ ∈ C is an eigen-value for T if there is v ∈ X with Tv = λv or equiv-

alently, if T − λ is not injective (it has non-trivial kernel). Such a v is called an

eigen-vector for T. Corresponding to each eigen-value λ there is a subspace of

X whose elements are all the eigen-vectors corresponding to λ. The dimension

of this subspace is termed the (geometric) multiplicity of λ; an eigen-value with

multiplicity one is called simple. The set of all eigen-values λ of T, with finite

multiplicity and a neighbourhood containing no other spectrum of T, is called
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the discrete spectrum and is labelled σd(T).

For its utility, we also refer to

σess(T) := σ(T)\σd(T)

as the essential spectrum. By mutual exhaustion, we have the disjoint unions

�(T) ∪ σd(T) ∪ σess(T) = �(T) ∪ σ(T) = C.

We restrict our attention to Banach spaces possessing an inner product, known

as Hilbert spaces. Let H be a separable Hilbert space with inner product 〈·, ·〉H, by

convention conjugate linear in the second entry, and corresponding norm ‖h‖H :=

〈h, h〉1/2H . Further, let T be a linear operator densely defined on H. Consider pairs

(g, g∗) of elements of H that satisfy2.2

〈T f , g〉H = 〈 f , g∗〉H
(

f ∈ D(T)
)
.

By density of D(T), to each g ∈ H there is at most one such corresponding g∗; this

can also be concluded from Riesz’s representation theorem. Hence this defines a

linear map T∗ : g �→ g∗ on the subspace D(T∗) comprising all g for which there

exists such a g∗. T∗ is called the adjoint of T.

T is called self-adjoint if it equals its adjoint, i.e., T = T∗, and in particular

D(T) = D(T∗). This is a stronger condition than symmetry—usually written as

T = T∗ �D(T), or T ⊆ T∗—and in general is a difficult property to verify. All self-

adjoint operators have wholly real spectrum [115, Thm. X.1]. The same might not

be true of symmetric operators.

Example 2. Consider the Hilbert space H = L2(0, 1), and the operator T = i d
dx acting on

2.2There is always at least the pair (0, 0).
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the densely-defined domain2.3 D(T) = {u ∈ L2(0, 1) | u′ ∈ L2(0, 1),u(0) = 0 = u(1)}. This

operator is symmetric, since for each u and v in D(T) we have the integration-by-parts

formula

〈Tu, v〉H =
∫ 1

0
(iu′)v = i[uv]1

0 − i
∫ 1

0
uv′ = 〈u,Tv〉H.

Now assume λ ∈ �(T) and consider f ∈ L2(0, 1). Then there is u ∈ D(T) satisfying

(T − λ)u = f . Multiplying by the integrating factor eiλx we see that this u must satisfy

d
dx

(
eiλxu(x)

)
= −ieiλx f (x).

From this and u(0) = 0 we may deduce that u(x) = −ie−iλx
∫ x

0
eiλt f (t)dt. But then

attempting to apply u(1) = 0 results in the requirement
∫ 1

0
eiλt f (t)dt = 0. Clearly f

must be chosen to depend on λ in some way, but then we are not free to choose arbitrary

f ∈ L2(0, 1). It follows that λ � �(T). Hence �(T) = ∅, and consequently σ(T) = C.

Non-symmetric operators also need not have real spectrum.

Example 3. Now let H = L2(0, π), and consider the operator2.4 Tmax = − d2

dx2 acting on

D(Tmax) = {u ∈ L2(0, π) | u′′ ∈ L2(0, π),u(0) = 0}. This operator fails to be symmetric,

since integrating by parts for any u, v ∈ D(Tmax) yields

〈Tmaxu, v〉H − 〈u,Tmaxv〉H =
∫ π

0
(u′′v − uv′′)

= [u′v − uv′]π0

= u′(π)v(π) − u(π)v′(π),

which a priori need not vanish. Moreover any λ ∈ C is an eigen-value, with eigen-

2.3Here, and throughout this thesis, to keep the exposition as simple as possible, we take the
liberty of assuming that when we write, e.g., u′,u′′, . . . , the functions in question possess sufficient
regularity to well-define these expressions. Here, for example, in defining D(T) we abbreviate the
pair of conditions u ∈ ACloc[0, 1] and u′ ∈ L2(0, 1) solely by the second condition, since by our
convention simply writing u′ forces the first condition.

2.4The reason for the notation “Tmax” will become apparent shortly when we discuss self-adjoint
realisations.
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function sin(
√
λx) ∈ D(Tmax).

The operator Tmax is an example of a formally symmetric differential operator,

i.e., an operator for which the formal adjoint agrees formally with the original

operator. The following example illustrates how the full adjoint of a formally

symmetric operator can be symmetric, and how “between” the two lies a self-

adjoint realisation of the formally symmetric operator.

Example 4. Take the operator Tmax from Example 3. We wish to calculate its adjoint.

Since it is formally symmetric (its adjoint has identical action on functions) we simply

need to calculate the domain of its adjoint. This can be expressed as

D(T∗max) =
{
v ∈ H

∣∣∣∣ 〈Tmaxu, v〉H = 〈u,T∗maxv〉H
(
u ∈ D(Tmax)

)}

=

{
v ∈ L2(0, π)

∣∣∣∣∣ v′′ ∈ L2(0, π),
∫ π

0
(−u′′v + uv′′) = 0

(
u ∈ D(Tmax)

)}
,

and performing the integration by parts we see that v ∈ D(T∗max) if and only if v, v′′ ∈

L2(0, π) and the boundary terms [uv′ − u′v]1
0 are 0 for every u ∈ D(Tmax). Since such u

satisfy u(0) = 0 we see that v must satisfy v(0) = v(π) = v′(π) = 0, i.e.,

D(T∗max) =
{
v ∈ L2(0, π)

∣∣∣ v′′ ∈ L2(0, π), v(0) = 0 = v(π) = v′(π)
}
.

As in Example 2 we may integrate by parts (twice, here) to see that T∗max is symmetric.

Additionally T∗max also has empty resolvent, though the argument2.5 to establish this fact

is more involved than that used in Example 2. In fact, the adjoint (T∗max)∗ = Tmax, so by

symmetricity we have T∗max ⊂ Tmax. We denote T∗max = Tmin.

2.5One way is to attempt to calculate, using variation of parameters (Proposition C2), the so-
lution u to (T∗max − λ)u = f when f comes from a dense set in L2(0, π), e.g., the Fourier basis
eijx
(
x ∈ (0, π), j ∈ Z

)
.
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Now consider Th ⊃ Tmin with domain

D(Th) = {v ∈ L2(0, π) | v′′ ∈ L2(0, π), v(0) = 0 = v′(π) − hv(π)},

for a given fixed h ∈ R∪{∞} (with h = ∞ representing the Dirichlet condition v(π) = 0).

Integrating by parts twice we easily observe that its adjoint is Th, and clearly Th ⊂ Tmax.

So we have

Tmin ⊂ Th = T∗h ⊂ Tmax.

The operator Th is called a self-adjoint realisation of the differential expression

τu = −u′′,

and Tmin and Tmax are, respectively, minimal and maximal operators generated by the

expression.

Remark. There are additional possible self-adjoint realisations of τ. Some involve non-

local boundary conditions (periodic, anti-periodic or further mixed; for a treatment of all

types of boundary condition in one formalism see, e.g., [81]), corresponding to different

choices of minimal operator and extensions. We shall see in Example 5 a concrete proof

that this Tmin has a one-parameter family of self-adjoint extensions, necessarily possessing

a separated boundary condition at π.

The following theorem is due to von Neumann [131], though it was essentially

proved in a simple case for a second-order differential operator by Weyl [136]. It

provides an abstract representation of a method for constructing all self-adjoint

realisations of a given symmetric minimal operator, generalising the above exam-

ple.

Theorem 2.1 (von Neumann). Let Tmin be symmetric, closed and densely-defined on

a Hilbert space, and denote by Tmax the adjoint T∗min. Then T ⊆ Tmax is a self-adjoint

24



Spectral theory
��

extension of Tmin if and only if there is an n ∈N∪ {0,∞} and an n× n unitary matrix U

(bijectively) mapping

ker(Tmax − i)→ ker(Tmax + i).

Proof. A proof of the theorem may be found in any comprehensive text on the

spectral theory of operators on Hilbert spaces, for example [109, 133, 19]. �

Remark. The kernels ker(Tmax∓ i) are referred to as deficiency spaces and their respec-

tive dimensions n± are the deficiency indices. Then Tmin has self-adjoint extensions if

and only if n− = n+.

Example 5. For Tmin as in Example 4 we find that ker(Tmax∓ i) are the one-dimensional

spaces lin{(sinh · cos±i cos · sinh)(x/
√

2)}, between the two of which we may define the

unitary 1×1 map eiϕ for someϕ ∈ [0, 2π). Corresponding to each suchϕ there is precisely

one h = tan(ϕ/2) ∈ R ∪ {∞} parameterising a self-adjoint boundary condition. Hence

every self-adjoint extension of Tmin is of the form Th as in Example 4.

In the next section we will apply von Neumann’s extension theory to a gen-

eral class of second-order ordinary differential operators. The other main result

we will need from the spectral theory of self-adjoint operators gives a means by

which one may “diagonalise” an unbounded linear operator on a Hilbert space.

In the case of an operator with purely discrete spectrum, the theorem provides

an orthonormal Hilbert-space basis comprising the system of eigen-vectors of the

operator, yielding a natural isomorphism of the space with l2(N). For operators

with non-discrete spectrum, the theorem gives a continuous generalisation of this

diagonalisation.

Theorem 2.2 (Spectral theorem of self-adjoint operators). Let H be a separable Hilbert

space. Then T is a self-adjoint operator, closed and densely-defined on H, if and only if

there is a right-continuous projection-valued measure ES, for each measurable S ⊆ R,

defined by the conditions
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(i) for each S the operator ES is an orthogonal projection in H,

(ii) E∅ = 0 and ER = V,

(iii) if S = ∪∞n=1Sn and Sn ⊆ Sn+1 then for each h ∈ H we have ‖ESh − ESnh‖H → 0 as

n→∞, and

(iv) for each S and R the product ESER = ES∩R,

for which

T =
∫

R

tdE(−∞,t].

We interpret this integral in the sense that for any Borel-measurable function f we have

the functional calculus

〈 f (T)h, h〉H =
∫

R

f (t)d〈E(−∞,t]h, h〉H,

where d〈E(−∞,t]h, h〉H is a complex-valued measure.

Proof. See, for example, [116, Thms. VIII.4–6], or any other good text on Hilbert

space spectral theory. �

Remark. If f is real-valued then f (T) is also self-adjoint. A real number λ ∈ σ(T) if and

only if E(λ−ε,λ+ε) � 0 (ε > 0), and is an isolated eigen-value of finite multiplicity if and

only if E(−∞,t] “jumps” at λ, i.e., E(−∞,λ] − E(−∞,λ−ε] � 0 (ε→ 0). Thus, in general

f (T) =
∫

σ(T)
f (t)dE(−∞,t),

and if σ(T) = σd(T) = {λn}∞n=1 then

f (T) =
∞∑

n=1

f (λn)Eλn ,
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where Et := limε→0(E(−∞,t] − E(−∞,t−ε]). If λ is an eigen-value for T then Eλ is the pro-

jection onto the corresponding eigen-space. Then the final formula above provides the

famous Fourier-type-series when applied to f (t) = 1 = t0, whilst f (t) = t yields the di-

agonalisation of T. In Appendix A we outline some key connections between this theory

and the theory for Herglotz functions.

Example 6. Let T∞ be as in Example 4. We can easily calculate that T∞ has eigen-

values λn = n2 ∈ N and corresponding eigen-functions ϕn(x) = 2
π sin(nx)

(
n ∈ N, x ∈

(0, π)
)

normalised so their L2(0, π)-norm is 1. Then the eigen-spaces are the spans of the

eigen-vectors, so each Eλn projects onto lin{ϕn}. Since Et are all orthogonal projections,

we may calculate that Eλnh = 2
π

∫ π
0

h(x) sin(nx)dx = 〈h, ϕn〉L2(0,π). Thus we have the

standard Fourier-series representation h =
∑∞

n=1〈h, ϕn〉L2(0,π)ϕn. We will use such series

decompositions later.

A useful corollary to the spectral theorem is that it implies the normalised

sequence of eigen-functions of a self-adjoint operator is in fact an orthonormal

basis for the Hilbert space. This can be written in the following way:

Corollary 2.1. Suppose T is self-adjoint over the Hilbert space H, and σ(T) = σd(T).

Denote the eigen-values of T as the sequence (λn)∞n=1 and the corresponding normalised

eigen-functions as (ϕn)∞n=1. Then for any u ∈ H and λ ∈ �(T) we have

u =
∞∑

n=1

〈u, ϕn〉Hϕn,

which converges in norm.

2.2 Weyl–Kodaira–Titchmarsh theory

We now relate some of the abstract theory of the last section to the second-order

ordinary differential equations named after Sturm and Liouville, in parts roughly
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following the recent formulation of Schmidt [119]. Any good text [37, 92, 133,

for example] on the topic will do equally well as an introduction, and a well-

researched review and collection of the proofs was also put together by Zettl

[140]. The original analysis was conducted by Weyl [134, 135, 136] and furthers

the results of Sturm and Liouville from their series of papers (the lengthy list of

references can be found in the bibliography of [95]). A comprehensive exposition

of the history from Weyl onwards was given by Everitt [50], to which the reader

is directed for references.

Let −∞ < a < b ≤ +∞ and suppose we have functions p,w > 0 and q on (a, b)

with 1/p, q,w ∈ L1
loc[a, b). Then the Sturm–Liouville equation

−
(
pu′(· ;λ)

)′
+ qu(· ;λ) = λwu(· ;λ) on (a, b) (2.2.1)

is called regular at b if 1/p, q,w ∈ L1(a, b). If this is not the case it is called singular

at b. If λ is non-real one can show that in the regular case the space of solutions

of (2.2.1) that are in

L2(a, b; w(x)dx) :=
{

v : (a, b)→ C
∣∣∣∣∣∣
∫ b

a
w(x)|v(x)|2dx < ∞

}

is two-dimensional. In the singular case this space may have dimension two or

less than two—independently2.6 of λ ∈ C—and the equation is then respectively

referred to as limit-circle or limit-point, at b. Moreover we may classify the equa-

tion as oscillatory or non-oscillatory at b according to whether its solutions have,

respectively, infinitely or finitely many zeros in any given neighbourhood of b.

Remark. The terms limit-point and limit-circle originate in the considerations of Weyl

as to wherein lies the soon-to-be-defined coefficient m(λ), with a fixed λ from the upper

half-plane C+ and a varied boundary condition at b. For a full explanation the reader

2.6See [92, Thm. II.2.2].
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should consult any of the aforementioned appropriate references, e.g., [92, Sec. II.2]. It is

important we also note that, whilst regular equations always have bounded continuous

solutions, their singular counterparts, as the name suggests, can have solutions becoming

arbitrarily large or oscillating arbitrarily rapidly in a neighbourhood of the singular end-

point [92, Ch. I & II].

Suppose α, β ∈ [0, π), and in either of the two-dimensional cases (regular or

limit-circle) affix to (2.2.1) the boundary condition

[u,u0](b−;λ) = 0, (2.2.2)

where u0 ∈ L2(a, b; w(x)dx) is any given pre-specified solution to −(pu′0)′ + qu0 = 0.

Additionally in all cases apply the boundary condition

u(a;λ) cos(α) = [pu′](a;λ) sin(α). (2.2.3)

The conditions together are an example of the separated boundary conditions

mentioned in the previous section. It is not hard to prove the classical result:

Lemma 2.1. The differential expression

�p,q,w(x, ·) :=
1

w(x)

(
− d

dx

(
p(x)

d
dx

)
+ q(x)

) (
x ∈ (a, b)

)
(2.2.4)

has a self-adjoint realisation given by the operator

D(L) :=
{
u ∈ L2

(
a, b; w(x)dx

) ∣∣∣
(
− (pu′)′ + qu

)
/w ∈ L2

(
a, b; w(x)dx

)
, (2.2.3) holds

and, if �p,q,w is not limit-point at b, (2.2.2) holds
}
,

Lu :=
1
w

(
− (pu′)′ + qu

)
.

Proof. See, for example, [37, Sec. 9.3] or [92, Sec. II.2]. �
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Remark. Applying these boundary conditions is precisely an example in action of von

Neumann’s theory for self-adjoint extensions.

Now suppose we drop the boundary condition at a. In all three cases—regular,

limit-circle and limit-point—when Im(λ) � 0 we are left with just one L2(a, b; w(x)dx)

solution of Lu = λu, up to multiplication by a constant. Consider for such a solu-

tion u(· ;λ) the fraction

m(λ) :=
cos(α)[pu′](a;λ) − sin(α)u(a;λ)
sin(α)[pu′](a;λ) + cos(α)u(a;λ)

(2.2.5)

called the Weyl–Titchmarsh m-function. One can show that m is in the Herglotz

class2.7 of functions that analytically map the upper and lower half-planes C± to

themselves. Thanks to (A.2) it admits the Stieltjes integral representation [92,

Thm. II.5.2]

m(λ) = A + Bλ +
∫

R

( 1
t − λ

− t
1 + t2

)
dρ(t) (2.2.6)

for some increasing ρ satisfying the growth condition
∫

(1 + t2)−1dρ(t) < ∞. By

(A.3), Stieltjes’ inversion formula [92, Thm. II.5.1], we have

ρ(y) − ρ(x) = lim
ε↘0

1
πi

∫ y

x

(
m(ν + iε) −m(ν − iε)

)
dν. (2.2.7)

Moreover m has analytic continuation from C+ to C− through any interval I ⊆

R\σ(L). This is owing to Theorem A3 and the fact that m can be analytically

extended to the full resolvent set of L.

Furthermore one can show that m has poles at the eigen-values of L—this is

done in a particular case in Section 3.3, but is also crudely observed from the

fact that, as λ approaches an eigen-value λ0, m(λ) has denominator that is exactly

O(1/|λ − λ0|) as well as bounded numerator. Now suppose we are given such an

2.7See Appendix A for a discussion of some key properties of these functions. In Section 3.3 we
show briefly the standard calculation proving the Herglotz property.
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isolated eigen-value λ. Then we may find ε, δ > 0 such that

2πi Res(m;λ) = −
∫ λ+δ

λ−δ

(
m(s+iε)−m(s−iε)

)
ds−i

∫ ε

−ε

(
m(λ−δ+iσ)−m(λ+δ−iσ)

)
dσ.

The second integral is across the real line, but crosses subintervals of the resolvent

set. Since m is continuous on this contour it is also bounded, so taking the limit

as ε→ 0 we find

0 � Res(m;λ) = −
(
ρ(λ + δ) − ρ(λ − δ)

)
.

The residue was independent of δ all along, so we see that ρ has a jump disconti-

nuity at λ. In addition the same argument applied to real points in the resolvent

set shows that ρ is constant at such points. These facts will prove crucial in Sec-

tion 3.3.

Not only does the m-function have poles at the eigen-values, but it turns out

that further spectral information is encoded in the function. Namely the residues

of m at the eigen-values are the so-called norming constants, where α := ‖u‖L2(a,b) is

a norming constant for an eigen-value λ if u solves the Sturm–Liouville problem



−
(
pu′
)′
+ qu = λwu on (a, b),

[u,u0](b−;λ) = 0,

u(a) = 1.

It is for this reason m is often taken as the starting data in inverse spectral the-

ory for the Sturm–Liouville problem and its generalisations. This is discussed in

more detail in Section 2.3. For a deeper discussion of some aspects to this topic

see Appendix C, in which we mention asymptotic expansions of fundamental

systems and of m(λ), as well as Appendix A where we detail general properties

of Herglotz functions.
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2.3 Inverse spectral theory: one-dimensional review

An excellent illustration of the utility of spectral theory for differential operators

is in the well-developed inverse theory for Sturm–Liouville equations. We will

review some classical and more recent uniqueness results for this class of inverse

problems. To start with we will define the inverse problem, then state and offer

the ideas in one of the first proofs of the first uniqueness theorem offered for it, in-

dependently established by Borg [23] and Marčenko [101]. Following that we will

explain how the result has been improved, finishing with the current strongest

version: a local uniqueness result also independently due to Simon [120] and

Bennewitz [20]. To round off the section we will mention a key result in one of

the proofs of this current version, which provides an alternative representation

for the m-function that we will need to use later.

Let 0 < b ≤ ∞, and take any real-valued and locally integrable q on (0, b) that

allows the differential expression

�q(x, ·) := − d2

dx2 + q(x)
(
x ∈ (0, b)

)
,

to be regular at 0. Then define the boundary expression

C � SAq[u] :=


0 if �q is limit-point at b,

[u,u0](b−) otherwise,
(2.3.1)

where u0 is non-trivial and solves −u′′0 + qu0 = 0 on (0, b). Thanks to the results of

the previous section, for any λ ∈ C\R the problem



�q
(
x,u(x;λ)

)
= λu(x;λ)

(
x ∈ (0, b)

)
,

SAq[u(· ;λ)] = 0,

u(· ;λ) ∈ L2(0, b)

(2.3.2)
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has a one-dimensional space of solutions. This space defines the Weyl–Titchmarsh

m-function. Let u(· ;λ) be any non-trivial element of this space. Then

m(λ) :=
u′(0;λ)
u(0;λ)

(2.3.3)

is well defined for every λ ∈ C\R, and is moreover a Herglotz function2.8.

Inverse Problem 3. Let m(·) be a Herglotz function. Recover the potential q (if it exists)

for which the problem (2.3.2) generates m(·) in the above fashion.

One of the most celebrated results was made public independently by Borg

and Marčenko in the same year2.9 [23, 101].

Theorem 2.3 (Borg–Marčenko, 1952). Given a Weyl–Titchmarsh m-function m(·) there

is at most one such differential expression �q that may have given rise to it.

Proof. We will present the ideas of the Gel’fand–Levitan proof [54]. In its entirety

this approach can be found in, e.g., [91, Sec. 2.2]. The main tool used is the

transformation kernel, which is the solution K(·, ·) to the wave-equation problem



∂2
1K(x, t) − ∂2

2K(x, t) = q(x)K(x, t) (0 < t < x < ∞),

∂1K(x, x) + ∂2K(x, x) = 1
2q(x) (0 < x < ∞),

∂2K(x, 0) = 0 (0 < x < ∞).

This is not a hyperbolic initial-boundary-value problem, so standard existence

and uniqueness theorems fail2.10 Instead one may guarantee the existence and

2.8For simplicity we restrict our attention to the m-function of the form (2.2.5) with α = 0, al-
though the results in this section would hold for any choice of α.

2.9Although strictly speaking Borg was the first in 1946, he published in German in a relatively
little-known journal [22]. A linked result was due to Levinson in 1949 [90]. Marčenko first pub-
lished his result in 1950, in a Soviet journal [100], and it was not until 1952 that his result was
publicised globally.

2.10In fact the diagonal x = t turns out to be a characteristic curve of the differential equation, on
which one is not traditionally supposed to specify “boundary” data.
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uniqueness of K(x, t) (0 < t < x < ∞) by ad hoc methods such as the analysis in

[91, Ch. 1].

This function K(·, ·) owes its name to the rôle it plays in transforming the so-

lutions of one Sturm–Liouville problem to another. Namely, if c0(· ;λ) solves



−c′′0 (x;λ) = λc0(x;λ) (0 < x < ∞),

c0(0;λ) = 1,

c′0(0;λ) = 0,

(2.3.4)

then the solution to the initial-value problem



−c′′(x;λ) + q(x)c(x;λ) = λc(x;λ) (0 < x < ∞),

c(0;λ) = 1,

c′(0;λ) = 0

—provided λ is not in the spectrum of the associated operator—is given by

c(x;λ) := c0(x;λ) +
∫ x

0
K(x, t)c0(t;λ)dt. (2.3.5)

To show that q is uniquely determined by m(λ) one proceeds roughly as fol-

lows. Firstly construct a spectral measure dρ(λ) via Stieltjes’ inversion formula

(A.3). Secondly show this spectral measure defines an integral equation for K(x, t).

Finally conclude K and therefore q(x) = 2 d
dxK(x, x) are uniquely determined. �

This deep result not only establishes uniqueness of �q from m(·), it also pro-

vides through the above proof a means of reconstructing the Schrödinger poten-

tial q(·) from the data of this spectral function. Precursor results include Am-

barzumian [6], who in 1929 showed the Neumann-boundary-condition eigen-
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values 02, 12, 22, 32, . . . uniquely determine the 0 potential2.11 on the interval (0, π),

as well as Tikhonov, who in 1949 proved a limited version of the theorem, with

certain restrictions on q [125]. As we saw above, the Gel’fand–Levitan approach

of 1951 [54] uses the spectral measure, which thanks to the Herglotz representa-

tion and Stieltjes inversion formulae—(A.2) and (A.3)—is completely equivalent

to the m-function. Kreı̆n also published a contemporary pair of papers in 1951

and 1953, outlining his own method involving transfer functions [82, 83].

Since this pioneering work of the ’50s, there was essentially no progress made

until 1999. We will now present this leap forward. Elements of the new theory

associated with it will inform the original work presented later in this thesis. The

main improvement it offers is to relax the requirement of knowing the m-function

everywhere, instead necessitating only negative-exponentially good knowledge

of m(λ) as λ→∞ on a ray in the upper half-plane C+.

Theorem 2.4 (Simon, 1999; Gesztesy–Simon, 2000; Bennewitz, 2001). Consider any

real-valued qj ∈ L1
loc[0, bj) ( j = 1, 2) and b1, b2 ∈ (0,∞], and take mj(λ) (λ ∈ C\R, j =

1, 2) to be the Dirichlet m-functions2.12 associated respectively with the differential ex-

pressions

�qj(x, ·) = −
d2

dx2 + qj(x) (x ∈ (0, bj), j = 1, 2),

with self-adjoint boundary conditions at bj if needed, i.e., we impose (2.3.1) with q re-

placed by q1 or q2. In addition let 0 < ϑ < π/2 and 0 < a < min{b1, b2}. Define

Rϑ := {teiϑ | t ∈ (0,∞)}, a ray in the upper half-plane. If, for every ε > 0, as Rϑ � λ→∞

we have

m1(λ) −m2(λ) = O(e−2a(1−ε)Re(
√
λ)), (2.3.6)

2.11This is a curious result, since in general one needs more than just one set of eigen-values to
ensure uniqueness, this being the original result of Levinson [90]. Much more recently, Davies
[41] has published a substantial generalisation of Ambarzumian’s theorem to compact Rieman-
nian manifolds, compact quantum graphs and finite combinatorial graphs, all with Neumann
boundary conditions.

2.12These are m-functions of the form (2.2.5) with α = 0.
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then q1 = q2 almost everywhere on (0, a).

Proof. Simon’s original version [120, Thm. 1.2] is less general, requiring knowl-

edge of m(·) in a sector in the upper-half-plane. The proof involves writing the

m-function in a novel form, discussed shortly in Theorem 2.5, and originally for-

mulated in [120, Thm. 2.1]. The key object in this formulation is the so-called

A-amplitude. Simon’s method was continued by Simon and Gesztesy [56, Thm.

1.1]. The latest proof by Bennewitz [20, Thm. 1] is more direct, relying on asymp-

totic estimates for the m-function, special solutions of the differential equation,

and some classical complex analysis. �

Subsequent work by Avdonin, Mikhaylov and Rybkin [14] links the A-ampli-

tude with the boundary control approach towards the inverse spectral theory of

the one-dimensional Schrödinger operator2.13. In particular, they show that the

so-called response operator for the inverse problem has integral kernel in one-to-

one constructive correspondence with the A-amplitude. The main outcome is a

new way to compute the m-function, giving us a means to solve our own novel

inverse problems later. We will briefly present their main results [14, Eq. (2.15),

Thm. 2].

Theorem 2.5 (Avdonin–Mikhaylov–Rybkin, 2007). Suppose q ∈ l∞(L1)(0,∞), i.e.,

‖q‖ := ‖q‖l∞(L1)(0,∞) := sup
x≥0

∫ x+1

x
|q| < ∞.

Then for m(λ) defined in (2.3.3), there is A(α) (α ≥ 0) called the A-amplitude such that

m(−κ2) = −κ +
∫ ∞

0
e−2καA(α)dα, (2.3.7)

2.13See, for example, [18] for an extensive review of the history of boundary control, and [13] for
a further analysis of its connections with all approaches to the inverse spectral theory for Sturm–
Liouville problems, as well as a healthy list of references.
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and the integral is absolutely convergent when Re(κ) > 2 max{
√

2‖q‖, e‖q‖}. Moreover,

for any α ≥ 0, the A-amplitude satisfies

|A(α) − q(α)| ≤ 1
2

(∫ α

0
|q|
)2 (

e2
√

2‖q‖α +
e2e‖q‖α
√

2π

)
. (2.3.8)

Remark. In fact they do not prove the result for A(α), but rather for the integral convo-

lution kernel r(α) = −A(α/2)/2 of the response operator. See, for example, [12, 11]. Note

that there is a deep link between the boundary control approach and the Gel’fand–Levitan

method, which is carefully highlighted in [13].

This theorem may be understood as an implicit connection between m and

q that is in most situations more applicable or useful than the approach of di-

rectly solving the differential equation. It is this connection—and that in Simon’s

version, which has a different bound in place of the right-hand side of (2.3.8)—

which largely underlies Simon’s original proof of Theorem 2.4 [120] and his and

Gesztesy’s subsequent development of an alternative approach to this inverse

spectral theory [55]. Moreover, the power and utility of this theorem is apparent

from its appearance in the proof of new results for interpolation of m-functions.

We will make use of these in Section 3.3.

2.4 Calderón’s inverse conductivity problem

All the work described in Section 2.3 relates to one-dimensional Schrödinger op-

erators, with a real-valued potential q ∈ L1
loc[0, b) for some 0 < b ≤ ∞. These take

the form

D(Sq) := {u ∈ L2(0, b) | − u′′ + qu ∈ L2(0, b),u(0) = 0, SAq[u] = 0},

Squ := −u′′ + qu.
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Here SAq[u] = 0 denotes the self-adjointness-imposing boundary condition (2.2.2)

at b if the differential expression underlying Sq is limit-circle or regular there, or

is the null condition 0 = 0 if the differential expression is limit-point at b. The

resulting m-function can be interpreted as a map in the following way. Let c ∈ C

and suppose u(· ;λ) is the square-integrable solution to



−u′′(x;λ) + q(x)u(x;λ) = λu(x;λ) (0 < x < b),

SAq[u] = 0,

u(0) = c.

(2.4.1)

If u(x;λ) = 0 (0 < x < b) then clearly c must have already been zero. If the

Dirichlet datum c � 0 and λ ∈ C\R then there is a valid and non-trivial square-

integrable solution to the problem. We may then make the Neumann “measure-

ment” u′(0;λ) and form the well-defined ratio

m(λ) =
u′(0;λ)
u(0;λ)

,

which is clearly a multiplicative operator mapping u(0;λ) �→ u′(0;λ). In the spirit

of the discussion of Calderón’s problem in Section 1.1, then, it seems reasonable

to call it a Dirichlet-to-Neumann map. We will now spell out its link with as well

as formalise rigorously the concepts from that section. Following this we will run

through the developments in uniqueness for Calderón’s problem.

As before, take any bounded domainΩ ⊂ Rn (n ≥ 2 fixed) whose boundary is

now piecewise C1 and admits the decomposition into the non-empty, connected,

accessible Γ and remaining, inaccessible Γc := ∂Ω\Γ. Suppose we have a measur-

able function γ : Ω→ (0,∞) bounded away from 0 and∞, called a conductivity.

Let f ∈ H1/2(Γ) and take ∂ν to denote the outward-directed normal derivative on
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∂Ω. Then, as with the m-function and Section 1.1, the solution u(· ;λ) to



−∇ ·
(
γ∇u(· ;λ)

)
= λγu(· ;λ) in Ω,

u(· ;λ) = 0 on Γc,

u(· ;λ) = f on Γ,

(2.4.2)

defines a map—provided λ is not in the spectrum of the L2(Ω)-operator asso-

ciated with this problem—in the following way. We may make measurements

γ∂νu on Γ; this can be seen to be a map from u(· ;λ) �Γ to −γ∂νu(· ;λ) �Γ, which we

denote by

Λ̆γ,Γ(λ) : f �→ −γ∂νu(· ;λ) ∈ H−1/2(Γ). (2.4.3)

Definition 2.1. The map Λ̆γ,Γ(λ) is called the Dirichlet-to-Neumann map for the con-

ductivity γ and accessible boundary Γ.

Remark. We map to negative Neumann data to ensure the so-called half-plane prop-

erty, proved in Proposition 2.2. The same convention applies to m(λ), since u′(0;λ) is a

negative normal derivative at the boundary of the interval (0, b). In Chapter 3 we will

examine an m-function at the other end of the interval (0, 1), and for the same reason we

will map u(1;λ) �→ −u′(1;λ).

The Dirichlet-to-Neumann map can also be realised as a graph: the set

C̆γ,Γ(λ) :=
{(

u, γ∂νu
)
(· ;λ) �Γ

∣∣∣ u(· ;λ),∇ ·
(
γ∇u(· ;λ)

)
/γ ∈ L2(Ω),

(
∇ · (γ∇) + λγ

)
u(· ;λ) �Ω= 0 = u(· ;λ) �Γc}

is referred to as the set of Cauchy boundary data, and is equivalent to Λ̆γ,Γ(λ) when

λ is not an element of the spectrum. For a fixed, given λ it can be more convenient to

work with these data, though it is not necessary. In the more general case we will prefer to

work with Λ̆γ,Γ(λ) and its equivalent in the Schrödinger problem, because of the following

results.
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Proposition 2.1 (Analyticity of the Dirichlet-to-Neumann map). For each real-valued

γ ∈ C2(Ω) with γ, 1/γ ∈ L∞(Ω) the map λ �→ Λ̆γ,Γ(λ) is an analytic function on the re-

solvent set �(A) of the operator

D(A) := {u ∈ L2(Ω) | ∇ · (γ∇u)/γ ∈ L2(Ω),u �∂Ω= 0}

Au := −1
γ
∇ · (γ∇u),

in the sense that there is an operator Λ̆′γ,Γ(λ) : H1/2(Γ)→ H3/2(Γ)
(
λ ∈ �(A)

)
for which

∥∥∥∥∥∥
Λ̆γ,Γ(λ) − Λ̆γ,Γ(µ)

λ − λ0
− Λ̆′γ,Γ(µ)

∥∥∥∥∥∥
B(H1/2(Γ))

→ 0
(
µ→ λ ∈ �(A)

)
,

where ‖ · ‖B(H1/2(Γ)) denotes the standard operator norm on H1/2(Γ).

Proof. Choosing any w0 ∈ L2(Ω) taking the value f on Γ, and satisfying w0 �Γc= 0

and ∇· (γ∇w0)/γ ∈ L2(Ω), we see that the solution to the boundary-value problem

(2.4.2) is given by [
V − (A − λ)−1

(
−1
γ
∇ · (γ∇) − λ

)]
w0.

Hence, in terms of the trace maps

D(tr) = {v ∈ L2(Ω) | ∇ · (γ∇v)/γ ∈ L2(Ω), v �Γc= 0}, tr �C0(Ω): v �→ v �Γ,

D(∂ν) = {v ∈ L2(Ω) | v �Γc= 0}, ∂ν �C1(Ω): v �→ ν · (γ∇v �Γ)

where ν is the outward directed unit normal, we see that

Λ̆γ,Γ(λ) = ∂ν

[
V − (A − λ)−1

(
−1
γ
∇ · (γ∇) − λ

)]
tr−1,

where by tr−1 we mean any right-inverse of tr. Thus we may calculate, applying

the resolvent formula [116, Thm. VIII.2], that for every λ and µ ∈ �(A) we have

Λ̆γ,Γ(λ) − Λ̆γ,Γ(µ)
λ − µ

=
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= ∂ν
(A − λ)−1( 1

γ∇ · (γ∇) + λ) − (A − µ)−1( 1
γ∇ · (γ∇) + µ)

λ − µ
tr−1

= ∂ν
λ(A − λ)−1 − µ(A − µ)−1 +

(
(A − λ)−1 − (A − µ)−1

)(
1
γ∇ · (γ∇)

)

λ − µ
tr−1

= ∂ν(A − λ)−1
[
V − (A − µ)−1

(
− 1
γ∇ · (γ∇) − µ

)]
tr−1 (2.4.4)

has order −1 on the scale of Sobolev spaces on Γ, since it is a product (from right

to left) of operators with order 1/2, 0, −2 and 1/2. By Sobolev embedding [47,

Thm. V.4.18] this Newton quotient is compact, and in particular is bounded. As

µ→ λ, its norm limit is the compact operator

Λ̆′γ,Γ(λ) = ∂ν(A − λ)−1

[
V − (A − λ)−1

(
−1
γ
∇ · (γ∇) − λ

)]
tr−1.

By construction, the resulting operator is independent of the left-inverse tr−1. �

Proposition 2.2 (Half-plane property for the Dirichlet-to-Neumann form). For

each γ, 1/γ ∈ L∞(Ω) and f ∈ H1/2(Γ) the map λ �→ 〈Λ̆γ,Γ(λ) f , f 〉L2(Γ) maps each half-

plane C± into itself.

Proof. Without a loss of generality take f to be defined on ∂Ω, extending it by 0

into Γc. If the given solution u of (2.4.2)—defining Λ̆γ,Γ(λ)—is in H2(Ω) and its

quasi-derivative γ∇u is in H1(Ω), we can use Green’s formula to show the usual

identity ∫

Ω

γ
(
∇u · ∇u − λuu

)
=

∫

∂Ω

γ(∂νu)u. (2.4.5)

However, since γ ∈ L∞(Ω) we must in general interpret the differential equation

in (2.4.2) in its weak formulation. Moreover this forces a weaker definition of

normal derivative. We shall use that specified in [9, Eq. (1.3)] and [7, p. 2101]: the

normal quasi-derivative γ∂νv of a given v ∈ H1(Ω) with ∇ · (γ∇v) ∈ L2(Ω) is the
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unique ψ ∈ H−1/2(∂Ω) defined by the duality relation

〈ψ,w〉 =
∫

Ω

(
γ∇v · ∇w + ∇ · (γ∇v)w

) (
w ∈ H1(Ω)

)
.

In this case we define

∫

∂Ω

γ(∂νv)w := 〈γ∂νv,w〉
(
v,w ∈ H1(Ω),∇ · (γ∇v) ∈ L2(Ω)

)
,

which agrees with Green’s formula. Replacing v by the solution u to (2.4.2) and

w by u we arrive immediately at (2.4.5). Taking the imaginary parts of either side

of the latter equation concludes the proof. �

Put together, the two results above imply that Λ̆γ,Γ(λ) is what the literature

refers to as a generalised or operator-valued Herglotz function. These considera-

tions, especially in light of the transformation (1.2.1) to Schrödinger form, clearly

show the direct analogue between the Dirichlet-to-Neumann map Λ̆γ,Γ(λ) and the

Weyl–Titchmarsh m-function m(λ).

The natural analogue to Inverse Problem 3 for this higher-dimensional situa-

tion is simply Calderón’s; see Section 1.1. We re-phrase it here.

Inverse Problem 4 (Calderón). Given the fixed-frequency Dirichlet-to-Neumann op-

erator Λ̆γ,Γ(0) recover the conductivity γ on Ω which gave rise to it.

Remark. We are able to consider Λ̆γ,Γ at but one frequency owing to the fact that this

contains enough independent information to perform the recovery. Indeed, in dimension

n = 3 or greater, there is “surplus” information, overdetermining γ, whilst at n = 2 both

Λ̆γ,Γ(0) and γ contain the same amount of information. Roughly speaking, calculating

the Schwartz kernel2.14 of Λ̆γ,Γ(0) shows it is a function of 2(n − 1) linearly independent

variables, whilst γ takes n variables as argument.

2.14See, e.g., [124, Sec. 0.2].

42



Calderón’s inverse conductivity problem
��

Originally presenting his work at a conference in 1980, Calderón proved that

in the linearised version of the problem there are complex-exponential oscillatory

solutions of the form eiζ·x (ζ ∈ C, ζ · ζ = 0, x ∈ Ω) that may be used to deter-

mine γ = 1 uniquely from global boundary data. These are simply Dirichlet-to-

Neumann data on the whole boundary ∂Ω. Calderón was preceded by Langer

[87] who formulated the problem on a half-plane and considered conductivities

that were analytic and only dependent on depth, and later by Cannon, Douglas

and Jones [34] who worked on cylindrical domains and conductivities indepen-

dent of height. The problem may also be rephrased in Schrödinger form, precisely

the formal higher-dimensional analogue of Inverse Problem 3:

Inverse Problem 4′. Given Λq,Γ(0) recover the potential q(·) on Ω giving rise to it.

The earliest efforts to establish stronger uniqueness results than Calderón’s

focused on dimensions strictly greater than 2; as remarked earlier, this was ini-

tially found to be easier, until alternative techniques were developed. We will

devote the remainder of this section to understanding some of the general prin-

ciples used to prove uniqueness from full boundary data in all dimensions n and

reviewing the progress made, distinguishing first the case n ≥ 3 from n = 2,

presented second, except where the two overlap.

Calderón was, more precisely, able to show analyticity of γ �→ Λ̆γ,∂Ω(0) in the

following sense [33]. Define the quadratic form Qγ( f ) =
∫
Ω
γ|∇u|2

(
f ∈ H1/2(∂Ω)

)

where u ∈ H1(Ω) uniquely solves the Dirichlet problem (2.4.2) with Γc = ∅ and

λ = 0. Then we may apply Green’s formula to integrate by parts and see

Qγ( f ) = −
∫

∂Ω

uγ∂νu = 〈Λγ,∂Ω(0) f , f 〉L2(∂Ω).
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Now define the norms

‖ f ‖2Ω =
∫

Ω

|∇v|2
(

f ∈ H1/2(∂Ω)
)
,

where v solves


∆v = 0 in Ω,

v = f on ∂Ω,

and

‖Q‖sup = sup
‖ f ‖Ω=1

|Q( f )|.

Then γ �→ Λ̆γ,∂Ω(0) is analytic on real-valued functions γ satisfying γ, 1/γ ∈ L∞(Ω)

in the sense that we have dQγ such that for any ε > 0 there is δ > 0 with

‖Qγ −Qγ0 − dQγ−γ0‖sup

‖γ − γ0‖L∞(Ω)
≤ ε if ‖γ − γ0‖L∞(Ω) < δ,

1
γ0
∈ L∞(Ω,R).

Moreover he showed that γ �→ dQγ is injective at constant conductivities γ. This

means that the linearised problem has an affirmative answer for uniqueness. But

γ �→ dQγ has an image that is not closed, or in other words its left inverse is not

bounded. Hence he was unable to conclude injectivity of γ �→ Qγ in a non-linear

neighbourhood of constant conductivities.

A rough outline of subsequent progress is as follows. Kohn and Vogelius [79]

proved in n ≥ 2 dimensions that all partial derivatives of smooth γ, to arbitrary

non-negative order, are uniquely determined in some neighbourhood of a smooth

boundary ∂Ω, by the values of Qγ( f )
(

f ∈ H1/2(Γ)
)

for any fixed, connected and

non-empty Γ. Hence an analytic, real-valued γ is fully determined by Qγ; they

later generalised this to include piece-wise analytic conductivities [80]. Sylvester

and Uhlmann utilised the complex geometric optics solutions [122] introduced

by Faddeev in scattering theory [52]. With a conductivity in C∞(Ω) and smooth
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boundary, they linked the large complex frequency asymptotics of these solutions

to the Fourier transform in every frequency of the conductivity [123]; their trick

in finding this link, which influenced much of the later work on the problem,

limited them to no less than three dimensions.

Soon after, Alessandrini generalised both [80] and [123]. Assuming a Lipschitz-

regular boundary he showed that, when n = 2 a Lipschitz conductivity γ is deter-

mined uniquely by Λγ,∂Ω(0) amongst its piece-wise analytic perturbations γ + ϕ,

whilst when n ≥ 3 the conductivity is determined uniquely in W2,∞(Ω) [3, 4].

He used a related result of Nachman, Sylvester and Uhlmann [108] in his proof.

Later Brown [28] showed that when γ has 3/2 + ε derivatives then it is uniquely

recoverable from Λγ,∂Ω(0). The first main improvements to this result came in

2003 both from Päivärinta, Panchenko and Uhlmann [113] and Brown and Torres

[29]. Both worked on a spatial domain with Lipschitz boundary ∂Ω; the former

established uniqueness when γ is a priori from the Sobolev class W3/2,∞(Ω) and

is strictly positive on Ω, whilst the latter generalised this slightly to include all

γ ∈ W3/2,2n+ε(Ω) for some fixed ε > 0. See also [60] for techniques developed on

manifolds.

Uhlmann conjectured at the International Congress of Mathematicians of 1998

that Lipschitz conductivities are the optimal case for dimension n ≥ 3. This

was later established for conductivities that are also sufficiently close2.15 to 1, by

Haberman and Tataru [63], who introduced the idea of the geometric optics re-

mainder term decaying in average by applying theory for spaces of Bourgain

type, and subsequently with that condition relaxed in dimensions n = 3 and 4 by

Haberman [62]. Shortly thereafter, Caro and Rogers finally reached Uhlmann’s

hypothesis, showing that any Lipschitz conductivity with n ≥ 3 is uniquely de-

termined. Currently this is the best result from full data in three or more dimen-

2.15The “closeness” is measured by the norm ‖∇γ‖L∞(Ω).
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sions; the question of its optimality still remains open.

In two dimensions, since the trick of Sylvester and Uhlmann has no utility, no

progress was made for the decade after Kohn and Vogelius until Nachman [107]

was able to show that a twice continuously differentiable conductivity is uniquely

determined. He used what has become referred to as a ∂-method2.16, relating the

scattering transform of q to the Dirichlet-to-Neumann map, then showing this

transform uniquely determines q and hence γ. Brown and Uhlmann [30] showed

soon afterwards that, adapting first-order system scattering methods of Beals and

Coifman [16, 17], one may relax the regularity to γ ∈W1,p(Ω) for any fixed p > 2.

It took almost another decade for this result to be improved upon. Astala and

Päivärinta, in a mathematical tour de force, resolved the problem completely [9].

Briefly, we will present this.

Theorem 2.6. Let Ω ⊂ R2 be a bounded, simply-connected domain. Suppose γ1 and γ2

are measurable in Ω and that there is a constant c > 0 such that c−1 ≤ γ j ≤ c ( j = 1, 2).

If Λ̃γ1,∂Ω = Λ̃γ2,∂Ω then γ1 = γ2.

Remark. The lack of any boundary regularity does not prevent one from specifying

Λ̃γ,∂Ω. Its domain is defined by H1/2(∂Ω) = H1(Ω)/H1
0(Ω) in the sense that elements

of H1(Ω) are equivalent—and therefore correspond to the same element of H1/2(∂Ω)—if

and only if they differ by an element of H1
0(Ω). This extends the usual Sobolev defini-

tion. Then the range is simply the dual H−1/2(∂Ω) :=
(
H1/2(∂Ω)

)∗
, so the range elements

are defined distributionally instead of differentiably. The resulting Dirichlet-to-Neumann

map is well defined and bounded.

Their proof avoids the standard transformation to Schrödinger form, by in-

stead constructing the real-valued γ-harmonic conjugate v ∈ H1(Ω) of the real-

2.16Pronounced “dee bar”.
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valued solution u ∈ H1(Ω) to


−∇ · (γ∇u) = 0 in Ω,

u = h on ∂Ω.

This is defined up to a constant so that f := u + iv satisfies the Beltrami equation

∂z f = µ∂z f in Ω,

where ∂z := (∂1 − i∂2)/2 and ∂z := ∂z, whilst µ = (1 − γ)/(1 + γ). They then find

complex geometric optics solutions to the Beltrami equation, with the crux of the

reasoning being a careful analysis of the subtle asymptotics of the remainder term

in these solutions by use of quasi-conformal maps. The transformation back to

the conductivity equation necessitates the boundedness of 1/γ as well as γ, and

the proof is concluded by establishing certain properties of a so-called transport

matrix for the problem.

All of the above are results for an isotropic medium, utilising data from the

full boundary. We make no mention of anisotropic media, since we are not im-

mediately concerned with such a case in our original work. We will discuss data

on the partial boundary in greater depth in the opening portion of Chapter 4.
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3

Second-order linear pencils and

discrete data

‘The art of doing mathematics consists in finding that special case which con-

tains all the germs of generality.’

– David Hilbert3.1

In any physically inspired problem, a simple improvement to a given solution

is that of using fewer starting data. In the case of the classical inverse spectral

problem described in Section 2.3 our starting data in all cases were an m-function,

considered as measurements of boundary values at one end-point of the interval

on which the differential operator is defined. These measurements were assumed

to be made for all λ for which they make sense—i.e., not associated eigen-values

or spectrum. Being able to perform a similar recovery for measurements from a

smaller set of λ—or indeed for a discrete, countable such set—would represent

a substantial strengthening of the result. Moreover, practically one never has

access to measurements over a continuous or infinite set of spectral parameters,

3.1Hilbert, Constance Reid (1970).
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so avoiding such a restriction could provide greater applicability of the relevant

uniqueness results.

It is with this in mind that we approach this chapter. We will consider a linear

pencil of ordinary differential operators, with highest order 2. In this situation

we can formulate an inverse problem, and for it we prove a uniqueness theo-

rem. The data we allow ourselves are discrete, comprising the sequence of values

m(−n2) (n = 1, 2, 3, . . .) where m is a suitably-generalised Weyl–Titchmarsh-type

m-function for the pencil of operators. As outlined in Section 1.3, this second-

order pencil is a generalisation of a specific pencil arising from separating the

variables in a certain Schrödinger singular-boundary-value problem in two di-

mension. To conclude the chapter we will formulate this problem, show the link

with the pencil, and prove uniqueness for it from our results for the pencil. A

concise version of most of the material in this chapter was published in 2016 [27].

Here we have expanded on much of the details and arguments involved.

Pencils of second-order differential operators are not new, though so far it is

mostly the quadratic pencils which have seen attention. These are usually written

−∇ ·
(
p∇u(· ;λ)

)
+ qu(· ;λ) = (λw + λ2)u(· ;λ)

in some domain of one or more dimensions, sometimes with a manifold instead

of a linear structure. The works [85, 88] in particular focus on manifolds. There

are also many examples of such work on a one-dimensional interval, both finite

and half-infinite. These are not of interest in our situation, which is a linear pencil

and involves highly singular coefficients. The interested reader is directed, for

example, to [73, 139] or [46] and its substantial list of references, or the book

chapter [103] for a list of applications.
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3.1 Problem definition and outline

We recall from Section 2.1 or, for example, [115, Thm. X.1] that a sufficient condi-

tion for the spectrum of an operator to be real is that the operator be self-adjoint;

this is important, since to avoid dealing with unnecessary technical complica-

tions a meaningful, non-trivial spectrum is necessary to constitute part of the

input data for associated inverse spectral problems. Indeed it is usually in this

case that one defines a boundary map associated to a differential operator3.2. The

issue is the same when dealing with pencils of operators.

For reasons outlined shortly, the Hilbert space we consider in this chapter is

H := L2(0, 1; rdr) =
{

u : (0, 1)→ C
∣∣∣∣∣∣
∫ 1

0
r|u(r)|2dr < ∞

}
.

Let us take both q,w ∈ L∞loc(0, 1], with additionally q real-valued and w almost

everywhere positive. We construct the following pencil of operators over H:

Lu(r;λ) = λPu(r;λ)
(
r ∈ (0, 1)

)
. (3.1.1)

The differential expression

�[u](r) = −1
r

(
ru′(r)

)′
+ q(r)u(r) (3.1.2)

defines the action of the operator L. The domain of L will be defined precisely

shortly. The multiplication operator

Pu(r) = w(r)u(r) (3.1.3)

3.2Of course inverse problems for some non-self-adjoint operators have been considered, e.g.,
Simon and Bennewitz’s work [120, 20] allows for a complex-valued Schrödinger potential, and
the Weyl–Kodaira–Titchmarsh theory of Section 2.2 has more recently been extended similarly to
allow complex coefficients [24].
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possessing domain

D(P) =
{

u ∈ H

∣∣∣∣∣∣
∫ 1

0
w(r)2|u(r)|2rdr < ∞

}
= L2(0, 1; w(r)2rdr)

making it self-adjoint, is unbounded—except when ν = 0—since w is assumed to

satisfy

w(r) =
1
rν
(
1 + o(1)

)
(r→ 0),

with a fixed ν ≥ 0.

In Section 2.2 we presented a version of the approach developed by Weyl and

later Titchmarsh for analysing the singular behaviour of Sturm–Liouville prob-

lems. This analysis formed the means by which we constructed an m-function.

This will be our standard choice of boundary spectral data for any one-dimensional

problem. In their framework we would write (3.1.1) in the form

1
rw(r)

(
ru′(r)

)′
+

q(r)
w(r)

u(r) = λu(r).

We would then note that, over L2(0, 1; rw(r)dr), the expression on the left hand side

is formally symmetric, and perform our analysis using this as our underlying

Hilbert space. However it turns out that from a certain physically motivated

perspective the most natural space is instead H, which we explain now.

Letting w(r) be precisely r−2—i.e., ν = 2—and replacing λ by the sequence −λn

generates from (3.1.1) the Bessel-type system of equations

− 1
r

(
ru′n(r;µ)

)′
+ q(r)un(r;µ) +

λn

r2 un(r;µ) = µun(r;µ), (3.1.4)

in the case where µ = 0. In a natural way, we may pre-specify λn as the angular

eigen-values of a boundary-value problem for a spherically-symmetric Schrödinger

equation in any sub-domain of R2. Separation of the variables for this equation,
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in polar coordinates, yields precisely the system (3.1.4) with un playing the part of

the radial component of the solutions for the boundary-value Schrödinger prob-

lem. Under such a separation of variables, the Lebesgue area measure dx be-

comes rdrdϑ, the radial part of which we take as the measure for our L2-type

Hilbert space H.

Indeed, the Bessel equation arises naturally in such scenarios as the radial

equation, hence a natural choice for λn are the aforementioned eigen-values. Of

course the domain and boundary conditions are needed to determine the eigen-

values. As previously mentioned, later in the chapter we will apply our one-

dimensional uniqueness result to a partial differential operator. For this operator

we will provide a domain and boundary conditions, and explain how these λn

arise in this particular case.

We must now precisely define the domain of L, or, rather, the domain of the

pencil L − λP. To do so in a consistent way we need to develop a classification,

similar to that of the Weyl–Titchmarsh limit-point or limit-circle3.3, which we may

apply to our pencil of operators. This is explained in the following definition.

Definition 3.1. The equation

− 1
r

(
ru′(r)

)′
+ q(r)u(r) = λw(r)u(r) (3.1.5)

is said to be in pencil-limit-circle at 0 whenever, for all λ ∈ C, the space of its solutions

that lie in L2(0, 1; rdr) is two-dimensional. Otherwise—i.e., if for all λ ∈ C this solution-

space is one- or zero-dimensional—we say (3.1.5) is in pencil-limit-point at 0. We

abbreviate these two cases, respectively, by PLC and PLP. Sometimes we will also refer to

the differential expression � − λw using this classification.

Remark. In Section 3.2 we prove that, when w(r) = r−ν
(
1 + o(1)

)
(r → 0) and satisfies

3.3These were defined in Section 2.2.
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certain technical conditions, we have the following classification. Equation (3.1.1) is in

PLC at 0 for ν ∈ [0, 2), it is in PLP at 0 for ν ∈ (2,∞), and it is in a “mixed”, λ-dependent

situation when ν = 2. Indeed, when ν = 2 and Im(λ) � 0, if Im(
√
λ) ≥ 1 then (3.1.1)

is in PLP at 0, whilst if Im(
√
λ) < 1 then the equation is in PLC at 0. In other words,

for ν = 2, we may divide C\R into the components Ωp and Ωc either side of the parabola

Im(
√
λ) = 1, where λ ∈ Ωp puts the equation in PLP and λ ∈ Ωc puts it in PLC, at 0.

For a visual representation of this classification, see Figure 3.1.

Re(λ)

Im(λ)

−1

2i

−2i

Ωp Ωc

Figure 3.1: λ-plane for equation (3.1.5) with ν = 2

It is well known [37, 133, 15] that for Sturm–Liouville problems that are reg-

ular or classical limit-circle at a given end-point of the interval, one may use a

solution of the equation for any real λ in the resolvent set of the associated Sturm–

Liouville operator—possibly, for example, λ = 0—to define a boundary condition

at the given end-point. This owes to the fact that the limit-circle/-point classifica-

tion may be extended from C\R to all of this resolvent set.

The same extension and boundary condition may be utilised here, with care

taken to choose λ from R to ensure that, in cases where the pencil has mixed

classification, e.g., ν = 2, the expression � − λw has a two-dimensional L2
loc[0, 1)-

solution space. We may assume with no loss of generality that this condition is

automatically satisfied, for the pencil (3.1.5) when w(r) ∼ r−ν (r→ 0), by the choice
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λ = 0, thanks to the discreteness of the spectrum of L − λP and the fact that we

may translate q by any real λwithout affecting uniqueness or its properties in the

coming theorems. Define the Lagrange bracket, [u, v](r) = r(uv′ − u′v)(r), for the

differential expression �. This is a compact notation for the boundary term that

emerges from a double integration by parts, as follows:

∫ 1

r
(v�u − u�v) = [u, v](r)

(
r ∈ (0, 1],u, v ∈ C2(0, 1],u(1) = v(1) = 0

)
.

Definition 3.2. Suppose � − λw is in PLC at 0, and that the not-everywhere-zero, real-

valued function U solves �U = 0. Then a function u satisfies the boundary condition

parameterised by U if and only if

[u,U](0+) = lim
r↘0

r
(
u(r)U′(r) − u′(r)U(r)

)
= 0. (3.1.6)

Remark. Conversely, it can be shown that any self-adjoint boundary condition for �−λw

at the PLC end-point 0 may be written in the form (3.1.6). By self-adjoint boundary

condition we mean any boundary condition that would restrict the operator generated

by � − λw and a homogeneous Dirichlet condition at 1, to a self-adjoint realisation.

Definition 3.3 (Domain of L − λP). Let Im(λ) � 0. When � − λw is in PLP at 0, we

define

D(L − λP) = {u ∈ H | �u − λwu ∈ H, u(1;λ) = 0} ,

and when it is in PLC at 0, we define

D(L − λP) =
{
u ∈ H | �u − λwu ∈ H, u(1;λ) = 0, [u,U](0+;λ) = 0

}
.

Owing to the Remark on page 53 we make the following definition.

Definition 3.4. Let Im(λ) � 0. If � − λw is in PLP at 0, define u(· ;λ) to be the

unique solution in H, up to a constant multiple, of equation (3.1.5). If � − λw is in PLC
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at 0, denote by u(· ;λ) the unique (up to constant multiple) solution in H, of (3.1.5),

satisfying some self-adjoint boundary condition [u,U](0+;λ) = 0 for some non-trivial U

solving �U = 0. We then define the Dirichlet m-function by

m(λ) = −
u′(1;λ)
u(1;λ)

(
Im(λ) � 0

)
. (3.1.7)

Remark. This function may be extended analytically to the resolvent set of L − λP. We

remind the reader that it has a “−” to ensure the correct sign for the Herglotz property,

i.e., so that it maps C± → C±—otherwise it would be anti-Herglotz, mapping C± → C∓.

When ν = 2 there is no reason to expect the above-defined m to be continuous

across the curve Im(
√
λ) separatingΩp fromΩc. It is not hard to convince oneself

of the following proposition, though since it is not necessary for the purposes of

this work we omit the proof.

Proposition 3.1. When ν = 2, there are analytic continuations mp and mc of, respec-

tively m �Ωp and m �Ωc , whose domains both include C\R. Moreover,

mp �C\R � mc �C\R,

and the boundary condition required for � − λw to generate mp in the regionΩc\R is not

of a self-adjoint type.

Moreover, in the vein of the discussion in Section 2.2 one can show that the fol-

lowing holds.

Proposition 3.2. The pencil L − λP is boundedly invertible wherever m(λ) is analytic,

and its eigen-values are the poles of m(λ). The multiplicities of the poles are exactly the

multiplicities of the eigen-values.

As we stated in the beginning of the chapter, we will prove a (pair of) unique-
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ness theorem(s) for a particular inverse problem, which we may now formulate.

Inverse Problem I. Consider a locally bounded w : (0, 1] → (0,+∞), so that (3.1.1)

is in PLP at 0, or in PLC at 0 equipped with the self-adjoint boundary condition from

Definition 3.3. Suppose we have specified the admissible sequence S :=
(
(−n2,mn)

)∞
n=1

of

points from the graph of some generalised Titchmarsh–Weyl m-function for (3.1.5). From

S and w recover the potential q.

To establish uniqueness for this problem, we will proceed as follows. First we

transform the differential expression �−λw to Liouville normal form. In our PLP

case—i.e., ν ≥ 2; we will establish in Section 3.2 that the “mixed” case ν = 2 turns

out to be treatable as PLP—the spatial domain transforms from (0, 1) to (0,∞),

with the new differential expression chosen to be regular at 0 and in PLP at∞. In

our PLC case—0 ≤ ν < 2—the transformation maps (0, 1) to some finite interval,

which we scale to be (0, 1), and whose orientation we choose to ensure that the

new expression is regular at 1 and in PLC at 0.

Remark. Intuitively, we may interpret this difference in transformation as owing to the

PLC “singularity” at 0 being too “weak” for the associated transformation to map the

unit interval to the half-line, whereas the PLP expression is “sufficiently” singular.

Next we note that the transformation to Liouville normal form correspond-

ingly transforms the m-function, in the sense that the new equation has an m-

function associated with it that is a (non-linear) transformation of the original

m-function (3.1.7). This means that we may interpolate the original m-function

by instead interpolating its transformed version. Moreover, because the classical

limit-point and limit-circle m-functions are formally identical to, respectively, the

PLP and PLC m-functions, we see that we simply need interpolation results for

the classical counterparts. Such a result already exists [118] for the classical limit-
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point case, and we present it in Section 3.3. However an analysis of the avail-

able literature indicates there is no interpolation result for a classical limit-circle

m-function, and a study of the proof for limit-point interpolation offers further

indication that the methods involved are not adaptable to the limit-circle case. In

the same section we discuss this issue, and present a novel proof of interpola-

tion of a particular classical limit-circle m-function, which corresponds exactly to

our transformed PLC m-function. These results, together, allow us to move from

knowing the discrete sequence S to knowing the full (PLP or PLC) m-function.

The final step is application of the generalised Borg–Marčenko theorem. This

classical and far-reaching result was discussed in depth in Section 2.3.

The remaining chapter is divided into the following sections. We analyse the

solution-space dimensions for equation (3.1.5) in Section 3.2, proving concretely

the pencil-limit-point/-circle classification of � − λw alluded to earlier. In Section

3.3 we discuss the problem of interpolating classical limit-point m-functions and

present our interpolation of a classical limit-circle m-function. We then pull all

the results together in Section 3.4 and round off the proofs of two uniqueness the-

orems for Inverse Problem I. Finally, in Section 3.5 we apply this uniqueness of a

pencil of ordinary differential operators to a problem involving partial differen-

tial operators, singular partial boundary conditions and partial boundary data of

Cauchy type, which we call the Berry–Dennis inverse problem.

3.2 Pencil-limit-point and -limit-circle behaviour

We will analyse here the dimension of the solution space of (3.1.5) with w(r) ∼ r−ν

and ν ≥ 0. It will be helpful to treat the two cases ν ≥ 2 and 0 ≤ ν < 2 sepa-

rately, respectively in Lemmata 3.2 and 3.3. The first analysis is via transforming
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the problem to Liouville normal form on the half-line and using known large-x

asymptotics of solutions. The second follows a different approach, using asymp-

totic analysis and variation of parameters to build recursion formulae that can be

used to construct a pair of linearly independent solutions to the original equation.

In this second case we could, equivalently, work with the Liouville normal form

on the finite interval, but it is just as convenient here to use (3.1.5) in its original

form.

The understanding of x-asymptotics is deeper for equations in Liouville nor-

mal form when they are presented on the half-line rather than on a finite interval.

The asymptotics we will use for the half-line problem arise from analyses col-

lected by Eastham [45]. They and related asymptotics all emerge naturally as

corollaries or generalisations of the Asymptotic Levinson Theorem [89]. This the-

orem states the following, where we follow the style of [45, Thm. 1.3.1].

Proposition 3.3 (The Asymptotic Levinson Theorem). Let Y′(x) =
(
D(x)+R(x)

)
Y(x)

(
x ∈ (0,∞)

)
be an n × n system with coefficients satisfying

• the matrix D(x) is diagonal with diagonal entries labelled dk(x) (k = 1, . . . ,n),

• uniformly in i, j, t and x the integrated difference
∫ x

t
Re(di − dj) is either bounded

from above or below,

• whilst the remainder term R ∈ L1(0,∞;Cn×n).

Then there is an n × n fundamental matrix Y(x) whose components satisfy

Yjk(x) = (δ jk + o(1))e
∫ x

0 dk (x→∞), (3.2.1)

where δ jk is the Kronecker-δ, taking the value 1 when j = k and 0 otherwise.

One may then prove the following lemma, presented as an example in [45,
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Ex. 1.9.1], that describes the asymptotic form of solutions to the one-dimensional

Schrödinger problem with square-integrable potential.

Remark. The potential being in L2(0,∞) is sufficient to ensure that the one-dimensional

Schrödinger problem is in classical limit-point at +∞.

Lemma 3.1 (Eastham). Let c be non-zero and R ∈ L2(a,∞). Then the differential equa-

tion

−y′′ + Ry = c2y on (a,∞)

has a linearly independent pair of solutions y± asymptotically given, as x→∞, by

y±(x) = exp
(
± i
(
cx − 1

2c

∫ x

a
R
))(

1 + o(1)
)
.

Eastham’s Lemma is the key ingredient in the proof of the following classifi-

cation, the first main result of this section.

Lemma 3.2. Suppose ν ≥ 2 and α > ν−2
2 , and furthermore let q,w ∈ L∞loc(0, 1] be real-

valued and satisfy, as r→ 0,

(i) w(r) =
1
rν

(1 +O(rα)),

(ii) w(r) ≥ ω > 0 almost everywhere, and

(iii) q(r) = w(r)O(rα)

Then equation (3.1.5) is

1. in PLP at 0 when ν > 2 or Im
√
λ ≥ 1, and

2. in PLC at 0 when ν = 2 and 1 > Im
√
λ > 0.
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Proof. We write

w(r) =
1
rν
(
1 + ε1(r)

)
and

q(r)
w(r)

= ε2(r) (r ∈ (0, 1]),

where

ε j(r) = O(rα) (r→ 0, j = 1, 2). (3.2.2)

By performing a Liouville–Green transformation [45, Sec. 2.5], with

t = τ(r) =
∫ 1

r
ρ−ν/2dρ (r ∈ (0, 1)), (3.2.3)

z(t) = τ−1(t)
2−ν

4 u(τ−1(t)) (t ∈ (0,∞)),

we arrive at the equation

− z′′(t;λ) +Q(t;λ)z(t;λ) = λz(t;λ), (3.2.4)

Q(t;λ) :=
(
ε1ε2 − λε1 + ε2

)(
τ−1(t)

)
−
(
ν − 2

4

)2
τ−1(t)ν−2, (3.2.5)

where t ∈ (0,∞). Note that if ν > 2 we have τ(r) = ν−2
2 (r1−ν/2 − 1), whereas if ν = 2

then τ(r) = − log(r).

Consider first the case ν > 2. In order to apply Lemma 3.1 to (3.2.4) we need

Q(· ;λ) ∈ L2(0,∞). Firstly note that we have Q(· ;λ) ∈ L∞loc[0,∞) since, as t→ 0,

ε1

(
τ−1(t)

)
= τ−1(t)νw

(
τ−1(t)

)
− 1

=


(
1 +

2t
ν − 2

) 2
2−ν

ν

w
(
τ−1(t)

)
− 1

= O(1), (3.2.6)

ε2

(
τ−1(t)

)
=

q
w

(
τ−1(t)

)
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≤
q
(
τ−1(t)

)

ω

= O(1), (3.2.7)

τ−1(t)ν−2 =
(
1 +

2t
ν − 2

)−2

= O(1). (3.2.8)

Thus, from (3.2.5) we see that only the large-t behaviour of Q(t;λ) determines

its square integrability. Moreover, since τ−1(t)ν−2 is square-integrable for t in a

neighbourhood of∞ it is clear from (3.2.5) that Q(· ;λ) ∈ L2(0,∞) if and only if

∞ >
∫ ∞

0

∣∣∣
(
ε1ε2 − λε1 + ε2

)
(τ−1(t))

∣∣∣2dt =
∫ 1

0
r−ν/2
∣∣∣
(
ε1ε2 − λε1 + ε2

)
(r)
∣∣∣2dr. (3.2.9)

Recall that (3.2.2) tells us ε j(r) = O(rα) (r→ 0, j = 1, 2) where, by the hypothesis

of the lemma, α > ν/2 − 1. This implies that the integrand of the right-hand side

of (3.2.9) is asymptotically bounded, as r→ 0, by a constant times

r−ν/2r2α < r−ν/2+ν−2 < r,

since ν > 2. Thus by Eastham’s Lemma 3.1 we have a linearly independent pair

of solutions z±(· ;λ) for equation (3.2.4) given, as t→∞, by

z±(t;λ) = exp
(
±i
(√
λt − 1

2
√
λ

∫ t

0
Q(· ;λ)

)) (
1 + o(1)

)
. (3.2.10)

Now, by a change of variables, the integral in the argument of this exponential

is easily seen to be

∫ 1

τ−1(t)

{(
ε1ε2 − λε1 + ε2

)
(ρ) −

(
ν − 2

4

)2
ρν−2

}
ρ−ν/2dρ. (3.2.11)

62



Pencil-limit-point and -limit-circle behaviour
��

For sufficiently large t we may split the first part of the integral (3.2.11) so that its

absolute value satisfies

∣∣∣∣∣∣
∫ 1

τ−1(t)

(
ε1ε2 − λε1 + ε2

)
(ρ)ρ−ν/2dρ

∣∣∣∣∣∣ ≤
∫ δ

τ−1(t)
|ε1ε2 − λε1 + ε2|(ρ)ρ−ν/2dρ

+

∫ 1

δ

|ε1ε2 − λε1 + ε2|(ρ)ρ−ν/2dρ.

By the hypotheses w, 1/w and q ∈ L∞loc(0, 1] the second integral here is bounded.

Moreover since both ε j(ρ) = O(ρα) and α > ν−2
2 the first integral is also bounded.

Hence (3.2.11) converges as t → ∞, pointwise for each λ ∈ C and ν ≥ 2. We

denote by C(λ) the limit of (3.2.11).

Now ν > 2 implies ν−2−ν/2 > −1, so the second part of the integral in (3.2.11)

is clearly convergent as t → ∞, possessing integrand asymptotically bounded

near ρ = 0 by a monomial whose order is strictly greater than −1. Thus we

observe the leading-order asymptotics

z±(t;λ) = e±i
√
λt exp

(
∓

iC(λ) + o(1)

2
√
λ

)

︸�������������������︷︷�������������������︸
→: C±(λ)

(
1 + o(1)

)

= e±i
√
λt
(
C±(λ) + o(1)

)
. (3.2.12)

Now consider the case ν = 2. As remarked after (3.2.5) the transformed vari-

able t = τ(r) is now given by − log(r), and as before, we need to show Q(· ;λ) ∈

L2(0,∞) to apply Eastham’s Lemma. Again, Q(· ;λ) ∈ L∞loc[0,∞), since, as t→ 0

ε1

(
τ−1(t)

)
= τ−1(t)2w

(
τ−1(t)

)
− 1

= e−2tw(e−t) − 1

= O(1),
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ε2

(
τ−1(t)

)
=

q
w

(
τ−1(t)

)

≤
q
(
τ−1(t)

)

ω

= O(1),

and Q(t;λ) = (ε1ε2 − λε1 + ε2)
(
τ−1(t)

)
precisely. Thus, by the same reasoning as

before, Q(· ;λ) is indeed in L2(0,∞), allowing Eastham’s Lemma 3.1 to provide us

with the same linearly independent solution-pair as in (3.2.10). In turn, the same

reasoning shows that these solutions satisfy the simpler relation in (3.2.12).

Now, in both cases ν > 2 and ν = 2, for any solution u(· ;λ) of equation (3.1.5)

and its corresponding transformed solution z(· ;λ) of (3.2.4) we have

∫ 1

0
r|u(r;λ)|2dr =

∫ ∞

0
τ−1(t)2|z(t;λ)|2dt.

But the leading-order asymptotics (3.2.12) show that

∫ ∞

0
τ−1(t)2|z±(t;λ)|2dt < ∞

if and only if

∞ >
∫ ∞

0
τ−1(t)2|e±i

√
λt|2dt =

∫ ∞

0
τ−1(t)2e±2Im

√
λtdt. (3.2.13)

When ν > 2 and Im(λ) � 0, the transformation τ−1(t) =
(
1 − 2−ν

2 t
) 2

2−ν , so the

growth of the integrand of (3.2.13) is governed by real-exponential large-t asymp-

totics. Since the integrand for u+(· ;λ) grows and that for u−(· ;λ) decays, only the

latter solution of equation (3.1.5) (up to scaling by a constant) is in L2(0, 1; rdr). In

other words, for ν > 2 and Im(λ) � 0, (3.1.5) is in PLP at 0.

On the other hand, when ν = 2, we find τ−1(t)2 = e−2t. When multiplied
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with the other exponential factor e±2Im
√
λt in (3.2.13) we see that if Im

√
λ ≥ 1 and

Im(λ) � 0 then (3.1.5) is PLP at 0, whilst if Im
√
λ < 1 the latter is PLC at 0. �

Remark. When ν = 2 we may represent graphically the L2(0, 1; rdr) nature of the so-

lutions of (3.1.5); see Figure 3.1. Here, Ωp := {λ ∈ C | Im
√
λ ≥ 1} and Ωc := {λ ∈

C | Im
√
λ < 1}, so that if λ ∈ Ωp orΩc then equation (3.1.5) is respectively PLP or PLC.

We now proceed with the proof of the classification of (3.1.5) as pencil limit-

circle when 0 ≤ ν < 2. Since we cannot apply Eastham’s Lemma, we will instead

analyse directly the asymptotics and integrability of the solutions of the equation.

Lemma 3.3. Consider equation (3.1.5) with real-valued w, q ∈ L∞loc(0, 1]. Suppose that

0 ≤ ν < 2, and that

w(r) =
1
rν
(
1 + ε1(r)

)
,

q(r) = w(r)ε2(r),

ε j(r) = o(1) (r→ 0, j = 1, 2). (3.2.14)

Then there is a fundamental system {u1(· ;λ),u2(· ;λ)} satisfying u1(r;λ) → 1 and

u2(r;λ) ∼ log(r) as r→ 0, and both u1(· ;λ) and u2(· ;λ) are in L2(0, 1; rdr).

Proof. Transform by v(r) = r1/2u(r), so that (3.1.5) becomes

−v′′(r;λ) − 1
4r2 v(r;λ) =

(
λw − q

)
(r)v(r;λ) (3.2.15)

= r−ν
(
1 + ε1(r)

)(
λ − ε2(r)

)
v(r;λ).

Consider the sequences
(
vk(· ;λ)

)∞
k=0

and
(
yk(· ;λ)

)∞
k=0

defined by

−v′′k+1(r;λ) − 1
4r2 vk+1(r;λ) =

(
λw − q

)
(r)vk(r;λ),
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and an equation of the same form for yk, satisfying v0(r;λ) = r1/2 and y0(r;λ) =

r1/2 log(r). After imposing the boundary conditions

vk(r)

yk(r)


= o(r1/2) (r→ 0, k ∈N),

we find that both sequences are well-defined, as each step simply involves solv-

ing a linear second-order equation with an inhomogeneity; this is be variation of

parameters, and shortly we will do the explicit calculation.

We will now drop the λ-dependency to simplify notation. If we can show

that the series (note, starting from k = 1) V :=
∑∞

k=1 vk and Y :=
∑∞

k=1 yk converge

uniformly near 0, and satisfy the asymptotics

V(r) = o(r1/2),Y(r) = o
(
r1/2 log(r)

)
(r→ 0), (3.2.16)

then v = v0 +V and y = y0 + Y, after division by r1/2, is the required solution pair.

Note that v0, y0 form a fundamental system in the kernel of the left-hand side

of (3.2.15), and their Wronskian is 1. Therefore, by the variation of parameters

given in Proposition C2, vk (and yk in place of vk) must satisfy

vk+1(r) =
∫ r

0

(
v0(r)y0(s) − y0(r)v0(s)

)(
λw − q

)
vk(s)ds

= r1/2
∫ r

0
s1/2−ν

(
log(s) − log(r)

)(
1 + ε1(s)

)(
λ − ε2(s)

)
vk(s)ds. (3.2.17)

We want to estimate this integrand. By (3.2.14), this is straight-forward. Since

ε j(r) = o(1) (r→ 0), for each fixed λ there is δ1 > 0 such that

∣∣∣∣
(
1 + ε1(r)

)(
λ − ε2(r)

)∣∣∣∣ < 2|λ| (0 < r < δ1). (3.2.18)
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Furthermore there is 0 < δ2 < 1 with

| log(s) − log(r)| < | log(r)| < r−1+ν/2 (0 < s < r < δ2). (3.2.19)

Hence define δ(ε0) = min{δ1, δ2} and ε0 = 1 − ν/2 > 0.

We will focus on vk for now. By the triangle inequality, (3.2.18) and (3.2.19) we

have, for 0 < r < δ and k = 0, 1, 2, . . . , the estimate

|vk+1(r)| ≤ 2|λ|r1/2

{∫ r

0
sε0−3/2|vk(s)|ds + r−ε0

∫ r

0
s2ε0−3/2|vk(r)|ds

}
.

From this and |v0(r)| ≤ r1/2 we derive inductively that

|vk(r)| ≤
(3/2)k

(k + 1)!k!
r1/2

(
4|λ|rε0
ε0

)k
(0 < r < δ, k = 1, 2, 3, . . .), (3.2.20)

where (z)k := z(z+ 1) · · · (z+ k− 1) is the Pochhammer symbol. But for all j ≥ 0 we

have
3/2 + j
2 + j

< 1 =⇒
(3/2)k

(k + 1)!
< 1 (k ∈N).

Thus (3.2.20) simplifies to

|vk(r)| < r1/2 1
k!

(
4|λ|rε0

e

)k
(0 < r < δ, k ∈N), (3.2.21)

implying, by Weierstraß’ M-test for convergence of functional series, that V is

uniformly convergent on the interval (0, δ). Furthermore, by (3.2.21), all terms in

V are O(r1/2+ε0) = o(r1/2), so one half of (3.2.16) is satisfied; it follows that v(r) =

r1/2
(
1 +O(rε0)

)
(r→ 0), as required.

We appeal to a similar argument in the case of y, using (3.2.18) alongside the
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slightly different estimates

| log(r)| < r−ε0/2
(
0 < r < δ(ε0/2)

)
,

|y1(r)| ≤ 10|λ|r1/2+ε0

3ε0

(
0 < r < δ(ε0/2)

)
,

|yk+1(r)| ≤ 2|λ|r1/2
{∫ r

0
sε0−3/2|yk(s)|ds + r−ε0

∫ r

0
s2ε0−3/2|yk(s)|ds

} (
0 < r < δ(ε0), k ∈N

)
.

These can be used inductively to show that

|yk(r)| ≤
2(3/2)k

(k + 1)!k!
r1/2

(
4|λ|rε0
ε0

)k (
0 < r < δ(ε0/2), k ∈N

)
.

Thus, as with vk, the series Y is uniformly convergent on
(
0, δ(ε0/2)

)
, and the

estimates prove the second part of (3.2.16): Y(r) = O(r1/2+ε0) = o
(
r1/2 log(r)

)
.

The last claim is that both u1(r) = r−1/2v(r) and u2(r) = r−1/2y(r) are in L2(0, 1; rdr).

Clearly, for any δ > 0, on the interval (δ, 1) the equation (3.1.5) is regular, so its

solutions are all continuous. We now see that u1(r)→ 1,u2(r) ∼ log(r) as r→ 0, so

the claim follows immediately. �

Remark. These results are the realisation of an analogue to Weyl’s alternative ([134, 136,

135]; see, e.g., [133, Thm. 5.6]) in the case of the pencil (3.1.1). The curious distinction

between the classical case and ours is that for pencils the dimension of the solution space

can depend on λ, as when ν = 2. This is in contrast with Weyl’s original result, where if

the Sturm–Liouville equation (2.2.1) is classically limit-circle for one fixed λ = λ0, then

it is limit-circle for every λ ∈ C.

3.3 Interpolation of m-functions

The problem of exact interpolation of complex-valued analytic functions is classi-

cal. In the early 20th century Pick [114] and Nevanlinna [110, 111] independently
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examined the following.

Problem. LetD denote the open unit disc in C, n ∈ N and z1, . . . , zn, w1, . . . ,wn ∈ D.

Can we find an analytic f : D→ D such that f (zj) = wj ( j = 1, . . . ,n)?

They each obtained necessary and sufficient conditions for the existence of such

an f , but uniqueness of the function fails since one may add to f any non-trivial

function whose zeros lie at the set of zj and which has arbitrarily small bound over

D, for example a polynomial.3.4 More generally, one may consider interpolation

from an infinite sequence of points.

Problem. Let (zn)∞n=1 and (wn)∞n=1 be complex sequences, and suppose |zn| → ∞ (n→∞).

Can we find an analytic f such that f (zn) = wn (n ∈N)?

In this case existence is automatically guaranteed by the theorems of Weierstraß

and Mittag-Leffler [98, Thms. 10.1 and 10.10] (indeed, this is a special case of

[117, Thm. 15.13]). Once again uniqueness fails3.5, since Weierstraß’ theorem

guarantees the existence of a non-trivial entire function that vanishes at all the zn.

As outlined in Section 3.1, we would like to interpolate3.6 the m-function (3.1.7)

uniquely from its values mn at the sequence of points zn = −n2. It is apparent that

the methods of complex analysis are likely insufficient of themselves to achieve

the uniqueness aspect to this. However a recent result [118, Thm. 5] in the spec-

tral theory of Sturm–Liouville equations provides just such a unique interpola-

tion.

3.4Note, however, that requiring ‖ f ‖L∞(D) be minimised, the solution is uniquely found to be a
constant multiple of a Blaschke product; see, e.g., [121] and the references therein.

3.5The Blaschke product is still the unique minimal analytic interpolant, but there is a necessary
and sufficient condition on the interpolation sequence to ensure convergence of the now infinite
product; again, see [121].

3.6Whilst it might seem that constructive interpolation is unnecessarily stronger than mere
unique determination of (3.1.7) from the interpolation sequence, it appears from the author’s
calculations that the latter is not an easy result to establish without resorting to these constructive
methods.
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Theorem 3.1 (Rybkin–Tuan, 2009). Let Q ∈ l∞(L1)(0,∞) be real-valued, where this

class comprises all f : [0,∞)→ C such that

‖ f ‖ := ‖ f ‖l∞(L1)(0,∞) := sup
x≥0

∫ x+1

x
| f | < ∞.

Suppose mS is the Weyl–Titchmarsh m-function associated with the limit-point one-

dimensional Schrödinger operator3.7

S(x, ·) := − d2

dx2 +Q(x) (x ∈ (0,∞))

on L2(0,∞), i.e., mS(λ) := u′(0, λ)/u(0, λ) (Im(λ) � 0) for any non-trivial square-

integrable solution u(· ;λ) of Su(· ;λ) = λu(· ;λ). If λ is from the concave parabolic

region with (Imλ)2 > 4β2
0Reλ + 4β4

0 then

mS(λ) − i
√
λ =
∑

n≥0

cn(−i
√
λ − β0 + 1)

n∑

k=0

ank

(
mS(−ω2

k) + ωk

)
,

where

β0 := max
{√

2‖Q‖, e‖Q‖
}
+

1
2
+ ε0,

ε0 > 0 is any fixed number,

cn(z) := (2n + 1)
(1/2 − z)n

(1/2 + z)n+1
(for a.e. z ∈ C),

(z)n := z(z + 1) · · · (z + n − 1) (z ∈ C),

ank :=
(−n)k(n + 1)k

(k!)2 (n, k ≥ 0), and

ωk := k + β0 −
1
2
.

Remark. We may write the parabolic region of convergence more concisely as Im(
√
λ) >

β0. It is the concave part of the plane, and its intersection with any non-real ray through

3.7This is the m-function defined in (2.2.5) with a = 0, b = ∞ and α = 0.
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the origin is an infinite complex interval.

This result does not include, and cannot—to the best of our knowledge—be

immediately generalised to, a classical limit-circle case. Indeed, the proof in [118]

relies on the A-amplitude representation of mS(λ), discussed in Section 2.3.

As we desire a limit-circle version to complete our proofs of uniqueness, it

will be instructive at this point to discuss the proof of Theorem 3.1. Two main

ingredients are needed, one of which we already mentioned as Theorem 2.5. The

other is the following lemma [118, Thm. 4]:

Lemma 3.4 (Interpolation of a Laplace transform, Rybkin–Tuan). Suppose

F(z) = L [ f ](z) =
∫ ∞

0
e−zt f (t)dt (Re(z) > 0)

is the Laplace transform of measurable f , and that f satisfies

∫ ∞

0
e−ε0t| f (t)|dt < ∞ (ε0 > 0). (3.3.1)

Then, for any ε0 > 0, uniformly3.8 in any compact subset of the half-plane Re(z) >

ε0 + 1/2 we have

F(z) =
∞∑

n=0

cn

(
z +

1
2
− ε0

) n∑

k=0

ankF(k + ε0), (3.3.2)

where cn, ank are defined in Theorem 3.1.

Remark. Noting that

e2
√

2‖Q‖α +
e2e‖Q‖α
√

2π
≤
(
1 +

1
√

2π

)
e2γx

with γ := max{
√

2‖Q‖, e‖Q‖} we start to see where the constant β0 = γ+1/2+ε0 comes

3.8The authors also provide the error O(N−Re(z)+1/2+ε0 ) upon truncation of the series at its N-th
term, which is superfluous to our needs, but is useful when implementing the series in a numeri-
cal procedure.
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from in Theorem 3.1 (the 1/2 + ε0 part lies in Lemma 3.4). Clearly from (2.3.7) we see

that mS(−κ2) + κ is of the form F(κ) to be plugged into Lemma 3.4. One only needs to

check that it may be written in a way that involves an appropriate f . This is achieved by

carefully splitting up the exponential term, using part as the Laplace transform integral

kernel and the other part to ensure the negative-exponentially weighted L1-convergence

required by the Lemma. The appropriate way to do this emerges from Theorem 2.5.

A further remark is that, since the proof of Theorem 3.1 relies fundamentally on the

exact formula 2.3.7, one would need an equivalent version for the classical limit-circle

case on the finite interval (0, b). Such an exact formula does not (yet) exist. The best

found yet comes from Simon’s original work on the matter, [120, Eq. (1.24)]. In our

case, it amounts to truncating the integral to the interval (0, a) ⊂ (0, b), and noting the

resulting error is of order O(e−2a(1−δ)Re(κ)) for every δ > 0.

We also observe that this is quite different from the classical interpolation result of,

say, Lagrange3.9 [86]. Classically to interpolate (formally) from an infinite sequence one

truncates the sequence at the N-th term, constructs the (at most) N-th-order Lagrange

polynomial interpolant, then takes the limit as N → ∞. This differs from Lemma 3.4,

since it produces a sequence of polynomials where the latter instead has partial summands

that are rational functions. Moreover the convergence of the Lagrange interpolants takes

place uniformly in any compact subset of C, without the restriction Re(z) > ε0 + 1/2.

The remainder of this section is dedicated to establishing an analogous re-

sult to Theorem 3.1, for a particular finite-interval classical limit-circle Sturm–

Liouville problem. The methods we will use are of a more elementary, ad hoc

nature than those underlying Rybkin and Tuan’s deep result. Nevertheless, we

hope the result can be generalised in method and scope.

Proposition 3.4. Suppose 0 < b < ∞ and Q ∈ L1(0, b) is real-valued. At 0 the differen-

3.9Actually, it was originally due to Waring [132]; for a detailed review of the topic, see [102].
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tial equation

− z′′(x;λ) +
(
Q(x) − 1

4x2

)
z(x;λ) = λz(x;λ)

(
x ∈ (0, b)

)
(3.3.3)

is classical limit-circle non-oscillatory over L2(0, b).

Proof. If we were to restrict the problem to the interval (0, 1) it is almost exactly

of the form in Lemma 3.3, with w(x) = 1 (i.e., ν = 0 and ε1(x) = 0). The major

difference is that to apply the lemma directly we would require at least Q(x) =

o(1) (x → 0). Whilst this is clearly not necessarily true, we can easily adapt the

methods of proof.

As before we seek a pair of solutions, which we denote z(· ;λ) and y(· ;λ).

Define the sequences


−z′′k+1(x;λ) − 1

4x2 zk+1(x;λ) =
(
λ −Q(x)

)
zk(x;λ), z0(x;λ) = x1/2,

−y′′k+1(x;λ) − 1
4x2 yk+1(x;λ) =

(
λ −Q(x)

)
yk(x;λ), y0(x;λ) = x1/2 log(x),

and impose the boundary conditions

zk(x)

yk(x)


= o(x1/2) (x→ 0, k ∈N).

Firstly note that z0 and y0 are always a fundamental system in the kernels of

the left-hand sides of the differential equations defining the sequences, and their

Wronskian is 1. Hence by variation of parameters

zk+1(x;λ) = x1/2
∫ x

0
s1/2
(

log(s) − log(x)
)(
λ −Q(s)

)
zk(s;λ)ds,

yk+1(x;λ) = x1/2
∫ x

0
s1/2
(

log(s) − log(x)
)(
λ −Q(s)

)
yk(s;λ)ds,
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and if we choose x < 1 we may estimate

|zk+1(x;λ)| ≤ x1/2
∫ x

0
s1/2| log(s)||λ −Q(s)||zk(s;λ)|ds,

|yk+1(x;λ)| ≤ x1/2
∫ x

0
s1/2| log(s)||λ −Q(s)||yk(s;λ)|ds.

Clearly
∫ x

0
|λ −Q| ≤ ‖λ −Q‖L1(0,1), and for each ε0 > 0 there is some 0 < δ < 1 such

that x | log(x)| < x | log(x)|2 ≤ x1−ε0 whenever 0 < x < δ. Working inductively we

are then able to show that, when x < δ, both

|zk(x;λ)|, |yk(x;λ)| ≤ x1/2(x1−ε0‖λ −Q‖L1(0,1))k (k ≥ 1).

Hence for 0 < x < min{δ, ‖λ −Q‖}we see that the series

z(x;λ) :=
∞∑

k=0

zk(x;λ),

y(x;λ) :=
∞∑

k=0

yk(x;λ)

are absolutely and uniformly convergent.

In a neighbourhood of 0 both sums formally solve (3.3.3). Moreover we may

estimate the tails of the sums and write

z(x;λ) = x1/2
(
1 +O(x1−ε0)

)
and y(x;λ) = x1/2 log(x)

(
1 +O(x1−ε0)

)
.

By unique continuation these may be extended to solutions of (3.3.3) on the whole

of (0, b). Since the differential equation is regular on (δ/2, b), all solutions are

in L2(δ/2, b). It follows from the asymptotics of the series that both z(· ;λ) and

y(· ;λ) ∈ L2(0, b). Finally, the last pair of asymptotic relations demonstrates that

neither solution has any zeros in a sufficiently small neighbourhood of 0. �
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Since the problem is limit-circle at 0 we require a boundary condition there so

we may define our m-function at the other end-point. We will use the Friedrichs

or principal condition. Let Up be a principal solution of (3.3.3), i.e., Up is non-

trivial and for any linearly independent solution V we have Up(x;λ) = o
(
V(x;λ)

)

as x → 0. The Friedrichs boundary condition at 0 is the requirement that a solu-

tion z satisfy

Fr[z](0+;λ) := [z,Up](0+;λ) = 0. (3.3.4)

Remark. This boundary condition forms part of a characterisation of the so-called Friedrichs

extension. The details may be found in, e.g., [112, Thm. 4.3].

We write (3.3.3) and (3.3.4) as the partial boundary-value problem


−z′′(x;λ) +

(
Q(x) − 1

4x2

)
z(x;λ) = λz(x;λ)

(
x ∈ (0, b)

)
,

Fr[z](x;λ) → 0 (x→ 0),
(3.3.5)

which, up to a constant multiple, uniquely specifies a solution z(· ;λ) thanks to

Proposition 3.4. Taking such a non-trivial solution, we choose a purely Robin

(-to-Robin) m-function, i.e., for h � H both real, the unique mh,H(λ) satisfying3.10

z′(b;λ) −Hz(b;λ) = mh,H(λ)
(
z′(b;λ) − hz(b;λ)

)
. (3.3.6)

We will interpolate this m-function, in the style of Theorem 3.1. One portion of the

work is the application of the interpolation result for Laplace transforms, Lemma

3.4, in the same way it was used for Theorem 3.1.

The other portion is as follows. We will find a Laplace transform representa-

tion of mh,H(λ) by first constructing its so-called Mittag-Leffler series expansion
3.10Whilst this is not simply a constant times any m-function of the form (2.2.5), it is clearly a

fractional linear transformation of one. By Corollary A1, if h > [<]H then mh,H is [anti-]Herglotz.
We will provide an alternative more direct proof of this latter fact on page 79.
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(see, e.g., [38, Ch. 8]) then algebraically relating it to a Laplace transform. We

then prove that condition (3.3.1) holds, allowing us to apply Lemma 3.4.

First we mention some preliminary results. The following is well known:

Lemma 3.5. A self-adjoint operator associated with a classical limit-circle non-oscillatory

Sturm–Liouville expression and separated boundary conditions on a finite interval pos-

sesses a spectrum comprising simple eigen-values accumulating only at +∞.

Proof. One way to observe this is to use the Niessen–Zettl transformation [112] of

such a problem to a regular problem on the same interval, then recall that spec-

tra of regular separated Sturm–Liouville problems also comprise simple eigen-

values only accumulating at +∞; see, e.g., [37]. Alternatively the eigen-value fact

is proved in general in, e.g., [92, Ch. 2]. �

Define the operator

D(Lh) = {z ∈ L2(0, b) | − z′′(x) + (Q(x) − 1/4x2)z(x) ∈ L2(0, b; dx),

[z,Up](0+) = 0, z′(b) = hz(b)},

Lhz(x) = −z′′(x) +
(
Q(x) − 1/4x2

)
z(x)

(
x ∈ (0, b)

)
.

Lemma 3.6. The Weyl–Titchmarsh m-function mh,H is meromorphic in C. Its poles and

zeros are simple, interlace on R, and are found at the eigen-values of, respectively, Lh and

LH, accumulating only at +∞.

Proof. The differential expression is classical limit-circle at b, so with the given

boundary conditions, Lh and LH are self-adjoint owing to Lemma 2.1. Since the

boundary conditions are separated the eigen-values must be simple, by Lemma

3.5. Classical interlacing theorems [92, Thm. I.3.1-2] guarantee that when h � H
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the eigen-values for Lh and LH interlace. That they accumulate only at +∞ follows

from Lemma 3.5.

Finally we observe that the poles of mh,H occur at λ for which the non-trivial

solution z(· ;λ) to (3.3.5) satisfies

z′(b;λ) = hz(b;λ), (3.3.7)

i.e., when this solution is an eigen-function of Lh. Similarly the zeros occur when

z′(b;λ) = Hz(b;λ). �

In Lemma B1 we show that in the classical limit-circle non-oscillatory case,

enumerating the eigen-values in increasing order as λn, n = 1, 2, 3, . . ., we have

λn = (n + 1/4)2π2/b2 +O(1),
√
λn = (n + 1/4)π/b +O(1/n) (n→∞). (3.3.8)

For each n, the eigen-function ϕn corresponding to λn is defined by

ϕn = ϕ(· ;λn),

where ϕ solves (3.3.3) with initial conditions ϕ(b;λ) = 1, ϕ′(b;λ) = h. Suppose ψ

is the linearly independent solution with ψ(b;λ) = 1, ψ′(b;λ) = H, and

Φ(λ) := ϕ(0+;λ), Ψ(λ) := ψ(0+;λ).

Then, by checking that f (x;λ) := ψ(x;λ) + mh,H(λ)ϕ(x;λ) satisfies the “boundary

condition” in (3.3.6), it follows that

mh,H(λ) = −
Ψ(λ)
Φ(λ)

. (3.3.9)
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Therefore, Φ(λn) being 0 implies via integration by parts that,

H − h = f ′(b;λ)ϕn(b) − f (b;λ)ϕ′n(b)

= (λ − λn)
∫ b

0
f (· ;λ)ϕn

= (λ − λn)
∫ b

0
ψ(· ;λ)ϕn − (λ − λn)

Ψ(λ)
Φ(λ) −Φ(λn)

∫ b

0
ϕ(· ;λ)ϕn

→ −
Ψ(λn)
Φ′(λn)

∫ b

0
ϕ2

n as λ→ λn. (3.3.10)

If we denote the norming constants associated with λn by αn :=
∫ b

0
ϕ2

n then we see

from (3.3.9), (3.3.10) and the standard formula for evaluating residues at simple

poles that the residue of the m-function at its poles is given by

Res(mh,H;λn) = −
Ψ(λn)
Φ′(λn)

=
H − h
αn
. (3.3.11)

In Lemma B2 we show that the norming constants satisfy

αn = b/2 +O(1/n). (3.3.12)

We may now state the Mittag-Leffler series result for mh,H:

Lemma 3.7. Uniformly for λ in any compact set that is non-intersecting with {λn}∞n=0,

we have a Mittag-Leffler series representation for the Robin m-function given by

mh,H(λ) − H
h
=

∞∑

n=1

h −H
αn(λn − λ)

. (3.3.13)

Proof. The asymptotics (3.3.12) and (3.3.8) immediately imply that, uniformly for

λ in any compact set bounded away from {λn}∞n=1, as n→∞we have

αn(λ − λn) =
(

b
2
+O
(1
n

)) ((
n +

1
4

)2 π2

b2 +O(1)
)
∼ n2π2

2b
.
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Thus
∑∞

n=1
1

αn(λ−λn) is convergent, uniformly for the same choice of λ. Moreover,

∞∑

n=1

1
αn(λ − λn)

→ 0 (Im(λ)→∞). (3.3.14)

We need to link the series with the m-function. We do this via Herglotz-type prop-

erties of mh,H. For completeness we briefly repeat here the following well-known

calculation, showing that mh,H is (anti-)Herglotz (see Section 2.2 and Appendix

A). Observe that for any non-trivial solution z(· ;λ) of (3.3.3) and (3.3.4) we have

(λ − λ̄)
∫ b

0
z(· ;λ)z(· ; λ̄) = (h −H)

(
mh,H(λ) −mh,H(λ̄)

)
,

so subtracting the complex conjugate of this whilst noting z(· ; λ̄) = z(· ;λ) shows

that ∫ b

0
|z(· ;λ)|2 = (h −H)

Im
(
mh,H(λ)

)

Im(λ)
.

Hence, if h > H then mh,H is in the Herglotz class of functions that map the upper

and lower half-planes to themselves, whilst if h < H then mh,H is the negative of

such a function, known as anti-Herglotz.

As remarked in equation (2.2.6) and Appendix A, all (anti-)Herglotz functions

have a Stieltjes integral representation; here

mh,H(λ) = A + Bλ +
∫

R

( 1
t − λ

− t
1 + t2

)
dρ(t),

where ρ is the spectral measure associated with the problem (3.3.3), and

A = Re
(
mh,H(i)

)
, B = lim

τ→+∞

mh,H(iτ)
iτ

.

Note that ρ is increasing if and only if h > H. Furthermore as a measure it assigns

“mass” only at points in the spectrum of the Sturm–Liouville operator associated
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with (3.3.3), i.e., for any dρ-integrable g,

∫

R

g(t)dρ(t) =
∞∑

n=1

γng(λn),

γn being the mass at λn. Thus

mh,H(λ) = A + Bλ +
∞∑

n=1

γn

(
1

λn − λ
− λn

1 + λ2
n

)
.

Integrating anti-clockwise on a sufficiently small, simple, closed contour around

λn and comparing with (3.3.11) shows that γn = −Res(mh,H;λn) = h−H
αn

. Hence we

may split up the sum and write

mh,H(λ) = Ã + Bλ +
∞∑

n=1

h −H
αn(λn − λ)

. (3.3.15)

To proceed, we need large-Im(λ) asymptotics of mh,H(λ). Expressing mh,H in terms

of the Neumann m-function mN(λ) := z(b;λ)/z′(b;λ) and using Lemma C3, we see

mh,H(λ) =
1 −HmN(λ)
1 − hmN(λ)

∼ 1 + iH
√
λ

1 + ih
√
λ
→ H

h
(Im(λ)→ +∞).

Applying this and (3.3.14) to (3.3.15) we see3.11 that Ã = H/h and B = 0. �

Remark. Our calculations proving this result are adapted from parts of a calculation in

[91, Ch. 3] for a regular Sturm–Liouville problem in normal form.

Lemma 3.7 gives us enough to deduce a Laplace transform representation of mh,H,

and hence our interpolation result. For the reader’s convenience we state the

theorem in full.

Theorem 3.2 (Classical limit-circle m-function interpolation). Under the hypothesis

3.11This corrects the minor error “Ã = 1” in [27].
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that Q ∈ L2(0, b) is real-valued, the Robin m-function

mh,H(λ) =
z′(b;λ) −Hz(b;λ)
z′(b;λ) − hz(b;λ)

for any non-trivial square-integrable solution z(· ;λ) of the limit-circle non-oscillatory

problem


−z′′(x;λ) +

(
Q(x) − 1

4x2

)
z(x;λ) = λz(x;λ)

(
x ∈ (0, b)

)
,

[Up, z](0+;λ) = 0,

satisfies the interpolation formula

mh,H(λ) − H
h
=

∞∑

n=0

cn(1/2 − β − i
√
λ)

n∑

k=0

ank

(
mh,H

(
− (k + β)2

)
− H

h

)
.

Here β > 0 is fixed,

cn(z) := (2n + 1)
(1/2 − z)n

(1/2 + z)n+1
(for a.e. z ∈ C),

(z)n := z(z + 1) · · · (z + n − 1) (z ∈ C),

ank :=
(−n)k(n + 1)k

(k!)2 (n, k ≥ 0),

and the convergence of the series is uniform in any compact subset of Im(
√
λ) > 1/2+ β.

The proof uses Lebesgue’s dominated convergence theorem. To apply it we

will need the following lemma:

Lemma 3.8. Let ε0 > 0 and denote ρn =
√
λn. Then gN(t) := e−ε0t∑N

n=1
sin(ρnt)
αnρn

is

uniformly bounded, in t ∈ (0,∞) and N ∈N, by a fixed integrable function.

Proof. Firstly note that the asymptotic expansion (3.3.8) may be written as ρn =
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(n + 1/4)π + εn, where εn = O(1/n). Then, for each fixed t ≥ 0,

sin(ρnt) = sin
(
(n + 1/4)πt

)
cos(εnt) + cos

(
(n + 1/4)πt

)
sin(εnt). (3.3.16)

Write ε0 = 2σ. It would be enough to find an L1(0, 2π) function that bounds,

uniformly in N, the expression

sN(t) := e−σt
N∑

n=1

sin(ρnt)
αnρn

(
t ∈ (0, 2π)

)
,

so that gN(t) = e−σtsN(t) (t ∈ (0,∞)) is dominated by an L1(0,∞) function, thanks to

the exponential decay of e−σt. So, notice that


|εnt| = O(log(n)/n)

(
0 ≤ t < σ−1 log(n)

)
,

eσt ≤ e−σσ−1 log(n) = 1/n,
(
t ≥ σ−1 log(n)

)
,

so that e−σt sin(εnt) = O(1/
√

n); by a similar argument e−σt
(

cos(εnt) − 1
)
= O(1/n).

Both estimates are uniform in t ≥ 0. With (3.3.16), these are enough to ensure a

constant bound for

sN(t) − e−σt
N∑

n=1

sin
(
(n + 1/4)πt

)

αnρn

(
t ∈ (0, 2π)

)
.

Hence, substituting the asymptotic expansions (3.3.8) and (3.3.12) into the sec-

ond sum in the above expression means the following: if we can show that both
∑N

n=1 cos(nx)/n and
∑N

n=1 sin(nx)/n
(
x ∈ (0, 2π)

)
are bounded, uniformly in N, by

some fixed element of L1(0, 2π), then it will follow that so is sN(t)
(
t ∈ (0, 2π)

)
,

proving the lemma.

We will prove the uniform L1(0, 2π) bound for the cos-series; the same ap-

proach produces a similar bound for the sin-series. Denote by cN(x) the partial

sum
∑N

n=1 cos(nx)/n. This is an anti-derivative of the conjugate Dirichlet kernel
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sum [31, Sec. 15.2]—for the sin-series use the usual Dirichlet kernel—meaning

c′N(x) = −
N∑

n=1

sin(nx) =
cos
(
(N + 1/2)x

)
− cos(x/2)

2 sin(x/2)
.

Thus c′N(x) is bounded by 1/ sin(x/2). Noting |cN(π)| ≤ 1, we see |cN(x)| ≤ 1 +
∫ x

π
|c′N| ≤ 1 + 2 log |cot(x/4)|, which is certainly integrable over (0, 2π) since to

leading-order it is − log(x) for x near 0 and − log(2π − x) near 2π. �

Proof of Theorem 3.2. We first observe that the Mittag-Leffler series (3.3.13) may be

written as

mh,H(−κ2) − H
h
=

∞∑

n=1

h −H
αn(ρ2

n + κ2)

= (h −H)
∞∑

n=1

∫ ∞

0
e−κt sin(ρnt)

αnρn
dt (Re(κ) > 0). (3.3.17)

Assuming that integration and summation may be interchanged (we show this

below) we see that
(
mh,H(−κ2) −H/h

)
/(h −H) is the Laplace transform L [ f ](κ) of

f (t) :=
∞∑

n=1

sin(ρnt)
αnρn

(t ≥ 0). (3.3.18)

We now prove the convergence of (3.3.18) and justify the interchange of summa-

tion and integration in (3.3.17).

From (3.3.16) we have sin(ρnt) = cos(πt/4) sin(nπt)+sin(πt/4) cos(nπt)+O(1/n).

Hence, by (3.3.8) and (3.3.12), the pointwise convergence of (3.3.18) is determined

by that of the series
∑∞

j=1 eijx/ j. But this is simply the Fourier series for the 2π-

periodic extension of the expression − log |2 sin(x/2)| + i(π − x)/2
(
x ∈ (−π, π)

)
so

the pointwise convergence of (3.3.18) is immediate.

We may now simply apply Lemma 3.8 to see that gN(t) := e−Re(κ)t∑N
n=1

sin(ρnt)
αnρn

is
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dominated by an integrable function. Dominated convergence follows, so

mh,H(−κ2) − H
h
= (h −H)

∫ ∞

0
e−κt f (t)dt (Re(κ) < 0).

All that remains is to check condition (3.3.1). But that it holds is obvious, since,

by dominated convergence, e−δt| f (t)| is integrable for every δ > 0. Therefore, by

application of the interpolation result (3.3.2) to F(κ) = mh,H(−κ2) − H/h, the the-

orem follows, with uniform convergence in any compact subset of the parabolic

λ-region Im(
√
λ) > 1/2 + β. �

3.4 Uniqueness theorems for the inverse problem

The main result of this chapter is a pair of uniqueness theorems for Inverse Prob-

lem I. We will state and prove these here, by means of Theorem 3.1 and our inter-

polation result in Theorem 3.2. The uniqueness theorems are kept separate due

to certain technical conditions in both being similar in representation but funda-

mentally different in structure.

Theorem 3.3 (Uniqueness in the PLP case). Fix ν ≥ 2, c > 0 and α > ν/2 − 1 ≥ 0,

and let w, q ∈ L∞loc(0, 1], with q real-valued and w ≥ c. Suppose that w′,w′′ ∈ L∞loc(0, 1].

Suppose also that, as r→ 0,

(i) w(r) =
1
rν
(
1 +O(rα)

)
,

(ii) q(r) = w(r)O(rα),

(iii)
(
w(r)rν

)′
= O(r−ν/2), and

(
w(r)rν

)′′
= O(r−ν).

If w is known, then the interpolation sequenceS =
(
(−n2,mn)

)∞
n=1

, of values (in the graph)

of the PLP Dirichlet m-function (3.1.7) for (3.1.5), uniquely determines the potential q.
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Proof. We need to transform the differential equation to Liouville normal form,

as it is for m-functions associated with such problems that we have interpolation

formulae. In this case we set

t = τ(r) =
∫ 1

r

√
w,

z
(
t(r)
)
= r1/2w(r)1/4u(r)

(
r ∈ (0, 1)

)
.

This leads to the corresponding solution space L2(0,∞; τ−1(t)νdt) in which we seek

z(· ;λ) and over which the equation is PLP at t = +∞ (or, in the case ν = 2,

has the PLP/PLC behaviour outlined in Section 3.2). This is not problematic

since, although the classical limit-point m-function is defined using solutions

from L2(0,∞), by their definition the two m-functions are linearly related: if mS

denotes the Schrödinger m-function—as defined in, e.g., Theorem 3.1—then

mS(λ) = −1
2

w(1)−1/2 − 1
4

w(1)−3/2w′(1) + w(1)−1/2m(λ). (3.4.1)

That the domain in which t lies is (0,∞) follows from the fact that τ(r) ∼
∫ 1

r
s−ν/2ds→

∞ as r→ 0. The equation satisfied by z is

− z′′(t;λ) +Q(t)z(t;λ) = λz(t;λ)
(
t ∈ (0,∞)

)
, (3.4.2)

where

Q
(
τ(r)
)

:=
q(r)
w(r)

− r−1/2w(r)−3/4 d
dr

{
r

d
dr

(r−1/2w(r)−1/4)
}

(3.4.3)

= −
(
ν − 2

4

)2
rν−2
(
1 + ζ(r)

)
+ ε2(r)

(
r ∈ (0, 1)

)
,
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and

ε1(r) = w(r)rν − 1, (3.4.4)

ε2(r) =
q(r)
w(r)
, (3.4.5)

ζ(r) = −
ε1(r)

1 + ε1(r)
−
( 2
ν − 2

)2 r2ε′′1 (r)
(1 + ε1(r))2

+
5

(ν − 2)2

r2ε′1(r)2

(1 + ε1(r))3 −
2ν

(ν − 2)2

rε′1(r)
(1 + ε1(r))2 . (3.4.6)

We now want to apply Theorem 3.1 to the m-function of equation (3.4.2);

for this we need
∫ x+1

x
|Q| to be a bounded expression in x ∈ (0,∞), i.e., Q ∈

l∞(L1)(0,∞). It would suffice that Q ∈ L∞(0,∞). Notice that

∫ x+1

x
|Q(t)|dt =

∫ x+1

x

∣∣∣∣∣∣
(
ν − 2

4

)2
τ−1(t)ν−2

(
1 + ζ

(
τ−1(t)

))
− ε2

(
τ−1(t)

)∣∣∣∣∣∣dt.

By applying the hypotheses (i) and (iii) to (3.4.4) we easily observe that

ε′1(r) = O(r−ν/2) ⊂ O(r1−ν) and ε′′1 (r) = O(r−ν) (r→ 0).

Thus ζ(r) ∈ L∞loc(0, 1] and is O(r2−ν) as r → 0. Further w, q ∈ L∞loc(0, 1] implies that

ε2(r) is bounded. Therefore Q ∈ L∞(0,∞) ⊂ l∞(L1)(0,∞), so (3.4.2) is in classical

limit-point at∞. Since the integral hypothesis of Theorem 3.1 is satisfied, mS can

be interpolated from its values at the points (−n2)∞n=1. Then we may transform

back to m by (3.4.1).

In particular, given any non-real ray through the origin and the sequence of

interpolation pairs
(
(−n2,mn)

)∞
n=1
, (3.4.7)

for any λ on this ray we can calculate the value of m(λ). Choosing any such ray

in the first quadrant and applying Theorem 2.4 we immediately have that Q and
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hence q are uniquely determined by the sequence S. �

Remark. For this proof to work it is crucial to know w everywhere in order to be able to

reverse the transformations (3.4.1) and (3.4.3).

Theorem 3.4 (Uniqueness in the PLC case). Let 0 ≤ ν < 2, c > 0 and α > 0, and fix

w, q ∈ L∞loc(0, 1], with q real-valued and w ≥ c a.e.. Suppose that w′,w′′ ∈ L∞loc(0, 1], and

that, as r→ 0,

(i) w(r) =
1
rν
(
1 +O(rα)

)
,

(ii) q(r) = w(r)O(rα−2),

(iii)
(
w(r)rν

)′
= O(rα−1), and

(
w(r)rν

)′′
= O(rα−2).

If w is known, then the interpolation sequenceS =
(
(−n2,mn)

)∞
n=1

, of values (in the graph)

of the PLC Dirichlet m-function (3.1.7) for (3.1.5) with boundary condition (3.1.6),

uniquely determines the potential q.

Remark. The hypotheses of this theorem differ from those of Theorem 3.3 by the range of

possible ν’s and the technical condition (iii).

To prove this result we will need the following lemma:

Lemma 3.9. Let 0 ≤ ν < 2, c > 0 and c ≤ w ∈ L∞loc(0, 1]. If w(r) = r−ν
(
1 + o(1)

)
as

r→ 0 then

τ(r) :=
∫ r

0

√
w (3.4.8)

is invertible everywhere on
(
0, b :=

∫ 1

0

√
w
)

and satisfies

τ−1(t) =
(2 − ν

2
t
) 2

2−ν (
1 + o(1)

)
(t→ 0). (3.4.9)
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Proof. First note that
√

w is integrable. Thus the function τ is clearly continuous

and strictly monotone increasing, since τ′ ≥
√

c > 0, implying its invertibility. By

the asymptotic hypothesis of w, for any ε0 > 0 there is δ > 0 such that

(1 + ε0)
2

2 − ν
r

2−ν
2 > τ(r) > (1 − ε0)

2
2 − ν

r
2−ν

2 (0 < r < δ),

Now observe that for any two strictly increasing invertible functions f and g,

sharing a domain D ⊂ R and satisfying f < g everywhere, we have f −1 > g−1

everywhere in f (D) ∩ g(D), since if there were y with f −1(y) ≤ g−1(y) then

y = f
(

f −1(y)
)
≤ f
(
g−1(y)

)
< g
(
g−1(y)

)
= y.

It follows that

(
2 − ν

2(1 + ε0)
t
) 2

2−ν

< τ−1(t) <
(

2 − ν
2(1 − ε0)

t
) 2

2−ν (
0 < t < (1 − ε0)

2
2 − ν

δ
2−ν

2

)
.

It is now simple to deduce (3.4.9). �

Proof of Theorem 3.4. In what follows all asymptotic estimates are as r or t → 0.

Since we want to apply Theorem 3.2 we must transform (3.1.5) in the following

way:

t = τ(r) =
∫ r

0

√
w,

z
(
τ(r)
)
= r1/2w(r)1/4u(r)

(
r ∈ (0, b)

)
.

This gives rise to

−z′′(t;λ) + Q̃(t)z(t;λ) = λz(t;λ)
(
t ∈ (0, b)

)
,
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Here the potential is given by

Q̃
(
τ(r)
)
= −
(2 − ν

4

)2
r−(2−ν)

(
1 + ζ(r)

)
+ ε2(r),

with ε2 and ζ given in (3.4.5) and (3.4.6). We calculate from Lemma 3.9 that

−
(2 − ν

4

)2
τ−1(t)−(2−ν) = − 1

4t2

(
1 + ε3(t)

)
,

where ε3(t) = o(1), and is also continuous, implying it is bounded.

To apply Theorem 3.2 we need Q(t) := Q̃(t) + 1/4t2 ∈ L2(0, b; dt). Recalling

(3.4.4), we use condition (iii) to observe ε′1(r) = O(rα−1) and ε′′1 (r) = O(rα−2). Thus,

by (3.4.6), ζ(r) = O(rα) = o(1). By hypothesis all of the functions ε2, ε3 and ζ

are bounded except possibly in a neighbourhood of 0, and by their asymptotic

behaviour at 0 they are all square integrable. Since f (t) ∈ L2(0, b; dt) if and only if

f
(
τ(r)
)
∈ L2(0, b;

√
w(r)dr) we see Q ∈ L2(0, b), as required.

Hence, by Theorem 3.2 the Robin m-function (and by a fractional linear trans-

formation, any m-function) is uniquely determined by the sequence S. Theorem

2.4 concludes the proof. �

Corollary 3.1. In either theorem, any finite number of values m(−n2) in the interpola-

tion sequence may be discarded yet the m-function, and hence the potential, will still be

uniquely determined.

Proof. Since, in (3.3.2), the parameter ε0 > 0 may be chosen freely, one may take

ε0 to be any positive integer. The resulting interpolation formula does not require

the values F(1), . . . ,F(ε0 − 1) and so the values m(−1), . . . ,m(−(ε0 − 1)2) are not

needed. �

Remark. One final curious point to note is as follows. Firstly, these uniqueness theorems

rely on the interpolation results in Section 3.3. The interpolation results are, however,
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stronger than mere unique prescription of an m-function from the given sequence, since

they are in addition constructive. One might hope that an answer to the question of

uniqueness of an m-function interpolant could be separated from the constructive nature

of the interpolation theorems. To the author’s best understanding, this has not yet been

done, and appears to be a difficult problem.

3.5 The Berry–Dennis problem

At the beginning of this chapter and in the introductory chapter we mentioned

that we can achieve uniqueness in inverse recovery of a partial differential op-

erator in two dimensions as a corollary of Theorem 3.3, which as written above

applies to an ordinary differential operator. We will prove this now. For the

reader’s convenience we elaborate on the set-up outlined in Section 1.3. The

analysis was originally conducted by Marletta and Rozenblum [99] to resolve

a seemingly paradoxical non-self-adjointness result of Berry and Dennis [21]. We

repeat it here in the framework defined earlier in this chapter.

Take a planar domain Ω1 = {(x, y) ∈ R2 | x2 + y2 < 1, x > 0} in the shape

of a half-disc. Its boundary ∂Ω1 is assumed to be divided
(
up to the point set

comprising (0,±1)
)

into the straight portion Γ1 and semi-circular portion Γi:

Γ1 = {(0, y) | y ∈ (−1, 1)};

Γi = {(x, y) | x2 + y2 = 1, x > 0}.

Define the operator given by the negative Laplacian inΩ1 equipped with a Berry–

Dennis-type boundary condition on Γ1 and a homogeneous Dirichlet condition
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on Γi:

D(�) := {U ∈ L2(Ω1) | ∆U ∈ L2(Ω),U �Γ1= 0, (U + εy∂νU) �Γi= 0},

�U := −∆U, (3.5.1)

In polar coordinates x = (r, ϑ) the Laplacian is given by ∆ = ∂2/∂r2 + (1/r)∂/∂r +

(1/r2)∂2/∂ϑ2, meaning the action of � is that of the negative Laplacian

−∂2
r −

1
r
∂r −

1
r2∂

2
ϑ.

Since on Γ1 the normal derivative is given by −∂x = ±r−1∂ϑ (ϑ = ±π/2), we find

that the singular boundary condition in the definition of � becomes

U(x) + ε∂ϑU(x) = 0
(
r ∈ (0, 1), ϑ = ±π

2

)
.

Hence, after performing the separation of variables U(r, ϑ) = u(r)Θ(ϑ) we arrive

at the angular eigen-value problem


−Θ′′(ϑ) = λΘ(ϑ)

(
ϑ ∈ (−π/2, π/2)

)
,

−Θ(ϑ) = εΘ′(ϑ) (ϑ = ±π/2),

where λ is the parameter introduced by the separation. The operator associated

with this is easily calculated to possess eigen-values and eigen-functions

λ0 = −
1
ε2 ,

λn = n2 (n ∈N);

Θn(ϑ) =



e−ϑ/ε (n = 0),

cos(nϑ) − (nε)−1 sin(nϑ) (n even),

cos(nϑ) + nε sin(nϑ) (n odd).
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Formally writing U(r, ϑ) as the sum
∑∞

n=0Θn(ϑ)un(r) and then requiring this

formally satisfy the differential equation and boundary conditions in � produces

the countable collection of systems


−1

r

(
ru′n(r)

)′
+
λn

r2 un(r) = 0 (0 < r < 1),

un(1) = 0,

which generates the collection of ordinary differential operators

D(�n) :=
{
u ∈ L2(0, 1; rdr)

∣∣∣ r−1
(
ru′(r)

)′
+ λnr−2 ∈ L2(0, 1; rdr),u(1) = 0

}
,

�nu(r) := −1
r

d
dr

(
r
du
dr

(r)
)
− λn

r2 u(r) (n = 0, 1, 2, . . .).

Now we are in the regime of the pencil classification system developed in

Section 3.1. We have w(r) = r−2 so �n is from the “mixed” PLP/PLC class. Since

λ = −λ0,−λ1, . . ., we find from Lemma 3.2 that the �n are all PLP for n ≥ 1, whilst

�0 is PLC. To find a self-adjoint restriction of �0 we need to adjoin to it a boundary

condition. As per Definition 3.2, we choose a u0 in the kernel of �0—in this case

taking u0(r) = sin
(
ε−1 log(r)

)
—to parameterise such a boundary condition. Then

the operator

D(�′0) := D(�0) ∩ {u ∈ L2(0, 1; rdr) | [u,u0](r)→ 0 (r→ 0)},

�′0u(r) := −1
r

d
dr

(
r
du
dr

(r)
)
− 1
ε2r2 u(r) (3.5.2)

is a self-adjoint restriction of �0. It follows that the orthogonal sum of operators

�′ = �′0 ⊕ ⊕
∞
n=1�n, written more precisely as

D(�′) :=
{

U ∈ L2(Ω1)

∣∣∣∣∣∣ ∆U ∈ L2(Ω),U �Γi= 0, (U + εy∂νU) �Γ1= 0,
∫

Ω1

u0∆U = 0
}
,

�′U := −∆U, (3.5.3)
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is a self-adjoint restriction of �.

Remark. The condition
∫
Ω1

u0∆U = 0 is written with a degree of informality, since,

of course, u0 is a function on (0, 1), not Ω1. In fact we mean u0(r, ϑ) = Θ0(ϑ)u0(r) =

e−ϑ/ε sin
(
ε−1 log(r)

)
. Intuitively, one may take the condition to mean that either U oscil-

lates in phase with u0 in a neighbourhood of 0 or else it decays rapidly enough that the

Lagrange bracket at this point, of its radial component with u0, is of o(1). By applying

Green’s formula to
∫
Ω1\δΩ1

u0∆U one can easily calculate that it is completely equivalent

to the Lagrange bracket requirement in the definition of �′0.

As remarked in [99] the self-adjoint �′ has discrete spectrum accumulating at ±∞ alone.

The above Marletta–Rozenblum version of the Berry–Dennis model inspires

an inverse problem with a curious method of resolution, which we are now able

to explain. Let q : Ω1 → R be a Schrödinger potential from some class of functions

left, for now, unspecified. Define the map Λq,ε : h→ −∂νU �Γi

(
h ∈ H1/2(Γi)

)
where

U is the L2(Ω) solution to



(
− ∆ + q(x)

)
U(x) = 0 (x ∈ Ω1),

(1 + εy∂ν)U(x) = 0 (x ∈ Γ1),

U(x) = h(x) (x ∈ Γi),
∫
Ω1

u0∆U = 0.

(3.5.4)

Inverse Problem I′. From a given Dirichlet-to-Neumann operator Λq,ε recover the po-

tential q which gave rise to it.

Remark. This inverse problem is well defined, since once again the operator associated

with the above boundary-value problem is self-adjoint with discrete spectrum, which may

without loss of generality be translated so as not to include 0 by addition of a suitable

constant to q. Without the final integral boundary condition �′ would be the adjoint of
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a symmetric operator, yet have spectrum C, meaning 0 would not be in its resolvent set.

Therefore the differential equation and boundary conditions would well-define neither a

solution U nor, consequently, the above Dirichlet-to-Neumann map.

Our proof of uniqueness for this inverse problem uses a novel technique, re-

lated directly to the results earlier in this chapter. Using the Marletta–Rozenblum

decomposition we may reduce the problem to a family of one-dimensional prob-

lems in the case of a spherically-symmetric potential. This family may then be

analysed as a single one-dimensional inverse problem with a spectral parameter,

and, as may already have been guessed by the reader, this final inverse problem

is of the type tackled in the earlier sections of the chapter. The remainder of the

section, and chapter, details this process.

The crucial assumption needed is spherical symmetry of the potential. So, let

q ∈ L∞loc(0, 1], and consider (3.5.4) with this q, i.e., the system



(
− ∆ + q(|x|)

)
U(x) = 0 (x ∈ Ω1),

(1 + εy∂ν)U(x) = 0 (x ∈ Γ1),

U(x) = h(x) (x ∈ Γi),
∫
Ω1

u0∆U = 0.

With h = 0, the system defines the self-adjoint operator

D(L′) := D(L) ∩
{

U ∈ L2(Ω1)

∣∣∣∣∣∣
∫

Ω1

u0∆U = 0
}
,

L′U(x) :=
(
− ∆ + q(|x|)

)
U(x) (x ∈ Ω1),
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y = 1

y = −1

U
(x

)+
εy
∂ ν

U
(x

)=
0

−∆U(x)
+q(|x|)U(x)
= 0

U
=

0
Γ1

Γi

Figure 3.2: A diagram of Ω1 and a non-self-adjoint boundary-value problem

which is a restriction of the operator

D(L) := {U ∈ L2(Ω1) | (−∆ + q)U ∈ L2(Ω1), (1 + f∂ν)U �Γ1= 0 = U �Γi},

LU(x) :=
(
− ∆ + q(|x|)

)
U(x),

where f (0, y) = εy.

One may prove, working in the same way as with �, that L′ is isometrically

equal to the orthogonal direct sum of the ordinary differential operators L′0 and

Ln (n ≥ 1) given by

D(L′0) :=
{
u ∈ L2(0, 1; rdr)

∣∣∣ − r−1
(
ru′(r)

)′
+ (q(r) − ε−2r−2)u(r) ∈ L2(0, 1; rdr),

u(1) = 0 = [u0,u](0+)
}
,

L′0u(r) := −1
r

d
dr

(
r
du
dr

(r)
)
+ q(r)u(r) − 1

ε2r2 u(r), (3.5.5)

D(Ln) :=
{
u ∈ L2(0, 1; rdr)

∣∣∣ − r−1
(
ru′(r)

)′
+ (q(r) + n2r−2)u(r) ∈ L2(0, 1; rdr),

u(1) = 0
}
,

Lnu(r) := −1
r

d
dr

(
r
du
dr

(r)
)
+ q(r)u(r) +

n2

r2 u(r). (3.5.6)

Being concerned with an associated inverse problem, we will consider the
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generalisation for λ ∈ C of L′0 and Ln (n ≥ 1) given by

D(Lλ) :=
{
u ∈ L2(0, 1; rdr)

∣∣∣ − r−1
(
ru′(r)

)′
+ (q(r) − λr−2)u(r) ∈ L2(0, 1; rdr),

u(1) = 0, χΩc (λ)[u0,u](0+) = 0
}
,

Lλ := −1
r

d
dr

(
r
du
dr

(r)
)
+ q(r)u(r) − λ

r2 u(r),

where χΩc is the characteristic function of the set Ωc, defined in the remark after

Definition 3.1. Then for n ≥ 1 each Lλn = Ln whilst Lλ0 = L′0, and in fact Lλ is

precisely the pencil L − λP defined in (3.1.1). The differential equation given in

Lλu = 0 is simply (3.1.5) with w(r) = 1/r2.

Remark. As we can see, even the domains match up, for the choice λ = 1/ε2 puts us into

the complex parabolic region Ωc in which L − λP is PLC and thereby requires the extra

boundary condition [u0,u](0+) = 0 to be self-adjoint.

This differential equation, then, displays the PLP/PLC behaviour outlined in

Lemma 3.2 and Figure 3.1. We define the Dirichlet m-function m(λ) as in (3.1.7).

Consider the solution U to (3.5.4) with q(x) = q(|x|). We may write any such

solution using the decomposition3.12

U(r, ϑ) =
∞∑

n=0

un(r)Θ(ϑ). (3.5.7)

By differentiating it follows that, in the basisΘn for L2(Γi), the Dirichlet-to-Neumann

3.12Each un now satisfies the differential equation −r−1(ru′n(r))′ + q(r)un(r) + λnr−2un(r) = 0.
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map Λq,ε takes the form of the diagonal matrix



m(−λ0) 0 0 · · ·

0 m(−λ1) 0 · · ·

0 0 m(−λ2) . . .
...

...
. . . . . .



.

Uniqueness for Inverse Problem I′ is immediate from Theorem 3.3, under the

conditions q(x) = q(|x|), q ∈ L∞loc(0, 1] and q(r) = O(rα−2) (r → 0) for some fixed

α > 0. The uniqueness follows since for positive n the restrictions on q make the

type (3.1.5) pencil, associated with each operator Ln, be PLP at 0 (see [99]), whilst

the sequences −λn = −n2 and m(−n2) form the interpolation sequence required in

Theorem 3.3. Thus we have proved uniqueness as follows:

Theorem 3.5 (Uniqueness for the Berry–Dennis inverse problem). Any given Dirich-

let-to-Neumann mapΛq,ε for the system (3.5.4) may have arisen from at most one radially

symmetric potential q ∈ L∞loc(0, 1] ∩O(rα−2; r→ 0).

The 0-th term
(
1/ε2,m(1/ε2)

)
is superfluous. Moreover, we can go farther. Fol-

lowing Corollary 3.1, we may discard arbitrarily many of the diagonal terms in

the matrix representation of Λq,ε and still retain uniqueness of q.

Remark. Theorem 3.5 is markedly different from existing results for inverse problems in-

volving partial-boundary Dirichlet-to-Neumann measurements in planar domains. Such

existing results, e.g., [67, 69, 70] all deal with problems in which the portion of the bound-

ary where the measurements are not made, Γ1, has a homogeneous Dirichlet or Neumann

condition assigned; the Berry–Dennis set-up has a singular boundary condition here. In

the next chapter, we will examine generalisations of such domains and boundary condi-

tions.
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4

Partial data in two-dimensional

domains with boundary singularities

‘The shortest path between two truths in the real domain passes through the

complex domain.’

– Jacques Hadamard4.1

The problem of inverse recovery from partial boundary data in a two-dimen-

sional domain presents many subtleties when compared with that in three or

more dimensions. As described in the introductory chapter, we aim to prove

a uniqueness theorem in a particular two-dimensional set-up, from data on a

part of the boundary and with a singular boundary condition on the remaining

boundary. Before we detail, in Sections 4.1–4.5, our own problem and the unique-

ness results we have developed towards its resolution, we will run through the

“state-of-the-art” for the existing classes of partial-data problems. Firstly recall

that at a single frequency, the three-dimensional problems are over-determined,

and one may exploit this by applying the Sylvester–Uhlmann “trick” [123] to pro-

4.1The Mathematical Intelligencer 13, 1 (1991).

99



4. Boundary singularities and partial data
��

duce knowledge of every Fourier-transform (of the difference of two Schrödinger

potentials) from specially chosen rapidly-oscillating complex geometric optics

solutions (to the corresponding pair of differential equations with equated bound-

ary data). For more details on the three-dimensional Calderón problem see Sec-

tion 2.4.

The aforementioned trick cannot be used in two dimensions, but instead one

may still find cunningly chosen geometric optics solutions that can be combined

appropriately to form a sufficient argument. One has to utilise all the degrees of

freedom of the problem as it is no longer over-determined. But, there is also the

“toolkit” of complex analysis now at the disposal of the researcher.

Partial data necessitate different methods and the results are weaker. The best

known to the author, from 2015, is due to Imanuvilov, Uhlmann and Yamamoto

[68, Thm. 1.1]. For smooth ∂Ω the Neumann-to-Dirichlet map Λ−1
q,Γ : H−1/2(Γ) �

g �→ u �Γ∈ H1/2(Γ), where



(−∆ + q)u = 0 in Ω,

u = 0 on Γc,

∂νu = g on Γ,

uniquely determines q, for each p > 2, from the Sobolev space W1,p(Ω). This,

by the transformation (1.2.1), determines γ from W3,p(Ω). The proof adapts tech-

niques from one of their earlier papers [67], in which their starting data are the

Dirichlet-to-Neumann map.

Remark. The Neumann-to-Dirichlet operator is, as was mentioned in Chapter 1, the

negative of the inverse of the Dirichlet-to-Neumann operator Λq,Γ. For the Schrödinger

problem, the latter was defined in Section 1.2. For convenience we repeat here that it maps
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H1/2(Γ) � g �→ −∂νu �Γ∈ H−1/2(Γ) where



(−∆ + q)u = 0 in Ω,

u = 0 on Γc,

u = g on Γ.

We will also need to adapt such techniques, and for simplicity of the exposi-

tion we will use this earlier work in our proofs. After reviewing the other litera-

ture we will explain the basic methods involved in these techniques.

Other partial data results for the inverse Schrödinger or conductivity prob-

lems are of a weaker nature. As previously mentioned, in the mid-’80s Kohn

and Vogelius [79, 80] were able to reconstruct a piecewise analytic conductivity

γ from partial boundary data, in 2 or more dimensions. In 1988 Isakov [71] used

Runge-type arguments in dimension no less than 3 to prove a conductivity γ,

known in a neighbourhood of the boundary4.2, is determined by the Dirichlet-to-

Neumann map on Γ ⊂ ∂Ω when it is of the class C2(Ω), except for possessing a

single discontinuity across the interior boundary of said neighbourhood.

In a domain of dimension n ≥ 3 the map of Dirichlet data on the full C2 bound-

ary to Neumann data on a certain sufficiently large subset of the boundary was

shown by Bukhgeim and Uhlmann in 2002 [32] to specify a bounded Schrödinger

potential uniquely, by use of a linear phase function. In the same-dimensional

case with smooth boundary, Kenig, Sjöstrand and Uhlmann [77] found in 2007

that with quadratic phase functions knowledge of Dirichlet data on Γ mapped

to Neumann data on a boundary-ε-neighbourhood of Γc determines q ∈ L∞(Ω)

uniquely, for arbitrarily small, non-empty Γ. In the same year Isakov [72] found

that, in precisely three dimensions, when Γc is either a portion of a plane or a

sphere andΩ is contained in the corresponding half-space or ball then a bounded
4.2According to [26] this is a not-so-unreasonable requirement in many applications.
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potential is uniquely determined. His methods extended those of Sylvester and

Uhlmann [123] and involved reflection of the complex geometric optics solutions

across the planar Γc. The spherical case can then be solved for using a Kelvin

transform of the ball to the half-space.

Finally we mention the recent work of Brown, Marletta and Reyes [26] who

considered in 2016 the related inverse problem for Maxwell’s coefficients in the

time-harmonic electromagnetism equations. They proved that the coefficients,

if known in a neighbourhood of the C1,1 boundary, are determined uniquely

from the class C1,1(Ω) ∩W2,∞(Ω)—with some small technical restrictions—by the

Cauchy data-set on Γ, equivalent in the conductivity, low-frequency limit to the

Dirichlet-to-Neumann map. In all of the above it is assumed that homogeneous

Dirichlet or Neumann conditions are applied on the portion of the boundary

where measurements are not made.

None of the above will help in our original work, except some results from

[26] which we will adapt in Section 4.2, and the ideas in [67, 68]. The latter were

developed for two-dimensional domains, and we describe them now. The main

result of [67] is as follows.

Theorem 4.1. Let Ω ⊂ R2 be a bounded domain, with smooth boundary ∂Ω containing

the non-empty and connected Γ. Suppose q1 and q2 ∈ C2+α(Ω) for some fixed α > 0. If

Λq1,Γ = Λq2,Γ then q1 = q2.

The main ingredients in their proof are the following results. Firstly, let any

x = (x1, x2) ∈ R2 be represented by the complex number z = x1 + ix2. Note

that Φ(z) (z ∈ Ω) is holomorphic if and only if the Cauchy–Riemann equations

∂zΦ(z) = 0 (z ∈ Ω) are satisfied.

Definition 4.1. We say that a holomorphic Φ = ϕ+ iψ onΩ, with continuous extension

to Ω and with ϕ and ψ real-valued is an admissible phase function if the following
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criteria are met:

(i) its set of critical pointsH := {z ∈ Ω | ∂zΦ(z) = 0} does not intersect Γ;

(ii) its critical points are non-degenerate, i.e., ∂2
zΦ(z) � 0 (z ∈ H);

(iii) its imaginary part ψ vanishes on Γc.

Remark. The admissible phase function will be a crucial ingredient in constructing the

complex geometric optics solutions. By holomorphicity, since its critical points are non-

degenerate, an admissible phase function can only have a finite number of critical points,

which we label zk (k = 1, . . . , l). Moreover, by the Cauchy–Riemann equations, z is a

critical point of Φ if and only if it is also a critical point for ϕ or ψ.

Let zk ∈ Ω\Γ (k = 1, . . . , l) and denote by zT the vector (zk)l
k=1 and by cT =

(cT
0 , c

T
1 , c

T
2 ) an element of C3l where c j ∈ Cl. Suppose b ∈ C2

(
Γc

)
is complex-valued,

and consider the following Cauchy problem forΦ = ϕ+iψ, involving the Cauchy–

Riemann equations and partial boundary and point conditions:



∂zΦ(z) = 0 (z ∈ Ω),

Φ(z) = b(z) (z ∈ Γc),
Φ(z)
∂zΦ(z)
∂2

zΦ(z)

 = c,

(4.1)

where by Φ(z)T we mean the vector
(
Φ(zk)

)l
k=1

. We consider the triplet (z, b, c) as

the Cauchy data-set for (4.1).

Lemma 4.1 (Imanuvilov–Uhlmann–Yamamoto, 2010, Prop. 5.1). For each z ∈

(Ω\Γ)l there is a dense subset O of C2(Γc) × C3l. This set satisfies that for each of its

elements (b, c) the Cauchy problem (4.1) with data-set (z, b, c) has at least one solution

Φ ∈ C2(Ω).
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Remark. The intuitive consequence is that given any zk ∈ Ω\Γ (k = 1, . . . , l) we can

“approximately” find a (not-yet-admissible) phase function with critical points zk and

with arbitrarily specified non-zero values and second derivatives at each zk. In fact this

can be improved on the part Γ of the boundary.

Corollary 4.1 (Imanuvilov–Uhlmann–Yamamoto, 2010, Prop. 4.2). Let y0, . . . , ym ∈

Ω and η1, . . . , ηn ∈ Γc, and consider R : D(R) ⊆ C∞0 (Γ) → C3m × R2n given by

R = (r1, . . . , rm, s1, . . . , sn) where

r jg =
(
Φ(yj), ∂zΦ(yj), ∂2

zΦ(yj)
)T

( j = 1, . . . ,m),

s jg =
(
Re
(
Φ(η j)

)
, ∂τRe

(
Φ(η j)

))T
( j = 1, . . . ,n),

and Φ (uniquely) solves the Cauchy problem



∂zΦ(z) = 0 (z ∈ Ω),

Im
(
Φ(z)
)
= 0 (z ∈ Γc),

Im
(
Φ(z)
)
= g (z ∈ Γ),

Re
(
Φ(y0)

)
= 0.

(4.2)

The map R is surjective, i.e., for each initial data-set from C3m ×R2n there is at least one

g ∈ C∞0 (Γ) for which the above Cauchy problem may be solved.

The next result is not explicitly stated in the original work [67], so we present

it here in a self-contained format. Firstly we need to define the operators

∂−1
z g(z) := − 1

π

∫

Ω

g(ξ1 + iξ2)
ξ1 + iξ2 − z

dξ2dξ1,

=: ∂−1
z g(z).

Lemma 4.2 (Imanuvilov–Uhlmann–Yamamoto, 2010, Sec. 3). Let q1 be as in The-
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orem 4.1, and take any admissible phase function Φ. Then, for each τ > 0, there is a

solution to 
(−∆ + q1)u = 0 in Ω,

u = 0 on Γc

given by

v1(z; τ) = eτΦ(z)(a(z) + a0(z)/τ
)
+ eτΦ(z)(a(z) + a1(z)/τ) + eτRe[Φ](z)ṽ1(x; τ), (4.3)

where the following conditions hold.

(i) The amplitude function a(·) ∈ C2(Ω) is non-trivial, holomorphic on Ω, its real

part vanishes on Γc and a = ∂za = 0 inH ∩ ∂Ω; such an a(·) is called admissible.

(ii) The remainder ‖ṽ1(· ; τ)‖L2(Ω) = o(1/τ) as τ→ +∞.

(iii) The functions a0 and a1 are holomorphic and satisfy the τ-independent boundary

condition

(a0 + a1) �Γc=
M̃1

4∂zΦ
+

M̃3

4∂zΦ
. (4.4)

The functions M̃1 := ∂−1
z [aq1] −M1 and M̃3(z) := ∂−1

z [a(z)q1(z)] −M3(z), where

M1 and M3 are any polynomials satisfying, for j = 0, 1 and 2,

∂ j
z(∂
−1
z [a(z)q1(z)] −M1(z)) = 0, (4.5)

∂ j
z(∂
−1
z [a(z)q1(z)] −M3(z)) = 0. (4.6)

Remark. The amplitude function a(·) is independent of q.

Corollary 4.2. For any admissible phase function Φ and τ > 0 we can find the same

amplitude function a(·) as in Lemma 4.2 so that

v2(x; τ) = e−τΦ(z)(a(z) + b0(z)/τ) + e−τΦ(z)(a(z) + b1(z)/τ) + e−τRe[Φ](z)ṽ2(x; τ) (4.7)
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solves (−∆ + q2)u = 0,u �Γc= 0, with

(i) ‖ṽ2(· ; τ)‖L2(Ω) = o(1/τ) as τ→ +∞, and

(ii) holomorphic b0 and b1 satisfying

(b0 + b1) �Γc= −
M̃2

4∂zΦ
− M̃4

4∂zΦ
. (4.8)

Here M̃2 := ∂−1
z [aq2]−M2 and M̃4(z) := ∂−1

z [a(z)q2(z)]−M4(z), where M2 and M4

are any polynomials satisfying, for j = 0, 1 and 2,

∂ j
z(∂
−1
z [a(z)q2(x)] −M2(z)) = 0, (4.9)

∂ j
z(∂
−1
z [a(z)q2(x)] −M4(z)) = 0. (4.10)

The final key result relates the values of q := q1 − q2 at the points in H to a

special integral linear in q.

Lemma 4.3. Suppose we have an admissible phase function Φ and functions a, a0, a1, b0

and b1 satisfying (i),(4.4) and (4.8), where M1,M2,M3 and M4 satisfy (4.5), (4.6), (4.9)

and (4.10). Denote by HΦ the Hessian matrix, and by H the set of critical points, of Φ.

Let q1, q2 ∈ C2+α(Ω) for some α > 0, set q = q1 − q2, and suppose that the Dirichlet-to-

Neumann maps Λq1,Γ and Λq2,Γ are equal. Then, for any τ > 0,

∑

z∈H

|a(z)|2 cos(2τIm[Φ(z)])
|det(Im[HΦ(z)])|1/2

q(z) =

1
8π

∫

Ω

[(
M̃1 − M̃2

∂zΦ
− 4(a0 + b0)

)
a +
(

M̃3 − M̃4

∂zΦ
− 4(a1 + b1)

)
a
]

q.

Remark. This last lemma is established firstly by proving the identity
∫
Ω

qv1v2 = 0 for

any complex geometric optics solutions of the form in Lemma 4.2 and Corollary 4.2, then

carefully analysing the resulting integrals after substituting from (4.3) and (4.7).
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In light of these lemmata the proof of Theorem 4.1 proceeds roughly as fol-

lows. Fix a point x0 ∈ Ω, and using Corollary 4.1 and Lemma 4.1 find a phase

function Φ0 with a non-generate critical point at x0. Since Φ0 might have some

critical points on Γ, one needs to correct it, by adding a certain εΦ1, chosen using

Lemma 4.1. This introduces new critical pointsHε = {zε,1, . . . , zε,l(ε)} in Ω, and by

the implicit function theorem, for sufficiently small ε, one of these, xε → x0, is the

only critical point of Φε = Φ0 + εΦ1 in a certain neighbourhood of x0 and is more-

over non-degenerate. It can be seen that Φε is an admissible phase function. To

apply Lemma 4.3 one then needs to construct an admissible amplitude function

aε, which is achieved again by Corollary 4.1. Then applying Lemma 4.3 one finds

that q = q1 − q2 satisfies a weighted sum of the form

l(ε)∑

k=1

cε,k cos(c̃ε,kτ)q(zε,k) = c̃ε,0.

In particular, the above process ensures that cε,k̂ � 0 where k̂ is the index of zε,k̂ =

xε. Varying τ > 0 then shows that the only way the sum can hold is if q(xε) = 0,

implying q(x0) = 0.

In concluding Chapter 3 we discussed the application of Theorem 3.3 to es-

tablish a uniqueness result for the geometrically symmetric Inverse Problem I′

based on a Berry–Dennis-type boundary condition and the Marletta–Rozenblum

decomposition. In this chapter we will explain a different approach to a related

class of inverse problems. These will involve the same type of boundary singular-

ity as in the previous symmetric geometry. The underlying differential expression

is of Schrödinger form, and we will adapt the Imanuvilov–Uhlmann–Yamamoto

techniques to establish the first results for our operator.

We will outline the problem in Section 4.1, and in the following three sec-

tions we will prove a partial uniqueness result at one frequency. This is a con-
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ditional uniqueness result: starting in either of the following two cases with the

Dirichlet-to-Neumann map on part of the boundary, (i) knowledge of the sin-

gular boundary condition forces uniqueness of the Schrödinger potential, and

(ii) vice versa. Our proof utilises unique continuation and density arguments—

developed in Section 4.2—applied alongside an analogue to Lemma 4.3, proved

from complex geometric optics considerations in Section 4.3.

We prove the partial uniqueness in Section 4.4; it may alternatively be inter-

preted as a so-called cloaking result at a single frequency. We also illustrate there

the cloaking of the potential (by a suitable choice of boundary condition) in a sim-

ple numerical example, coded in MATLAB. Finally, in Section 4.5, we prove that

by moving to full frequency spectral Dirichlet-to-Neumann data we are able to

establish total uniqueness, of the boundary conditions and the potential.

4.1 Problem definition

Throughout the rest of this chapter the set-up is as follows.

Definition 4.2 (Specially decomposable domain). We say that a bounded two-dimensional

simply connected open setΩ is a specially decomposable domain if it has C2,1 bound-

ary and can be written as

Ω = int
(
Ω1 ∪Ω0

)
,

where Ω1 is a half-disc of radius 1, Ω1 ∩ Ω0 = ∅ and the straight portion Γ1 of the

boundary of Ω1 is contained entirely in the boundary of Ω, i.e., Γ1 ⊂ ∂Ω.

Remark. This decomposition will underlie a special case of Glazman decomposition [58]

that we will use. The operator int returns the interior of a subset of Rn. See Figure 4.1.

Definition 4.3 (Boundary accessibility). Letting Ω be a specially decomposable do-

main, specify the further boundary decomposition ∂Ω = Γ ∪ Γc, Γ ∩ Γc = ∅ such that
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Γ1 ⊂ Γc, and Γ and Γc are both relatively open. The boundary portions Γ and Γc are

called, respectively, accessible and inaccessible. We identify4.3 Ω1 with the set of the

same name defined in Section 3.5 [p. 90], so that the mid-point of Γ1 is the point 0.

Definition 4.4 (Singular boundary condition). The Berry–Dennis boundary con-

dition on Ω is the requirement on a given u : Ω→ C that

BD f [u] := (u − f∂νu) �Γc= 0,

where f is a bounded, real-valued, a.e. absolutely continuous function possessing one

strictly simple zero at the point 0 and satisfying that for every ε0 > 0 we have 0 either not

in the range of f �Γc\{x : |x|<ε0}, or an isolated point in this range. For the same technical

reasons as [99] and in Section 3.5 we will need f to be linear on the straight edge Γ1:

under the same coordinate convention as in that section, we require there be ε > 0 such

that

f (y) = −εy
(
y ∈ (−1, 1)

)
. (4.1.1)

Such an f is called an admissible boundary function.

0

Γ1

Γ0

Γ0

Γ
Ω1

Ω0

Figure 4.1: an example domain Ω = int(Ω1 ∪Ω0)

Remark. Here, ∂ν denotes the outward-oriented normal derivative on ∂Ω. Note we do

allow f to “jump” to 0, or be identically 0 in a relatively open portion of Γc. As explained
4.3This might require rescaling the coordinates.
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in Section 3.5, this type of boundary condition was first examined by Berry and Dennis

[21]. When paired with a boundary condition on Γ it is seen to produce a non-self-adjoint

operator from a second-order differential expression; this operator possesses adjoint that

is symmetric and has a one-dimensional deficiency space.

Notice that we denote by Γ0 the (possibly disjoint) portion of the boundary

given by Γc\Γ1, and by Γi the interface between Ω0 and Ω1, i.e., setting relint to

mean the interior relative to the topology on the line,

Γi := relint
(
Ω1 ∩Ω0

)
.

Definition 4.5 (Admissible potential). A function q ∈ L∞(Ω) is called an admissible

potential (for a Schrödinger differential operator) if it is locally radially symmetric about

0, i.e., there is a δ > 0 such that in the ball r < δ we have ∂ϑq(r, ϑ) = 0.

We briefly recapitulate (and rewrite more conveniently) the key points of the

analysis from [99] given in Section 3.5. Consider an admissible potential q, and

over the Hilbert space L2(Ω1) define the operator

D(L) := {u ∈ L2(Ω1) | (−∆ + q)u ∈ L2(Ω1),BD f [u] �Γ1= 0 = u �Γi},

Lu := (−∆ + q)u �Ω1 .

This operator is the adjoint of a symmetric operator (see [99, Sec. 3] and (1.2.2)),

and one may impose an extra boundary condition at 0 to yield a self-adjoint re-

striction of L, in the following fashion:

Definition 4.6 (Self-adjoint boundary condition). Take4.4

u0(r, ϑ) = e−ϑ/ε sin
(
ε−1 log(r)

)
, (4.1.2)

4.4Hopefully without forsaking the reader’s sympathy, we continue the notational abuse men-
tioned in the Remark on page 93, namely u0(r, ϑ) = u0(r)e−ϑ/ε and v0(r, ϑ) = v0(r)e−ϑ/ε.
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which is a solution to 

−∆u = 0 in Ω1,

u − f∂νu = 0 on Γ1,

u = 0 on Γi.

The boundary condition defined at 0 in [99, Eq. (22)] is the requirement on u that its

Lagrange bracket with u0 vanishes at 0:

[u,u0](r;ϑ) := r
(
u∂ru0 − (∂ru)u0

)
(r, ϑ)→ 0 (r→ 0).

In fact, we will impose a generalised version. Consider the solution to the differential

equation with only the Berry–Dennis boundary condition on Γ1—i.e., without the Dirich-

let condition on Γi—which is linearly independent to u0, given by:

v0(r, ϑ) = e−ϑ/ε cos
(
ε−1 log(r)

)
.

We set an admissible self-adjoint boundary condition, with real parameter β, as fol-

lows. With an abuse of notation,

β[u] := lim
r→0

[u,u0+βv0](r, ϑ) = lim
r→0

r
(
u∂r(u0+βv0)− (∂ru)(u0+βv0)

)
(r, ϑ) = 0. (4.1.3)

It can be seen
(
see [99, Eq. (24)] and (3.5.3)

)
that application of a boundary

condition of the form (4.1.3) is enough to restrict the operator L to the self-adjoint

realisation

D(L′) := D(L) ∩ {u ∈ L2(Ω1) | β[u] = 0}, (4.1.4)

L′u := (−∆ + q)u �Ω1 , (4.1.5)
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whose spectrum is simple and accumulates only at ±∞. By exactly the same

reasoning as in [99], explained here on Page 92, we have an orthogonal decom-

position of L′:

Proposition 4.1. Over the Hilbert space L2(Ω1), the operator L′ is given by the orthog-

onal sum

L′ = L′0 ⊕
∞⊕

n=1

Ln,

where L′0 and Ln (n ≥ 1) are the ordinary differential operators defined respectively in

(3.5.5) and (3.5.6).

Remark. The presence of the potential q in L′ is not problematic for either self-adjointness

of the operator or discreteness of the spectrum. The former is easily established by repeat-

ing the direct sum trick of [99, Eq. (24)] explained in Section 3.5—or appealing to the

abstract result [75, Thm. V.4.3] which states that a bounded, symmetric perturbation

leaves self-adjointness unchanged. The latter follows from Weyl’s Theorem [75, Thm

IV.5.35], which states that adding a relatively compact operator leaves the essential spec-

trum unchanged; since the spectrum of L′ with q = 0 comprises isolated eigen-values of

finite multiplicities, its essential spectrum is empty. Since q ∈ L∞(Ω) multiplication by q

is automatically L′-compact.

One may then define the self-adjoint operator

D(T) := {u ∈ L2(Ω) | (−∆ + q)u ∈ L2(Ω),BD f [u] �Γc= u �Γ= β[u] = 0},

Tu := (−∆ + q)u, (4.1.6)

possessing purely discrete spectrum accumulating only at ±∞ [99, Sec. 5]. For

convenience, define the set Ω∗ := Ω\{0}.

Proposition 4.2. Any u ∈ D(T) is given by v + w with v ∈ D(L′) and supp(w) ⊆ Ω∗.

Proof. Define the smooth cut-off function µ to be 1 in 1
2Ω1 and 0 inΩ0, to transition
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smoothly between the two regions, and to be radially symmetric in Ω1. Then set

v := µu and w := (1 − µ)u and check the appropriate boundary conditions. �

We may now define the input and output data for our inverse problem. Let

Ω be specially decomposable, f an admissible boundary function that specifies a

Berry–Dennis boundary condition, q an admissible potential and β a self-adjoint

boundary condition. Consider the Dirichlet-to-Neumann map

Λq, f ,β : h �→ −∂νv �Γ (4.1.7)

where h is any admissible function on Γ such that v solves



(−∆ + q)v = 0 in Ω,

v − f∂νv = 0 on Γc,

β[v] = 0 (at 0),

v = h on Γ.

Inverse Problem II. Given the Dirichlet-to-Neumann map Λq, f ,β, recover the potential

q everywhere inΩ, the function f on Γc and the value of β that parameterises the boundary

condition (4.1.3) at 0.

The problem of uniqueness we wish to examine is therefore the following. For

j = 1, 2 let qj, fj and β j be, respectively, admissible potentials, boundary functions,

and self-adjoint boundary conditions. Then we want to determine under which

conditions

Λq1, f1,β1 = Λq2, f2,β2 (4.1.8)

implies that

q1 = q2, f1 = f2 and β1 = β2.
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Resolvent Hypothesis. Without a loss of generality, when considering the above ques-

tion of uniqueness we may assume that both of the operators T1 and T2—corresponding

respectively to the triples (q1, f1, β1) and (q2, f2, β2)—have 0 in their resolvent set. To see

why, suppose either (or both) has 0 in their spectrum. Then we may simply shift their

spectra, which are discrete, by adding the same sufficiently small constant to both q1 and

q2 so that the resulting operators now both have 0 in their resolvent set. The question of

uniqueness is left unchanged by the shift. We will assume the hypothesis holds for the

rest of the chapter.

4.2 Unique continuation and density

We will need certain analogous results to those in [26], adapted to our singu-

lar case. The following lemmata firstly detail useful conditions for when one

may extend solutions of the differential equation uniquely, and secondly establish

density, in the full space of solutions, of those satisfying the singular boundary

condition.

Lemma 4.4 (Unique continuation principles for a Schrödinger-type equation). Let

q be admissible and Ω′ ⊂ Ω, with Ω′ a non-empty, bounded domain in R2 such that

∂Ω′ ∈ C2 and Ω\Ω′ is connected. Recall that Ω∗ = Ω\{0}.

(i) If u ∈ H2
loc(Ω

∗) satisfies (−∆+q)u = 0 inΩ, and there is an open ball B with B ⊂ Ω

and u �B= 0, then u = 0.

(ii) If Γ is smooth, u ∈ H2
loc(Ω

∗\Ω′) and (−∆ + q)u �Ω\Ω′= 0, and the boundary condi-

tions

u �Γ= 0 = ∂νu �Γ

are satisfied, then u �Ω\Ω′= 0.
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Proof. Part (i) follows standard methods, for example [84, Cor. 1.1]. Part (ii) is

consequential to extending u by 0 through Γ and applying (i). �

Lemma 4.5. Under the hypotheses of Lemma 4.4 define the sets

K := {v ∈ H2
loc(Ω

∗) | (−∆ + q)v �Ω= 0},

K̃ := {g ∈ K | BD f [g] �Γc= 0 = β[g]}.

Then K̃ is dense in K under the topology induced by ‖ · ‖L2(Ω′).

Proof. We adapt the proofs of [26, Prop. 5.1-2]. Let v ∈ K such that 〈g, v〉Ω′ = 0

for every g ∈ K̃; we aim to show v = 0. By the Resolvent Hypothesis we may

uniquely define V ∈ D(T) to solve TV = χΩ′v, where χA(x) = 1 (x ∈ A); 0 (x � A).

Now we make some technical definitions (see Fig. 4.2): the sub-domain Ω2 ⊂

Ω\Ω′ is taken to have boundary ∂Ω2 = Γ ∪ Γ′ ∪ Γ̃ ∈ C2,1 such that Γ, Γ′ and Γ̃ are

all disjoint. Here Γ̃ continuously extends Γ in ∂Ω2 ∩ ∂Ω at both its endpoints, Γ′

is relatively open and entirely contained in Ω\Ω′, and 0 � ∂Ω2. This means Ω2

is a neighbourhood of Γ, and its complement is separated from Γ, i.e., Ω\Ω2 ∩ Γ.

Take a mollifier µ onΩ2 to be 1 in a neighbourhood of Γ, 0 in a neighbourhood of

Γ′ and transition smoothly between these neighbourhoods (including part of Γ̃).

Assume without loss of generality that the level curves of µ are orthogonal to Γ̃.

Consider g ∈ K̃ ⊂ H2(Ω2). We wish to make a decomposition of g into two

parts: g0 ∈ D(T), and g1 ∈ H2(Ω2) which is supported in Ω2 and whose “be-

haviour” on Γ is equivalent to that of g. Firstly extend f to a bounded, a.e.

continuous function in the interior of Ω. By the trace theorem [137, Thm. 8.7]

(g − f∂νg) �Γ can be extended by 0 to F̃2 := (g − f∂νg) �∂Ω∈ H1/2(∂Ω). Take any

F2 ∈ H1/2(∂Ω2) which agrees with F̃2 on Γ ∪ Γ̃ and is 0 on Γ′. Define F1 = µg �∂Ω2∈

H3/2(∂Ω2).
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0

Γ
Ω

Ω′ Ω2Γ′

Γ̃

Γ̃

Γc

Figure 4.2: an example admissible domain Ω containing Ω′ and Ω2

The inverse trace theorem [137, Thm. 8.8] guarantees the existence of g1 ∈

H2(Ω2) such that g1 �∂Ω2= F1 ∈ H3/2(∂Ω). Furthermore, since

(g1 − F2)/ f �∂Ω2 = (µg − F2)/ f

=



(
g − (g − f∂νg)

)
/ f on Γ;

µg/ f on Γ̃;

0 on Γ′

=



∂νg ∈ H1/2(Γ) on Γ;

µg/ f ∈ H3/2(Γ̃) on Γ̃;

0 ∈ H1/2(Γ′) on Γ′

∈ H1/2(∂Ω2),

we can choose this g1 to satisfy ∂νg1 �∂Ω2= (g1 − F2)/ f ∈ H1/2(∂Ω2). This ensures

that ∂νg1 �Γ′= 0; since g1 �Γ′= F1 �Γ′= 0 we may extend this g1 by 0 into Ω, and

note that, by construction, (g1 − f∂νg1) �Γ= (g − f∂νg) �Γ, i.e., it is a candidate g1

for encoding the behaviour of g on Γ.

Now define g0 = g−g1. By checking the boundary conditions on Γ, Γ̃ and Γc\Γ̃,

we see that g0 ∈ D(T). Therefore, for any g ∈ K̃,

0 = 〈g, v〉L2(Ω′)
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= 〈g0,TV〉L2(Ω) + 〈g1,TV〉L2(Ω)

= 〈Tg0,V〉L2(Ω) +

∫

Ω2

g1(−∆ + q)V

= 〈(−∆ + q)g,V〉L2(Ω) +

∫

Γ∪Γ′∪Γ̃
(−g1∂νV + V∂νg1)

= −
∫

Γ

g∂νV. (4.2.1)

Here, to reach the third line we applied the self-adjointness of T, whilst for the

fourth line we applied Green’s formula twice to the integral term, noting g1 and

V ∈ H2(Ω2), then recomposed g from g0 and g1 inside the inner product. The final

line was achieved by noting that BD f [V] = 0 = BD f [g] on Γ̃, g = ∂νg = 0 on Γ′,

and V ∈ D(T) means that V = 0 on Γ.

Now observe that the L2(Γ)-closure of {g �Γ | g ∈ K̃} is in fact L2(Γ). This is

because for any given basis ψn of L2(Γ) we can solve



(−∆ + q)g = 0 in Ω,

BD f [g] = 0 on Γc,

β[g] = 0 at 0,

g = ψn on Γ,

as 0 ∈ �(T). Thus, from (4.2.1), we see ∂νV �Γ= 0. As V �Γ= 0, the unique

continuation from Lemma 4.4(ii) implies V �Ω\Ω′= 0 since (−∆ + q)V �Ω\Ω′= 0.

In particular V �∂Ω′= ∂νV �∂Ω′= 0, and so

〈v, v〉L2(Ω′) =

∫

Ω′
v(−∆ + q)V

=

∫

Ω′
V(−∆ + q)v +

∫

∂Ω′
(−v∂νV + V∂νv)

= 0.

By the unique continuation in Lemma 4.4(i) we deduce that v �Ω= 0. �

117



4. Boundary singularities and partial data
��

4.3 A weighted sum of q-values

In this section we will prove an analogue to Lemma 4.3 [67, Prop. 4.1] in the

case of the Dirichlet-to-Neumann map (4.1.7)—with Berry–Dennis and Marletta–

Rozenblum boundary conditions—as opposed to the more standard map from

Section 2.4 and the introduction of this chapter, which has a homogeneous Dirich-

let condition on Γc. The complex geometric optics solutions from Lemma 4.2 and

Corollary 4.2 will fit our needs, as we can “approach” such solutions using those

with the singular boundary conditions, thanks to the density from Lemma 4.5.

As in Lemmata 4.4 and 4.5, we consider Ω′ ⊂ Ω to be non-empty, bounded

domains in R2 with Ω\Ω′ connected and ∂Ω′ ∈ C2. However we are forced,

for the same technical reasons as in [67], to accept the restriction ∂Ω ∈ C∞. Let

q1, q2 be admissible potentials, fix α > 0, and assume the additional restrictions

q1, q2 ∈ C2+α(Ω) and q1 = q2 in Ω\Ω′.

Proposition 4.3. Suppose we have an admissible phase functionΦ and functions a, a0, a1, b0

and b1 satisfying (i),(4.4) and (4.8), where M1,M2,M3 and M4 satisfy (4.5), (4.6), (4.9)

and (4.10). Denote by HΦ the Hessian matrix and by {x1, . . . , xl} the critical points of

Φ. Let q1, q2 ∈ C2+α(Ω) for some α > 0 such that q1 = q2 in Ω\Ω′, set q = q1 − q2,

and suppose that the Dirichlet-to-Neumann maps (defined the same way as in (4.1.7)) are

equal, but with the same f and β, i.e., Λq1, f ,β = Λq2, f ,β. Then, for any τ > 0,

∑

z∈H

|a(z)|2 cos(2τIm[Φ(z)])
|det(Im[HΦ(z)])|1/2

q(z) =

1
8π

∫

Ω

[(
M̃1 − M̃2

∂zΦ
− 4(a0 + b0)

)
a +
(

M̃3 − M̃4

∂zΦ
− 4(a1 + b1)

)
a
]

q. (4.3.1)

To prove Proposition 4.3 we will need an integration-by-parts formula. Since

elements of D(T) are not necessarily in H2(Ω)—in fact, expanded in polar co-
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ordinates, the function sin(ε−1 log r) + β cos(ε−1 log r) may be C2-extended to an

element of D(L′), and this linear combination clearly fails to be in H2 at 0—we

see that Green’s formula cannot be applied. We circumvent this by analysing a

certain line integral, which turns out to be equivalent to a Lagrange bracket.

Lemma 4.6. As before, take admissible domain Ω and subset Ω′ ⊂ Ω. Suppose Ω\Ω′

is connected and ∂Ω′ ∈ C2. For j = 1, 2 let qj be admissible potentials and fj admissible

boundary functions, and suppose that the latter have the same behaviour on Γ1, i.e., ε1 =

ε2. Choose an admissible self-adjoint boundary condition β. Let uj be any respective

solutions to 

(−∆ + qj)uj = 0 in Ω,

BD f j[uj] = 0 on Γc,

β[uj] = 0 at 0.

(4.3.2)

Then, if Λq1, f1,β = Λq2, f2,β, we have

∫

Ω

(q1 − q2)u1u2 =

∫

∂Ω

(u2∂νu1 − u1∂νu2). (4.3.3)

Proof. Take a δ-radius half-disc Ωδ ⊂ Ω1 for some 0 < δ < 1, centred at 0, and

define Ω0,δ = Ω\Ωδ. Set Γδ and Γ1,δ to be, respectively, the straight and semi-

circular parts of the boundary of Ωδ. Then

∫

Ω

(q1 − q2)u1u2 =

∫

Ωδ

(q1 − q2)u1u2

︸��������������︷︷��������������︸
= 0

+

∫

Ω0,δ

(−u1∆u2 + u2∆u1)

=

∫

∂Ω0,δ

(u2∂νu1 − u1∂νu2)

=

∫

∂Ω

(u2∂νu1 − u1∂νu2) −
∫

∂Ωδ

(u2∂νu1 − u1∂νu2)
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=

∫

∂Ω

(u2∂νu1 − u1∂νu2) +
∫

Γδ

(
1
f1
− 1

f2

)
u1u2

−
∫

Γ1,δ

(u2∂νu1 − u1∂νu2)

=

∫

∂Ω

(u2∂νu1 − u1∂νu2) −
∫

Γ1,δ

(u2∂νu1 − u1∂νu2), (4.3.4)

where we applied identity of the qj outside Ω′, identity of fj on Γ1, and equality

of the Dirichlet-to-Neumann maps (4.1.8) to eliminate various terms, and Green’s

formula over Ω0,δ to achieve the second line. Thus the lemma follows if the sec-

ond integral on the right-hand side of (4.3.4) converges to 0 as δ→ 0.

Observe that

∫

Γ1,δ

(u1∂νu2 − u2∂νu1) =
∫ π/2

−π/2
δ(u1∂ru2 − u2∂ru1)(δ, ϑ)dϑ

=

∫ π/2

−π/2
[u1,u2](δ, ϑ)dϑ.

Moreover, by expanding the determinant and calculating [v0,u0](r, ϑ) = ε−1e−2ϑ/ε,

one can easily see that

[u1,u2](r, ϑ) = εe2ϑ/ε

∣∣∣∣∣∣∣∣∣
[u1, v0] [u1,u0]

[u2, v0] [u2,u0]

∣∣∣∣∣∣∣∣∣
(r, ϑ). (4.3.5)

Now apply [uj,u0 + βv0](r, ϑ) → 0 as r → 0 to see that the columns in the right-

hand side of (4.3.5) become collinear as r→ 0. The lemma follows. �

Remark. The identity (4.3.5) is usually written for solutions of ordinary differential

equations; see, for example, [53, (2.8-9)], [94] or [81, Lem. 1].

Proof of Proposition 4.3. We consider all solutions uj ( j = 1, 2) of (4.3.2) with fj = f ,
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β j = β. By Lemma 4.6 we see

∫

Ω

(q1 − q2)u1u2 = 0.

Note the hypothesis q1 − q2 = 0 outside Ω′. Clearly vj ∈ K—see (4.3) and (4.7)—

and uj ∈ K̃, so using Proposition 4.5 we deduce from (4.3.3) that

∫

Ω

(q1 − q2)v1(· ; τ)v2(· ; τ) = 0 (τ > 0).

We have now arrived at precisely [67, Eq. (4.3)]. From here on our proof exactly

follows that of [67, Prop. 4.1]. �

4.4 Single-frequency cloaking

We establish uniqueness for potentials already known in a neighbourhood of the

boundary.

Theorem 4.2 (Uniqueness of potential). If q1, q2 ∈ C2+α(Ω) for some fixed α > 0,

q1 = q2 in Ω\Ω′, f is an admissible boundary function, β ∈ R, and the Dirichlet-to-

Neumann maps are equal—i.e., Λq1, f ,β = Λq2, f ,β—then in fact q1 = q2 in all of Ω.

Proof. The proof is now exactly analogous to the proof of Theorem 4.1 [67, Thm.

1.1], with the only difference being replacing Lemma 4.3 [67, Prop. 4.1] by our

Proposition 4.3. �

Theorem 4.3 (Uniqueness of boundary condition). Consider admissible boundary

functions f1 and f2. Let q ∈ C2+α(Ω) for fixed α > 0, let β ∈ R, and suppose the

Dirichlet-to-Neumann maps are equal: Λq, f1,β = Λq, f2,β = Λ. Then f1 = f2.
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Proof. Let g ∈ H1/2(Γ), and choose functions u1 and u2 solving



(−∆ + q)uj = 0 in Ω,

uj − fj∂νuj = 0 on Γc,

β[uj] = 0 at 0,

uj = g on Γ.

By hypothesis ∂νu1 = ∂νu2 = −Λg. Then uj ∈ H2
loc(Ω

∗), so with the definitions

u = u1 − u2 and f = f1 − f2 we see



(−∆ + q)u = 0 in Ω,

u = ∂νu = 0 on Γ,

u − f∂νu = f1∂νu2 − f2∂νu1 on Γc.

The unique continuation principle Lemma 4.4(ii) immediately implies u = 0 in Ω

or, in other words, u1 = u2, whence ∂νu1 = ∂νu2 on Γc. Thus, along Γc,

f1 = u1/∂νu1 = u2/∂νu2 = f2,

as required. �

We observe, thus, that fixing either the potential q or boundary condition f

uniquely determines the other, respectively f or q, from the Dirichlet-to-Neumann

map, provided β is a priori known. However, a crucial component in the proof of

the q-uniqueness is Proposition 4.3. Applying this without the condition f1 = f2

is insufficient to achieve the uniqueness. Similarly, without the condition q1 = q2,

the proof of the f -uniqueness fails. Thus, in fact, we have the following result:

Corollary 4.3 (Single-frequency cloaking). Suppose we are given a Dirichlet-to-Neu-

mann map of type (4.1.7) for fixed β ∈ R, and we know the admissible pairs (q1, f1) and

(q2, f2) gave rise to it, with both qj ∈ C2+α(Ω). Then q1 = q2 if and only if f1 = f2.
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(-1,1) (1,1)

(1,-1)(-1,-1)

(−∆ + qj)u = 0

u = 0

u = 0

∂νu = Λqj,kju ∂νu = kju

Figure 4.3: the underlying problem for the numerical example in Appendix D
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Figure 4.4: a MATLAB plot of q2 from the code in Appendix D

Figure 4.3 summarises an example two-dimensional problem for which we

have performed numerical calculations to illustrate Corollary 4.3. In fact, we do

not even require that f produce a Dirichlet-singularity, and the example prob-
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lem shows this in action. In the figure, Dirichlet-to-Neumann measurements

are made on the West edge of the square, Dirichlet conditions are applied to the

North and South edges, and a Robin condition of the form u = f∂νu is applied

on the East edge, with constant f (y) = k−1
j . Although we lack the singular bound-

ary condition of the Berry–Dennis regime, we are able to construct from the pair

(q1, k1) = (0, 0) a distinct pair (q2, k2), both of which, by our calculations, yield the

same Dirichlet-to-Neumann map Λq,k. In Figure 4.4 we have plotted q2.

4.5 Full-frequency uniqueness

The cloaking result in Section 4.4 is, we emphasise, valid only at a single fre-

quency: we proved it at λ = 0, but a non-zero, real λ can easily be translated

away in the potential. In this section we will establish uniqueness of q, f and β

when one has access to full-frequency Dirichlet-to-Neumann data.

Consider the spectral Schrödinger problem



(−∆ + q)u = λu in Ω,

u = g on Γ,

u − f∂νu = 0 on Γc,

[u,u0 + βv0] = 0 at 0.

(4.5.1)

As in (4.1.7) this defines the Dirichlet-to-Neumann operatorΛq−λ, f ,β : g �→ −∂νu �Γ.

For notational simplicity we will write this as Λ(λ) = Λq−λ, f ,β. We now reformu-

late Inverse Problem II to include full-spectrum data.

Inverse Problem II′. Given Λ(λ) at every frequency λ ∈ R, recover the potential q,

singular boundary condition f and self-adjointness-imposing β.

In the case of symmetric geometry Ω = Ω1 knowledge of the Dirichlet-to-
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Neumann operator is sufficient to prove a full uniqueness theorem for inverse

problem II′. This is because, owing to the poles of Λ being eigen-values of the as-

sociated operator, these data include the following negative eigen-value asymp-

totics:

Lemma 4.7. Take the operator L′ defined in (4.1.4), and label its eigen-values by λ1
n so

that λ1
−1 < 0 ≤ λ1

0. Then as n→ −∞ we have

λ1
n ∼ −e−2ε(ϑ0+tan−1 β)e−2εnπ. (4.5.2)

Here ϑ0 = tan−1(A/B) ∈ (−π/2, π/2] is known, where

A = lim
t→+∞

e−tws(t), B = lim
t→+∞

e−twc(t), (4.5.3)

and the non-trivial functions ws and wc satisfy, as t→ 0,

[
ws(t), t1/2 sin

(
ε−1 log(t)

)]
→ 0,

[
wc(t), t1/2 cos

(
ε−1 log(t)

)]
→ 0 (4.5.4)

and solve −w′′(t) − (1/4 + 1/ε2)t−2w(t) = −w(t) on the interval (0, |λ|1/2).

Proof. We slightly sharpen the proof of [99, Eq. (41)], correcting some small typo-

graphical errors and stating more precisely the asymptotics in the last few steps.

For the convenience of the reader we present our proof here in its entirety. The

first crucial consideration is that we may assume, without a loss of generality, that

q = 0, since by [75, Thm. V.4.10] a non-zero q perturbs the spectrum by at most

‖q‖L∞(Ω1), leaving (4.5.2) unchanged, whilst Weyl’s Theorem [75, Thm. IV.5.35]

ensures the spectrum with a non-zero q is still discrete.

From Proposition 4.1 we note the orthogonal decomposition L′ = L′0 ⊕ ⊕
∞
n=1Ln.

The spectrum of L′ is the union of the spectra of its constituent ordinary differen-

tial operators. Since all the Ln have positive spectrum, the only negative eigen-
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values of L′ are those of L′0. The latter are generated by the eigen-value problem



−1
r

(
ru′(r;λ)

)′
− 1
ε2r2 u(r;λ) = λu(r;λ)

(
r ∈ (0, 1)

)
,

u(1) = 0,

[u(· ;λ),u0 + βv0](0+) = 0.

So, let λ < 0. We transform the above problem by setting κ = |λ|1/2, t = κr

and w(t) = r1/2u(r;λ). Moreover define ũ0(t) = r1/2u0(r) = r1/2 sin
(
ε−1 log(r)

)
and

ṽ0(t) = r1/2v0(r) = r1/2 cos
(
ε−1 log(r)

)
. Then we easily calculate



−w′′(t) −
(1
4
+

1
ε2

) 1
t2 w(t) = −w(t)

(
t ∈ (0, κ)

)
,

w(κ) = 0,

[w, ũ0 + βṽ0](0+) = 0,

(4.5.5)

where [w, w̃](t) = w(t)w̃′(t)−w′(t)w̃(t) is the Lagrange bracket for the new problem.

We have [w, w̃](t) = κ−1[u, ũ](r), where w̃(t) = r1/2ũ(r).

Observe that, because log(κ−1t) = log(t) − log(κ), we have

ũ0(t) = κ−1/2t1/2
(
v0(κ)u0(t) − u0(κ)v0(t)

)
,

ṽ0(t) = κ−1/2t1/2
(
v0(κ)v0(t) + u0(κ)u0(t)

)
.

Thus any eigen-function w(t) for the operator generated by (4.5.5) must satisfy, as

t→ 0,

(v0 + βu0)(κ)[w(t), t1/2u0(t)] − (u0 − βv0)(κ)[w(t), t1/2v0(t)]→ 0.

Therefore, by the hypotheses of the lemma and the fact ws and wc are a funda-

mental system for the differential equation in (4.5.5), such an eigen-function w is

given by the linear combination

(v0 + βu0)(κ)ws − (u0 − βv0)(κ)wc. (4.5.6)
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Moreover, to be an eigen-function, w must satisfy w(κ) = 0. So we seek large,

positive zeros of (4.5.6).

One can calculate without great difficulty that the differential equation in

(4.5.5) is non-oscillatory at +∞—crudely, the t−2-term will play a negligible part

when t is large—so there are constants A and B such that as t→ +∞we have

ws(t) = Aet
(
1 + o(1)

)
,

wc(t) = Bet
(
1 + o(1)

)
.

Thus, asymptotically, the desired zeros approach the zeros in κ̃ of the function

A(v0 + βu0)(κ̃) − B(u0 − βv0)(κ̃). (4.5.7)

Rearranging, we find that such κ̃ solve

(A + Bβ) cos
(
ε−1 log(κ̃)

)
+ (Aβ − B) sin

(
ε−1 log(κ̃)

)
= 0,

i.e., they can be enumerated as κ̃n (n < 0) and satisfy

ε−1 log(κ̃n) = −nπ + tan−1

(
A + Bβ
B − Aβ

)
= nπ + tan−1

(A
B

)
+ tan−1(β).

By interlacing there is precisely one zero of w between each κ̃n, so we label the

former zeros as κn in such a way that κ−1 is the smallest negative zero of w. As

n→ −∞we have κn = κ̃n

(
1 + o(1)

)
. Thus

λ1
n = −κ2

n = −e−2ε(A/B+tan−1 β)e−2εnπ
(
1 + o(1)

)
,

which concludes the proof. �

Remark. In fact, repeating the above calculation for the domain Ω = RΩ1 shows that
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the negative eigen-value asymptotics are independent of the choice of R > 0, which is to

be expected, since the negative eigen-values arise from the singular boundary condition,

not the shape of the domain. Intuitively, the eigen-functions increasingly “concentrate”

their oscillations near 0 as the spectral parameter becomes more negative4.5.

We now prove that in the case of a general domain Ω = int
(
Ω1 ∪Ω0

)
, as de-

fined in the opening paragraphs of Section 4.1, the very same negative eigen-

value asymptotics hold. For the technical reason of ensuring a definite sign for a

particular Dirichlet-to-Neumann operator we will require that f �Γ0= 0. Our ap-

proach is to show that the counting functions of the eigen-values asymptotically

agree. To avoid ambiguity we specify the enumeration of the eigen-values λn and

λ1
n of, respectively, T and L′ to be such that λ0 and λ1

0 are the smallest non-negative

eigen-values of each operator.

To prove our negative eigen-value asymptotics we will need upper and lower

bounds on the difference between the counting functions of the negative eigen-

values for, respectively, T and L′. The lower bound will follow from a “pseudo-

mode” argument involving a fairly elementary asymptotic analysis of functions—

constructed from the true eigen-functions for L′—that approximate some eigen-

functions of T. Our proof of the upper bound requires us to consider a pencil

of Dirichlet-to-Neumann operators on Γi, the terminology and underlying results

for which we will set up in two lemmata. The interface Dirichlet-to-Neumann

operators are defined as follows: for j = 0, 1,

Λ j(λ) : h �→ −∂ν jwj,

4.5We will make this statement more rigorous in the proof of Theorem 4.4.
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where wj solve the boundary-value problems



−∆w0 = λw0 in Ω0,

w0 = 0 on Γ0 ∪ Γ,

w0 = h on Γi,

(4.5.8)



−∆w1 = λw1 in Ω1,

w1 = f∂ν1w1 on Γ1,

β[w1] = 0 at 0,

w1 = h on Γi,

(4.5.9)

and ∂ν j denotes the outward directed normal derivative for the subdomain Ω j

(i.e., ∂ν1 �Γ1= ∂ν = ∂ν0 �Γ0∪Γ, but ∂ν0 �Γi= −∂ν1 �Γi ).

Remark. It is clear that a real number λ is an eigen-value for T if and only if the pencil of

operators Λ1(λ) + Λ0(λ) has a non-trivial kernel K (λ), since any function in this kernel

will correspond to a pair (w0,w1) solving, respectively, (4.5.8) and (4.5.9), for which the

normal derivatives match on the interface, i.e., ∂ν0w0 = −∂ν1w1 on Γi.

To conduct our analysis we bring into play the L2(−π/2, π/2)-basis Θn on Γi,

defined by

Θn(ϑ) =



e−ϑ/ε

2ε sinh(π/2ε)
(n = 0),

kn(nε cos(nϑ) − sin(nϑ)) (n even),

kn(cos(nϑ) + nε sin(nϑ)) (n odd).

These Θn are normalised versions of those in Section 3.5, so that their L2(−π2 ,
π
2 )-

norms are 1. Since the sufficiently negative eigen-values of T can only arise from

the presence of the singular boundary condition (regular boundary conditions

would yield a spectrum that is bounded below), any function h =
∑∞

n=0 hnΘn ∈

K (λ) for λ
 0 is either identically 0 or has non-trivial first component. It follows

that for λ 
 0 such that K (λ) � {0} we may normalise the non-trivial kernel
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element h so that h0 = 1.

In the basis Θn on Γi the map Λ1(λ) takes the form of an infinite diagonal

matrix, represented in the block partitioned form


m0(λ) 0T

0 M(λ)

 . (4.5.10)

Here m0(λ) := −ϕ′0(1;λ)/ϕ0(1;λ) is the Weyl–Titchmarsh m-function for the L2(0, 1)-

classical-limit-circle ordinary differential problem


−1

r
d
dr

(
r
dϕ0

dr
(r;λ)

)
− 1
ε2r2ϕ0(r;λ) = λϕ0(r;λ)

(
r ∈ (0, 1)

)
,

r
(
ϕ0∂r(u0 + βv0) − (∂rϕ0)(u0 + βv0)

)
(r;λ) → 0 (r→ 0),

the infinite column-vector of zeros is denoted by 0, and M(λ) is the diagonal sub-

matrix whose n-th diagonal term (n = 1, 2, 3, . . .) is the L2(0, 1)-classical-limit-point

Weyl–Titchmarsh m-function mn(λ) := −ϕ′n(1;λ)/ϕn(1;λ) for the ordinary differ-

ential problem

− 1
r

d
dr

(
r
dϕn

dr
(r;λ)

)
+

n2

r2 ϕn(r;λ) = λϕn(r;λ)
(
r ∈ (0, 1)

)
. (4.5.11)

In the same basis, Λ0(λ) lacks this diagonal structure. Nonetheless we represent

it in the block partitioned form


a(λ) b(λ)T

b(λ) C(λ)

 .

Lemma 4.8. The pencil of Dirichlet-to-Neumann maps Λ1 +Λ0 is an analytic, operator-

valued function on C\R, and the quadratic form 〈(Λ1 + Λ0)(λ)h, h〉L2(Γi) has imaginary

part of the same sign as Im(λ). The derivative of the pencil is a compact operator on any

Sobolev space Hk(Γi).
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Remark. We can think of Λ1 + Λ0 as an operator-valued Herglotz function.

Proof. Owing to Proposition 2.1, we know that any Dirichlet-to-Neumann map,

for the conductivity problem (2.4.2) with Dirichlet boundary conditions, is ana-

lytic. Applying exactly the same argument to a general Schrödinger problem with

any self-adjoint boundary condition on part of the boundary and a Dirichlet-to-

Neumann map defined on the remaining boundary shows that Λ0 and Λ1 are

both analytic, whence so is their sum.

To establish the half-plane property, we need to examine the imaginary parts

of both

〈Λ1(λ)h, h〉Γi and 〈Λ0(λ)h, h〉Γi .

The latter involves straight-forward integration by parts and proceeds like the

proof of Proposition 2.2. Using Green’s formula and the solution w0 to (4.5.8),

〈Λ0(λ)h, h〉Γi =

∫

Γi

(−∂ν0w0)w0

= −
∫

Ω0

(
(∆w0)w0 + |∇w0|2

)

= λ

∫

Ω0

|w0|2 −
∫

Ω0

|∇w0|2. (4.5.12)

This clearly has imaginary part of the same sign as that of λ.

On the other hand, integration by parts fails for the solutions of (4.5.9) (re-

call the solutions u0 and v0 when λ = 0). Instead, decompose the solution as

in the proof of Lemma 4.6, effectively treating −λ and −λ as, respectively, the

potentials4.6 q1 and q2. Letting w1 solve (4.5.9), there are real constants ωn (n =

0, 1, 2, . . .) so that Wn(r, ϑ) = ωnUn(r)Θn(ϑ) form the terms in a series expansion:

w1 =
∑∞

n=0 Wn =: W0+W. The term W arises from the regular part of the problem,

4.6The key difference between these two proofs is that before, we had q1 = q2 in some neigh-
bourhood of the boundary.
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and is in H2(Ω1) [99], and moreover all the Wn are pairwise orthogonal in L2(Ω1).

Hence, by Green’s formula,

(λ − λ)
∫

Ω1

w1w1 = (λ − λ)
∫

Ω1

W0W0 −
∫

Ω1

(
(∆W)W −W∆W

)

= ω2
0(λ − λ)

∫ 1

0
rdr |U0(r)|2

∫ π/2

−π/2
dϑ |Θ0(ϑ)|2

−
∫

∂Ω1

(
(∂ν1W)W −W∂ν1W

)

= ω2
0(λ − λ)

∫ 1

0
rdr |U0(r)|2 +

∫

Γi

(
W∂ν1W − (∂ν1W)W

)
. (4.5.13)

Without loss of generality we scale ω0 to be 1, set 0 < δ < 1 and examine

(λ − λ)
∫ 1

δ

rdr U0(r)U0(r) = U0(1)U′0(1) −U′0(1)U0(1) − δ
(
U0(δ)U′0(δ) −U′0(δ)U0(δ)

)

=

∫

Γi

(
W0∂1W0 − (∂1W0)W0

)
− [U0,U0](δ). (4.5.14)

Clearly the lemma will follow if we can show that [U0,U0](δ) vanishes as δ → 0,

since by monotone or dominated convergence the integral on the left-hand side

of (4.5.14) tends to
∫ 1

0
r|U0(r)|2dr; combining this with (4.5.13) yields

Im(λ)
∫

Ω1

|w1|2 = Im
(
〈Λ1(λ)h, h〉L2(Γi)

)
. (4.5.15)

Similarly to Lemma 4.6, we relate the boundary behaviour of U0 to that of the

solutions u0 and v0 for λ = 0 by applying the elementary identity

[U0,U0] = −ε

∣∣∣∣∣∣∣∣∣
[U0,u0] [U0, v0]

[U0,u0] [U0, v0]

∣∣∣∣∣∣∣∣∣
, (4.5.16)

since u0 and −εv0 form a fundamental system satisfying [u0, v0] = −ε−1. Thus,

since both U0 and its conjugate in its place satisfy [U0,u0+βv0](0+) = 0, we see that

the columns in the right-hand side of (4.5.16) become collinear as its argument
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approaches 0. The lemma is proved. �

Lemma 4.9. Let λ be less than the infima of the spectra of each Lj ( j = 1, 2, 3, . . .) and

of the Laplace operator in Ω0 with homogeneous Dirichlet boundary conditions; let z be

from the cut plane Cc := C\[0,+∞). Then both (M + C)(λ) and (M + C)(λ + z) are

invertible, and the inverse (M + C)(λ + z)−1 is given by

(
V + z(M + C)(λ)−1

∫

[λ,λ+z]
(M + C)′

)−1

(M + C)(λ)−1

Proof. Lemma 4.8 implies that M + C is differentiable anywhere in λ + Cc, and its

derivative is compact. By the fundamental theorem of calculus4.7,

(M + C)(λ + z) = (M + C)(λ) +
∫

[λ,λ+z]
(M + C)′.

Hence, the lemma will be established upon showing that (M + C)(λ) and subse-

quently V + (M + C)(λ)−1
∫

[λ,λ+z]
(M + C)′ are invertible. The first will be achieved

by checking the definiteness of the sign of (M + C)(λ), the second will be a conse-

quence of the analytic Fredholm theorem [116, p. 201].

By (4.5.12) we see that Λ0(µ) ≤ 0 for any µ ≤ 0, from which C(λ) ≤ 0 follows

immediately. Furthermore, the diagonal entries of M(λ) are precisely mn(λ); see

(4.5.11) and the preceding discussion. Owing to a remark in [99, p. 4], for n =

1, 2, 3, . . ., we have mn(λ) = −i
√
−λJ′n(i

√
−λ)/Jn(i

√
−λ), to which we may apply

[44, Eqs. 10.6.2, 10.19.1] to show by an algebraic calculation that with fixed λ < 0,

as n→∞,

mn(λ) ∼ −n.

We deduce that (M + C)(λ) < 0, and its invertibility follows.

4.7The version for operator-valued analytic functions, of course.
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Consider, now, the analytic operator-valued function

A (z) := (M + C)(λ)−1
∫

[λ,λ+z]
(M + C)′ (z ∈ Cc).

Since
∫

[λ,λ+z]
(M+C)′ = (M+C)(λ+z)− (M+C)(λ) we may apply the reasoning that

led to equation (2.4.4) to see that this integral is compact. Hence, since (M+C)(λ)−1

is bounded, we observe that A (z) is compact for every z ∈ Cc. Furthermore, if

z ∈ C\R then ker
(
(M + C)(λ + z)

)
= {0}, since if this were not the case we would

have a non-trivial function on the interface Γi, meaning (by the Remark on page

129) there would be an eigen-function for T with a non-real eigen-value, which is

forbidden by the self-adjointness of T. Indeed, this is also contradictory for any

z < 0 since neither M nor C can give rise to eigen-values less than λ. Therefore, by

the analytic Fredholm theorem [116, p. 201], the following two cases are mutually

exhaustive:

(i)
(
V +A (z)

)−1
exists for no z ∈ Cc;

(ii)
(
V +A (z)

)−1
exists for every z ∈ Cc.

Clearly

(M + C)(λ + z) = (M + C)(λ)
(
V + (M + C)(λ)−1

∫

[λ,λ+z]
(M + C)′

)

= (M + C)(λ)
(
V +A (z)

)
,

so if z ≤ 0 then both sides are invertible. This excludes case (i), and the lemma is

proved. �

Theorem 4.4 (Negative eigen-value asymptotics for general domain). Let Ω be

specially decomposable, q an admissible potential, f an admissible boundary function that

is additionally 0 outside Γ1, and β ∈ R parameterise a self-adjoint boundary condition
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at 0. Then the operator T defined in (4.1.6) has discrete spectrum accumulating only at

±∞, and—with ϑ0 defined above equation (4.5.3)—its negative eigen-values possess the

asymptotic expansion

λn ∼ −e−2ε(ϑ0+tan−1 β)e−2nπε (n→ −∞).

Proof. For discreteness and accumulation points of the spectrum of T we refer

to [99, Sec. 5]. The remainder of the proof is split into two parts, in which we

asymptotically bound the counting function for the negative eigen-values λn of T

from, in turn, above and below by that for the negative eigen-values λ1
n of L′. We

may again without loss of generality take q = 0 in our calculations.

1. Bound from below. Take any smooth cut-off function µ on Ω that is supported

and radially symmetric inΩ1, and takes value 1 in 1
2Ω1 (in particular, ∂νµ �Γ1= 0).

Note that the partial derivatives of µ are supported in the half-annulus A :=

Ω1\ 1
2Ω1. Let n < 0, and choose eigen-function ϕn for L′ at the eigen-value λ1

n,

such that it has L2-norm ‖ϕn‖L2(Ω1) = 1. We will show that these ϕn are “pseudo-

modes” for T, i.e.,

∥∥∥(T − λ1
n)µϕn

∥∥∥
L2(Ω)

‖µϕn‖L2(Ω)
=: εn → 0 (n→ −∞). (4.5.17)

By the spectral theorem, denoting the eigen-values of T as λ j and the correspond-

ing normalised eigen-functions as ψ j ( j ∈ Z), we may write

‖(T − λ1
n)µϕn‖2 =

∑

j∈Z

(λ j − λ1
n)2|〈µϕn, ψ j〉L2(Ω)|2.

Suppose |λ j − λ1
n| > εn for every j ∈N. Then

ε2
n‖µϕn‖2L2(Ω) > ε

2
n

∑

j∈Z

|〈µϕn, ψ j〉L2(Ω)|2 = ε2
n‖µϕn‖2L2(Ω),
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a contradiction. Thus there is a subsequence λ jn satisfying |λ jn − λ1
n| ≤ εn (n =

−1,−2,−3, . . .). Hence if εn → 0 (n → −∞) we will have established the lower

bound.

Firstly observe that, by choice of µ and the fact ϕn ∈ D(L′), we have

µϕn − f∂ν(µϕn) = µ(ϕn − f∂νϕn) − f (∂νµ)ϕn = 0,

implying µϕn is indeed in D(T). Next we calculate that, clearly,

(T − λ1
n)µϕn =


0 in Ω\A,

−(∆µ)ϕn − 2∇µ · ∇ϕn in A.

If we can show that ϕn and ∇µ · ∇ϕn go to 0 uniformly in A then (4.5.17) will

follow.

Set κn :=
√
−λ1

n, and define the (more conveniently notated) Hankel functions

H±z = Jz ± iYz, where, as is standard, Jz and Yz are the Bessel functions of, respec-

tively, the first and second kind. Since λ1
n < 0 we know that the eigen-functionsϕn

for L′ come from the �′0 operator in the decomposition (3.5.7). For any eigen-value

λ of �′0, the corresponding eigen-function is a constant times the sum

Ji/ε(r
√
λ)Yi/ε(

√
λ) − Yi/ε(r

√
λ)Ji/ε(

√
λ);

see the last equation of [99, p. 4]. Thus ϕn is some constant multiple of

φn(r, ϑ) := e−ϑ/ε
(
H+i/ε(irκn)H−i/ε(iκn) −H−i/ε(irκn)H+i/ε(iκn)

)
=: e−ϑ/εHn(r).

It follows that, to normalise φn asymptotically, we need to know the leading-
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order behaviour, as n→ −∞, of

1

ε sinh
(
π
ε

)
∫

Ω1

|φn|2 =
∫ 1

0
|Hn(r)|2rdr

=

∫ κn

0

∣∣∣H+i/ε(it)H−i/ε(iκn) −H−i/ε(it)H
+
i/ε(iκn)

∣∣∣2 tdt
κ2

n
. (4.5.18)

One may easily calculate from [44, Eq. 10.17.5-6] that, for x > 0,

H±i/ε(ix) ∼
√

2
π

e−i(1±1)π/4±π/2εe∓xx−1/2 (x→ +∞). (4.5.19)

Expanding the absolute value in the right-hand side of (4.5.18), we see

κ2
n

∫ 1

0
|Hn(r)|2rdr

|H−i/ε(iκn)|2
=

=

∫ κn

0
|H+i/ε(it)|

2

1 +

∣∣∣∣∣∣
H−i/ε(it)

H−i/ε(iκn)

∣∣∣∣∣∣
2 ∣∣∣∣∣∣

H+i/ε(iκn)

H+i/ε(it)

∣∣∣∣∣∣
2

− 2Re


H−i/ε(it)

H−i/ε(iκn)

H+i/ε(iκn)

H+i/ε(it)


 tdt.

By (4.5.19), as n → −∞, the term in { }’s converges pointwise to 1, and more-

over for sufficiently large n—denoting the greatest such n by n0 < 0—this term is

bounded by 4. By the latter it follows that for n ≤ n0 the integrand of the right-

hand side is bounded by 4t|H+i/ε(it)|
2, which, owing to (4.5.19), is certainly inte-

grable over (0,∞). Hence dominated convergence applies, yielding, as n→ −∞,

∫ 1

0
|Hn(r)|2rdr ∼

∣∣∣H−i/ε(iκn)
∣∣∣2
∫ κn

0

∣∣∣H+i/ε(it)
∣∣∣2 tdt
κ2

n

∼
∫ ∞

0

∣∣∣H+i/ε(it)
∣∣∣2 tdt · κ−2

n

∣∣∣H−i/ε(iκn)
∣∣∣2

∼
2
∫ ∞

0

∣∣∣H+i/ε(it)
∣∣∣2 tdt

πeπ/ε
κ−3

n e2κn ,
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from which we find

∫

Ω1

|φn|2 ∼
2ε(1 − e−2π/ε)

∫ ∞
0

∣∣∣H+i/ε(it)
∣∣∣2 tdt

π︸��������������������������������︷︷��������������������������������︸
=: η2

· κ−3
n e2κn =: c2

n.

According to this definition of cn we have—up to sign—the pointwise asymp-

totics ϕn ∼ c−1
n φn as n → −∞. More explicitly, we can calculate from (4.5.19) that,

pointwise, as n→∞, we have

eϑ/εφ(r, ϑ) ∼ −2i
π

r−1/2κ−1
n e(1−r)κn .

Hence

eϑ/εϕn(r, ϑ) ∼ − 2i
πη

r−1/2κ1/2
n e−rκn ,

and since within A we have 1/2 < r < 1 it is clear that ϕn �A→ 0 uniformly as

n→ −∞.

Now we examine

∇µ(r, ϑ) · ∇ϕn(r, ϑ) = |∇µ(r, ϑ)||∇ϕn(r, ϑ)| cos
(

arg∇µ(r, ϑ) − arg∇ϕn(r, ϑ)
)

= |∂rµ(r, ϑ)∂rϕn(r, ϑ)| cos
(1

r
(∂ϑµ(r, ϑ) − ∂ϑϕn(r, ϑ)

)

= |∂rµ(r, ϑ)∂rϕn(r, ϑ)| cos
(
∂ϑϕn(r, ϑ)

r

)
.

It is clear from our prior calculations that ∂rϕn ∼ c−1
n ∂rφn. Now recall [44, Eq.

10.6.2] that d
dzH±ζ (z) = ζz H±ζ (z) −H±ζ+1(z), from which we derive

eϑ/ε∂rφn(r, ϑ) =
i

rε

(
H+i/ε(irκn)H−i/ε(iκn) −H−i/ε(irκn)H+i/ε(iκn)

)

− iκn

(
H+1+i/ε(irκn)H−i/ε(iκn) −H−1+i/ε(irκn)H+i/ε(iκn)

)
. (4.5.20)
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Again it is easy to calculate [44, Eq. 10.17.5-6] that

H±1+i/ε(ix) ∼
√

2
π

e−i(1±3)π/4±π/2εe∓xx−1/2,

from which we may show that the first and second terms in the right-hand side

of (4.5.20) are asymptotically equivalent to—i.e., they “∼”—respectively,

2
rπε

e(1−r)κnr−1/2κ−1
n and − 2

π
e(1−r)κnr−1/2.

It follows, after substituting these into (4.5.20) then dividing by cn, that

eϑ/ε∂rϕn(r, ϑ) ∼ − 2
πη

r−1/2κ3/2
n e−rκn (n→ −∞),

and therefore, as desired, ∇µ ·∇ϕn must go to 0 uniformly inA. The lower bound

on the difference between the counting functions for the negative eigen-values of

T and L′ is immediate.

2. Bound from above. Our technique here is quite different from the asymptotic

analysis of part 1. Instead we will use the pencil of the Dirichlet-to-Neumann

operators on Γi from the sub-domains either side of the interface, and analyse

non-triviality of its kernel, which occurs precisely when T has an eigen-value.

Counting zeros of an associated function will then provide us with the upper

bound.

The normalisation h0 = 1 ensures that λ 
 0 is an eigen-value if and only if

there is h such that


m0(λ) + a(λ) b(λ)T

b(λ) M(λ) + C(λ)




1

h

 = 0.
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After expanding the product we find that this can only happen if b(λ) = −
(
M(λ)+

C(λ)
)
h. Thanks to Lemma 4.9 we see that M(λ) + C(λ) is invertible for λ 
 0.

Defining h(λ) = −
(
M(λ) + C(λ)

)−1
b(λ) and h = (1,hT)T we observe that λ is a

sufficiently negative eigen-value for T if the following expression vanishes:

E(λ) :=
〈(
Λ1(λ) + Λ0(λ)

)
h(λ), h(λ)

〉
L2(Γi)

= m0(λ) + a(λ) − b(λ)T
(
M(λ) + C(λ)

)−1
b(λ).

Thanks to Lemma 4.8 both Λ j are Herglotz in quadratic form, and analytic as

operator-valued functions; in particular any sub-block is analytic. Furthermore

Λ0 arises from a problem on a bounded domain with regular boundary condi-

tions. Therefore we see that a(λ), b(λ) and C(λ) lack poles when λ is sufficiently

negative or non-real. Moreover for the same λ the coefficient a(λ) is never 0,

b(λ) is not identically the zero vector—though it could have some zero entries—

and C(λ) is never null. Moreover the Herglotz property of Λ1 + Λ0 ensures that

Im
(
E(λ)
)
Im(λ) ≥ 0.

The invertibility of M(λ) + C(λ) for non-real λ follows from Lemma 4.9, and

is enough to ensure analyticity of E away from R, and establish that E is, like

Λ1 + Λ0, Herglotz. Now, for λ 
 0 we know M(λ) is of fixed sign, so we see that

the poles of E and m0 are identical; by the interlacing of the poles and zeros of

Herglotz functions4.8, we have shown that between any two sufficiently negative

poles of m0 there is a zero of E and hence at most one eigen-value of T. The upper

bound on the difference between the eigen-value-counting functions for T and L′

follows immediately. �

We are now in a position to prove our full-spectral-data uniqueness theorem.

4.8See the final remarks of Appendix A.
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Theorem 4.5. LetΩ be specially decomposable,Ω′ a sub-domain ofΩ, q1 and q2 admis-

sible potentials satisfying q1 = q2 in Ω/\Ω′, f1 and f2 admissible boundary functions

for Berry–Dennis boundary conditions supported in the straight edge Γ1, and β1, β2 ∈ R

self-adjoint boundary conditions at 0. Consider the full-spectrum Dirichlet-to-Neumann

operators Λ j(λ) : h �→ −∂νuj (h ∈ H1/2(Γ), λ ∈ R, j = 1, 2) defined by



(−∆ + qj)uj(· ;λ) = λuj(· ;λ) in Ω,

uj − fj∂νuj = 0 on Γc,

[uj,u0 + βv0](0) = 0,

uj = h on Γ.

If Λ1 = Λ2 then q1 = q2, f1 = f2 and β1 = β2.

Proof. Denote by Λ the equal maps Λ1 = Λ2. Since we know the behaviour of

Λ on the real line, we know where its poles lie, ergo we know where the eigen-

values λn of T are. In particular, by Theorem 4.4 we may deduce that, as n→ −∞,

we have

− 2nπ
log(−λn)

→ ε−1
1 = ε

−1
2 =: ε−1,

which determines f1 = f2 completely on Γ1, where the latter are supported. The

constant ϑ0 is fixed and may in principle be calculated (see Lemma 4.7), so in turn

we may calculate from Theorem 4.4 that, as n→ −∞,

−
log(−λn) + 2ε(nπ + ϑ0)

2ε
→ tan−1(β1) = tan−1(β2) =: tan−1(β).

Finally, we apply Theorem 4.2 to the triples (q1, f , β) and (q2, f , β), with equality

of Λ1(λ) with Λ2(λ) for any fixed λ ∈ R, to deduce that q1 = q2 in Ω. �
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5

Further work

‘I was born not knowing and have only had a little time to change that here and

there.’

– Richard P. Feynman5.1

The work carried out above has explored some curious and interconnected

issues. We highlight these in this final chapter, and simultaneously discuss ideas

for directions in which the work could be continued.

Firstly, for one-dimensional pencils, how does the choice of underlying Hilbert

space affect the boundary data we are allowed? In Chapter 3 we considered the

differential equation

−1
r

(
ru′(r;λ)

)′
+ q(r)u(r;λ) = λw(r)u(r;λ),

and observed that over the Hilbert space L2(0, 1; rdr) the dimension of its solution

space can change when λ is varied. This is in juxtaposition to the more standard

5.1Perfectly Reasonable Deviations from the Beaten Track: The Letters of Richard P. Feynman,
Michelle Feynman (2005).
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choice of Hilbert space with weight rw(r)dr, over which the solution space dimen-

sion is invariant in λ. The concepts can easily be generalised to more arbitrary

operators T0 and T1 over some Hilbert space, and one could consider applying

the techniques of boundary triples5.2 to determine more abstract formulations of

boundary data for pencils of the form T0 + λT1.

Secondly, the assumptions in Chapter 3 that both q and w must be locally

bounded except near 0 seem somewhat artificial, though they do at least capture

the essence of the singularity at 0. The author hopes that they could be lifted to

at least L1
loc(0, 1], as this is the standard space for coefficients of Sturm–Liouville

problems on (0, 1), regular at 1 and singular at 0.

Thirdly, the new interpolation theorem in Section 3.3 uses a technique specific

to that particular classical limit-circle case to establish that the m-function has an

appropriate Laplace transform representation for it to be interpolatable by the

Rybkin–Tuan method. One would hope that such a specific m-function is not

the only limit-circle candidate for such interpolation. Indeed, the author believes

that the A-amplitude and boundary control methods would likely yield stronger

interpolation results, if explored more deeply.

In Chapter 4 we considered a half-disc domain embedded at the boundary of

some general domain. Moreover the Berry–Dennis Dirichlet-point boundary con-

dition was linear and the Schrödinger potential was radial in a neighbourhood of

the singularity. These three conditions have an artificial flavour, and were im-

posed only to make the given calculations possible. The author believes that the

conditions can be relaxed. Perhaps by a perturbation-type argument, the Berry–

Dennis condition should require at most a simple zero at the singular point and

the potential could be simply continuous near the point. Moreover by taking a

new coordinate system in a neighbourhood of the point one should, without too

5.2See, for example, [130, 42, 25] and their references for an introduction to these ideas.
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much difficulty, be able to adapt the techniques of that chapter to a Dirichlet-point

on a general C1 part of the boundary.

Taking more Dirichlet-points could complicate matters, as the negative eigen-

values arising from each would become interspersed, rendering the eigen-value

asymptotics argument from Theorem 4.4 useless as part of a proof of full unique-

ness. However one could in principle consider the situation of a variable Dirichlet-

point, and request that its location on the inaccessible boundary also be deter-

mined by the Dirichlet-to-Neumann measurements.

In proving the cloaking result of Chapter 4 we made use of the relatively re-

cent techniques in the paper [67]. This was to keep the exposition simpler in this

work, however in principle one ought to be able to improve the strength of the

partial uniqueness of the potential by adapting the more recent methods in [68].

The full-frequency uniqueness result, Theorem 4.5, takes as input data the

operator-valued function Λ(λ), considered over λ ∈ R. This probably exceeds

necessity. If we do a simple variables count, we find that q is a function of two

variables, f a function of one, and β a “function” of zero variables, since it is just

a real number. For each fixed λ ∈ R (provided we avoid the Dirichlet spectrum,

whereΛ is singular) the operatorΛ(λ) has a Schwartz kernel5.3 which is a function

of two variables. Clearly its value for one choice of λ is insufficient to recover

(q, f , β), but, at least in principle, one should be able to prove uniqueness from

knowing merely Λ �{λ1,λ2} for fixed λ1 � λ2; indeed, it should be overdetermined,

as is Calderón’s problem in three or higher dimensions.

In the entirety of this thesis, we have paid little attention to the question of

stability—of course, it comes into play when considering numerical examples,

such as that described in Section 4.4 and Appendix D—and none whatsoever to

5.3See, e.g., [124, Sec. 0.2].
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the issue of existence of solutions to the inverse problems. Needless to say, these

are not trivial issues, and a more complete solution of these inverse problems

should include results regarding them. The author hopes this will be achieved in

due course.

Finally, there is also the question of the physical significance of our version of

the Dirichlet-point. Starting with admissibleΩ, f , q and β, the set-up defining the

operator T in (4.1.6) is given by



(−∆ + q)v(· ;λ) = λv(· ;λ) in Ω,

v(· ;λ) − f∂νv(· ;λ) = 0 on Γc,

[v(· ;λ),u0 + βv0] = 0 at x0,

v(· ;λ) = 0 on Γ.

Formally taking the inverse of the transformation (1.2.1), we write q = γ−1/2∆γ1/2,

u = γ−1/2v and g = γ1/2 − f∂νγ1/2, and find that



−∇ ·
(
γ∇u(· ;λ)

)
= λγu(· ;λ) in Ω,

gu(· ;λ) − fγ1/2∂νu(· ;λ) = 0 on Γc,

[γ1/2u(· ;λ),u0 + βv0] = 0 at x0,

u = 0 on Γ.

A priori, there is no reason to believe g need not have simple zeros of Berry–

Dennis type, although the so-called “Neumann-points”5.4 are not problematic

from the perspective of self-adjointness [21]. Assuming it is well behaved every-

where, then, we have the equivalent Berry–Dennis boundary condition u − f̃∂νu.

Physically, this is a prescription of a relationship on Γc between the current and

voltage, which decays (asymptotically linearly) at one point to a condition solely

on the voltage. We are not aware of any physical examples of this sort of be-

5.4These are where the Robin condition degenerates to a Neumann condition.
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haviour, but this could simply be because physicists and engineers have not yet

looked for them. The author’s opinion is that discovery of such examples is cer-

tainly a worthwhile endeavour, not only from his desire for mathematical com-

pleteness but also for the novel material properties that they might embody.

In conclusion, we hope firstly to have elucidated for the reader some interest-

ing mathematics and described clearly for them some novel techniques in analy-

sis. We also hope that in the last few paragraphs we have impressed on the reader

that these ideas are but the first timid steps into another area of mathematics, with

the potential for both physical application and to be a bountiful source of exciting

and fascinating problems. Of course5.5, if we have seen further, it is by standing

on the shoulders of giants. Yet, whilst we but played on this grand sea-shore, we

had and still have lying before us the great undiscovered ocean of truth.

5.5To paraphrase Newton.
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Appendices

‘I am a brain, Watson. The rest of me is a mere appendix.’

– Sir Arthur Conan Doyle5.6

A Herglotz functions

The classical theory of analytic functions in the upper half-plane C+ = {x+ iy | x ∈

R, y > 0} with non-negative imaginary part has been ascribed to various people,

notably Nevanlinna, Pick, and Herglotz. We follow a tradition in mathematical

physics—to which the author feels a strong connection—in referring to such func-

tions by the latter name, and intend no insult to the others who worked on them.

In this appendix we collect some useful facts concerning these functions. The

proofs can be found scattered in various works, though two detailed references

on the topic are due to Gesztesy and Tsekanovskii [57], and (more classically)

Aronszajn and Donoghue [8]. In what follows we refer more directly to [57].

Herglotz functions are usually extended by symmetry to C− = C+, i.e., if h is a

Herglotz function then its extension is defined by

h(z) = h(z) (z ∈ C−). (A.1)
5.6Sherlock Holmes, in The Adventure of the Mazarin Stone, Strand Magazine (1921).
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We note the following two results, which are both crucial yet trivial.

Proposition A1. Let h1 and h2 be Herglotz functions. Then h1 + h2 is Herglotz, and if

h2(C+) ⊆ C+, then h1 ◦ h2 is also Herglotz.

Corollary A1. As a consequence, for any complex a11, a12, a21 and a22, defining a =

(aij)2
i, j=1 and satisfying a∗Ja = J where J = (0,−1; 1, 0), we have

ha(λ) :=
a21 + a22h(λ)
a11 + a12h(λ)

(λ ∈ C+)

defines a Herglotz function whenever h is Herglotz.

Remark. In particular, a can be taken to be


sin(α) cos(α)

cos(α) − sin(α)

 .

Arguably the most important fact about Herglotz functions is their Lebesgue–

Stieltjes integral representation:

Theorem A1. If h is Herglotz then there is a real-valued Borel measure ρ onR satisfying

the growth condition
∫ ∞
−∞(1 + t2)−1dρ(t) < ∞ such that

h(λ) = A + Bλ +
∫ ∞

−∞

( 1
t − λ

− t
1 + t2

)
dρ(t) (λ ∈ C+), (A.2)

and is absolutely convergent as an integral. The constants are given by

A = Re
(
h(i)
)
,

B = lim
r→+∞

h(ir)
ir
≥ 0.

Conversely, any function h specified on C+ by A ∈ R, B ≥ 0 and an admissible measure

ρ via the formula (A.2) is a Herglotz function.
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Proof. See the references for [57, Thm. 2.2(iii)]. �

Remark. The term t
1+t2 simply increases the decay rate in the integrand. If

∫ ∞
−∞

dρ(t)
1+|t| < ∞

then the formula collapses to

h(λ) = Ã + Bλ +
∫ ∞

−∞

dρ(t)
t − λ

(λ ∈ C+),

where Ã = A −
∫ ∞
−∞

tdρ(t)
1+t2 .

Part of the statement in Theorem A1 may be written in a constructive form:

Theorem A2. The measure ρ may be calculated from its Herglotz function h:

ρ([x, y]) + ρ((x, y)) =
1
iπ

lim
ε↘0

∫ y

x

(
h(s + iε) − h(s − iε)

)
ds.

Proof. See the references for [57, Thm. 2.2(iv)]. �

Corollary A2. If ρ is continuous in an interval I ⊂ R, then for all x, y ∈ I with x < y

we have, more explicitly,

ρ(y) − ρ(x) =
1
iπ

lim
ε↘0

∫ y

x

(
h(s + iε) − h(s − iε)

)
ds. (A.3)

Remark. We are thinking of ρ in two ways, both as a measure and as a real-valued

function of bounded variation. In the former sense we interpret the integral in the manner

of Lebesgue, whilst we view the integral in the latter sense as being of Riemann–Stieltjes

type.

Considering a closed and densely-defined self-adjoint operator5.7 T on a Hilbert

space H and λ ∈ C+ ⊂ C\σ(T), for any u ∈ H the form h(λ) = 〈(T − λ)−1u,u〉H sat-

isfies

Im
(
〈(T − λ)−1u,u〉H

)
=

∫ ∞

−∞

Im(λ)
|t − λ|2

d〈Etu,u〉H,

5.7See Section 2.1.
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and is easily seen to be analytic in λ, making it a Herglotz function. It follows

without much difficulty that dρ(t) = d〈Etu,u〉H and A −
∫ ∞
−∞

tdρ(t)
1+t2 = 0 = B. This

links directly to Stone’s formula [116, Thm. VII.3], which states

E[x,y] + E(x,y) = lim
ε↘0

1
iπ

∫ y

x

(
(T − s − iε)−1 − (T − s + iε)−1

)
ds,

where the limit is strong, i.e., in H-norm when acting on any fixed u ∈ H.

Another key result for these functions concerns when they may be analytically

continued from C+ into C−:

Theorem A3. The continuation by reflection in (A.1) is analytic through a real interval

(x, y) if and only if ρ is not supported in (x, y).

Proof. See [61, 57, Lem. 2.5]. �

In light of this we consider any Herglotz function h to be defined on its maxi-

mal domain. To close this appendix we list a few more important properties:

• If ρ as a function has a finite discontinuity at x and is continuous near x then

h has a simple pole at x with negative residue [57, Thm. 2.2(vi)].

• If the function ρ increases continuously in the interval I then h is not defined

on I and suffers a discontinuity approaching I from either side, i.e., either of

C± [57, Lem. 2.5].

• The zeros and poles of h interlace, i.e., if ρ is 0 between any two poles then

in the same interval there is a zero.

The last is a simple consequence of the intermediate value theorem and noting

that in any interval of continuity h′(λ) = B+
∫ ∞
−∞(t−λ)−2dρ(t) ≥ 0, i.e., h is increas-

ing.
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B Bessel functions

In this appendix we collect some necessary results on the large-n asymptotics of

the eigen-values and norming constants defined in Section 3.3, as well as a result

on asymptotics of the m-function, needed in the same section.

The eigen-values of the Bessel equation of zeroth order, with Dirichlet and

Neumann boundary conditions at the left and right end-points respectively of

(0, 1), are well-studied, and are algebraically equivalent to the positive zeros of

the Bessel function J1. This information is enough to determine the eigen-values

λn for the boundary value problem (3.3.3), (3.3.4) and (3.3.7), asymptotically to

order 1/n. We calculate these first for the unperturbed equation, then use a result

from [35] to move to the perturbed version.

Lemma B1. Let Q ∈ L2(0, b), h ∈ R and denote by Up(· ;λ) the principal solution at 0

of (3.3.3),

−u′′(x;λ) +
{
Q(x) − 1

4x2

}
u(x;λ) = λu(x;λ)

(
x ∈ (0, b)

)
,

i.e., Up is non-trivial, and for all linearly independent solutions V we have Up(0+) =

o(V(0+)). When ordered by size and enumerated by n = 1, 2, 3, . . . the eigen-values λn of

the above differential equation with the boundary conditions


[u,Up](0+;λ) = 0,

u′(b;λ) = hu(b;λ),

satisfy the asymptotics
√
λn =

(
n +

1
4

)
π
b
+O(1/n).

Proof. Suppose firstly that Q ≡ 0, and denote the corresponding eigen-values by
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λ0
n. The boundary condition at 0 allows us to choose any constant multiple of

x1/2J0(
√
λx) as our solution. The condition at b then forces the eigen-values to be

the positive zeros of

b
√
λJ1(b

√
λ) + (h − 1/2)J0(b

√
λ).

Thus, for each fixed c, we seek asymptotics for the zeros of

f (z) := zJ1(z) − cJ0(z).

Recall that J0 and J1 have only simple positive zeros [2, Sec. 9.5], and notice

f ( j0,n) = j0,nJ1( j0,n) which alternates in sign as n is incremented because j0,n inter-

lace with j1,n. The intermediate value theorem then gives a zero zn ∈ ( j0,n, j0,n+1)

for f , whilst the fact that J0 and J1 oscillate with asymptotically the same “pe-

riod” [2, Sec. 9.2] means zn is unique. Since j0,n = (n − 1/4)π + O(1/n) and

j1,n = (n + 1/4)π +O(1/n) [2, Eq. 9.5.12] the positive zeros of f are

zn = (n + 1/4)π + εn ∼ n,

with the leading-order behaviour following from |εn| ≤ π/2+O(1/n). We now use

the asymptotic expansion [2, Eq. 9.2.1] of the first-order Bessel function Jµ(x) =
√

(2/πx)
(

cos(x − µπ/2 − π/4) +O(1/x)
)

(x→ +∞) to observe that

O(1/n) � c
√

zn
J0(zn) =

√
znJ1(zn)

= −
√

2
π

(
cos(zn + π/4) +O(1/n)

)
.

Taylor-expanding around the zeros of cosine implies b
√
λ0

n = zn = (n + 1/4)π +

O(1/n). Finally, the second equation of [35, p. 17] implies
√
λn =

√
λ0

n+O(1/n). �
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The next lemma provides an asymptotic representation of the norming con-

stants in Section 3.3. For its proof we will relate our notation to that of [35], then

utilise some results from the same paper.

Lemma B2. Let Q ∈ L2(0, b), h ∈ R and suppose ϕ(· ;λ) solves (3.3.3) with initial

conditions ϕ(b;λ) = 1, ϕ′(b;λ) = h. Then the norming constants αn :=
∫ b

0
ϕ(· ;λn)2

satisfy

αn = b/2 +O(1/n).

Proof. We begin by transforming to the interval (0, 1), so that we may use some

results from [35]: defining η(x) = ϕ(bx) and P(x) = b2Q(bx) (0 < x < 1) we find



−η′′(x;µ) +
(
P(x) − 1

4x2

)
η(x;µ) = µη(x;µ)

(
x ∈ (0, 1)

)
,

η(1;µ) = 1,

η′(1;µ) = bh,

(B.1)

where µ = b2λ. Then set µn = b2λn and ηn = η(· ;µn). By checking the boundary

conditions one may easily see that

ηn = y2(· ;µn)/y2(1;µn),

where y2(· ;µ) is the solution of the differential equation in (B.1) satisfying the

boundary condition x−1/2y2(x;µ) → 1 (x → 0). In the second-to-last equation of

[35, p. 16] it is observed that, as ρ→ +∞, we have

∫ 1

0
y2(· ;ρ2)2 =

1
ρ

[
1
2
+O
(

log(ρ)
ρ

)]
.

Since
∫ b

0
ϕ(· ;λn)2 = b

∫ 1

0
η2

n, if we set ρn =
√
µn then the lemma would follow if

y2(1;µn)−2 = ρn

(
1 +O(1/n)

)
. (B.2)
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To justify (B.2) we appeal to [35, Lem. 3.2], which implies that

∣∣∣∣∣∣y2(1;µn) −
√
π
2

J0(ρn)

∣∣∣∣∣∣ ≤
C
√

n

(
eI(n) − 1

)
, (B.3)

where (using Cauchy–Schwarz for the third line)

0 ≤ I(n) :=
∫ 1

0

x
1 + ρnx

(
1 − log(x)

)
|P(x)|dx

≤ 1
ρn

∫ 1

0

(
1 − log(x)

)
|P(x)|dx

≤ 1
ρn

(∫ 1

0

(
1 − log(x)

)2
dx
)1/2
‖P‖L2(0,1)

<
3‖Q‖L2(0,b)

bρn
. (B.4)

Thanks to (B.3), (B.4) and Lemma B1, we find

y2(1;µn) =

√
π
2

J0(ρn) +O(n−3/2). (B.5)

Lemma B1 shows furthermore that ρn = j1,n+O(1/n) = (n+1/4)π+O(1/n) which,

thanks to J′0 = −J1, are asymptotically the local extrema of J0. Hence by expanding

the cosine part of [2, Eq. 9.2.1] in a first-order Taylor approximation around nπ it

follows that

J0(ρn) =

√
2
πρn

[
(−1)n +O

(1
n

)]
.

Upon substitution into (B.5) this yields (B.2), as desired. �

C Asymptotics for Sturm–Liouville problems

In Chapters 2 and 3 we have made free reference to various spectral asymptotic

results for solutions of Sturm–Liouville problems, as well as for the resulting
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Weyl–Titchmarsh m-functions. Such results are often classical, and well known to

those familiar with the field. However the standard sources of their proofs can be

arcane or difficult to follow. For this reason we include here the few key asymp-

totic results we will need, and our versions of their proofs, as well as references

to more original sources.

Lemma C1 (Asymptotics in λ of a fundamental system). Let p = w = 1, suppose 0 <

b ≤ ∞ and take a real-valued q ∈ L1
loc[0, b). Then the fundamental system {s(· ;λ), c(· ;λ)}

for the one-dimensional Schrödinger equation

− u′′(x;λ) + qu(x;λ) = λu(x;λ)
(
x ∈ (0, b)

)
, (C.1)

defined by the initial conditions


s(0;λ) = 0,

s′(0;λ) = 1,


c(0;λ) = 1,

c′(0;λ) = 0,

satisfies the following asymptotic expansions. For any fixed x ∈ (0, b) and 0 < δ < π/2,

as λ→∞ in the sector Sδ := {λ ∈ C | δ < arg(λ) < π − δ} we have

s(x;λ) =
sin(
√
λx)

√
λ

(
1 +O(|λ|−1/2)

)
, (C.2)

c(x;λ) = cos(
√
λx)
(
1 +O(|λ|−1/2)

)
. (C.3)

Proof. We explicitly show the calculation for s(x;λ). By integrating by parts twice,

1
√
λ

∫ x

0
sin
(√
λ(x − t)

)
q(t)s(t;λ)dt =

1
√
λ

∫ x

0
sin
(√
λ(x − t)

)
(s′′ + λs)(t;λ)dt

= −
sin(
√
λx)

√
λ

+ s(x;λ). (C.4)

Write
√
λ = µ + iν where µ, ν > 0 since λ ∈ Rϑ ⊂ C+. Then, since 2i sin(

√
λx) =
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e−νxeiµx − eνxe−iµx, we see from (C.4) that

s(x;λ)e−νx =
e−2νxeiµx − e−iµx

2i
√
λ

+

∫ x

0

e−2ν(x−t)eiµ(x−t) − e−iµ(x−t)

2i
√
λ

q(t)e−νts(t;λ)dt (C.5)

Now, on the interval (0, x), (C.1) is regular and has only bounded continuous

solutions5.8. Hence we may define h(x;λ) := supt∈(0,x) |s(t;λ)e−νt|, and we observe

from (C.5) that

h(x;λ) ≤ 1

|
√
λ|
+

h(x;λ)

|
√
λ|

∫ x

0
|q|,

ergo, whenever |
√
λ| −
∫ x

0
|q| ≥ |λ|/2 we have

|s(x;λ)| ≤ h(x;λ) ≤ 1

|
√
λ| −
∫ x

0
|q|
≤ 2

|
√
λ|
. (C.6)

Finally, we may substitute this estimate into the integrand of (C.4). Since −i
√
λ =

ν− iµ, the expressions e−ix
√
λ and eix

√
λ are respectively exponentially growing and

decaying in size as Sδ � λ→∞. Thus (C.4) is bounded by

2|λ|−1
∫ x

0
|eνx|.|e−2νx − e−νt)e−i2µ(x−t)|.|q(t)|dt

Moreover sin(
√
λx) = eνx(e−iµx − e−νx+iµx)/2i, meaning that

∣∣∣∣∣∣
√
λs(x;λ)

sin(
√
λx)
− 1

∣∣∣∣∣∣ ≤
4
∫ x

0
|q|

|
√
λ|
.

This concludes the proof for s(x;λ), whilst that for c(x;λ) follows similarly. �

Remark. These asymptotics were effectively first developed in 1958 by Titchmarsh [127,

Sec. 1.7]; although his argument used a continuous potential, the exact same reason-

ing works with a potential from L1
loc[0, b). The above calculation was adapted from that

5.8See Section 2.2.
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proving [92, Ch. I, Lem. 2.2].

Not only do s(x; ·) and c(x; ·) possess nice asymptotics, they are also entire

functions. To prove this fact we will need to use the method of variation of pa-

rameters. Since this method is usually stated in general, abstract terms, we briefly

note here the most general version of the result that we will require.

Proposition C2 (Variation of parameters; variation of constants). Let 0 < b ≤ ∞,

and 1/p, q and f ∈ L1
loc(0, b). Suppose y1 and y2 are linearly-independent solutions on

(0, b) of the homogeneous equation

−(py′0)′ + qy0 = 0.

Then y is a solution on (0, b) of the inhomogeneous equation

−(py′)′ + qy = f

if and only if there are constants c1 and c2 such that

y(x) = c1y1(x) + c2y2(x) − y1(x)
∫ x

0

f y2

W(y1, y2)
+ y2(x)

∫ x

0

f y1

W(y1, y2)

(
x ∈ (0, b)

)
,

where W(y1, y2) = y1py′2 − y2py′1 is the Wronskian.

Lemma C2. The fundamental system s(x;λ), c(x;λ)
(
x ∈ (0, b), λ ∈ C

)
defined in

Lemma C1 consists of functions that, for each fixed x ∈ (0, b), are entire in λ.

Proof. We present our version of the proof in [140, Thm. 3.8] for λ-differentiability.

It is equivalent to show that any solution y(· ;λ) of (C.1) with λ-independent

initial conditions is entire in λ. Let λ, λ0 ∈ C be not equal, and observe that, on

(0, b),

−y′′(· ;λ) + qy(· ;λ) = (λ − λ0)y(· ;λ) + λ0y(· ;λ).
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Since {s(· ;λ0), c(· ;λ0)} are a fundamental system, there are constants α1 and α2

such that y(· ;λ0) = α1c(· ;λ0) + α2s(· ;λ0), where y(0;λ0) = y(0;λ) and y′(0;λ0) =

y′(0;λ) satisfy the same λ-independent initial conditions. Hence variation of

parameters—Proposition C2—implies we may use the same fundamental system

to write, for every x ∈ (0, b),

y(x;λ) = y(x;λ0) + (λ − λ0)
∫ x

0

(
s(x;λ0)c(t;λ0) − s(t;λ0)c(x;λ0)

)
y(t;λ)dt, (C.7)

after noting that the Wronskian has constant value

c(0;λ0)s′(0;λ0) − c′(0;λ0)s(0;λ0) = 1.

Now s(· ;λ) and c(· ;λ) satisfy the unique continuation theorems for initial-

value problems, meaning they are continuous for every fixed λ. This means that

(C.7) shows that for each x ∈ (0, b) the function y(x; ·) is Lipschitz continuous at

λ0, implying that the same equation then proves y(x; ·) is differentiable at λ0. �

The next lemma is due to Everitt [49, Thm. p. 445], and provides one with

leading-order asymptotics of the m-function for our particular Sturm–Liouville

equation.

Lemma C3 (Asymptotics of an m-function; Everitt, 1972). Let q ∈ L1
loc[0, b) be real-

valued, and consider the differential equation

− u′′(x;λ) + q(x)u(x;λ) = λu(x;λ)
(
x ∈ (0, b)

)
(C.8)

If it is in limit-circle or regular at b, prescribe any self-adjoint boundary condition there.

Then the Neumann m-function5.9 m(λ) associated with this equation (and possible bound-

5.9This is defined in (2.2.5) by α = π/2.
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ary condition) satisfies, as Sδ � λ→∞,

m(λ) =
i
√
λ
+O(|λ|−1), (C.9)

where Sδ is the sector {z ∈ C | δ < arg(z) < π/δ} for a given 0 < δ < π/2.

Remark. The first asymptotic formula of this type was due to Marčenko [101, Thm.

2.2.1], with remainder term o(|λ|−1/2). Everitt and Halvorsen extended Lemma C3 [51].

If one imposes stronger regularity upon q then one may derive much more detailed asymp-

totics in place of the O-term in (C.9). For example, Atkinson [10] was able to show, by

constructing the non-linear Riccati equation for m, that if q is absolutely continuous then

m(λ) =
i
√
λ
+

iq(0)
2λ3/2 + o


1

|λ|Im(
√
λ)



as Re(
√
λ) and Im(

√
λ)|λ|−1/2 → ∞. Later Harris [65] was able to improve the re-

mainder into a power sum in λ−1/2 whose coefficients are polynomially dependent on

q(0), q′(0), . . . , q(k)(0) whenever q is k-times continuously differentiable in a neighbour-

hood of the origin. Danielyan and Levitan [40] slightly improved the remainder term of

this representation using a Tauberian-type argument.

To prove this we will first need the following cruder result. It was originally

provided by Hille [66, Thm. 10.2.1], though his proof restricted one to the regular

case with q ∈ L1(0, b); Everitt refined the proof [49, Lem. p. 447 & Sec. 12] extend-

ing the result to accommodate q ∈ L1
loc[0, b). We present our version of Everitt’s

proof.

Lemma C4 (Hille, 1969; Everitt 1972). The Neumann m-function m(λ) described in

Lemma C3 satisfies, uniformly as Sδ � λ→∞,

m(λ) = O(|λ|−1/2).

160



C. Asymptotics for Sturm–Liouville problems
��

Proof. Write
√
λ = µ + iνwith µ, ν > 0. It is well known5.10 [92, Sec. II.2] that

Im
(
m(λ)

)
= 2µν

∫ b

0
|s(x;λ) −m(λ)c(x;λ)|2dx,

which may be re-written as

∣∣∣∣∣∣∣
λIm
(
m(λ)

)

2µν

∣∣∣∣∣∣∣ =
∫ b

0
|
√
λs(x;λ) −

√
λm(λ)c(x;λ)|2dx.

We may estimate from this that when, e.g., ν2 > b−1 (b < ∞) or ν > 0 (b = ∞), we

have ∫ ν−1 log(ν)

0
|
√
λs(x;λ) −

√
λm(λ)c(x;λ)|2dx ≤

∣∣∣∣∣∣∣
λIm
(
m(λ)

)

2µν

∣∣∣∣∣∣∣ . (C.10)

The reason for this choice of limit of integration will become clear shortly. Since

1 ≤ |λ|/2µν ≤ 1/ sin(δ) (λ ∈ Sδ) we obtain that the right-hand side of this is

O
(
|m(λ)|

)
. Note that for any c, s and m we have

√
λmc =

√
λs−

√
λ(s−mc). Hence,

by the triangle inequality in L2
(
0, ν−1 log(ν)

)
, we find

|m(λ)||λ|1/2

∫ ν−1 log(ν)

0
|c(x;λ)|2dx


1/2

−

∫ ν−1 log(ν)

0
|
√
λs(x;λ)|2dx


1/2

≤

∫ ν−1 log(ν)

0
|
√
λs(x;λ) −

√
λm(λ)c(x;λ)|2dx


1/2

= O
(
|m(λ)|1/2

)
.

Implementing Lemma C1 we calculate that, as λ→∞ in Sδ, we have

∫ ν−1 log(ν)

0
|c(x;λ)|2dx ∼ 1

4

∫ ν−1 log(ν)

0
e2νxdx =

ν2 − 1
8ν

∼ ν
8
, (C.11)

and similarly ∫ ν−1 log(ν)

0
|
√
λs(x;λ)|2dx ∼ ν

8
. (C.12)

5.10See Section 3.3.
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Hence, as Sδ � λ→∞, we have

|λ|1/2|m(λ)| = O(1) +O
(
|λ|−1/4|m(λ)|1/2

)
= O(1) +O

(
|λ|1/4|m(λ)|1/2

)

Clearly if m(λ) � O
(
|λ|−1/2

)
then there is a contradiction, since the left-hand side

would be growing slower than its own square root. This concludes the proof. �

We may now proceed with the proof of Lemma C3, presenting our version of

the method of Everitt, which now follows easily from the previous proof.

Proof of Lemma C3. We start with (C.10) and apply Lemma C4 to observe that as

λ→∞ in Sδ we have

∫ ν−1 log(ν)

0
|i
√
λs(x;λ) − i

√
λm(λ)c(x;λ)|2dx = O

(
|λ|−1/2

)
. (C.13)

Then from the fact that for any c, s and m we have

(1 + i
√
λm)c = (c + i

√
λs) − i

√
λ(s −mc)

it is easily deduced from (C.13) and the triangle inequality in L2
(
0, ν−1 log(ν)

)
that

for the same limit of λwe have

( ∫ ν−1 log(ν)

0

∣∣∣
(
1 − i

√
λm(λ)

)
c(· ;λ)

∣∣∣2
)1/2

≤

∫ ν−1 log(ν)

0
|c(· ;λ) + i

√
λs(· ;λ)|2


1/2

+O(|λ|−1/4). (C.14)

By Lemma C1 the integral-term on the right-hand side is asymptotically equiva-
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lent to


∫ ν−1 log(ν)

0
| cos(

√
λx) + i sin(

√
λx)|2dx


1/2

=


∫ ν−1 log(ν)

0
ei
√
λxei

√
λxdx


1/2

=


∫ ν−1 log(ν)

0
e−2νxdx


1/2

≤ ν−1/2.

Moreover (C.11) tells us the left-hand side of (C.14) is asymptotically equivalent

to ∣∣∣∣1 + i
√
λm(λ)

∣∣∣∣
√
ν

2
√

2
.

Therefore, ∣∣∣∣1 + i
√
λm(λ)

∣∣∣∣ = O(|λ|−1/2),

from which the lemma follows immediately. �

D Numerical procedures

We collect here the codes implemented for calculating approximately a pair (q2, f2)

yielding the same Dirichlet-to-Neumann map as the pair (q1, f1) = (0, 0), as illus-

trated in Figure 4.4. The problems in question are given by the following systems,

for j = 1, 2, on the square Ω := [−1, 1]2:



(−∆ + qj)u = 0,

u(· ,±1) = 0,

fj∂νu(1, · ) − u(1, · ) = 0,

∂νu(−1, · ) = Λqj,kju(−1, · ).
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The numerical computation is achieved in several steps.

(i) Fix f2 to be the constant non-zero value 1/k (we choose k = 10 in our exam-

ple).

(ii) Then calculate explicitly the Dirichlet-to-Neumann map for (q1, f1) = (0, 0).

In the one-dimensional basis ϕ�(y) = sin(nπy) (� = 1, 2, 3, . . .) on the edge

x = −1, the Dirichlet-to-Neumann map Λ0,0 is given by the diagonal matrix



π tanhπ

2π tanh 2π

3π tanh 3π
. . .



.

(iii) Now, construct a functional, of possible q’s, whose minimum lies at the ap-

propriate q2 corresponding to f2 andΛq2, f2 , the latter chosen to equalΛ0,0. To

do this, take any given q, and find the solutions u� and v� (� = 1, 2, 3, . . .) of

the following problems on the square [−1, 1]2:



(−∆ + q)u� = 0,

u�(· ,±1) = 0,

∂νu�(1, · ) − ku�(1, · ) = 0,

u�(−1, · ) = ϕ�,



(−∆ + q)v� = 0,

v�(· ,±1) = 0,

∂νv�(1, · ) − kv�(1, · ) = 0,

∂νv�(−1, · ) = Λ0,0ϕ�.

The functional we use is formally

F(q) :=
∞∑

�=1

∫

Ω

{
|u� − v�|2q + |∇(u� − v�)|2

}
.

Clearly if the desired q2 exists then F(q2) = 0 ≤ F(q) for any admissible q,

since when q = q2 we have u� = v� (� ∈N).
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Remark. In fact, the above series might diverge, in which case we would require a

suitable weighting sequence to ensure convergence. But, since we will truncate the

series, this will not be a problem for the numerics.

(iv) Then encode q by its set of Chebyshev coefficients, i.e., the weightings cjk

such that

q(x, y) =
∞∑

j,k=0

cjkTj(x)Tk(y),

where Tj is the j-th Chebyshev polynomial of the first kind:

Tj(x) = cos
(
j arccos(x)

)
.

This allows us to write F(q) = F
(
(cjk)∞j,k=0

)
; after truncation we have the prob-

lem of minimising

Fn,M

(
(cjk)M

j,k=0

)
:=

n∑

�=1

∫

Ω

dxdy


|u� − v�|(x, y)

M∑

j,k=0

cjkTj(x)Tk(y) + |∇(u� − v�)|2(x, y)


.

(v) The last major step in coding the procedure is to utilise a numerical differ-

entiation scheme, allowing us to calculate ∇ of various functions as well as

invert the differential operators associated with the above systems. We will

implement the global method outlined by Trefethen [128] which comprises

polynomial interpolation through the Chebyshev points then explicit differ-

entiation of this polynomial. All functions involved will thus be described

by their values on the grid of points

(
cos(sπ/N), cos(tπ/N)

)
(s, t = 0, 1, 2, . . . ,N), (D.1)

and differentiation will involve multiplying by some explicitly known ma-

trix D. The boundary conditions can then be incorporated into the differen-

tial operator by suitably tailoring certain entries of D2. The whole scheme is
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extremely efficient, exhibiting convergence no worse than finite differences

and avoiding the undesirable Gibbs or Runge phenomena.

(vi) The above considerations yield a functional Fn,M,N

(
(cjk)M

j,k=0

)
(whose form,

for simplicity, we avoid writing explicitly here) which can be minimised

over using any one of MATLAB’s built-in minimisation routines. We use

fminunc, as it avoids certain technical limitations inherent to other min-

imisers such as fmincon.

In the following pages we include the exact MATLAB code used to gener-

ate Figure 4.4. One may check that the q2 produced gives rise to approximately

the same Dirichlet-to-Neumann map—Λq2,1/10 ≈ Λ0,0, in the basis ϕ�, truncated

to some n ≥ 1, i.e., the entries of the matrices corresponding to either map are

“close” in the L∞ sense. Checking this involves inputting (the Chebyshev-grid

version of) q2 and f2 into DtoN.m, and comparing results with the same applied

to q1 and f1 for the same choice of Chebyshev parameter N and Λ-truncation n.
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1 % MINIMISATION ROUTINE
2 NN = 30; % Number of Cheb. pts. to an edge, minus 1
3 MM = 6; % Degree of Cheb. approx., plus 1
4 nn = 6; % Number of rows of DN map considered
5 k0 = 0; % BC of first problem
6 kk = 10; % BC of second problem
7 err = 1e-5; % Desired error between iterations
8

9 [D,xx] = cheb(NN); % Cheb. diff. matrix and pts., 1D
10 [xg,yg] = meshgrid(xx,xx); % 2D grid of points
11 Q0 = zeros(NN+1,NN+1); % Potential of first problem
12 Q = polycheb(NN,MM-1,Cmin); % Start-point of iteration
13

14 Cstart = polychebinv(NN,MM,Q); % Start-point of algorithm
15 Cstart = 0.01*round(100*Cstart); % Rounded start-point
16 Cstart = Cstart + 0.01*rand(MM,MM); % Perturbed start-point
17

18 Func = @(CC)FunctGener(NN,MM,nn,k0,kk,Q0,CC); % Define function
19 % handle to minimise
20 CC = Cstart; % Initialise the coefficient matrix
21

22 options = optimoptions('fminunc','Algorithm','quasi-newton', ...
23 'MaxFunEvals',300*MMˆ2,'MaxIter',...
24 600,'TolFun',1e-10,'TolX',1e-10);
25

26 Qdiff = Q; % Initialise the inter-iteration error
27 Qdiffv = Qdiff(:); % Turn Q-array into list
28 maxQdiff = sqrt(max(Qdiffv.ˆ2)); % maximal value of Q-array
29 k = 1 % Start counter of minimisation iterations
30

31 while maxQdiff >= 1e-5 % Keep iterating the minimisation protocol
32 % until the desired error-bound is reached.
33 tic
34 [Cmin,Fval] = fminunc(Func,CC,options) % Perform minimisation
35 toc % starting from CC
36 CC = Cmin; % Update the component matrix CC
37 Qtally(1:NN+1,1:NN+1,k) = polycheb(NN,MM,CC); % Build Q from CC
38 Qdiff = Qtally(:,:,k) - Q; % Calculate new error
39 Qdiffv = Qdiff(:);
40 maxQdiff = sqrt(max(Qdiffv.ˆ2))
41 Q = Qtally(:,:,k);
42 k = k+1 % Increment counter
43 end
44

45 % Plotting
46 [xxx,yyy] = meshgrid(1:-.04:-1,1:-.04:-1); % Grid for plotting
47

48 QQ = interp2(xg,xg',Q,xxx,yyy,'spline'); % Interpolate Q over grid
49 figure(1), clf, mesh(xxx,yyy,QQ), colormap ([0 0 0]) % Plot Q
50 xlabel x, ylabel y, zlabel q
51

52 QQerr = interp2(xg,xg',Qdiff,xxx,yyy,'spline'); % Interpolate the
53 % error in Q
54 figure(2), clf, mesh(xxx,yyy,QQerr), colormap([0 0 0]) % Plot error
55 xlabel x, ylabel y, zlabel q_error
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1 function [FF] = FunctGener(NN,MM,nn,k0,kk,Q0,CM)
2

3 QQ = polycheb(NN,MM,CM); % calculate input potential from its
4 % Chebyshev expansion
5 [DD,xx] = cheb(NN); % Chebyshev differentiation matrix and points
6 Dx = kron(eye(NN+1),DD); % dee-by-dee-x
7 Dy = kron(DD,eye(NN+1)); % dee-by-dee-y
8 D2 = DDˆ2; % second-order derivative
9 D2x = kron(eye(NN+1),D2); % dee-two-by-dee-x-squared

10 D2y = kron(D2,eye(NN+1)); % dee-two-by-dee-y-squared
11 LL = D2x+D2y; % Laplacian
12 QQg = QQ'; % transpose potential on grid, for correct listed order
13 QQv = QQg(:); % list potential points
14 [UWM,DUWM] = DtoN(NN,nn,k0,Q0); % calculate the Dir.-to-Neu. operator
15 % for j = 1:nn
16 FF = 0; % initialise the functional value
17 for j = 1:nn
18 UU = SchrDSol(NN,j,QQ,kk);
19 [xg,DNPhig] = meshgrid(xx,DUWM(:,j));
20 Vp = 0.25*((xg-1).ˆ2.*DNPhig);
21 Vg = Vp';
22 Vv = Vg(:);
23 Fv = (LL-diag(QQv))*Vv;
24 Fg = reshape(Fv,NN+1,NN+1)';
25 Fg = Fg(2:NN,1:NN+1)';
26 Fg([1,NN+1],:) = zeros(2,NN-1);
27 Fv = Fg(:);
28 SS = SchrN(NN,QQ,kk);
29 vv = SS\Fv;
30 vg = reshape(vv,NN+1,NN-1)';
31 Vh = zeros(NN+1,NN+1);
32 Vh(2:NN,:) = vg;
33 VV = Vh + Vp;
34 UV = (UU - VV)';
35 UVv = UV(:);
36 DUV2v = (Dx*UVv).ˆ2 + (Dy*UVv).ˆ2;
37 DUV2g = reshape(DUV2v,NN+1,NN+1)';
38 Fg = QQ.*(UU-VV).ˆ2 + DUV2g;
39 for i = 1:NN+1
40 Fxsec(i) = trapcheb(NN,Fg(:,i));
41 end
42 FF = FF + trapcheb(NN,Fxsec);
43 end
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1 function [UU,Phi] = SchrDSol(NN,nn,QQ,kk)
2

3 %Chebyshev grid and spectral differentiation matrix
4 [DD,xx] = cheb(NN); %Cheb. 1st-order diff. matrix,
5 %x-axis interpol. pts.
6 %Schrodinger operator
7 [xg,yg] = meshgrid(xx,xx);
8 % QQ = yg;
9 SS = SchrD(NN,QQ,kk);

10

11 %Inhomogeneity
12 [ff,up,Phi] = inhomgen(NN,nn,QQ,0); %builds PDE inhom. f from q, phi
13 fg = ff(2:NN,1:NN)'; %ignore N, W and S edges
14 fg(1,:) = zeros(1,NN-1); %ignore E edge
15 fv = fg(:); %convert to list
16

17 %Solving the PDE
18 uv = SS\fv; %solve inh. PDE with hom. b.c.s
19 ug = reshape(uv,NN,NN-1)'; %convert vector soln into grid
20 uu = zeros(NN+1,NN+1);
21 uu(2:NN,1:NN) = ug; %embed ug into full grid
22 UU = uu + up; %add b.c. inhom.

1 function [UWM,DUWM] = DtoN(NN,nn,k0,Q0)
2

3 [DD,xx] = cheb(NN);
4 xg = meshgrid(xx,xx);
5 Dx = kron(eye(NN+1),DD);
6 UWM = zeros(NN+1,nn);
7 DUWM = zeros(NN+1,nn);
8 for j = 1:nn
9 Ug = SchrDSol(NN,j,Q0,k0)';

10 UWM(:,j) = Ug(NN+1,:)';
11 Uv = Ug(:);
12 DUv = Dx*Uv;
13 DUg = reshape(DUv,NN+1,NN+1)';
14 DUWM(:,j) = -DUg(:,NN+1);
15 end
16 end
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1 function [S] = SchrD(N,Q,k)
2

3 D = cheb(N);
4 IN = eye(N);
5 e1 = IN(1,:);
6 INdoc = IN - diag(e1);
7

8 D2 = Dˆ2; %Full (N+1)x(N+1) Laplacian matrix
9 D2y = D2(2:N,2:N); %y-version with hom. Dir. BC at N&S

10 RBC = D(1,1:N)-k*IN(1,1:N); %Robin BC at E
11 D2x = D2(1:N,1:N); %x-version with hom. Dir. BC at W, no BC at E
12 D2x(1,:) = RBC; %Replace 1st row with Rob. BC at E
13

14 L = kron(eye(N-1),D2x)+kron(D2y,INdoc); %Discrete Laplacian
15

16 Qg = Q(2:N,1:N); %Ignore N, W, S for potential
17 Qg(1:N-1,1) = zeros(N-1,1); %Ignore E
18 Qg = Qg'; %Transpose for ordering
19 Qv = Qg(:); %List
20

21 S = -L + diag(Qv); % Final form of Schrodinger operator, a square
22 % matrix with edge-length (N-1)*N

1 function [S] = SchrN(N,Q,k)
2

3 D = cheb(N);
4 IN1 = eye(N+1);
5 e1 = IN1(1,:);
6 IN1doc = IN1 - diag(e1) - diag(flip(e1));
7

8 D2 = Dˆ2; %Full (N+1)x(N+1) Laplacian matrix
9 D2y = D2(2:N,2:N); %y-version with hom. Dir. b.c. at N&S

10 RBC = D(1,:)-k*IN1(1,:); %Robin b.c. at E
11 D2x = D2; %x-version
12 D2x(end,:) = D(end,:); %Replace last row with hom. Neu. b.c. at W
13 D2x(1,:) = RBC; %Replace 1st row with Rob. BC at E
14

15 L = kron(eye(N-1),D2x)+kron(D2y,IN1doc); %Discrete Laplacian
16

17 Qg = Q(2:N,:); %Ignore N, S for potential
18 Qg(1:N-1,1) = zeros(N-1,1); %Ignore E
19 Qg(1:N-1,end) = zeros(N-1,1); %Ignore W
20 Qg = Qg'; %Transpose for ordering
21 Qv = Qg(:); %List
22

23 S = -L + diag(Qv); % Final form of Schrodinger operator, a square
24 % matrix with edge-length (N-1)*(N+1)
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D. Numerical procedures
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1 function [F,Up,Phi] = inhomgen(N,n,Q,par)
2 %Turns an inhomogeneous Dir. b.c. into an inhomogeneity, and produces
3 %n-th y-direction e-fn, both for the following Schrodinger problem:
4 % [-1,1]ˆ2: -Delta u = 0
5 % N&S: u(x,1) = 0 = u(x,-1)
6 % E: du(1,y)/dnu = u(1,y)
7 % W: du(-1,y)/dnu = 0.5*n*pi*tanh(n*pi)*phi(y) = pn*phi(y)
8 %They are evaluated, respectively, on 2D & 1D grids of Chebyshev pts
9 %(Trefethen, 2000).

10

11 %Inputs: N = #{Chebyshev interpolation points per edge} - 1
12 % n = enumeration of y-direction eigen-function
13 % Q = (N+1)x(N+1) grid of values of potential at Cheb. pts.
14

15 %Outputs: F = (N+1)x(N+1) grid of values of the inhomogeneity
16 % Up = (N+1)x(N+1) grid of values of a particular solution to
17 % the b.c.s
18 % Phi = (N+1)-vector of values of the y-direction e-fn
19

20 %Chebyshev grid and spectral differentiation matrix
21 [D,x] = cheb(N); %Cheb. diff. matrix, x-axis interp. pts
22

23 %Eigen-function: grid and list form
24 Phi = sin(n*pi*0.5*(x+1)); %y-direction e-fn.
25 [xg,Phig] = meshgrid(x,Phi); %builds x-grid-pts and e-fn grid-pts
26

27 Up = 0.25*(0.5*n*pi*tanh(n*pi))ˆpar*(xg-1).ˆ2.*Phig; %Particular
28 % solution to b.c.s up = -pn*(x-1)ˆ2*Phi(y)/4
29 F = 0.5*(0.5*n*pi*tanh(n*pi))ˆpar*Phig - 0.25*nˆ2*piˆ2*Up - Q.*Up;
30 %Inhomogeneity f=(Lap-Q)*up

1 function [Q] = polycheb(N,M,C)
2 % The function evaluates a linear combination of Chebyshev polys in
3 % two variables, with linear coeffs given by the array C, over an NxN
4 % grid of Chebyshev interpolation points. C must have edge lengths no
5 % greater than N+1.
6 for i = 1:M
7 for j = 1:M
8 for k = 1:N+1
9 for l = 1:N+1

10 COSM(k,l,i,j) = C(i,j)*cos((i-1)*(k-1)*pi/N)*cos((j-1)*(l-1)*pi/N);
11 end
12 end
13 end
14 end
15 Q = zeros(N+1,N+1);
16 for i = 1:M
17 for j = 1:M
18 Q = Q + COSM(:,:,i,j);
19 end
20 end
21 end
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1 function [C] = polychebinv(N,M,Q)
2

3 % Q denotes the grid of values of a potential at the Chebyshev points
4 % on a two-dimensional, N+1xN+1 grid.
5 % M < N+2 is the order of polynomial approximation to Q.
6 % C is the MxM array of coefficients in a Chebyshev approxn to Q.
7 %N+1 is the number of Chebyshev points to an edge.
8 [D,x] = cheb(N); %x is the vector consisting in these points.
9 for k = 1:N+1

10 Cpar(1,k) = 0.5*onedwghtint(N,1,Q(k,:)');
11 for j = 2:M
12 Cpar(j,k) = onedwghtint(N,j,Q(k,:)');
13 end
14 end
15 for j = 1:M
16 C(1,j) = 0.5*onedwghtint(N,1,Cpar(j,:));
17 for i = 2:M
18 C(i,j) = onedwghtint(N,i,Cpar(j,:));
19 end
20 end

1 function [I] = trapcheb(N,f)
2 % A simple trapezoidal quadrature rule
3 [D,x] = cheb(N);
4 for i = 1:N
5 s(i) = (x(i)-x(i+1))*(f(i)+f(i+1));
6 end
7 I = 0.5*sum(s);
8 end

1 function [D,x] = cheb(N)
2 % Computes Chebyshev differentiation matrix D and Chebyshev
3 % interpolation points x
4 if N==0, D=0;
5 x=1;
6 return,
7 end
8 x = cos(pi*(0:N)*(Nˆ(-1)))';
9 c = [2; ones(N-1,1); 2].*(-1).ˆ(0:N)';

10 X = repmat(x,1,N+1);
11 dX = X-X';
12 D = (c*(1./c)')./(dX+(eye(N+1)));
13 D = D - diag(sum(D'));
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