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ABSTRACT

Aims. The DustPedia project is capitalising on the legacy of the Herschel Space Observatory, using cutting-edge modelling techniques
to study dust in the 875 DustPedia galaxies — representing the vast majority of extended galaxies within 3000 km s~! that were observed
by Herschel. This work requires a database of multiwavelength imagery and photometry that greatly exceeds the scope (in terms of
wavelength coverage and number of galaxies) of any previous local-Universe survey.

Methods. We constructed a database containing our own custom Herschel reductions, along with standardised archival observa-
tions from GALEX, SDSS, DSS, 2MASS, WISE, Spitzer, and Planck. Using these data, we performed consistent aperture-matched
photometry, which we combined with external supplementary photometry from IRAS and Planck.

Results. We present our multiwavelength imagery and photometry across 42 UV-microwave bands for the 875 DustPedia galaxies.
Our aperture-matched photometry, combined with the external supplementary photometry, represents a total of 21,857 photometric
measurements. A typical DustPedia galaxy has multiwavelength photometry spanning 25 bands. We also present the Comprehensive &
Adaptable Aperture Photometry Routine (CAAPR), the pipeline we developed to carry out our aperture-matched photometry. CAAPR
is designed to produce consistent photometry for the enormous range of galaxy and observation types in our data. In particular, CAAPR
is able to determine robust cross-compatible uncertainties, thanks to a novel method for reliably extrapolating the aperture noise for
observations that cover a very limited amount of background. Our rich database of imagery and photometry is being made available

to the community.
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1. Introduction

Over the past 10-15 years dramatic progress has been made in
the study of cosmic dust as a window into the nature and evo-
lution of galaxies. This advancement has been primarily driven
by the wealth of excellent data provided by far-infrared (FIR)
and submillimetre (submm) observatories such as Herschel (Pil-
bratt et al. 2010), Planck (Planck Collaboration et al. 2011),
Spitzer (Werner et al. 2004), the James Clerk Maxwell Tele-

* Full photometry tables are only available in electronic form, at the
DustPedia archive (http://dustpedia.astro.noa.gr), and at CDS
VizieR (http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/;
or anonymous FTP to cdsarc.u-strasbg. fr and 130.79.128.5).
** E-mail: Christopher.Clark@astro.cf.ac.uk

scope (JCMT, and more recently the Atacama Large Millime-
tre/submillimetre Array (ALMA). Herschel in particular was es-
pecially well suited for the study of nearby galaxies; its rapid
mapping abilities enabled it to observe a sizeable portion of the
galaxies in the local universe, with a combination of sensitiv-
ity, resolution, and broad wavelength coverage that remains un-
matched.

The DustPedia project1 (Davies et al. 2017) is working
towards a definitive understanding of dust in the local Uni-
verse, by capitalising on the legacy of Herschel. The DustPe-

' DustPedia is funded by the European Union, as a European Research
Council (ERC) 7" Framework Program (FP7) project (PI Jon Davies,
proposal 606824): http://dustpedia.com/.
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dia sample consists of every galaxy that was observed by Her-
schel that lies within a velocity of 3000kms~' (correspond-
ing to 41 Mpc distance, assuming Hy = 73.24kms™! Mpc™';
Riess et al. 2016), and has D25 > 1’(D25 being the major axis
isophote at which optical surface brightness falls beneath 25 mag
arcsec™2); these criteria were evaluated using the HyperLEDA

database™’ (Makarov et al. 2014). Additionally, the DustPedia
sample only includes galaxies that have a detected stellar com-
ponent; WISE observations at 3.4 um are the deepest all-sky data
sensitive to the stellar component of galaxies, and hence provide
the most consistent way of implementing this stellar detection re-
quirement. Therefore, the DustPedia sample only includes galax-
ies brighter than the WISE 3.4 um all-sky 5 o sensitivity limit
of 19.91 mup (although this requreiment has little impact upon
the final sample, as < 1% of candidate HyperLEDA galaxies fail
to meet the brightness limit). For full sample details see Davies
et al. (2017). Note that the DustPedia sample excludes the Local
Group galaxies of Andromeda, Triangulum, and the Magellanic
Clouds, as working with such exceptionally-extended systems
would entail fundamentally different data processing and analy-
sis.

DustPedia is combining cutting-edge methods for studying
dust: physically-motivated dust modelling with The Heteroge-
neous Evolution Model for Interstellar Solids (THEMIS; Jones
et al. 2016; Ysard et al. 2016; Jones et al. 2017); hierarchical
Bayesian Spectral Energy Distribution (SED) fitting with Hi-
ERarchical Bayesian Inference for dust Emission (HerBIE; Gal-
liano et al., in prep.); and 3-dimensional radiative transfer mod-
elling and fitting with Stellar Kinematics Including Radiative
Transfer (SKIRT; Baes et al. 2011; Camps & Baes 2015) and
FitSKIRT (De Geyter et al. 2013).

The study of nearby galaxies now involves increasingly-
extensive multiwavelength datasets, and DustPedia is no excep-
tion to this. The tools used in modern extragalactic astronomy re-
quire that data from across broad swathes of the spectrum can be
directly compared, despite the very different natures of the data
employed. This is especially true for the study of dust, where
radiative transfer and SED modelling tools — such as HerBIE,
SKIRT, MAGPHYS (da Cunha et al. 2008), MOCASSIN (Er-
colano et al. 2003, 2005), CIGALE (Burgarella et al. 2005; Noll
et al. 2009), and GRASIL (Silva et al. 1998) — critically require
that the flux densities being used represent self-consistent mea-
surements. For example, in energy-balance SED-fitting, it is vital
that the stellar population sampled by ultraviolet (UV), optical,
and near-infrared (NIR) data points is the same stellar popula-
tion heating the dust observed at mid infrared (MIR) to submm
wavelengths.

Moreover, in the realm of multiwavelength photometry, it is
often overlooked that measuring flux densities in a consistent
and accurate manner is invariably much easier than measuring
the uncertainties on those flux densities in a similarly consistent
and accurate manner. However, with the growing prevalence of
Bayesian techniques in astronomy (see review in Loredo 2013,
and references therein), it has never been more important that
photometric uncertainties be robust and directly-comparable.

Therefore, in order to best exploit DustPedia’s unique com-
bination of advanced tools for the study of dust in galaxies, the

cornerstone of the project is the DustPedia database’ — which

® http://leda.univ-1lyonl.fr/

* The HyperLEDA database is continually updated to reflect newly-
incorporated data; therefore note that the DustPedia sample is derived
from HyperLEDA queries performed in January 2015.

¢ http://dustpedia.astro.noa.gr
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contains standardised multiwavelength imagery of all 875 galax-

ies in our sample5 , including both custom reductions and archival
data, spanning over five orders of magnitude in wavelength from
UV to microwave. Furthermore, the DustPedia database contains
the results of consistent multiwavelength aperture-matched pho-
tometry, conducted using the Comprehensive & Adaptable Aper-
ture Photometry Routine (CAAPR) — along with supplemen-
tary photometry for additional instruments for which aperture-
matched photometry was impractical. In total, we provide data
for 42 UV-microwave bands. These data are already being em-
ployed in various accepted and in-preparation DustPedia works,
including Casasola et al. (2017), Lianou et al. (in prep.), Cassara
et al. (in prep.), Mosenkov et al. (in prep.), Evans et al. (in prep.),
Verstocken et al. (in prep.), and Nersesian et al. (in prep.). Ulti-
mately, the DustPedia database will also contain the results of
the SED fitting and radiative transfer modelling performed on
these data, for each galaxy.

In this paper, we present the imagery and photometry that
form the centrepiece of the DustPedia database. The multiwave-
length imagery — both our custom Herschel reductions, and the
standardised UV-microwave ancillary data — are presented in
Section 2. The functionality of the CAAPR pipeline, which we
developed to produce our consistent multiwavelength aperture-
matched photometry, is described in Section 3. The flagging we
carry out for our photometry is explained in Section 4. Supple-
mentary photometry from additional observatories is laid out in
Section 5. In Section 6 we detail the various tests we carried out
to validate the quality of our photometry. The contents and for-
mat of the DustPedia data products are specified in Section 7,
including information on distance measures for each galaxy.

For the sake of brevity and readability, we refer to ‘flux den-
sities’ as ‘fluxes’ throughout the rest of this work. We adopt a
Hubble constant of Hy = 73.24 kms™! Mpc’1 (Riess et al. 2016).

2. Multiwavelength Imagery

For the DustPedia galaxies, we produced dedicated reductions of
the Herschel-SPIRE and Herschel-PACS maps, along with stan-
dardised preparations of archive imagery for the ancillary data.

All maps were produced in Flexible Image Transport Sys-
tem (FITS; Wells et al. 1981; Hanisch et al. 2001) for-
mat, with standardised file names and headers. The file name
indicates the target galaxy, facility, and band in question,
taking the form: [galaxy]_[facility]_[band].fits; in
cases where an error map was also available, it was stored
in a separate FITS file, with a file name of the form:
[galaxy]_[facility]_[band]_Error.fits. As an exam-
ple, the Herschel-SPIRE 250 um map of DustPedia galaxy
NGC 0891 has the file name: NGCO891_SPIRE_250.fits. All
galaxies are referred to by the name under which they are listed
in the HyperLEDA database.

The FITS headers contain the standard World Coordinate
System (WCS; Greisen & Calabretta 2002) fields, along with
fields that provide a range of additional information: target
galaxy, telescope, filter effective wavelength, filter name, instru-
ment, map units, and the name of the database the original data
was acquired from (if this is not the same for all observations in
a given band). If there is an error map available, then the header

’ Subsequent to the publication of Davies et al. (2017), DustPedia
source SDSSJ140459.26+533838.8 was found to be a shredded por-
tion of NGC 5474; so whereas Davies et al. (2017) refer to the DustPe-
dia sample containing 876 galaxies, we here only deal with the revised
sample of 875.
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Fig. 1: Ilustration of the spectral coverage provided by the DustPedia database, showing filter response functions of all bands for
which we present data. As can be seen, the data we employ effectively provides complete sampling of over five orders of magnitude
in wavelength. Response functions of the bands for which we present both imagery and aperture-matched photometry are traced
with solid lines. Bands for which we present supplementary external photometry (see Section 5) are traced with dashed lines. Bands
for which we present imagery only (see Section 2.2.3) are traced with dotted lines.

additionally indicates whether the file contains the image map or
the error map.

All maps are in units of Jy pix~! (with the exception of the
DSS maps, which are left in their native non-linear units of
‘photographic densities’), and hence can trivially be converted
into units of AB magnitudes, erg s~!, etc. For users interested in
working with the native data units of the maps, conversion de-
tails are provided in Appendix A.

We do not apply any colour-corrections (to account for the
fact that the data from different facilities are calibrated assum-
ing different reference spectra), because such corrections will
depend upon the underlying SED of each source. Throughout
this section, we state the default reference spectrum assumed for
each instrument.

Throughout the rest of this section, we describe how the im-
agery was produced, providing details for each instrument from
which we use data. The basic parameters of each band are listed
in Table 1, whilst their spectral coverage is illustrated in Figure 1.

2.1. Herschel Imagery

Full details of our Herschel data reduction process are provided
in Davies et al. (2017); here we provide only a brief summary,
for the sake of completeness. For both Spectral and Photometric
Imaging REceiver (SPIRE; Griffin et al. 2010) and Photodetector
Array Camera and Spectrometer (PACS; Poglitsch et al. 2010)
data, the Herschel Science Archive (HSAb) was queried to find
all Herschel photometer observations that provided coverage of
each DustPedia galaxy.

2.1.1. Herschel-SPIRE

In the first stage of our SPIRE reduction, raw Level-0 data (ac-
quired from the HSA) was processed up to Level-1 (calibrated

pointed timelines) using HIPE v13'. The Level-1 data was pro-

¥ http://www.cosmos.esa.int/web/herschel/
science-archive

" At the time of processing, HIPE v13 was the current release of
the Herschel Interactive Processing Environment (Ott 2010): http:

cessed up to Level-2 (final maps) using the Bright Galaxy Adap-
tive Element (BRiIGADE; Smith 2012) pipeline. Observations

that overlapped were combined into single contiguous mapsx.
The final timelines were refined with the HIPE v13 destriper; the
improved processing provided by BrRIGADE, and the fact that
we combine all overlapping observations, allows the destriper to
operate more effectively than it would otherwise. Final SPIRE
maps were produced using the HIPE v13 naive map-maker, with
pixel sizes of 6, 8, and 12 arcseconds at 250, 350, and 500 pm
respectively (= !/3 each band’s FWHM). The photometric cal-
ibration of our maps used the beam area values provided in
HIPE v13; specifically, 469.7, 831.7, and 1793.5 arcsec? at 250,
350, and 500 um. If a target galaxy was located in a reduced map
larger than one degree in RA or dec, then a cutout of 1°x 1°, cen-
tred on the target, was produced as the final map; if the reduced
map was smaller than one degree, then it was used in its entirety
as the final map. In total, 844 (96%) of the DustPedia galaxies
have SPIRE coverage. SPIRE maps are calibrated assuming a
v~! reference spectrum.

2.1.2. Herschel-PACS

For our PACS reduction, Level-0 raw data was processed up to
Level-1 timelines using HIPE v13. The Level-1 data was then
processed into Level-2 maps using the standalone ScANAMOR-
pHOUS V24 pipeline (Roussel 2012, 2013). The ScANAMORPHOUS
processing took account of whether the PACS data in question
was taken in scan map, mini map, or parallel mode. Observa-
tions taken in different observing modes were not combined;
when data from more than one mode was available, the superior
set of observations was identified, based upon depth, coverage
sky area, and scan speed. In the case of some target galaxies, the

//www.cosmos.esa.int/web/herschel/hipe-download. At the
time of publication, the current release is HIPE v15.0.1, which nonethe-
less uses the same photometric calibrations as HIPE v13.

* With an exception for observations of the Virgo Cluster, where the
sheer quantity of data makes combining all available data computation-
ally prohibitive — instead, we only make use of the deep data taken by
HeViCS (the Herschel Virgo Cluster Survey; Davies et al. 2010).
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PACS data was found to be unusable. The final PACS maps have
pixel sizes of 2, 3, and 4 arcseconds at 70, 100, and 160 wm re-
spectively (= /3 the FWHM, in keeping with the SPIRE maps).
For data from very large PACS fields, the final maps have a di-
ameter of 0.35°, centred upon the target galaxies; this is smaller
than for the SPIRE maps, due to the additional computational
complexity of reducing PACS data. In total, 771 (88%) of the
DustPedia galaxies have usable PACS coverage. PACS maps are
calibrated assuming a v~! reference spectrum.

2.2. Ancillary Imagery

Our ancillary imaging data consists of observations from 8§ fa-
cilities; the GALaxy Evolution eXplorer (GALEX; Morrissey
et al. 2007), the Sloan Digital Sky Survey (SDSS; York et al.
2000; Eisenstein et al. 2011), the Digitized Sky Survey (DSS),
the 2 Micron All-Sky Survey (2MASS; Skrutskie et al. 2006),
the Wide-field Infrared Survey Explorer (WISE; Wright et al.
2010), the Spitzer Space Telescope, (Werner et al. 2004), and
Planck (Planck Collaboration et al. 2011). The basic parameters
of each band are listed in Table 1. The following sections will de-
tail the specifics of how the data for each facility was processed;
however the same general procedure was employed throughout.

The various facilities from which we take our ancillary data
were chosen on the basis of observation quality, data availability,
and wavelength coverage. All of the facilities we employ pro-
vide coverage for the vast majority of the DustPedia galaxies
(> 75%). Whilst data with improved resolution and/or sensitivity
is available in certain wavelength ranges, coverage is only ever
available for a small minority of our targets. The only potentially
‘borderline’ case for inclusion was the UKIrT Infrared Deep Sky
Survey (UKIDSS; Lawrence et al. 2007). Whilst UKIDSS data
is higher-resolution and deeper than 2MASS, it still only pro-
vides coverage for a minority (40%) of the DustPedia galaxies,
and questions remain regarding possible photometric inconsis-
tencies when compared to the Visible and Infrared Survey Tele-
scope for Astronomy (VISTA), 2MASS, and SDSS surveys (see
Driver et al. 2016). As such, we opted not to include UKIDSS
data at present; alternative facilities operating in the UKIDSS
wavelength range (such as VISTA) only provide coverage for
<15% of our target galaxies. Nonetheless, we do not rule out
incorporating UKIDSS, or other datasets, in to the DustPedia
database at some point in the future.

In general, the ancillary imagery takes the form of 0.5° x 0.5°
cutouts (oriented East-North), centred on their respective target
galaxies. However, for galaxies sufficiently extended that they
would span more than 20% of the diameter of such a cutout
(ie, those with D25 > 6’), larger cutouts of 1°x 1° were used
(although less than 10% of the DustPedia galaxies are this ex-
tended); this ensures that all cutouts can contain enough sky to
allow for proper background measurement, aperture noise esti-
mation, etc, even for extremely extended sources.

For a particular target galaxy, observed in a given band, by a
given facility, all available imagery covering the region of inter-
est was identified. The data was retrieved from the official online
archive of the facility in question, and then mosaiced to produce
the cutout map.

The tool employed to carry out the mosaicing was Montageq.
Montage was used to re-grid the images to a common pixel pro-
jection, match their background levels, and co-add them; when
the observations being co-added were of different depths, the
contribution of each image to the final co-addition was weighted

’ http://montage.ipac.caltech.edu/
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Fig. 2: Tllustration of the moiré patterns which can arise when
reprojecting an image to a different orientation, using the exam-
ple of an SDSS r-band image, shown before (upper) and after
(lower) reprojection. The RMS pixel noise at the ‘peaks’ of the
pattern is ~ 50% greater than in the ‘troughs’.

appropriately (by considering exposure time information, or us-
ing error maps, etc).

Mosaicing via Montage has been found by previous authors
to give rise to no consequential degradation of image quality
(Blanton et al. 2011). However, when reprojecting images to a
different coordinate grid rotation (via either Montage or other
tools), moiré patterns can appear, particularly if the noise budget
is dominated by Poisson statistics. As well as being a conspicu-
ous artefact, moiré patterns also have an effect upon map noise
characteristics at smaller scales. An illustration of a reprojection-
induced moiré pattern is shown in Figure 2. If necessary, it is
possible to prevent the appearance of moiré patterns by slightly
(~10%) enlarging the pixel size of the reprojected maps.This
was necessary for our GALEX and SDSS data (the specifics are
discussed in their respective sections below); all photometry and
other analysis was performed on maps that had undergone the
pixel enlargement, hence preventing moiré patterns from affect-
ing our results.

Note that the background-matching carried out by Montage
is not a background subtraction. Rather, Montage adjusts the
level of each map, so that it matches, as closely as possible, those
maps it overlaps with. This background matching does not scale
the maps to any absolute physical zero-point — it merely min-
imises the difference between overlapping maps. This keeps the
scaling of the map units as close as possible to that of the input
data (whilst still providing good mosaicing), permitting users to
convert the maps back to their native data units (for instance,
in order to consider pixel Poisson statistics for resolved anal-
yses) as per Table A.1. As such, local background subtraction
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Table 1: Details of each band for which we have data.

Facility Effective Band Imagery  Photometry  Pixel Resolution Calibration

Wavelength Name Present Present Width FWHM Uncertainty
() () (%)

GALEX 153nm FUV 797 794 32 4.3 4.5

GALEX 227nm  NUV 832 830 32 53 2.7 “

SDSS 353nm  u 655 655 0.45 1.3 1.3

SDSS 475nm g 655 655 0.45 1.3 0.8

SDSS 622nm r 655 655 0.45 1.3 0.8 b

SDSS 763nm i 655 655 0.45 1.3 0.7

SDSS 905nm z 655 655 0.45 1.3 0.8

DSS1 450nm B 794 - 1-1.7 1.9 (1.5-3.0) -

DSS1 660nm R 794 - 1-1.7 1.9 (1.5-3.0) -

DSS2 450nm B 861 - 1-1.7 1.9 (1.5-3.0) -

DSS2 660nm R 861 - 1-1.7 1.9 (1.5-3.0) -

2MASS 1.24um J 875 875 1 2.0 1.7

2MASS 1.66um H 875 875 1 2.0 1.9 c

2MASS 2.16um Ky 875 875 1 2.0 1.9

WISE 34um (WI1) 875 875 1.375 6.1 29

WISE 46um (W2) 875 875 1.375 6.4 3.4 d

WISE 12um  (W3) 875 875 1.375 6.5 4.6

WISE 22um  (W4) 875 875 1.375 12 5.6

Spitzer 3.6um (IRAC-1) 644 623 0.75 1.66 3

Spitzer 45um (IRAC-2) 804 777 0.75 1.72 3

Spitzer 58um (IRAC-3) 392 374 0.6 1.88 3 ¢

Spitzer 8.0um (IRAC-4) 411 392 0.6 1.98 3

Spitzer 24um  (MIPS-1) 491 477 24-26 6 5

Spitzer 70um  (MIPS-2) 198 177 4 18 10 f

Spitzer 160um  (MIPS-3) 184 171 8 38 12

PACS 7O0um - 255 244 2 9(5.8-12.2) 7

PACS 100um - 716 701 3 10 (6.9-12.7) 7 g

PACS 160um - 771 753 4 13 (12.1-15.7) 7

SPIRE 250um  (PSW) 844 844 6 18 55

SPIRE 350um  (PMW) 844 844 8 25 5.5 h

SPIRE 500um  (PLW) 844 844 12 36 55

Planck 350um  (857GHz) 875 394 102.1 278 6.4

Planck 550um (545GHz) 875 279 102.1 290 6.1

Planck 850wm (353GHz) 875 197 102.1 296 0.78 .

Planck 1.38mm (217GHz) 875 97 102.1 301 0.16 !

Planck 2.10mm (143GHz) 875 29 102.1 438 0.07

Planck 3.00mm (100GHz) 875 19 205.7 581 0.09

Planck 426mm (70 GHz) 875 11 205.7 799 0.20

Planck 6.81mm (44 GHz) 875 18 205.7 1630 0.26 j

Planck 10.60mm (30 GHz) 875 35 205.7 1940 0.35

IRAS 12um - - 598 - 270 20

IRAS 25um - - 578 - 276 20 X

IRAS 60pum - - 675 - 282 20

IRAS 100um - - 682 - 300 20

Notes. For FUV-Kj bands, we refer to each band by its listed ‘Band Name’; otherwise we refer to bands by wavelength. The ‘Imagery Present’
and ‘Photometry Present’ columns give the number of galaxies in each band for which we present imagery and photometry (there are some targets
for which we present imagery, but where photometry was not possible; see Section 3.6). For supplementary photometry, we give the number
of galaxies in each band for which photometry was available from IRAS SCANPI and Planck CCS2 (see Section 5). References for calibration
uncertainties are provided below. For bands with significantly varying resolutions, a typical value is given, followed by the full range in parentheses.

References. ¢ Morrissey et al. (2007); b SDSS DRI12 Data Release Supplement: https://www.sdss3.org/drl2/scope.php;
¢ Cohen et al. (2003); ¢ WISE All-Sky Release Explanatory Supplement: http://wise2.ipac.caltech.edu/docs/release/
allsky/expsup/sec4_4h.html; ¢ IRAC  Instrument Handbook  https://irsa.ipac.caltech.edu/data/SPITZER/docs/
irac/iracinstrumenthandbook/17/#_Toc410728305; / MIPS Instrument Handbook: https://irsa.ipac.caltech.edu/
data/SPITZER/docs/mips/mipsinstrumenthandbook/42/#_Toc288032317; ¢ PACS Instrument & Calibration Wiki: http:
//herschel.esac.esa.int/twiki/bin/view/Public/PacsCalibrationWeb; ” SPIRE Instrument & Calibration Wiki: http:
//herschel.esac.esa.int/twiki/bin/view/Public/SpireCalibrationiWieb; ! Planck Collaboration et al. (2016a); / Planck Col-
laboration et al. (2016b); ¥ Sanders et al. (2003), Miville-Deschénes et al. (2005).
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(eg, with a background annulus) must still be carried out when
performing photometry on the resulting maps. Moreover, users
will find local background subtraction unavoidable when work-
ing with much of the data, given the necessity of accounting for
sky brightness, Galactic cirrus, etc.

2.2.1. GALEX

UV observations made by the GALaxy Evolution eXplorer
(GALEX; Morrissey et al. 2007) were acquired from the GR6/7
data release (Bianchi 2014), hosted at the Mikulski Archive for
Space Telescopes (MAST").

GALEX coverage is available for the vast majority of the
DustPeda Herschel galaxies; 797 (91%) in FUV, and 832 (95%)
in NUV. Coverage is more extensive in the NUV due to the fact
that GALEX’s FUV camera failed in June 2009, whilst the NUV
camera continued operating until the satellite was decommis-
sioned.

The GaLex View utility provided by MAST was used to iden-
tify all GALEX tiles in the vicinity of the DustPedia Herschel
galaxies. These tiles were retrieved and co-added in line with the
process detailed in Section 2.2, but with some additional consid-
erations specific to handling GALEX data, described here.

The final GALEX cutouts have pixel sizes of 3.2” in both
FUV and NUYV, in contrast to the standard GALEX pixel sizes
of 1.5”; there are two reasons for this. In shallow GALEX tiles,
particularly in the FUV, an extremely large fraction of the pixels
have a value of zero — pixels where no photons were detected
during the exposure. Indeed, for the extremely shallow GALEX
‘all-sky’ survey, over 99% of the pixels in a FUV tile can be
expected to be zero-value, and most of the pixels that do con-
tain flux have a pixel value that represents only a single photon.
This presents an issue when co-adding GALEX tiles. In order
to perform the co-addition, it is necessary to re-sample all of
the input images to a common pixel grid. But when re-sampling
shallow GALEX tiles, this has the effect of spreading the flux
in single-photon pixels over several reprojected pixels. Not only
does this manifest as a very obvious aliasing artefact when in-
spected visually, but spreading the flux from a single photon
over an extended area of sky is also physically dubious. Fur-
thermore, in reprojected GALEX tiles with smaller numbers of
zero-value pixels, noticeable moiré patterns often appear, intro-
ducing poorly-behaved noise on some scales. We avoided both of
these artefacts by reprojecting the tiles to larger pixel sizes when
performing the co-addition. Whilst this means that our GALEX
maps are no longer Nyquist sampled, we will primarily be using
them in concert with much lower-resolution data (WISE, Spitzer,
Herschel, etc), rendering this of less concern.

Care needs to be taken to correctly handle zero-value pixels
in GALEX tiles. A zero-value pixel can either represent that a
pixel lies outside of the coverage region for the observation, or
it can represent a pixel that lies inside the coverage region but
where no photons were detected during the exposure. We used
the GALEX response maps corresponding to each tile to deter-
mine the exact region observed; only the zero-value pixels within
the coverage area were included in mosaics.

Coverage in the outer portions of GALEX tiles tend to be
of very low quality, due to aperture vignetting (Morrissey et al.
2007). To prevent this leading to degradation of the final cutouts,
we follow WiggleZ (Drinkwater et al. 2010) and GAMA (Driver
et al. 2016) in masking all pixels outside the central 35" of each
tile, excluding the outer ~ 9% of the coverage area.

10 http://galex.stsci.edu/GR6/

Article number, page 6 of 31

When performing the co-addition of the GALEX images,
each tile’s contribution was appropriately weighted according to
the exposure-time information provided with the tile.

The large numbers of pixels in shallow GALEX tiles that
contain flux from few or zero photons also causes problems
when attempting to match the background levels of tiles being
co-added. The distribution of pixel values in shallow GALEX
tiles is highly discrete and asymmetrical, especially at the distri-
bution peak; this makes it difficult to ascertain the actual back-
ground level — and hence difficult to match to the background
levels of other tiles when co-adding. To address this, a copy of
each tile was convolved with a 30” (20 pixel) diameter top hat
kernel; this had the effect of smoothing out discrete pixel value
levels. The pixel values of each smoothed map were iteratively
sigma-clipped to a three-sigma threshold in order to remove par-
ticularly bright pixels; a flat plane was fit in a least-squares man-
ner to the remaining pixels. The level of this plane was taken to
represent the background level of the tile in question, and sub-
tracted prior to co-addition.

The native GALEX tile pixel units of countss™! pix~! were
translated to Jypix~' using conversion factors of 1.076 X
10~* Jy counts™! s in the FUV and 3.373 x 107> Jy counts™' s in
the NUV; these correspond to the standard GALEX AB magni-
tude zero points of 18.82 mag and 20.08 mag in FUV and NUV
respectively (Morrissey et al. 2007).

2.2.2. SDSS

The Sloan Digital Sky Survey (SDSS; York et al. 2000; Eisen-
stein et al. 2011) provides UV, optical, and NIR imaging of 35%
of the sky in the ugriz bands. SDSS data was acquired from
SDSS DR12 (Alam et al. 2015), hosted at the SDSS Science
Archive Server”, yielding coverage for 656 (75%) of the Dust-
Pedia galaxies.

The MARrcHIVELIST tool, part of Montage, was used to iden-
tify all SDSS fields in the vicinity of the DustPedia galaxies. For
each band, most places in the SDSS footprint have been observed
more than once; however, for each point, a particular field — the
one deemed of the best quality — is designated to be primary.
Primary frames are those used by SDSS for photometry, mosaic
generation, etc. Only fields designated as being primary by the
SDSS were selected to be retrieved and co-added. By only using
primary fields we ensure that only science-quality SDSS data is
used.

Once the primary SDSS fields had been retrieved, they were
co-added in line with the process described in Section 2.2, with
the exception that the final cutouts have pixel sizes of 0.45”.
This was done to minimise the appearance of the conspicuous
moiré patterns that otherwise occured when reprojecting to a
North-East orientation. Given the median seeing full-width half-
maximum (FWHM) of 1.43” for SDSS imaging fields”, a pixel
size of 0.45” is within the limit required for Nyquist sampling.
Indeed, given that Nyquist sampling is achieved in diffraction-
limited observations provided that pixel sizes are smaller than
FWHM /2.44, the 0.45” pixels are suitable for frames with
seeing-limited resolution > 1.09”, which is the case for >97%
of SDSS frames'".

http://drl2.sdss3.org/
http://www.sdss.org/drl2/imaging/other_info/

http://www.sdss.org/wp-content/uploads/2014/10/
psfhist.pdf

[ )
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Maps retrieved from the SDSS DR 12 Science Archive Server
have native units of ‘nanomaggies’ (an SDSS convenience unit

of linear flux""), scaled such that a flux in nanomaggies can be
converted to an SDSS magnitude using a zero point magnitude
of 22.5 mag. SDSS magnitudes were designed to be AB mag-

nitudes, but in practice have been found to exhibit offsets” of
—0.04 mag offset in u-band (such that uag = uspss — 0.04), and
0.02 mag in z-band (such that zap = zspss + 0.02). We corrected
the pixel units for these offsets, scaling them to the AB magni-
tude scale, and thereby allowing conversion to Jy pix~!.

2.2.3. DSS

The Digitized Sky Survey (DSS) provides UV, optical, and
NIR coverage of the entire sky, in the form of scans of photo-
graphic survey plates from the Samuel Orschin telescope at Palo-
mar Observatory, and the UK Schmidt Telescope at the Anglo-
Australian Observatory.

As the DSS is produced from photographic plates, the pixel
values are not in units of linear flux; rather, the units are ‘pho-
tographic densities’. The photographic density scale is not con-
stant across the DSS, and varies from plate to plate. Whilst there
are some general prescriptions for photometric calibration of the
DSS, these only apply to individual contributing sub-surveys,
and typically have calibrations no better than 0.5 mag (Doggett
et al. 1996). Whilst a photometric calibration can be determined
for each individual plate by comparison to standard reference
stars, great care needs to be taken when doing so, particularly
with regards to saturation of reference stars, and whether or not
any portion of each target galaxy is also saturated. As such, we
opt not to attempt a calibration of the DSS imagery, instead leav-
ing it in its native units of photographic densities. However, even
without photometric calibration, the DSS data is valuable, as it
provides consistent optical coverage of our entire sample - in-
cluding the 25% of DustPedia not covered by the SDSS. For
example, the DSS data can still be used to work out the op-
tical axial ratio, position angle, and extent (not in an absolute
isophotal sense, but using signal-to-noise analysis) of a galaxy;
all useful information when determining apertures for our mul-
tiwavelength photometry (see Section 3.4).

DSS B-band and R-band imagery for the DustPedia Herschel

galaxies was retrieved from the NASA SkyView service ’, and
used to produce standard cutouts as described in Section 2.2.
However, given the complications detailed above, we made no
attempt to convert the pixel values to units of Jy pix~'; instead,
they were left as photographic densities. Whilst the DSS pro-
vides UV and NIR imagery for some of the sky, we did not make
use of these data, as GALEX, SDSS and 2MASS provide vastly
superior coverage. The DSS is divided into two phases, DSS1
and DSS2, each made up of different sets of contributing sub-
surveys. As the different contributing sub-surveys operate at a
range of resolutions, no-attempt was made to co-add the DSS1
and DSS2 imagery; rather, cutouts for each were produced sepa-
rately. As such, many sources have both DSS1 and DSS2 cutouts
available. The DSS cutouts have pixel sizes of either 1”” or 1.7”,
depending upon which contributing sub-survey the relevant pho-
tographic plate scans came from.

" http://www.sdss.org/drl12/algorithms/magnitudes/

" http://www.sdss.org/dr12/algorithms/fluxcal/
#SDSStoAB

6 http://skyview.gsfc.nasa.gov/current/cgi/query.pl

2.2.4. 2MASS

The 2 Micron All-Sky Survey (2MASS; Skrutskie et al. 2006)
provides NIR imaging of the entire sky in J-band, H-band, and
Ks-band. 2MASS tiles in the vicinity of the DustPedia Herschel
galaxies were identified and acquired from the NASA/IPAC In-
frared Science Archive (IRSA”). The retrieved 2MASS tiles
were then co-added in line with the process described in Sec-
tion 2.2. The final cutouts retain the standard 2MASS All-Sky
Data Release pixel size of 1”; the pixel units were rendered in
Jy pix~! according to the zero points provided in the headers of
the input archival maps.

Note that severe sky brightness can give rise to significant
aperture noise in the 2MASS bands — especially in H-band,
primarily due to OH emission in the atmosphere (Jarrett et al.
2003). The sky brightness is typically seen to vary across angular
scales of a few arcminutes, making it particularly troublesome
for photometry of nearby galaxies. Because 2MASS observed in
JHK; concurrently, an almost identical sky brightness structure
will be seen in all three bands, varying only in magnitude. This
means that the resulting aperture noise will be strongly corre-
lated between bands. If a given H-band flux is erroneously high,
the J- and Ky-band fluxes are likely to be too high also — al-
though usually not to the same degree as in H-band, given the
much worse sky brightness H-band tends to suffer.

2.2.5. WISE

The Wide-field Infrared Survey Explorer (WISE; Wright et al.
2010) provides NIR and MIR coverage of the entire sky, ob-
serving at 3.4 um, 4.6 um, 12um, and 22 um. WISE imagery
was obtained from the AIIWISE data release Image Atlas, which
combines WISE cryogenic and NEOWISE (Near Earth Object
WISE; Mainzer et al. 2011) survey phases. AIIWISE Atlas im-
ages in the vicinity of the DustPedia Herschel galaxies were
identified and retrieved from IRSA, and co-added in line with
the process described in Section 2.2 (however, given the large
area covered by each AIIWISE Atlas image, co-addition was
very rarely necessary).

The final WISE cutouts retain the standard AIWISE Image
Atlas pixel size of 1.375”. The map pixel units were rendered
in Jy pix~! by using the zero-point magnitudes provided in the
headers of the AIIWISE Atlas images to convert pixel units to
Vega magnitudes, which were then converted to AB magnitudes,
and thence to Jy, according to the conversions given in Table 1,
Section IV.3.a of the Explanatory Supplement to the AIWISE
Data Release Products . Extended-source corrections need to
be applied when performing aperture photometry upon WISE
maps, as per Table 5, Section IV.4.c.vii of the WISE All-Sky
Data Release Explanatory Supplementw, to account for the fact
that the calibration of WISE data is based upon profile fitting of
point sources.

Noticeable image artefacts are occasionally encountered in
the final WISE cutouts. However, as these are present in the in-
put AIWISE Atlas images, and as there is typically only a single
AIIWISE Atlas image covering a given location on the sky, there
is little that can currently be done to address them. The artefacts
commonly encountered in WISE data are discussed in Sections

7 http://irsa.ipac.caltech.edu/frontpage/

'8 http://wise2.ipac.caltech.edu/docs/release/allwise/
expsup/

? http://wise2.ipac.caltech.edu/docs/release/allsky/
expsup/
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IV.4.g and VI.2.c of the WISE All-Sky Data Release Explana-
tory Supplement.

It should also be noted that Wright et al. (2010) and Brown
et al. (2014) have found evidence that the in-orbit spectral re-
sponse functions of the WISE W3 (12 um) and and W4 (22 um)
filters deviate from the laboratory-measured pre-launch func-
tions. For monochromatic fluxes, Brown et al. (2014) report that
W4 filter’s effective wavelength should be revised from 22.1 pm
to 22.8 um. However, the change for any given source depends
on its spectral index in wavelength range of the W3 and W4
filters. Ultimately, this means W3 and W4 bands require more
severe colour-correction than would otherwise have been nec-
essary. As for other instruments, we perform no WISE colour-
correction ourselves, as the full SED modelling necessary to de-
termine the appropriate corrections is beyond the scope of this
work. However, users of our WISE data products are reminded to
be aware of the particular considerations necessary for the WISE
12 and 22 um bands, and to ensure that they are correctly ac-
counting for the filters’ spectral response functions. WISE maps
are calibrated assuming a v~ reference spectrum (Wright et al.
2010).

2.2.6. Spitzer

The Spitzer Space Telescope (Werner et al. 2004) provides imag-
ing across 7 photometric bands in the NIR to FIR, observed using
two cameras. The InfraRed Array Camera (IRAC; Fazio et al.
2004) observes at 3.6 um, 4.5 um, 5.8 um, and 8.0 wm; whilst
the Multiband Imager for Spitzer (MIPS; Rieke et al. 2004) ob-
served at 24 um, 70 um, and 160 um. Since depletion of the he-
lium cryogen in 2009, only the IRAC 3.6 um and 4.5 um bands
are able to operate. For each DustPedia Herschel galaxy, we ac-
quired Spitzer data from the best archive source available. For
both IRAC and MIPS, an order of preference was used to de-
cide which data to use, described below. Once data had been
retrieved from the preferred source, it was otherwise handled as
per Section 2.2. The pixel units of all maps were converted from
Mly sr! to Jy pix~!.

In total, 826 of the DustPedia galaxies (94% of the total) have
Spitzer coverage in at least one photometric band (with data in
4 Spitzer bands being the median for those sources that have
coverage); 808 (92%) have IRAC coverage, whilst 493 (56%)
have MIPS coverage.

Spitzer-IRAC  For IRAC, the preferred data source was the
Spitzer Survey of Stellar Structure in Galaxies (S*G™; Sheth
et al. 2010; Mufioz-Mateos et al. 2013; Querejeta et al. 2015),
hosted by IRSA. S*G was a Spitzer post-cryogenic Exploration
Science Legacy Program which provides high-quality dedicated
imaging of nearby galaxies at 3.6 pm and 4.5 um.

When S*G data was not available, the next preferred IRAC
data source was the Spitzer Enhanced Imaging Products (SEIP),
produced and hosted by IRSA. SEIP images combine Spitzer
observations made of a given part of the sky into ‘Super Mo-
saics’, reduced using the latest version of the Spitzer pipeline.
Whilst SEIP data provides consistent data products for a large
fraction of all Spitzer observations, conspicuous imaging arte-
facts are sometimes encountered; these are most often due to the
co-addition and mosaicing process being confounded by edge-
of-field effects and/or by artefacts around bright sources.

0 https://irsa.ipac.caltech.edu/data/SPITZER/S4G/
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When SEIP data was not available, IR{XC data was retrieved
from the Spitzer Heritage Archive (SHA™). When using SHA
data, the procedure laid out in Section 2.2 was followed to pro-
duce the final cutouts; this process quite closely mimics the way

in which the SEIP ‘Super Mosaics’ were producedzz. However,
SEIP was preferred over SHA, as when IRSA produced the SEIP
maps, they were able to tailor their mosaicing process to partially
mitigate the effects of Spitzer-specific pathologies (eg, limiting
the influence of artefacts during co-addition).

When performing aperture photometry on IRAC maps, it
is necessary to perform calibration corrections, as given in Ta-

ble 4.8, Section 4.11.2 of the IRAC Instrument Handbookzs, to
account for the fact that IRAC maps are calibrated using aperture
photometry of point sources, using apertures of 12" radius. The
calibration corrections ensure that the correct fluxes are mea-
sures when performing photometry of non-point sources, and/or
when using apertures with radii other than 12”. Additionally,
users who wish to perform surface-brightness analyses with the
maps will have to consider the surface-brightness corrections de-
scribed in Section 4.11.3 of the IRAC Instrument Handbook.
IRAC maps are calibrated assuming a flat vS, reference spec-
trum, as described in Section 4.4 of the IRAC Instrument Hand-
book.

Spitzer-MIPS  For MIPS, the preferred data source was the
MIPS Local Galaxies Program (Bendo et al. 2012), hosted by
IRSA, which compiled and re-reduced all Spitzer archive ob-
servations of local galaxies that were selected to be observed
by 4 Herschel key programs — Herschel Virgo Cluster Survey
(HeViCS; Davies et al. 2010, 2012), the Dwarf Galaxy Survey
(DGS; Madden et al. 2013), the Very Nearby Galaxy Survey
(VNGS), and the Herschel Reference Survey (HRS; Boselli et al.
2010) — in order to provide standardised ancillary data for those
surveys. This makes the MIPS Local Galaxies Program the ideal
source of MIPS data for the sources it covers (25% of the Dust-
Pedia Herschel galaxies).

When MIPS Local Galaxies Program data was not avail-
able, the next preferred source was data provided by the Spitzer
Legacy/Exploration Science Programs, hosted by IRSA. These
are the final data products used and supplied by each program’s
team, and are consistently free of artefacts. We made use of
MIPS data provided by the C2D (from molecular Cores To
planet-forming Disks; Evans et al. 2003, 2009), SEP (Spitzer
Mips 24 and 70 pm imaging near the south Ecliptic Pole; Scott
et al. 2010), and SWIRE (SirTr Wide-area Infrared Extragalactic
Survey; Lonsdale et al. 2003™) programs.

When neither MIPS Local Galaxies Program nor Spitzer
Legacy/Exploration Science Program MIPS data was available,
we made use of SEIP MIPS data. Note that SEIP only includes
24 um MIPS data.

If no other MIPS data source is available, we make use of
SHA data in the same manner as for IRAC.

s http://sha.ipac.caltech.edu/applications/Spitzer/

SHA/

. https://irsa.ipac.caltech.edu/data/SPITZER/Enhanced/
SEIP/docs/seip_explanatory_supplement_v3.pdf

® https://irsa.ipac.caltech.edu/data/SPITZER/docs/
irac/iracinstrumenthandbook/

* SWIRE DR2 documentation: http://swire.ipac.caltech.
edu/swire/astronomers/publications/SWIRE2_doc_083105.
pdf
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The reference spectrum for MIPS maps has the shape of a
10*°K blackbody, as described in Section 4.3.2 of the MIPS In-

strument Handbook .

2.2.7. Planck

The Planck satellite (Planck Collaboration et al. 2011) mapped
the entire sky in 9 bands, in the 350pum to lcm wave-
length range, making Planck well-suited to detecting dust, free-
free, and synchrotron emission from nearby galaxies. However,
Planck has extremely low resolution compared to the other
datasets we employ, with a beam FWHM ranging from 5-32'
in size; a factor of 8-54 worse than the 36" resolution of the
SPIRE 500 um band (which is the lowest-resolution imagery we
present aside from Planck). This stark difference in resolution
makes it impractical to perform aperture-matched CAAPR pho-
tometry with Planck maps in the same manner as for the other
bands; instead, we will use catalogue photometry provided by
the Planck collaboration (see Section 5).

However, for completeness, we nonetheless produced Planck
imaging cutouts for the DustPedia galaxies. Planck data was ac-
cessed from the NASA SkyView service, which uses the all-sky
maps26 from the Planck Public Data Release (Planck Collabora-
tion et al. 2014).

Due to the exceptionally large size of the Planck beam, our
Planck imaging cutouts have diameters 4 times larger than our
cutouts for other instruments; hence galaxies with optical an-
gular sizes <6 are in 2° X 2° cutouts, whilst those with optical
angular sizes > 6’ are in 4° X 4° cutouts.

All Planck maps are in our standard units of Jy pix~'. The
350 um (857 GHz) and 550 um (545 GHz) cutouts were con-
verted from their native units of MlJy sr!, whilst the other 7
bands were converted from their native units of Kcvmp accord-
ing to the conversions provided by the Explanatory Supplement
to the Planck Catalogue of Compact Sources” . For the 350 um-—
3.00mm Planck bands, the data is calibrated assuming a con-
stant vS , reference spectrum (Planck Collaboration et al. 2016c¢);
for the 4.26-10.60 mm Planck bands, the reference spectrum is
the Cosmic Microwave Background (CMB), a 2.73 K blackbody
(Planck Collaboration et al. 2016d).

3. The CAAPR Photometry Pipeline

Here we describe the Comprehensive & Adaptable Aperture
Photometry Routine (CAAPR), which we use to produce con-
sistent multiwavelength aperture-matched photometry of the
DustPedia galaxies from our GALEX, SDSS, 2MASS, WISE,
Spitzer, PACS, and SPIRE imagery.

CAAPR is a development of the photometry pipeline em-
ployed by Clark et al. (2015), De Vis et al. (2017a), De Vis et al.
(2017b), and Keenan et al. (in prep.). Its development and func-
tionality are driven by three main motivations.

Firstly, CAAPR was created to be able to generate aperture-
matched photometry that is cross-comparable, even in the face
of the broad gamut of data that are required for multiwavelength

® http://irsa.ipac.caltech.edu/data/SPITZER/docs/mips/
mipsinstrumenthandbook

* Although the Planck all-sky maps are in the HEALPIX projection
(Goérski et al. 2005), the maps provided by SkyView are in the standard
gnomonic TAN projection.

7 https://irsa.ipac.caltech.edu/data/Planck/ercsc_vl.
3/explanatory_supplement_v1.3.pdf

astronomy — producing fluxes and uncertainties in a consistent
manner, despite the great variation in the characteristics of ob-
servations ranging from the UV to the IR to the submm.

Secondly, CAAPR allows automated standardised photom-
etry for local Universe surveys, as has long been the norm for
intermediate-to-high redshift astronomy. Photometry of nearby
galaxies generally entails a large degree of ‘by hand’ tweak-
ing, such as altering aperture dimensions to maximise flux
and signal-to-noise ratio (S/R), masking of contaminating fore-
ground and background sources, and manually selecting an ap-
propriate background region. This manual approach was taken
by, for instance, the Herschel Reference Survey (HRS, see Sec-
tion 6.3.1), the Third Reference Catalogue (de Vaucouleurs et al.
1991), the SCUBA Local Universe Galaxy Survey (SLUGS;
Dunne et al. 2000), the 2MASS Large Galaxy Atlas (Jarrett et al.
2003), the Spitzer Infrared Nearby Galaxy Survey (SINGS; Dale
et al. 2005), the GALEX Ultraviolet Atlas of Nearby Galaxies
(Gil de Paz et al. 2007), the Key Insights on Nearby Galax-
ies Far-Infrared Survey with Herschel (KINGFISH; Dale et al.
2012), the WISE High-Resolution Galaxy ATLAS (Jarrett et al.
2012), ad nauseum. However, this manual approach is a luxury
we cannot afford with DustPedia, as we deal with a larger num-
ber of targets, and a much more extensive range of bands, than is
typically the case for nearby galaxy surveys. As such, CAAPR
requires minimal human interaction once started (except for un-
common occasions where visual inspection leads us to exclude
a certain band from contributing to a source’s aperture fitting, or
disable star removal for a particular map, etc). This automated
approach allows us to handle the scale of the DustPedia dataset,
and be confident that all of our measurements have been con-
ducted in a consistent and cross-comparable way.

Thirdly, CAAPR is designed to be able to handle the wide
range of shapes, sizes, brightness distributions, and other mor-
phological traits found in nearby galaxies (and to do so across
the very different resolutions and noise environments found in
multiwavelength datasets). Naturally, aperture photometry re-
quires that the shape and size of a target source is well con-
strained, in order to construct an appropriate aperture — how-
ever this is notoriously difficult for nearby galaxies, which are
often ‘shredded’ (ie, erroneously identified as multiple sepa-
rate sources). The widely-used SExTracTOR software (Bertin
& Arnouts 1996) is prone to shredding very extended sources
(Hammer et al. 2010a,b; Wright et al. 2016), and the shred-
ding of nearby galaxies in the SDSS is well-documented (Blan-
ton et al. 2001; Hall et al. 2012; Budavari et al. 2009). Indeed,
when describing the LAMBDAR photometry pipeline (which is de-
signed for higher-redshift galaxies), Wright et al. (2016) give
nearby galaxy NGC 5690 as an example of where their multi-
pass SExTracTOR-derived aperture generation fails — even though
NGC 5690 is relatively ‘well-behaved’ from the standpoint of
nearby galaxy aperture fitting, being bright, edge-on, and only
somewhat flocculent (by coincidence, NGC 5690 is one of the
galaxies in the sample of Clark et al. 2015, for which CAAPR
was originally developed, and where CAAPR’s aperture genera-
tion performs successfully).

CAAPR takes the form of a Python 2.7 package, and is avail-
able on GitHub". CAAPR is operated via a single high-level
function, with two primary inputs — a table describing the proper-
ties of each source, and a table describing the properties of each
band that is to be processed — along with a number of optional
arguments (eg, stating whether CAAPR is to operate using paral-
lel processing, or specifying that only the aperture-fitting phase

a https://github.com/Stargrazer82301/CAAPR
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of the pipeline should be run). The input tables allow the user to
alter how the pipeline runs for individual sources (eg, the user
might want to exclude the r-band map of a given source from
contributing to the shape of the final photometric aperture, due
to contamination from a satellite trail), and set up the pipeline to
run appropriately in each band (eg, the user is likely to want
to enable foreground star removal at 3.4 um, but disable it at
500 wm).

3.1. Preprocessing

CAAPR can operate with separate input maps provided for each
target in a given band, or with a single input map for all targets
in a given band. In either case, the user has the option of extract-
ing a cutout map centred, on the target source, which will then
be used throughout the rest of the pipeline (this is often neces-
sary if the input map is particularly large, and hence memory-
intensive); this cutout will be reprojected to a gnomonic TAN
projection. Note that for purposes of consistency, the maps be-
ing processed by CAAPR will be referred to as cutouts for the
rest of this section.

3.2. Foreground Star Removal

Contamination from foreground stars in UV-MIR bands is min-
imised using the foreground star removal functionality included

in the Python Toolkit for SKIRT (PTS” ; Camps et al. 2015, Ver-
stocken et al. in prep.).

The foreground star removal procedure works on a band-
by-band basis and runs semi-automatically, requiring a small
amount of adjustment of the configuration parameters. For a par-
ticular image, the appropriate entries from the 2MASS All-Sky
Catalog of Point Sources (Cutri et al. 2003) are retrieved as a
starting point. The catalogue is queried through the VizieR in-

terface of Astroquery30 Python library. Around each catalogued
position, a small patch of the image is subtracted by the esti-
mated background in that area and subsequently a local peak is
searched, using tools from the Photutils” Python package. If a
peak with a reasonable S/N is not found within a radius of a few
pixels, the position is ignored. If a matching peak is found, it
has to show no deviations from being a true point source (other
than the peak exhibiting saturation in the case of the brightest
stars), otherwise it will also be ignored. This is an effective way
of preventing most compact sources in the target galaxies, pri-
marily Hi regions, from being removed — as such objects tend to
lie within local peaks in a galaxy’s brightness distribution. For
example, even in the uncommon cases where Hii regions display
no extended nebulosity at all, they generally lie along the bright-
ness ‘ridge’ of a galaxy’s spiral arms; this makes their brightness
profile deviate from being a true point source.

The FWHM of a positively identified point source deter-
mines the size of the area which will be masked and replaced
with an interpolation. For the brightest point sources, image seg-
mentation is used to detect saturation bleed, ghosts, and diffrac-
tion artefacts. The segmentation is also replaced with an inter-
polation. This interpolation is performed by approximating the
source neighbourhood by a 2-dimensional polynomial function,
whilst including Gaussian noise based on the average deviation
of the pixel values from this polynomial. Figure 3 shows a WISE

» http://www.skirt.ugent.be/pts/
0 https://github.com/astropy/astroquery
! https://github.com/astropy/photutils
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Fig. 3: Demonstration of our foreground star removal process,
using the example of WISE 3.4 um observations of IC 0342, over
a 45’ x 30’ area of sky, shown before (upper) and after (lower)
undergoing star removal. Both images are displayed using the
same logarithmic brightness scale, to allow both bright and faint
features to be seen. Photometric master aperture ellipse, as deter-
mined by CAAPR, is marked in green. IC 0342 lies in the plane
of the Milky Way, well within the zone of avoidance (b = 10°),
leading to a high degree of foreground stellar contamination.
Nonetheless, our foreground star removal process successfully
subtracts the vast majority of all emission from foreground stars
in the vicinity of IC 0342.

3.4um map of IC 0342 before and after undergoing the fore-
ground star removal process.

The effectiveness of the foreground star removal is explored
in-depth in Section 6.1. In uncommon instances where visual in-
spection revealed that the foreground star removal caused prob-
lems (such as confusing a bright Hi region in the target galaxy
for a star, and hence removing it), then CAAPR was run with the
star removal disabled; this was required for approximately 1-2%
of cases.

3.3. Polynomial Sky Flattening

After star-subtraction, CAAPR removes large-scale sky structure
in each cutout, if necessary, by means of fitting and subtracting
a 2-dimensional 5"-order polynomial to the sky in the cutout
(following Auld et al. 2013, a 5"-order polynomial provides the
flexibility to model relatively a complex sky, whilst mitigating
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Fig. 4: Illustration of our polynomial sky subtraction, with our SPIRE 250 um map of NGC 6946, over a 45’ x 30" portion of
the map. As can be seen, NGC 6946 suffers from a high degree of contamination from foreground Galactic cirrus. Photometric
master aperture ellipse, as determined by CAAPR, indicated by solid green line; background annulus is demarked by dashed green
lines. Left: Original, un-subtracted map. Central: Best-fit 2-dimensional 5"-order polynomial sky model used to remove large-scale
emission, Right: Map after undergoing polynomial sky subtraction (displayed using same colour scale as in the left panel); note that

background has been appreciably flattened.

the risk of over-fitting). This is useful for removing foreground
emission (eg, Galactic cirrus in MIR—submm, sky brightness in
NIR), or an instrumental gradient (which is particularly common
in GALEX and Spitzer maps). The target source, and any other
bright sources, are masked in order to prevent them from influ-
encing the sky polynomial fitting.

To mask the target source, a preliminary run of the aperture-
fitting process (which is described fully in Section 3.4) is con-
ducted; the semi-major and -minor axes of the fitted ellipse are
doubled, and this region is then masked. To mask any other
bright sources, the pixel values in the cutout are run through an
iterative sigma-clip with a 3 o threshold; after convergence, all
pixel values that lie above the final threshold are masked. Once
masking is completed, CAAPR fits the sky polynomial to all re-
maining un-masked pixels in the cutout via least-squares min-
imisation.

However, in cutouts where the sky is already flat and well-
behaved, subtracting the polynomial sky fit is undesirable; at best
it is unnecessary, and at worst it may actually degrade the sky
quality. Therefore, CAAPR evaluates the cutout’s pixel distri-
bution before and after the sky polynomial is subtracted. For
each distribution, only pixel values below the peak are consid-
ered in this evaluation, as these values should represent pix-
els corresponding to ‘empty’ sky. In cases where the sky poly-
nomial subtraction improves the sky quality — flattening the
sky — the range of pixels values below the distribution peak
should be narrowed, as there should be a narrower range of
pixel values corresponding to empty sky. To quantify this width,
CAAPR finds the root-mean-squared (RMS) deviation between
the peak pixel value and all of the values beneath it, for both
the polynomial-subtracted and polynomial-unsubtracted distri-
butions. If the RMS width for the subtracted distribution is at
least 10% smaller than that of the unsubtracted distribution, it is
assumed that the polynomial subtraction has lead to the sky be-
ing appreciably flattened, and the polynomial-subtracted cutout
is utilised for all subsequent stages of the pipeline; otherwise,
the original cutout is used, unaltered. The polynomial sky sub-
traction process is demonstrated in Figure 4, using the example
of NGC 6946. Note that the polynomial sky flattening is only
conducted as part of our CAAPR photometry; the FITS images
provided in our data products (see Section 7.3) have not under-
gone this process.

3.4. Aperture Fitting

CAAPR’s aperture fitting process generates an elliptical aperture
in every band for a given target; these apertures are then com-
bined (as described in Section 3.5) to provide a final aperture for
the target. The aperture fitting process consists of two distinct
stages; first determining the position angle and axial ratio (ie,
the shape) of the aperture ellipse, then second determining the
semi-major axis (ie, the size) of the aperture ellipse. The stages
of the aperture-fitting process are illustrated in Figure 5.

To determine the position angle and axial ratio of the aperture
ellipse, CAAPR starts by estimating the noise in the cutout, by
finding the iteratively sigma-clipped (with a 3 o threshold) stan-
dard deviation of the cutout’s pixel values. CAAPR then iden-
tifies all contiguous groups of five or more pixels with a Sig-
nal to Noise Ratio (S/R) >3 (Panel 2 of Figure 5); if there is a
group of contiguous S/R pixels associated with the target source,
it is isolated (Panel 3 of Figure 5). If no group of S/R > 3 pixels
is found at the coordinates of the target source, it is assumed
that the source is non-detected and CAAPR defaults to a circular
aperture (ie, an axial ratio of 1, and a position angle of 0 deg).

If CAAPR succeeds in finding and isolating a group of con-
tiguous S/R >3 pixels associated with the target source, then
CAAPR subjects that group of pixels to binary opening (ie, a
succession of binary erosion then binary dilation), with an ero-
sion element of size equal to the FWHM of the band’s beam
(Panel 4 of Figure 5). This removes small protrusions from the
periphery of the group of pixels, as such features are often due
to background sources, foreground stars, map artefacts, etc. For
example, in Panel 3 of Figure 5 the removed feature at the north-
easterly edge of the isolated group of pixels is associated with a
background galaxy.

Next, CAAPR finds the convex hull (the tightest polygon that
will contain a set of points) of the remaining pixels (Panel 5 of
Figure 5), then fits an ellipse to the vertices of the convex hull
(Panel 6 of Figure 5); the position angle and axial ratio of this
ellipse will be used for the final aperture ellipse for the band in
question. The semi-major axis of this ellipse will be employed
by CAAPR as an initial reference value for determining the size
of the aperture ellipse, as described below.

Before determining the semi-major axis of the aperture el-
lipse, CAAPR convolves a copy of the cutout with a Gaussian
filter, of FWHM twice the beam width of the band in ques-
tion. This serves to enhance any lower-surface-brightness fea-
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Fig. 5: Stages of the CAAPR aperture-fitting process, using SPIRE 250 pm data for DustPedia galaxy NGC 5364 as an example.
Panel 1: Central 1000” x 1000” portion of map. Panel 2: All of the pixels with S/R > 3.Panel 3: Contiguous set of significant
pixels isolated as being associated with target source. Panel 4: Isolated pixels after being subjected to binary opening. Panel 5:
Vertices of convex hull of isolated pixels (red dots). Panel 6: Best-fit ellipse to convex hull of isolated pixels (solid line). Panel 7:
Smoothed copy of map, with coarse radial profiling (dashed lines) to find interval within which S/R =2 (solid lines). Panel 8:
Region that undergoes detailed radial profiling (dotted shading) to find exact semi-major axis at which S/R =2 (solid line). Panel 9:
Resulting elliptical aperture, before (dashed line) and after (solid line) being multiplied by 1.25 expansion factor. Panel 10: Final
photometric aperture (solid line), found by combining aperture fitted in this band (dotted line) with those fitted in all other bands;

final background annulus is also shown (dashed lines).

tures associated with the target source. This is particularly im-
portant for sources that are very well resolved, where individual
regions of emission within the source can be separated by appar-
ently ‘empty’ sky (eg, individual star-forming regions in FUV
for well-resolved face-on spirals); the Gaussian smoothing helps
to mitigate this effect.

The semi-major axis of the aperture ellipse is determined
by placing concentric elliptical annuli on the smoothed cutout,
centred at the coordinates of the target source, with the position
angle and axial ratio determined previously. Initially, 10 such
elliptical annuli are placed, with semi-major axes ranging from
0.5-3.0 times the initial reference value determined above, and
with widths such that the boundaries of each subsequent annulus
are in contact. The average per-pixel S/R in each elliptical an-
nulus is calculated, to identify the pair of annuli that bracket the
semi-major axis at which S/R =2 (Panel 7 of Figure 5). Within
this range of semi-major axes, a differential evolution optimisa-
tion (Storn & Price 1997), using elliptical annuli of one beam-
width, is then used to find the precise semi-major axis at which
S/R =2 (Panel 8 of Figure 5). This two-step approach is much
faster than a full high-resolution radial profiling. The semi-major
axis of the S/R =2 isophote is then multiplied by an expansion
factor of 1.25" to give the final semi-major axis of the aperture
ellipse for the band in question (Panel 9 of Figure 5); applying
this expansion factor accounts for the fact that some fraction of
a source’s flux will always fall outside any practical S/R cutoff
(Overcast 2010; Blanton et al. 2001). If no annulus had S/R > 2,
then we revert to a default semi-major axis of twice the beam
FWHM in the current band (note that, by design, all galaxies in
the DustPedia sample are detected in at least one band).

* This is the default expansion factor, and the one used for the DustPe-
dia photometry; however it can be altered by the user if they wish.
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3.5. Aperture Combining

The aperture-fitting process described in Section 3.4 is repeated
for every band for which data is available for a given target. We
include DSS data in our aperture-fitting, as it provides consistent
optical coverage for all of our galaxies (particularly useful for
determining the stellar dimensions of galaxies without GALEX
and/or SDSS data); although we exclude DSS data from the ac-
tual photometry as the maps are in photometrically uncalibrated
units of photographic densities. To allow a valid comparison de-
spite a potentially wide range of resolutions, the beam-width in
each band is subtracted in quadrature from the major and minor
axes of that band’s aperture ellipse (the axial ratio is recomputed
accordingly), effectively deconvolving them. These corrected el-
lipses are compared, to find a ‘super-ellipse’ — the smallest el-
lipse which will contain all of the deconvolved ellipses. This is
the master aperture for this source (Panel 10 of Figure 5), to be
used for the aperture photometry and uncertainty estimation de-
scribed in Sections 3.6 and 3.7.

The user can intervene to exclude specific bands from the
aperture fitting and combining process, either for an individual
target or all targets, by adjusting the corresponding entries in the
input tables passed to CAAPR.

An example of the final master aperture for a given source,
applied to all bands, is shown in Figure 6 for NGC 4559.

In general, for earlier-type galaxies (types E-Sa), the fi-
nal master aperture size was often driven by the WISE 3.4
and 4.6 um bands, thanks to their sensitivity to low-surface-
brightness NIR emission (earlier-type galaxies being dominated
by evolved stellar populations which are luminous in the NIR).
Conversely, the master apertures of later-type galaxies (types
Sb—-Sm) were typically dictated by the apertures fit in the
GALEX and UV-optical SDSS bands.
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NGC4559

GALEX_FUV GALEX_NUV

Spitzer_3.6 Spitzer_5.8

PACS_160 SPIRE_250 SPIRE_350

PACS_70

Spitzer_8.0,

SPIRE_500

Fig. 6: Photometry thumbnail image grid for NGC 4559. CAAPR produces an image like this for every source. Solid lines show
master aperture, whilst dashed lines demark background annulus. Several of the fluxes for NGC 4559 have flags (flags are defined
in Section 4). WISE 12 um flux has ‘A’ flag due to negative flux artefact in master aperture, whilst WISE 22 um flux has ‘a’ flag,
due to a less pronounced version of the same feature. The Spitzer 3.6, 4.5, 5.8, and 8.0 um fluxes have ‘N’ flags (although these
are borderline cases), as <40% of pixels in their sky annuli have coverage, so it is assumed that any background estimate will
be unreliable (similarly, the lack of coverage in their master apertures would, independently, warrant ‘n’ flags). Spitzer 24 um and
PACS 70, 100, and 160 um flues have ‘n’ flags, as < 80% of pixels in their sky annuli have coverage, potentially reducing reliability

of background estimate.

3.6. Aperture Photometry

The photometric measurements made by CAAPR take the form
of standard aperture photometry, with local background subtrac-
tion conducted using an elliptical background annulus around
the elliptical master aperture, both centred on the coordinates of
the target source. The user can opt to use apertures generated by
CAAPR as per Sections 3.4 and 3.5; or the user can provide their
own apertures.

The defined master aperture for a given target is used in all
bands; however, in each band, the semi-major and -minor axes of
the master aperture is added in quadrature to the beam FWHM
in that band, effectively convolving the aperture with that band’s
beam. As such the master aperture, as employed in in each band,
is sampling the same effective region of sky once resolution is
accounted for, rendering the final photometry aperture-matched.
This approach avoids the computational cost of convolving thou-
sands of large-area high-resolution optical maps with the low-
resolution 500 um beam, and averts the risk of flux from back-
ground objects being spread into the aperture. We tested that
photometry obtained in this way agrees with photometry ob-
tained by convolving all maps to the same resolution. We did
this by repeating some of the photometry with the maps con-
volved to the coarsest 36" resolution of the SPIRE 500 um data
(in particular, we repeated the photometry for all sources in the

GALEX FUV and WISE 12 um bands; these data have suffi-
ciently high resolution for convolution to 36” to represent a sig-
nificant change, without being computationally excessive). The
photometry obtained in these repeats agreed to within 1%, with
the typical difference in flux being 0.4 0.

The flux in a source aperture is simply the sum of the values
of all the pixels it contains. Bands with larger pixel sizes require
consideration of partial pixels; CAAPR determines what fraction
of each pixel’s flux falls within the source aperture by dividing
each pixel into a number of sub-pixels (a standard technique; see
Bourne et al. 2013, Wright et al. 2016, and references therein).
For the DustPedia photometry we divide each input pixel into
10 x 10 grids of 100 sub-pixels for the Spitzer 70 and 160 um
bands, all three PACS bands, and all three SPIRE bands.

The background annulus for a given target and band has
the same axial ratio and position angle as the master aperture
it surrounds. The inner and outer semi-major axes of the annu-
lus are at 1.250 and 1.601 times the beam-adjusted semi-major
axis of the source aperture (Panel 10 of Figure 5); these propor-
tions mean that the background annulus has the same area as the
master aperture (although they can be adjusted by the user). The
average background level in the annulus is determined by tak-
ing the iteratively sigma-clipped (with a 3 o threshold) mean of
the pixel values contained within the annulus, with partial pixels
considered in the same manner as for the master aperture. This
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average background is then subtracted from the flux measured
in the master aperture, appropriately weighted for the aperture’s
area.

For maps so small that the background annulus lies wholly
outside their coverage (for example, in the instance of some
Spitzer and Herschel observations which observed only the nu-
cleus of the target galaxies), then no background can be mea-
sured, and so a null flux is recorded for the source.

It is possible for a ‘negative’ flux to be recorded, if the
locally-determined background is brighter than the target source.
This is to be expected; consider sources where there is essen-
tially no flux present, such as in SPIRE observations of dust-free
early-type galaxies. In these cases, the flux level measured in the
background annuli should, on average, be the same as the flux
level measured in the elliptical master apertures. However, they
will never be perfectly identical for any individual instance, due
to aperture noise - so 50% of the time there will be a brighter
flux level in the background annulus than in the elliptical master
aperture, which will hence result in a negative flux measurement.
Negative fluxes can also occur when measuring faint sources in
fields with complex backgrounds (eg, Galactic cirrus in MIR—
submm bands). The vast majority of negative flux measurements
are compatible with a flux of 0 when the uncertainty is consid-
ered.

For bands with beam FWHM > 10", an aperture correction
is applied to account for the fraction of the source flux spread
outside the master aperture by the PSF. Most instrument hand-
books only provide such corrections for point sources, as cor-
rections for extended sources (such as the DustPedia galaxies)
require a model for the underlying unconvolved flux distribu-
tion. CAAPR assumes that each target galaxy, as observed in a
given band, can be approximated as a 2-dimensional Sérsic dis-
tribution (Sérsic 1963) convolved with the band’s PSF. There-
fore CAAPR fits a 2-dimensional convolved-Sérsic model to the
map, and uses the (unconvolved) Sérsic distribution of the best-
fit model to estimate the factor by which the measured flux is
altered by the PSF. This factor is used to correct the measured
flux accordingly. For this, we used the circularised PSF ker-
nels of Aniano et al. (2011)33, to allow consistency between in-
struments. No attempt to apply aperture corrections is made for
sources with S/R < 3, as the results of the fit were too likely to be
spurious, and the spreading of flux into the aperture from back-
ground sources would confuse the result. Note that our aperture
corrections evaluate and account for the amount of source emis-
sion that is spread into the background annulus (which hence
artificially inflates the estimated background level).

Fluxes at wavelengths < 10 um are corrected for Galactic ex-
tinction according to the prescription of Schlafly & Finkbeiner
(2011), using the IRSA Galactic Dust Reddening and Extinction
Service'.

3.7. Uncertainty Estimation

Multiwavelength photometry requires determining photometric
uncertainties in a wide range of noise regimes; from photon-
arrival Poisson noise in the UV, to sky brightness in the NIR,
to instrumental noise in the MIR, to confusion noise in the
submm. CAAPR needs to not only be able to measure photo-
metric uncertainties in all of these situations, but to do so in a
legitimately cross-comparable manner. As such, CAAPR takes

» http://www.astro.princeton.edu/~ganiano/Kernels.html
* https://irsa.ipac.caltech.edu/applications/DUST/
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Fig. 7: Illustration of how CAAPR determines the aperture noise
in map, by placement of randomly positioned sky apertures, for
our GALEX NUV map of NGC 5147 (full 0.5°x0.5° cutout
shown). Thick dashed green ellipse around NGC 5147 is master
aperture, within which random sky apertures may not be placed.
Thin pink ellipses show all of the candidate randomly positioned
sky apertures generated by CAAPR; as can be seen, they are bi-
ased towards being located closer to the target source, with dis-
tribution thinning out at greater distances as per a Gaussian dis-
tribution. Thick blue ellipses are accepted random sky apertures
used to calculate aperture noise.

a robust ‘brute force’ approach to estimating uncertainties, by
measuring the variation in the fluxes recorded in sky apertures
placed in the vicinity of the target master aperture. The aper-
ture noise measured in this way will encompass the uncertainty
contributions arising from instrumental variation in pixel values,
and from confusion, and from the risk of unrelated sources con-
taminating the aperture, and from large-scale noise such as sky
brightness and Galactic cirrus.

The random sky apertures all have the same area as the mas-
ter aperture, and are background subtracted using an encircling
background annulus in the same manner as for master aperture.
CAAPR places each random sky aperture quasi-randomly on the
cutout, with its coordinates being drawn from a Gaussian distri-
bution centred on the target source, with a standard deviation
five times the semi-major axis of the source aperture. This dis-
tribution means that the random sky apertures are most likely to
be positioned in the immediate vicinity of the master aperture,
where the measured aperture noise will be most pertinent.

However, each randomly generated sky aperture has to pass
three tests before it is accepted for use. Firstly, no random sky
aperture is permitted to overlap with the master aperture; oth-
erwise the inclusion of the target source in the aperture noise
estimation would artificially drive up the reported uncertainty.
Secondly, no random sky aperture is permitted to have more than
50% of its pixels be sampled by any other random sky aperture;
if a large number of random sky apertures happened to be po-
sitioned in the same location, this would artificially reduce the
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reported aperture noise. Thirdly, no random sky aperture may
extend beyond the boundaries of the cutout. Figure 7 shows the
distribution of accepted and rejected random sky apertures for
the example case of NGC 5147.

CAAPR keeps generating random sky apertures, and accept-
ing those that pass the three tests listed above, until certain crite-
ria are met. If 100 random sky apertures are successfully gener-
ated, then the generation process stops and those apertures will
be used to determine the aperture noise. However, if the situa-
tion arises where 250 random apertures have been generated in
arow without a single one of them being accepted, it is assumed
that there are no more valid positions left in the cutout for any
more apertures to be successfully placed; if this occurs, one of
two things can happen. If at least 50 random sky apertures have
already been accepted, these apertures will be used to determine
the aperture noise. But if fewer than 50 random sky apertures
have been accepted, this is deemed an insufficient number, and
aperture noise will instead be determined using the mini-aperture
extrapolation method described in Section 3.8.

This method of determining aperture noise has the additional
benefit of being highly stable. Running repeated aperture noise
estimates on the same cutout yields aperture noise estimates that
typically vary by < 10%. Compare this to the high degree of vari-
ation — as much as a factor of several — that can be suffered when
placing sky apertures across a square cutout totally at random
(Clark 2015).

Once a sufficient number of random sky apertures has been
successfully generated, CAAPR calculates the iteratively sigma-
clipped (with a 3 o threshold) standard deviation of the distribu-
tion of flux values measured from those apertures. This value is
taken to be the aperture noise for the aperture size and cutout in
question.

The final uncertainty for a given flux is calculated by adding
in quadrature the aperture noise and photometric calibration un-
certainty of the band in question. The calibration uncertainties
for all of our bands are listed in Table 1.

3.8. Aperture Noise Extrapolation

The approach of determining aperture noise via the placement
of randomly-positioned sky apertures has the virtue of being ef-
fective for essentially any noise regime (eg, instrumental noise,
confusion noise, contaminating foreground/background sources,
Galactic cirrus, etc). However, it has the distinct disadvantage
that it requires maps with a sufficient amount of coverage area
around the target source to permit the placement of enough ran-
dom sky apertures.

Moreover, consider the case of an extremely extended nearby
galaxy, such as M 101 (NGC 5457), for which we employ a pho-
tometric aperture with a major axis of 35’. For a map of M 101
to be large enough for the placement of 50 random sky aper-
tures (our threshold minimum acceptable number) around the
target, with perfect tessellation, the map would have to cover
an area of over 13 sqdeg. Whilst large-area surveys like SDSS
might observe an area of that size, most observations by tele-
scopes like Spitzer and Herschel would not map even a frac-
tion of that amount of sky when observing a galaxy like M 101
(for instance, Figure 6 shows how small the Spitzer and Her-
schel maps of NGC 4559 are in relation to the size of the actual
galaxy). And even if maps were consistently that large, it would
not be appropriate to use such a vast area of sky for determining
aperture noise; an aperture noise estimate determined using ran-
dom sky apertures placed several degrees away from the target
will not be representative of the aperture noise at the location of
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Fig. 8: Example of how CAAPR extrapolates aperture noise, for
SPIRE 250 um photometry of M 101 (NGC 5457). Blue circles
indicate aperture noise determined when using mini-apertures of
different sizes. Note that the error bars do not represent uncer-
tainties, but rather indicate weightings assigned to each point,
with greater weight given to mini-apertures closer in size to the
master aperture. Blue dashed line indicates best-fit power law to
trend exhibited by these points. Red hexagon indicates extrapo-
lated aperture noise for M 101, given area of its master aperture.

the target itself. To remedy this, CAAPR features a novel method
of extrapolating the aperture noise, for maps of any size.

In instances where CAAPR is unable to place a sufficiently
large number of full-size random sky apertures on a cutout (as
described in Section 3.7), CAAPR will instead switch to plac-
ing random ‘mini-apertures’, of a range of sizes, across the map.
CAAPR first finds the largest size of random mini-aperture that
can successfully be placed in sufficiently large numbers, and
then measures the aperture noise for that size mini-aperture, do-
ing so in the exact same way as laid out in Section 3.7 — with the
only difference being that a smaller radius is being used. CAAPR
then places a set of even smaller mini-apertures across the map,
and likewise determines the aperture noise for mini-apertures of
that size. CAAPR repeats this process, measuring the aperture
noise for successively smaller sets of mini-apertures. The radii
of each successive set of mini-apertures are evenly-spaced in
log space, following a power law of index 1.2 (an empirically-
selected value, which provides sampling dense enough to be ef-
fective, whilst coarse enough to still be reasonably fast).

CAAPR keeps on calculating the aperture noise associated
with smaller and smaller sizes of mini-aperture, stopping when
one of two conditions is reached; until 10 increments of mini-
aperture size have been successfully processed, or until the mini-
aperture radius has fallen to 1 pixel (making smaller apertures
impossible).

CAAPR then produces a log-log plot of the aperture noise
determined for each set of random mini-apertures, against the
mini-aperture area used for each set. An example of such a
plot, for the SPIRE 250 pm photometry of M 101 (NGC 5457)
is shown in Figure 8. In these area—noise plots, there is consis-
tently a strong correlation between the area of the random mini-
apertures, and their associated aperture noise. CAAPR uses these
area-noise plots to extrapolate what the aperture noise associated
with the area of the full-size random sky apertures would have
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been, had there been sufficient map area available; this extrap-
olation is performed by fitting a power law to the area—noise
points, in a chi-squared minimising manner. For fitting, the er-
ror bar on each point is derived from the Poisson uncertainty
given the number of random mini-apertures employed, which is
then multiplied by a weighting that takes the form 1 +log;,(A4),
where A4 is the factor difference between the areas of the random
mini-apertures and the master aperture. This empirical weight-
ing accounts for the fact that random mini-apertures with areas
more similar to that of the master aperture should have greater
influence over the extrapolated aperture noise than random mini-
apertures with areas a lot smaller than the master aperture.

We demonstrate the validity of this approach, and quantify
its effectiveness, in Section 6.2. This method allows CAAPR to
produce reliable estimates of aperture noise for almost any pho-
tometric measurement; if there is sufficient map area to deter-
mine a flux, there is sufficient map area to estimate the aperture
noise, in all but the most extreme cases. In the very rare instances
where there is not enough map area for even the mini-aperture
approach to work, we record a negative uncertainty in our pho-
tometry; this indicates that that uncertainty represents the cali-
bration uncertainty alone.

4. Photometry Flagging

The CAAPR photometry of the DustPedia galaxies provides an
enormous number of fluxes, produced in a consistent manner be-
tween galaxies and across bands. The size of our dataset makes it
impractical to manually adjust the photometry in the case of in-
dividual sources where issues may have been encountered (and
regardless, such tweaking would risk introducing inconsisten-
cies). Instead, we opted to manually inspect all of the photome-
try outputs produced by CAAPR, and flag fluxes where there is
a possible matter of concern.

For every DustPedia galaxy, CAAPR produced a grid of
thumbnail images, an example of which is shown in Figure 6
for NGC 4559. At least two members of the DustPedia team in-
spected the thumbnail grid for each galaxy, along with the cor-
responding fluxes, and recorded flags for instances where issues
were encountered.

Three different types of flag are used to indicate when there
may be issues with a particular flux in our aperture-matched pho-
tometry (along with an additional flag used only for supplemen-
tary photometry, discussed below). Each flag is split into ‘minor’
and ‘major’ categories. Minor flags are indicated by lowercase
letters, whilst major flags are indicated by uppercase letters. The
types of flag are defined as follows:

a/A - Artefact flag. This indicates that some sort of map artefact
is present in the region of the target source, as determined by
visual inspection. Examples of this include poor mosaicing
in the archival data, satellite trails, or evidence of saturation
in bright pixels.

¢/C — Contamination flag. This indicates contamination of the
photometry due to a nearby source, as determined by visual
inspection. Examples of this include foreground stars that
were not fully removed, or other galaxies close to the target
source.

n/N — Null-coverage flag. This flag is automatically assigned
where necessary. This indicates that the observation didn’t
provide full coverage of the area of the source, limiting
CAAPR’s ability to suitably measure the source flux and/or
background. If more than 5% of the pixels in the master aper-
ture and/or more than 20% of the pixels in the background
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annulus are found to be NaN — ‘Not a Number’ — then a
minor flag is raised. If more than 20% of the pixels in the
master aperture and/or more than 60% of the pixels in the
background annulus are found to be NaN, a major flag is
raised. Instruments for which small maps are common (such
as Spitzer and PACS) are particularly likely to have fluxes
with this flag.

e/E — Excluded extended emission flag. This flag is only used
with our supplementaty photometry (as described in Sec-
tion 5), and is not assigned to any of our aperture-matched
CAAPR fluxes. It indicates that the target is sufficiently ex-
tended that there is a risk some of its emission will have been
excluded from the measurement in question, which would
lead to the flux being an under-estimate.

A major flag indicates that the associated flux probably is not
suitable for general use — although it may still be useful for spe-
cific considerations. For example, the most common reason for
a ‘C’ flag is because the target galaxy is interacting with another
galaxy inside the master aperture; although the recorded flux will
not be of use as a measure of the emission from the target galaxy
alone, it will nonetheless be useful to anyone interested in the
flux of the overall system.

A minor flag indicates that the associated flux is probably
still useful for most purposes — although it is advisable for users
to inspect the corresponding data to confirm that the flux is still
valid for their specific applications.

Some sources have a ‘global’ flag applied. In this case, an is-
sue affects so many bands that all bands receive the relevant flag.
The issue may not be apparent in every band — for example, if the
target galaxy is a spiral that overlaps with an elliptical compan-
ion, the elliptical might not be visible in SPIRE bands. Nonethe-
less, if an issue affects enough bands, all bands get flagged by
default. Only ‘c/C’ flags can be applied globally.

The flagging is not intended to cover the types of minor is-
sues which are encompassed by the quoted uncertainties — mi-
nor background objects within the master aperture, foreground
Galactic cirrus, etc. Rather, the flagging is designed to highlight
aberrations that uncertainties would not reflect.

Amongst the small number of our sources for which a nega-
tive flux is measured (see Section 3.6), the flux can occasionally
be ‘significantly’ negative, and hence unphysical. This can arise
due to a particularly inopportune distribution of Galactic cirrus
surrounding the target source, for example. In the rare instances
where the flux has a S/R < -2, we automatically assigned an ‘A’
flag. This was necessary for 0.4% of our fluxes.

In total, 4,081 (22.4%) of our aperture-matched CAAPR
fluxes have flags associated with them; 2,262 (12.4%) have ma-
jor flags, whilst 1,819 (10.0%) only have minor flags. Whilst this
might seem high, a large fraction of these are due to ‘N’ or ‘n’
flags being automatically assigned to Spitzer fluxes, because of
the very small map sizes of many Spitzer observations; exclud-
ing Spitzer photometry, only 2,234 (14.6%) of our fluxes possess
flags, of which 1,202 (7.8%) have major, and 1,032 (6.8%) have
only minor.

Some examples of issues for which flags are raised are illus-
trated in Figure 6, for NGC 4559.
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5. Supplementary Photometry
5.1. Planck CCS2
5.1.1. Planck CCS2 Photometry

Planck (Planck Collaboration et al. 2011) photometry was ob-
tained from the Second Planck Catalogue of Compact Sources
(Planck CCS2; Planck Collaboration et al. 2016e). The poor res-
olution of Planck made it impractical to include in our aperture-
matched CAAPR photometry. Entries in the Planck CCS2 (from
the full range of Galactic latitudes) were matched to DustPedia
sources within a matching radius equal to the FWHM of each
Planck band.

The Planck CCS2 provides photometry in all 9 Planck bands,
with a focus on source reliability. The Planck CCS2 provides
4 different flux measurements for each source. Of these differ-
ent fluxes, Planck Collaboration et al. (2016e) find that their
aperture photometry (the APERFLUX field in the published
Planck CCS2 tables) is the measure that compares best with
Herschel aperture photometry of HRS galaxies. Therefore the
Planck CCS2 aperture photometry values are the fluxes we pro-
vide here. The Planck CCS2 fluxes are not colour corrected, and
assume the standard Planck reference spectra (see Section 2.2.7).

The calibration uncertainties of each Planck band (as pro-
vided in Planck Collaboration et al. 2016b,a, including the sys-
tematic uncertainties quoted for the 350 and 550 um bands) are
listed in Table 1, and were added in quadrature to the photomet-
ric uncertainties given for each source, to produce the final flux
uncertainties.

In total, the Planck CCS2 provides an additional 1,079 fluxes
for the DustPedia Herschel sample. The number of detections
ranges from 394 (45% of the DustPedia galaxies) at 350 um, to
just 11 at 4.26 mm. Perhaps the most useful Planck band for our
purposes is 850 um, as it is the most sensitive Planck band to
cover wavelengths longer than those observed by Herschel; 197
(22%) of the DustPedia galaxies are detected at 850 um.

5.1.2. Planck CCS2 Flagging

The Planck CCS2 aperture photometry uses circular apertures
with radii equal to 1| FWHM in each band. Emission more ex-
tended than 1 FWHM from the target source’s centre will there-
fore be lost (not counting flux that falls outside the aperture
due to the instrumental PSF, which the CCS2 corrects for). To
identify which of our sources are vulnerable to this effect, we
first measured the angular scale of the FIR/submm emission of
the DustPedia galaxies, by running the aperture-fitting phase of
CAAPR (see Section 3.4) on the SPIRE 250 um map of each tar-
get (or the PACS 160 wm map for targets without SPIRE cover-
age); no expansion factor was applied, so the semi-major axes of
the resulting ellipses represent the actual extent of the detectable
FIR/submm emission associated with each target. In each Planck
band, sources where the semi-major axis of this emission ellipse
was larger than the CCS2 aperture radius (being the effective
FWHM listed in Table 2 of Planck Collaboration et al. 2016¢)
were identified, and the corresponding fluxes flagged with an ‘e’
flag — indicating a source’s emission may be extended beyond the
region being measured, leading to missed flux. Planck’s resolu-
tion at 4.26, 6.81, and 10.60 mm is poor enough that no sources
were identified as being at risk of losing flux in this way. At
1.380 and 2.100mm, >45% of fluxes required flagging. In all
other bands, <27% of fluxes are affected. Note that the pres-
ence of an ‘e’ flag does not necessarily mean any flux has been
missed, as the emission scales in the Planck bands will not be

identical to the FIR/submm flux extent. A difference in emission
scales is particularly likely at the longer Planck wavelengths,
where emission processes are different.

If a ‘C’ or ’c’ flag was associated with the SPIRE 350 or
500 um photometry for a given source, as per Section 4, then
that flag was propagated to all Planck submm fluxes (ie, 350,
500, or 850 wm). Additionally, we visually inspected the 350 pm
SPIRE maps for each source with Planck submm photometry,
to look for any potential contaminating source within the CCS2
aperture, and applied ‘c’ and ‘C’ flags as appropriate. We do
not apply contamination flags derived from submm wavelengths
to the longer-wavelength Planck bands, due to the very differ-
ent emission processes that dominate there. Moreover, the much
lower source density at the longer Planck wavelengths — even
when accounting for the larger Planck beam and CCS2 aperture
sizes — means that there is a much smaller contamination risk.

5.2. IRAS SCANPI
5.2.1. IRAS SCANPI Photometry

Photometry from the InfraRed Astronomical Satellite (IRAS;
Neugebauer et al. 1984) was acquired using the Scan Processing

and Integration Tool (SCANPI"), has extremely poor resolution,
and the highly asymmetrical PSF, made it impractical to per-
form aperture-matched photometry using IRAS maps. Nonethe-
less IRAS photometry is valuable for DustPedia, particularly in
the 60 um band; fluxes in this part of the spectrum are important
for constraining dust emission and properties (see Jones et al.
2016, 2017, and references therein).

In each of the 4 IRAS bands, a calibration uncertainty of
20% (Miville-Deschénes et al. 2005; Sauvage 2011) was added
in quadrature to each photometric uncertainty. IRAS fluxes are
calibrated assuming a v~! reference spectrum%. In total, IRAS
provides an additional 2533 fluxes for the DustPedia Herschel
sample.

SCANPI operates by fitting the IRAS timelines. Indeed, it
was not originally intended that IRAS observations would be
used to be used to produce imagery; whilst IRAS maps do of
course exist, the PSF asymmetry necessities dramatic down-
sampling of the data, and the pointing of the resulting maps suf-
fers from some Variability%. For these reasons, and in order to
avoid presenting maps that are at odds with our photometry, we
opt not to include IRAS imagery in the DustPedia database.

5.2.2. IRAS SCANPI Flagging

Because SCANPI works by fitting to the IRAS timelines, the
resulting fluxes cannot necessarily be directly compared to the
aperture-matched photometry. In the case of sources with large
angular sizes, there is a risk that SCANPI will miss faint ex-
tended emission, especially if the emission distribution of the tar-
get source is not smooth; in this scenario, SCANPI might fit only
the bright central region of a source, essentially shredding it. A
good example of this is M 81 (NGC 3031), where the SCANPI
60 um flux represents only the flux associated with the bright
central bulge.

We consider any source more extended than twice the reso-
lution of IRAS in a given band to be at risk of being shredded by
SCANPI in this way. Given the highly asymmetrical resolving

» http://irsa.ipac.caltech.edu/applications/Scanpi/

* IRAS Explanatory Supplement: https://lambda.gsfc.nasa.
gov/product/iras/docs/exp.sup/
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power of IRAS, we assume a worst-case scenario by taking the

best possible resolving power in each band”. IRAS has a maxi-
mum resolution of 0.75" at 12 and 25 wm, 1.5” at 60 um, and 3’
at 100 um. Flux densities identified as being vulnerable to shred-
ding were flagged with an ‘e’ flag, indicating that some emission
may be extended beyond the region being measured.

Given that the DustPedia sample consists only of sources
larger than 1’, all 12 and 25um SCANPI fluxes receive ‘e’
flags. However, since we have WISE aperture-matched photom-
etry covering both the 12 and 25 um bands, at greater resolution
and sensitivity than provided by IRAS, we envisage no scenario
where the SCANPI photometry in these bands would be pre-
ferred; however, we include it for completeness. Note, also, that
SCANPI photometry does not benefit from the foreground star
removal used for our CAAPR aperture-matched photometry.

To determine which 60 and 100 um fluxes are at risk of
shredding, we consider the FIR/submm extent of each DustPe-
dia target, determined in the same manner as in Section 5.1.2.
Any galaxy where the major axis of the FIR/submm emission
ellipse is larger than two IRAS resolving elements is deemed
to be vulnerable to being shredded. Of the 675 DustPedia targets
with SCANPI 60 um fluxes, 254 (36%) exceed this threshold and
hence get flagged; however, 81 of them have reliable (ie, no ma-
jor flags) Spitzer 70 um and/or PACS 70 um fluxes. As a result,
502 (57%) of our sources have good photometry at 60—70 pm.
Of the 682 DustPedia targets with SCANPI 100 um fluxes, 97
(14%) are extended enough in the FIR/submm to require flag-
ging; of these, 68 have reliable PACS 100 um fluxes. Therefore
713 (81%) of our galaxies have good 100 um photometry.

Contamination flags from our aperture-matched photome-
try were propagated to the corresponding SCANPI fluxes. For
SCANPI 12 um photometry, if a given source had a ‘C’ or ‘c’
flag associated with its WISE 12 um flux, then that flag was ap-
plied to the SCANPI flux also. Similarly, contamination flags
associated with our WISE 22 um photometry were applied to
the corresponding SCANPI 25 um fluxes. For SCANPI 60 pum
fluxes, we prefered to take contamination flags from PACS
70 um; if PACS 70 um photometry was not available, we instead
used flags from, in order of preference: PACS 100 um, PACS
160 um, or SPIRE 250 um. For SCANPI 100 um photometry,
we used the same order of preference, except that PACS 100 um
flags were preferred over PACS 70 um flags.

6. Photometry Validation
6.1. Foreground Star Removal Validation

We tested the foreground star removal method we described in
Section 3.2 by using it to remove the stars from observations of
16 patches of sky at a range of wavelengths.

We produced cutout maps for 16 patches of sky in SDSS u,
SDSS r, 2MASS J, and WISE 3.4 um, following the procedures
laid out in Section 2.2; this selection of data should provide a fair
sampling of the range of wavelengths and noise regimes in which
we perform star subtraction in our photometry. In all bands, each
of the 16 maps had dimensions of 0.5°x 0.5°, the same size as
our standard cutout images. These test cutouts were all located
within 3° of coordinates & = 136.6° 6 = 0.45° (J2000); this area
of space is known to be extremely under-dense at low-redshifts
(Driver et al. 2011), and contains no large galaxies in the volume

" Band resolving powers taken from the Survey Array table in the In-
strument Summary: http://irsa.ipac.caltech.edu/IRASdocs/
iras_mission.html
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sampled by DustPedia. Each of the maps was also visually in-
spected to confirm the absence of any nearby galaxies. As such,
the vast majority of the emission seen in each of these maps
should come from foreground stars, with only a small fraction
coming from distant background galaxies, etc.

To remove any large-scale emission from the test cutouts,
we conducted a polynomial sky subtraction, as per Section 3.3.
Having done this, we assumed that the background level associ-
ated with ‘empty’ sky was represented by the peak of the pixel
value distribution; for each test cutout, we found this level and
subtracted it. Having performed this background subtraction, the
sum total of the pixel values in each cutout should represent the
combined flux of all the sources it contains — primarily stars.

In SDSS u, SDSS r, 2MASS J, and WISE 3.4 um, the me-
dian amount of flux removed from the 16 test cutouts in each
band was 88%, 90%, 93%, and 86% respectively. This demon-
strates that our star removal process is able to consistently re-
move the vast majority of the stellar flux from maps, across a
wide range of wavelengths. And even in instances where our star
removal is less effective than usual, a large majority of the stellar
flux is still successfully removed — for 90% of the test cutouts,
flux removal levels better than 81%, 71%, 84%, and 68% were
achieved in each band. Moreover, note that these values are only
lower limits on the fraction of the stellar flux that is removed
— even if all stellar emission was successfully removed, a low
level of background flux due to distant galaxies would remain in
the test cutouts. This is the reason why we omitted GALEX data
from this test — the contribution of distant galaxies to the back-
ground flux level in GALEX bands is large enough to no longer
be negligible compared to that of foreground stars, preventing
this method of testing from returning valid results.

Additionally, we wished to evaluate whether our foreground
star removal method was prone to removing flux associated with
compact sources within the target galaxies — Hm regions being
the most obvious examples. Section 6.3 compares our photome-
try to that of a number of independent external sources. Therein,
we find no evidence of our photometry being systematically
fainter than that produced by previous authors who performed
by-hand identification and masking of foreground stars. We note
that, as described in Section 3.2, we repeated our photometry
with star removal disabled for maps where visual inspection re-
vealed that the process had done more harm than good by erro-
neously removing flux associated with the target galaxy.

6.2. Aperture Noise Extrapolation Validation

As described in Section 3.8, in cases where a map has insuffi-
cient coverage area around the target source to allow determi-
nation of aperture noise by placing full-size sky apertures in its
vicinity, CAAPR employs a novel alternate approach. In these
circumstances, CAAPR uses ‘mini-apertures’ of various sizes to
find the relation between aperture area and aperture noise in the
map, and hence extrapolate the aperture noise associated with
the aperture area of the master aperture.

To evaluate the effectiveness of this approach, we use five
bands where a large proportion of the DustPedia imagery comes
from wide-area surveys; GALEX NUYV, SDSS r-band, 2MASS
J-band, WISE 12 um, and SPIRE 250 pum. In each of these bands,
we isolated the instances where the observations provide cover-
age of the entire cutout. For photometry of all of these maps,
the aperture noise would have proceeded according to the stan-
dard uncertainty estimation technique described in Section 3.7,
without having to resort to mini-aperture extrapolation.
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Fig. 9: Plots showing how uncertainty estimates determined the standard way (with full-size randomly generated sky apertures; see
Section 3.7) compare to uncertainty estimates determined using the aperture noise extrapolation technique described in Section 3.8,

for various bands.

We then repeated the photometry in each of these five bands
— but did so on smaller cutout maps, with diameters only 3
times larger than the major axis of the master aperture. These
smaller cutouts force the aperture noise estimation process to re-
sort to the mini-aperture extrapolation approach. Having applied
the mini-aperture noise extrapolation technique to the smaller
cutouts, we compared the resulting uncertainty estimates to those
from our actual photometry (which were determined with full-
sized randomly generated sky apertures on the standard maps).

The results of this comparison are shown in Figure 9. As
can be seen, the uncertainty estimates produced with the mini-
aperture extrapolation method agree well with the standard un-
certainty estimates. The average ratios between the extrapolated
and standard uncertainties are 0.94+0.18, 0.99+0.19, 0.94+0.19,
0.87 £ 0.19, and 0.90 + 0.16, for GALEX NUYV, SDSS r-band,
2MASS J-band, WISE 12 um, and SPIRE 250 um respectively
(the + value indicating the RMS deviation from a ratio of 1.0 in
each band). It seems that the mini-aperture extrapolation method
shows a tendency to result in slightly smaller uncertainty esti-
mates, however for all bands the scatter encompasses the 1:1 re-
lation. As such, we deem the mini-aperture extrapolation method
to be suitably accurate — and certainly far superior than the al-
ternative, of not attempting to estimate aperture noise when per-
forming photometry on small maps

6.3. External Validation

In order to provide an objective means of validating our pho-
tometry, particularly with regards to identifying any systematic
methodological issues, we compare our measurements to those
from several independent external sources. Given that the scope
of the DustPedia photometry is much larger than typical nearby
galaxy surveys (both in terms of number of galaxies and number
of bands; see Section 3), and given that our methodology there-
fore has to be much more automated, we aim to be thorough in
establishing that our photometry is reliable.

When comparing DustPedia photometry to the correspond-
ing external photometry in a given band, we consider a number
of figures of merit to quantify the consistency of the two sets of
fluxes. The relative scale of any offset between the sets of fluxes
is quantified by the median flux ratio R, being the median value
of Spp/S ext, Where S pp is the DustPedia flux, and S ¢y is the ex-
ternal measurement. The scatter in the relationship between two
set of fluxes is described by AR, the median absolute deviation
from R. For two sets of fluxes in good agreement with one an-
other, we would expect R to be smaller than AR, and also smaller
than the calibration uncertainty of the band in question.

The other main figure of merit we consider when comparing
photometry is y="!, which is the fraction of galaxies for which
x lies in the range —1 < y < 1; to clarify the significance of
this, we must first explain precisely what is meant by y. When
comparing two sets of fluxes, we calculate y for each galaxy,
defined as:

SDP - Sext
,/ASZDP + ASZX[

where AS pp and AS . are the uncertainties on the DustPe-
dia and external fluxes respectively. The quadrature sum term

A /AS%P +AS2,

of measurements. Assuming well-behaved Gaussian uncertain-
ties, then 68% of values of y should lie in the range —1 < y < 1
— ie, the y distribution should have a mean of 0 and a standard
deviation of 1. The figure of merit y!~"!1 describes what fraction
actually lie in the range —1 < y < 1 for a given set of fluxes.
x!7"1 is a useful value; merely knowing that the median flux ra-
tio for a set of fluxes is R = 1.05, for example, tells us very little
if we do not also know the uncertainties on those fluxes. If the
typical flux uncertainty is 20%, then R = 1.05 indicates good
agreement for that set of fluxes — whereas if the typical flux un-
certainty is 1%, then that same median flux ratio of R = 1.05
indicates rather poor agreement. By using y!="!!, we are able
to quantify how good the agreement is for a set of fluxes with
consideration given to the uncertainties on the measurements.

Throughout this section, we only consider fluxes with sig-
nificance > 5 o, and which have no major flags associated with
them, nor ‘e’ flags (in the case of Planck CCS2 and IRAS
SCANPI).

X = ey

represents the mutual uncertainty between a pair

6.3.1. Herschel Reference Survey

The Herschel Reference Survey (HRS; Boselli et al. 2010) is a
volume- and magnitude-limited survey of 323 nearby galaxies
conducted by Herschel, with published multiwavelength pho-
tometry in 13 UV—submm bands. The HRS is ideally suited to
serving as a reference for comparison with DustPedia; we have
288 galaxies in common, and our photometry includes all 13
bands for which they have published measurements. The HRS
SPIRE photometry is presented in Ciesla et al. (2012), PACS
photometry in Cortese et al. (2014), WISE photometry in Ciesla
etal. (2014), and SDSS and GALEX photometry in Cortese et al.
(2012).
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Table 2: Figures of merit for comparison of DustPedia CAAPR
and HRS photometry in the 13 bands shared between the sam-
ples.

AR

Band R Pl
GALEX FUV 1.105 0.075 0.390
GALEX NUV 1.053 0.047 0.460
SDSS g 1.030 0.049 0.488
SDSS r 1.033 0.032 0.421
SDSS i 1.037 0.040 0.492
Spitzer 8.0 um 0.985 0.032 0.587
WISE 12 um 0.776 0.035 0.159
WISE 22 um 1.006 0.043 0.917
PACS 100 um 1.036 0.053 0.800
PACS 160 um 1.030 0.047 0.891
SPIRE 250 um 1.031 0.046 0.848
SPIRE 350 um 1.044 0.059 0.844
SPIRE 500 um 1.061 0.067 0.801

Notes. Given figures are R (median flux ratio), AR (median absolute de-
viation in flux ratio), and y!="!! (fraction of values for which -1 < y < 1
); all of these terms are explained in detail at the start of Section 6.3.

The published GALEX UV-MIR photometry of the HRS
is not corrected for Galactic extinction. However, 46% of the
galaxies of the HRS are located in the Virgo Cluster (as defined
by objects included in the Virgo Cluster Catalogue of Binggeli
et al. 1985), which lies in a region of sky noted for having
conspicuously large amounts of Galactic cirrus, despite its high
galactic latitude (Auld et al. 2013; Bianchi et al. 2017). As such,
to allow for a fair comparison, we extinction-correct all HRS
fluxes at wavelengths < 10 um in the same manner as for own
fluxes (as per Section 3.6).

Figure 10 illustrates how our photometry compares to that of
the HRS — both in terms of y, and the direct relationships be-
tween the reported fluxes. The various figures of merit we con-
sider are provided for each band in Table 2.

SPIRE The CAAPR and HRS photometry in the SPIRE bands
compares favourably, with R < AR and !~ > 0.8 in all three
bands. We note that R gets progressively larger as wavelength
increases — which is to be expected given that we applied aper-
ture corrections to our SPIRE fluxes to account for the effects of
beam spread flux outside the master aperture, whereas the HRS
did not (Ciesla et al. 2012). Our average aperture corrections are
2.7%, 3.2%, and 5.8% at 250, 350, and 500 pm respectively (for
sources detected at >3 ¢ in all three bands), mirroring the in-
crease in R. If we subtract these average corrections from the
median flux offsets, the remaining differences would be almost
zero, at R250 = 1009, R350 = 1012, and Ej()() = 1.002.

PACS Our PACS photometry is in excellent agreement with

HRS". The offsets in both bands are considerably smaller than
the scatter — whilst the scatter in both bands is less than half the

* Note that before performing a comparison with the HRS PACS pho-
tometry, we corrected their fluxes to account for an issue in SCANAMOR-
pHOS (Roussel 2013), the pipeline used to reduce the HRS PACS maps,
relating to the weightings of the relative areas of the reference pix-
els on the focal plane. These weightings were not fully implemented
in ScanamorpHos until after the HRS published their PACS data. We
accounted for this by multiplying the published HRS photometry by

Article number, page 20 of 31

7% PACS calibration uncertainty. Moreover, both bands enjoy
tight y distributions.

WISE Our WISE 22 um fluxes are in superb agreement with
those of the HR~SB, with a median flux ratio of Ezz = 1.006,
and scatter of AR, = 0.043 — comfortably within the 5.6% cal-
ibration uncertainty of the band. Similarly, the y distribution at
22 um is very tight, with Xg_zl’l] = 0.917 (which if anything sug-
gests a possible over-estimation of the photometric uncertain-
ties).

In contrast to the concurrence at WISE 22 um, the WISE
12 um fluxes measured by CAAPR are seriously offset from
those quoted by the HRS, with R}, = 0.776 — far exceeding any-
thing that could be ascribed to simple scatter or normal method-
ological differences. The details of our investigation into the
source of this discrepancy are given in Appendix B. But to sum-
marise, the final result of our investigation was that we found
three reasons why the WISE 12 um fluxes measured by the HRS
will differ from those measured by CAAPR: a factor 1.585 dif-
ference due to their incorrect use of the Preliminary Data Release
unit calibration when they were in fact using All-Sky Data Re-
lease maps; a factor 0.929 difference due to the fact they used
the DN-to-Jy given by the WISE documentation, as opposed
to the zero-point magnitudes from the map headers (an appar-
ent contradiction in the WISE data); and a factor 0.909 differ-
ence due to their smaller apertures and lack of foreground star
removal. Combined, these three effects should make the HRS
fluxes brighter than our own by a factor of 1.338 —ie, an expected
median offset of R = 0.747, which is very similar to the actual
median offset of Rj; = 0.776. The remaining 2.9% difference
is much smaller than the WISE 12 um calibration uncertainty of
4.6%, and well within the ARy, = 0.035 scatter — suggesting
we have successfully isolated all of the significant causes of dis-
agreement between our respective photometry.

Spitzer Our Spitzer 8.0 um photometry is in good agreement
with that of the HRS; the median flux ratio of Rgy = 0.985 is
well within both the 3% calibration uncertainty of the band and
the ARgy = 0.032 scatter. Although the Xé__ol‘” = (0.587 is some-
what smaller than optimal, DustPedia and the HRS only share
65 galaxies with high-quality Spitzer 8.0 um CAAPR fluxes, so
small-number statistics prevent us from inferring too much from
the y distribution.

SDSS Our SDSS photometry shows only a small offset from
the HRS values, with median flux ratios R < 1.037 in all three
bands (the HRS only report SDSS photometry forgri-bands).
Nonetheless, this is larger than both AR and the calibration un-
certainties for each band, so it is probably a real effect. How-
ever a discrepancy this small is within the realm of what can
be ascribed to unremarkable methodological differences. Cortese
et al. (2012) do not describe their foreground star removal pro-
cess in detail, which in itself could account for an offset of this
size through minor methodological differences (eg, differences

1.01 at 100 wm and 0.93 at 160 um; these factors represent the average
change in fluxes measured from extended-source maps reduced using
updated versions of SCANAMORPHOS.

¥ Note that we have removed the factor 0.93 colour correction that
Ciesla et al. (2014) apply to all of their WISE 22 um fluxes, to allow
valid comparison to our fluxes, which are not colour-corrected.
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Fig. 10: Comparison of DustPedia CAAPR and HRS photometry. Left-hand plot for each band directly plots CAAPR and HRS
photometry against each other, with 1:1 relationship indicated by dashed black line. Right-hand plot for each band shows y (as
per Equation 1) distribution for that set of fluxes (binning dictated by the Freedman-Diaconis rule; Freedman & Diaconis 1981).
Noticeable deviations for GALEX FUV, GALEX NUYV, and WISE 12 um are addressed in Sections 6.3.1 and 6.3.1.
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Fig. 11: Comparison of DustPedia CAAPR and Planck CCS2 photometry in similar bands. Plots as per Figure 10.

in distinguishing between bright Hm regions in the target galax-
ies from true foreground stars). The SDSS y distributions in Fig-
ure 10 are well-behaved, showing few outliers, although they are
a little broad (with y="! < 0.49 for all bands).

GALEX Our GALEX photometry shows a systematic offset

from that of the HRS, with Rgyy = 1.105 and Ryyv = 1.053;
both of these offsets are significant, given the bands’ respec-
tive calibration uncertainties of 4.5% and 2.7%, and scatters of
ARpyv = 0.075 and ARnyv = 0.047. The cause of this offset is
not immediately obvious. As with the HRS SDSS photometry,
no detailed description is given of their foreground star removal
process, so this is a potential methodological source of some of
the discrepancy. Also, the HRS fluxes are asymptotic measure-
ments; as this method assumes a smooth curve-of-growth, it is
possible that our apertures (designed to ensure all practically-
recoverable flux is recorded) encompass additional flux excluded
by their technique. Cortese et al. (2012) find that their fluxes are
on average ~ 9% fainter than those reported by Gil de Paz et al.
(2007) for the 62 galaxies they have in common (though this
may in part be due to the fact that Gil de Paz et al. 2007 use the
older GR2/GR3 GALEX data release) — similar to the discrep-
ancy we find in FUV, and even larger than we find in NUV. On
the other hand, we note that the HRS GALEX fluxes are system-
atically brighter than those reported by Bai et al. (2015; who use
the current GR6/GR7 GALEX data release, and have 90 galaxies
in common with the HRS), by an average of 4.0% in FUV and
2.4% in NUV. It therefore seems that the disagreement between
our GALEX photometry and that of the HRS is in line with the
typical variation between authors.

6.3.2. Planck CCS2

The wavelength coverage of Planck and Herschel overlap by
design, to allow them to conduct complimentary observations;
they have similar spectral response functions at 500-550 um, and
nearly identical response functions at 350 wm (Bertincourt et al.
2016). As such, our supplementary Planck CCS2 photometry is
well suited to being cross-validated with our SPIRE CAAPR
photometry. Plots comparing the two sets of fluxes are shown
in Figure 11, whilst figures of merit for the cross-validation are
given in the upper block of Table 3. For the CCS2 photometry,
we excluded any fluxes with a ‘e’ flag (in addition to the standard
exclusion of major flags).

At 350 um the agreement between the two sets of fluxes is
very good; there is no meaningful offset, whilst the y distribution
is tight and Gaussian.

For 500-550 um we first colour-corrected the SPIRE 500 pm
fluxes to allow for a valid comparison; we followed Baes et al.
(2014) in multiplying the SPIRE 500 um fluxes by a correction
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Table 3: Figures of merit for comparison of DustPedia CAAPR
photometry with Planck CCS2 (upper block of values) and IRAS
SCANPI (lower block of values) supplementary photometry.

R AR

S S, X[flzl]
SPIRE 350 um  Planck 350 pum  0.970 0.089  0.787
SPIRE 500um  Planck 550 pm  1.050 0.103  0.698
IRAS 60 um PACS 70 um 1.057 0.170 0.738
IRAS 100 um PACS 100 um 0.875 0.096 0.690

Notes. The bands being compared are denoted by S; and S, (such that
flux ratios are S,/S,); for consistency, S represents the shortest wave-
length band of each pair. Other column definitions the same as for Ta-
ble 2.

factor of 0.83, which assumes a 20 K modified black body spec-
trum with an emissivity slope of 8 = 2.0. The two sets of pho-
tometry seem reasonably consistent. Whilst it appears that the
CCS2 fluxes might be slightly brighter (with Rspgss0 = 1.05),
this is not only within the calibration uncertainty of both bands,
but also within the range of deviation that could be ascribed
to our colour correction. For example, were we to assume a
B = 1.5 emissivity slope, the colour correction factor applied
to the SPIRE 500 um fluxes would instead be 0.87, which would
almost entirely remove the observed offset.

6.3.3. IRAS SCANPI

It is important to ensure that our supplementary IRAS SCANPI
photometry is consistent with our aperture-matched CAAPR
photometry, especially at 60 um (an important part of the spec-
trum for SED modelling, as previously discussed) where IRAS
provides the only available photometry for >40% of the Dust-
Pedia galaxies. Plots comparing PACS 70 and 100 um fluxes to
SCANPI 60 and 100 um fluxes are shown in Figure 12, whilst
for the cross-validation figures of merit are given in the lower
block of Table 3.

To allow for a valid comparison between instruments,
colour corrections for IRAS were taken from Section VI.C, Ta-
ble VI.C.6 of the IRAS Explanatory Supplement%, whilst colour
corrections for PACS were taken from Miiller et al. (2013).
Emission from galaxies in the IRAS-PACS wavelength regime
tends to be due to emission from a mixture of sources (cold dust,
warm dust, and small-grain emission). The full SED modelling
required to describe the relative contributions of these compo-
nents is beyond the scope of this work; for the purposes of
colour-correction, here we simply assume a reference spectrum
described by an appropriate choice of power law, of the form
S, ocv?,
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of our own.

To compare SCANPI 60 um and PACS 70 um photometry,
we colour-corrected both sets of fluxes assuming a power law
index of @ = -2.0 as the reference spectrumm; this colour-
correction included translating the PACS 70 um fluxes to an ef-
fective central wavelength of 60 um as per the prescription of
Miiller et al. (2013). The result suggests SCANPI and PACS
fluxes are compatible, with the median offset of Rei70 = 1.057 —
which is not only less than the sizeable calibration uncertainty of
IRAS, but also less than the much more modest PACS calibration

uncertainty.
To compare SCANPI and PACS photometry at 100 um, we
assumed a power law slope of @ = —1.0 for the reference spec-

trum%; conveniently, this is the standard reference spectrum for
both instruments, meaning no colour-correction was necessary.
The Ripoj100 = 0.875 median offset is less than the 20% SCANPI
100 wm calibration uncertainty, and the y distribution is tight and
Gaussian enough to yield a nearly-ideal X[lf)(l)i}%o = 0.690. And
given the fact that our colour-corrections are only approximate

40

A power law slope of @ = —2.0 at 60 pm and @ = —1.0 at 100 um
would approximate a fairly unremarkable galaxy SED at those wave-
lengths — for example, that of a two-component modified blackbody
SED with a cold dust temperature of 20 K, a warm dust temperature of
45K, a cold-to-warm mass ratio of 100:1, and an emissivity slope of
B = 2. See Smith et al. (2012), Ciesla et al. (2014), and Clark et al.
(2015) for examples of typical FIR-submm SEDs of nearby galaxies.
See also Casey (2012) for discussion of @ = —2.0 being a typical power
law in the ~ 60 um range.

Table 4: Figures of merit for comparison of DustPedia CAAPR
and 2MASS-LGA photometry.

Band R AR KB
2MASS J 1.205 0.105 0.124
2MASS H 1.182 0.134 0.244
2MASS K 1.172 0.092 0.237
2MASS-LGA J 1.008 0.028 0.701
2MASS-LGA H 0.996 0.025 0.713
2MASS-LGA K 1.001 0.021 0.776

Notes. The upper block of figures are for the direct comparison between
the DustPedia CAAPR and 2MASS-LGA photometry; the lower block
of figures (in italic) compare the 2MASS-LGA photometry to CAAPR
photometry repeated using the 2MASS-LGA apertures. Column defini-
tions the same as for Table 2.

in this instance, the agreement between SCANPI and PACS at
100 um seems satisfactory.

6.3.4. 2MASS Large Galaxy Atlas

The only instrument for which HRS, Planck CCS2 and IRAS
SCANPI photometry provide no independent external valida-
tion for our aperture-matched CAAPR photometry is 2MASS.
To remedy this, we refer to the 2MASS Large Galaxy Atlas
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Fig. 14: Comparison of DustPedia CAAPR photometry in similar bands. Plots as per Figure 10.

(2ZMASS-LGA; Jarrett et al. 2003). The 2MASS-LGA has 129
galaxies in common with DustPedia, spread across the sky (in-
cluding in the plane of the Milky Way). We specifically com-
pare to the 2MASS-LGA large-aperture Kron photometry, as it
is the most similar of their photometric measures to our own.
Plots comparing the CAAPR and 2MASS-LGA photometry for
our common sources are shown in Figure 13, and the validation
figures of merit are given in the upper block of Table 4.

In all three JHK-bands, the 2MASS-LGA photometry com-
pares poorly with our own. Our fluxes are systematically brighter
by an average of 19%, and the y distributions are broad, non-
Gaussian, and asymmetrical in all bands. However, the pho-
tometric apertures used by the 2MASS-LGA are significantly
smaller than our own; on average, our apertures encompasses
8 times more area. Visual inspection of the 2MASS-LGA aper-
tures reveals that they often do not encompass all of the stellar
emission of the target galaxies — especially when compared to
the deeper WISE 3.4 um data, which shows an appreciable frac-
tion of some galaxies’ NIR flux can extend beyond the 2MASS-
LGA apertures. This strongly suggests that the reason we record
systematically brighter JHK-band photometry was that we re-
covered flux excluded by the much smaller apertures of the
2MASS-LGA.

To test this hypothesis, we repeated our photometry, but in-
stead used the apertures employed by the 2MASS-LGA; the re-
sulting comparison plots are shown in Appendix C, with vali-
dation figures of merit in the lower block of Table 4. As can
be seen, this photometry is in near-perfect agreement with that
of the 2MASS-LGA. The offsets have been eliminated (to the
< 1% level), and the y distributions are Gaussian and narrow
(with y=11 > 0.7) in all bands. We can therefore confidently
state that difference in aperture sizes is the cause of the disagree-
ment between our fluxes. Given that our larger apertures contain
flux missed by the 2MASS-LGA (as we as being matched to
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Table 5: Figures of merit for internal comparison of DustPedia
photometry in similar bands.

R AR

S, S, X[—l;l]
WISE 3.4um  Spitzer 3.6 um 1.027 0.044 0.636
Spitzer 45um  WISE 4.6 um 0.901 0.041 0.308
WISE 22 um Spitzer 24 um 1.040 0.064 0.686
PACS 70 um Spitzer 70 um 1.083 0.106 0.563
PACS 160um  Spitzer 160 pm 0.976 0.091 0.838

Notes. Column definitions the same as for Tables 2 and 3. For consis-
tency, S| represents the shortest wavelength band of each pair.

the rest of our photometry), we deem our own photometry to
be preferable. The high degree of scatter seen in Figure 13 is
an unavoidable consequence of our larger apertures, driving up
the aperture noise associated with our measurements (an effect
to which 2MASS is particularly vulnerable to due to sky bright-
ness; see Section 2.2.4).

For a number of our galaxies, visual inspection of the mul-
tiwavelength SEDs indicated that the H-band flux can appear
conspicuously offset above or below the J-band and Kg-band
fluxes”. Our investigation of this is detailed in Appendix D; to
summarise, we find that our H-band photometry does not exhibit
any systematic offset from that of the 2MASS-LGA, but there is
evidence of non-Gaussianity in our H-band photometric uncer-
tainties.

41 . .
NB, here we are once again referring to our standard aperture-

matched CAAPR photometry, not the repeated 2MASS photometry em-
ployed in the previous paragraph
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6.4. Internal Validation

Thanks to wavelength overlap between the various instruments
used for our photometry, there is good scope for internal valida-
tion, comparing CAAPR photometry in bands that are similar to
one another. Figure 14 shows plots comparing the overlapping
bands; the cross-validation figures of merit are listed in Table 5.
We employ the same figures of merit we did for external vali-
dation; for instance, when comparing two bands, S| and S, the

median flux ratio between the two is denoted by Ry, s, .

6.4.1. WISE-Spitzer

The WISE 3.4 um and Spitzer 3.6 um bands have extremely sim-
ilar relative system responses, as do WISE 4.6 um and Spitzer
4.5 um (see Figure 1 of Jarrett et al. 2011). To allow comparison
between both pairs of bands, we colour correct all fluxes assum-
ing a Rayleigh-Jeans reference spectrum; colour corrections for
WISE were taken from Table 1 of Wright et al. (2010), whilst
corrections for Spitzer were taken from Table 4.3, Section 4.4
of the IRAC Instrument Handbook. These corrections are small,
being < 1.2% in all cases.

We find our WISE 3.4 um and Spitzer 3.6 um fluxes to be in
excellent agreement, with the median offset smaller than either

bands’ calibration uncertainty, and a good )(g;ll‘;é value of 0.636.
This is in keeping with the findings of Jarrett et al. (2012) and
Papovich et al. (2016), who report that the two bands exhibit no
noticeable offset.

However, we do find a definite offset between our WISE
4.6 um and Spitzer 4.5 um photometry, with Ryeus = 0.901.
This is twice the size of the 4.5% mutual calibration uncer-
tainty between the bands (ie, V3%? + 3.4%?2). Previous authors
have reported varying degrees of disagreement between these
bands, with Jarrett et al. (2012) finding offsets in the range
0.89 < R4eus < 1.02 for a small sample of extended nearby

galaxies, whilst Papovich et al. (2016) find R4 645 = 0.98 for a
large sample of high redshift galaxies. Jarrett et al. (2012) point
out that the expected flux offset depends on the nature of the
target galaxy, from 0.94 for ellipticals, to 0.93-0.99 for stan-
dard spirals, to 1.09 for starbursts; given that it is beyond the
scope of this work to perform the full SED-fitting necessary to
provide source-specific reference spectra, such differences could
account for a large proportion of the offset we find. As the matter
stands, users of this photometry should be aware of the potential
disagreement here; we are hopeful that the full SED-fitting to
be performed in future DustPedia papers will allow for source-
specific colour corrections that negate the issue. And notwith-
standing the offset, the y distribution for these bands is excellent.

Given that the part of the spectrum sampled by the WISE
22 um and Spitzer 24 um bands has contributions from stellar
emission, hot dust emission, and PAH-like emission, in propor-
tions that vary greatly between sources, we are unable to ap-
ply any colour-corrections in the absence of full SED-fitting.
As per the corrections given in Section 4.3.5 of the MIPS In-
strument Handbook, adjusting Spitzer 24 um fluxes to the ref-
erence spectrum employed by WISE requires a correction of
only 0.1% (thanks to the close similarity at 24 um between the
10* K blackbody reference spectrum used by Spitzer-MIPS and
perfect Rayleigh-Jeans reference spectrum used by WISE). The
two sets of fluxes are entirely compatible; the median flux ra-
tio of Ryps = 1.04 is smaller than the WISE 22 um calibra-
tion uncertainty, and the minimal scatter yields an almost ideal

X[{z‘lz'};] = 0.686. This agreement between the two sets of fluxes

is good enough that it essentially rules out the risk of egregious
differences arising when source-by-source colour corrections are
applied during full SED-fitting.

6.4.2. PACS-Spitzer

PACS and Spitzer have two almost-identical bands in common,
at 70 and 160 um. To colour-correct the 70 um fluxes for direct
comparison, we follow the same procedure as in Section 6.3.3,
assuming an S, oc v~! reference spectrum. At 160 um we assume
a 20 K blackbody reference spectrum. In both cases we adjust the
PACS fluxes as per Miiller et al. (2013) (including the translation
factor to account for the difference in central wavelengths be-
tween the PACS and Spitzer bands), and adjust the Spitzer fluxes
as per Section 4.3.5 of the MIPS Instrument Handbook.

At both 70 and 160 wm, the PACS and Spitzer fluxes are in
good agreement, with average offsets smaller than the Spitzer
calibration uncertainties in both cases (and also smaller than the
PACS calibration uncertainty at 160 um). And both y distribu-
tions appear acceptable, given the small number of sources in-
volved.

Whilst it is satisfying to find such good agreement between
PACS and Spitzer at 160 pum, it is worth noting that there are only
5 sources without major flags where Spitzer 160 um coverage
is available when PACS 160 um coverage is not (and only 3 of
those are > 3 o). As such, there are almost no instances at 160 um
where users will be unable to use superior PACS fluxes instead
of those from Spitzer.

7. Data Products
7.1. Photometry

The DustPedia photometry tables can be accessed from the Dust-

Pedia database”, and from the VizieR catalogue service . Sepa-
rate tables are provided for our aperture-matched CAAPR pho-
tometry, the supplementary IRAS SCANPI photometry, and the
supplementary Planck CCS2 photometry. Each table has a row
for every DustPedia galaxy. Each band has 3 columns; one giv-
ing the flux, one giving the uncertainty on the flux (with calibra-
tion uncertainty included, as per Section 3.7), and one stating any
flags associated with that flux. If the flux and error are blank for
a given source in a particular band, this indicates that there is no
data for the target in that band, or that there was insufficient data
to make a measurement (ie, that the map in question was so small
that no pixels were located in the background annulus). When-
ever a measurement could be made, the resulting value is given,
regardless of whether or not the measurement represents a de-
tection. For maps where a flux could be measured, but where too
little sky area was available to determine the aperture noise (even
for CAAPR’s mini-aperture extrapolation), then we quote a neg-
ative uncertainty; this indicates the uncertainty only incorporates
the contribution of the instrument’s calibration uncertainty.
Extended-source corrections have been applied to the WISE
and Spitzer-IRAC photometry, as per Sections 2.2.5 and 2.2.6.
In total, we present 21,857 photometric measurements;
18,254 fluxes from our aperture-matched CAAPR photometry,
along with 1,079 Planck CCS2 fluxes, and 2,533 IRAS SCANPI
fluxes. A typical DustPedia source has photometry in 25 bands;
Figure 15 shows the example UV-mm SED of NGC 3683, a

“ http://dustpedia.astro.noa.gr/Photometry
“ Available at the CDS (see title footnote).
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Fig. 15: UV—-mm SED of NGC 3683, demonstrating the rich photometric coverage possible for the DustPedia galaxies. Fluxes from
our aperture-matched photometry are marked with solid circles, whilst fluxes from our supplementary Planck CCS2 and IRAS

SCANPI photometry are marked with hollow circles.

DustPedia galaxy with rich photometric coverage, having fluxes
in 32 bands.

Our photometry demonstrates that the DustPedia sample
spans a wide range of luminosities; amongst the DustPedia
sources with > 5 o detections, SPIRE 250 um luminosity ranges
from 6.1-10.6 log oLy, whilst WISE 3.4 um luminosity (a stan-
dard proxy for stellar mass) ranges from 5.0-10.41log;oLs. We
span a similarly wide range of colour, with NUV-r colour rang-
ing from 0.8-6.3 mag, and FUV-Ks colour (a good proxy for
morphology, see Gil de Paz et al. 2007) ranging from 0.6—
8.8 mag.

7.2. Sample Catalogue

Also provided is the sample catalogue, providing the key prop-
erties of each DustPedia galaxy, such as position, morphology,
inclination, optical D25, etc. This catalogue provides a number
of distance measures; because of the difficulty in establishing re-
liable distances to nearby galaxies, we have established an order
of preference.

Our preferred distance estimates are the redshift-independent
distances provided by the HyperLEDA database, as these have
been homogenised to account for methodological differences be-
tween references. For galaxies without redshift-independent Hy-
perLEDA distances, our next preferred values are the redshift-
independent distances provided by the Nasa/ipac Extragalac-

tic Database (NED“); whilst these are not homogenised like
the HyperLEDA values, we take the quoted average value for
each galaxy to minimise bias. If neither HyperLEDA nor NED
redshift-independent distances are available for a source, we
use the flow-corrected redshift-derived values provided by NED;
these distances were calculated assuming a Hubble constant of
Hy = 73.24kms~' Mpc~! (Riess et al. 2016), and have been cor-
rected for bulk deviation from Hubble flow arising from the in-
fluence of the Virgo Cluster, the Great Attractor, and the Shapley
Supercluster (Mould et al. 2000). For each galaxy in the DustPe-

“ https://ned.ipac.caltech.edu/ui/
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dia database we list each distance measure available, along with
the preferred value as per the hierarchy described here.

7.3. FITS Images

The standardised DustPedia imagery (as described in Section 2)
can be accessed from the DustPedia database, in the form
of FITS images. The database may be queried according to
recessional velocity, angular size, and Hubble type. Data for
individual galaxies may also be searched for by name (note that,
at present, queries by name must use the name by which each
galaxy is listed in the sample catalogue). The maps may also be
retrieved programmatically via URL. For example, the SPIRE
250 um map of NGCO0891 can be directly downloaded with
the following URL: http://dustpedia.astro.noa.gr/
Data/GetImage?imageName=NGCO891_SPIRE_250.fits&
instrument=SPIRE. Other maps can be retrieved in the same
manner, by changing the galaxy, instrument, and band names
given in the URL.

In total, the imagery presented in this work represents 21,724
FITS images (not counting error maps), including the 3,297 non-
photometric DSS maps. A typical DustPedia source has maps
providing coverage of 25 bands.

8. Summary

We have presented the imagery and photometry of the DustPe-
dia sample, covering 875 extended nearby galaxies in 42 UV—
radio bands — every nearby extended galaxy that was observed
by the Herschel Space Observatory. The centrepiece of the
dataset we present is our consistent multiwavelength aperture-
matched photometry, encompassing 27 bands (from GALEX,
SDSS, 2MASS, WISE, Spitzer, and Herschel). In combination
with supplementary IRAS and Planck photometry. This repre-
sents 21,857 fluxes; on average, each DustPedia galaxy pos-
sesses photometry in 25 bands. Additionally, we have produced
imagery spanning 38 bands, including custom reductions of
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Herschel observations, along with standardised preparations of
archival UV-radio data.

To perform our aperture-matched photometry, we developed
the Comprehensive & Adaptable Aperture Photometry Routine
(CAAPR), which is designed to determine fluxes and uncertain-
ties that can can be directly compared across a wide range of
wavelengths and data types. CAAPR features a novel technique
of determining aperture noise, even in maps with very little back-
ground coverage around the target source; this allows us to de-
termine uncertainties consistently across the wide range of ob-
servations we employ.

We perform extensive validation of our photometry, compar-
ing overlapping bands internally, and comparing to independent
external sources. We find that our photometry is consistently re-
liable, with no excessive discrepancies.

The resulting database is being made publicly available, for
the benefit of the astronomical community.
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Table A.1: Description of map unit conversions for various UV—
MIR ancillary data for which pixel units of input archival maps
were not already expressed in terms of Jy.

Facility Band Native Units Mmyzp Amyp
(mag)

GALEX FUV counts s™! 18.82 -
GALEX NUV  countss™! 20.08 -
SDSS u nanomaggies 22.50  -0.04
SDSS g nanomaggies  22.50 0.00
SDSS r nanomaggies  22.50 0.00
SDSS i nanomaggies  22.50 0.00
SDSS Z nanomaggies  22.50 0.02
2MASS  J DN - 0.91
2MASS H DN - 1.39
2MASS K DN - 1.85
WISE 34um DN 20.5 2.669
WISE 46um DN 19.5 3.339
WISE 12um DN 18.0 5.174
WISE 22um DN 30.0 6.620

Appendix A: FITS Image Data Unit Conversions

Table A.1 provides information regarding the pixel units of the
original maps for our various ancillary data, as taken from the
official archive for each facility, and the relevant quantaties we
employed to convert these pixel units to our consistent Jy pix~!
units. See Section 2.2 for the full details of each ancillary data
facility.

The mzp column of Table A.1 provides the zero-point mag-
nitude used to convert the native map units S to Pogson magni-
tudes m, as per m = mzp — 2.510g,;,(S). In the case of 2ZMASS,
each tile has its own independently-calibrated zero-point magni-
tude, provided in the FITS header; as such no mzp values can be
listed for the 2MASS bands.

The mzp values listed are the values provided by each facil-
ity, and as such give magnitudes in whatever native magnitude
system each facility employs. Both 2MASS and WISE use Vega
magnitudes, whilst the SDSS uses SDSS magnitudes (which are
similar to AB magnitudes, but with small offsets in # and z). The
Amyp column of Table A.1 gives the offset between these native
magnitudes for each band, and the corresponding AB magni-
tudes, such that myp = m + Amyp. GALEX employs AB magni-
tudes by default, so there is no Amyp offset.

Appendix B: External Validation — Investigating
Severe Disagreement with HRS WISE 12 pym
Photometry

As described in Section 6.3.1, our photometry significantly dif-
fers from that of the HRS at 12 um, with our fluxes being fainter
by an average factor of 0.776. Here we discuss in detail how we
determined the sources of this disagreement.

After investigation, it transpired that the HRS converted
their WISE measurements from ‘DN’ (the WISE term for in-
strumental pixel units) to Jy using the conversion provided in
the WISE Preliminary Data Release Explanatory Supplement45
(Ciesla et al. 2014), despite the fact the maps they used came
from the WISE All-Sky Data Release (L. Ciesla, priv. comm.).

s http://wise2.ipac.caltech.edu/docs/release/prelim/
expsup/wise_prelrel_toc.html
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The 12 pm maps of the All-Sky Data Release have a very differ-
ent zero-point from that of the Preliminary Data Release, causing
the HRS to overestimate their 12 um fluxes by a factor of 1.585
(the 12 um zero-point of the AIIWISE Data Release, used by us,
is the same as that of the All-Sky Data Release).

Our investigation also revealed an apparent inconsistency in
the WISE All-Sky and AIIWISE data releases. As described
in Section 2.2.5, we converted our WISE imagery from DN to
Vega magnitudes using the zero-point magnitudes provided in
the FITS headers, then to AB magnitudes using the offsets listed
in the Table 1, Section IV.3.a AIWISE Explanatory Supplement,
and thereby to Jy (we use this conversion method, as our pref-
erence is for using the photometric calibration information pro-
vided with the data itself). However, if we instead use the DN-to-
Jy conversion factor listed in Table 1, Section IV.3.a of the All-
WISE Explanatory Supplement (mirroring the approach of the
HRS), the resulting final map units are not the same — map units
produced by using the DN-to-Jy conversion from the documen-
tation differ by a factor of 0.929 from the map units produced by
using the zero-point magnitudes in the FITS headers.

Another potential source of discrepancy between the
CAAPR and HRS 12 um fluxes is the fact that the HRS do not
perform any foreground star removal, and they use much smaller
photometric apertures than our own (theirs being designed to
contain only the visible MIR emission). To test the impact of
these differences, we repeated our photometry but using the same
apertures as Ciesla et al. (2014), with foreground star removal
disabled — the resulting fluxes differed from our actual fluxes by
a factor of 0.909 (for > 5 o- measurements).

The combined effect of these three differences is that we
should expect our WISE 12 um photometry to be fainter than
the WISE 12 um photometry of the HRS by a factor of 0.747 —
very close to the actual factor of 0.776 that we encounter.

Appendix C: External Validation — Repeating the
2MASS LGA Photometry

In Section 6.3.4, we repeat our 2MASS photometry, in order to
compare it with the 2MASS-LGA. We use CAAPR to perform
this repeat photometry, but instead of our own apertures we em-
ploy the apertures used by the 2MASS-LGA. This is to establish
whether the fact that our apertures are consistently larger than
those of the 2MASS-LGA is the reason why our photometry is
systematically brighter. The plots of the results of this compari-
son are shown in Figure C.1. The findings from this comparison
are discussed in Section 6.3.4.

Appendix D: External Validation — Assessing the
reliability of 2MASS H-Band Photometry

When visually inspecting the multiwavelength SEDs of our
galaxies, we found that our H-band photometry sometimes ap-
pears conspicuously offset above or below the J-band and K-
band, manifesting as a ‘bump’ or ‘dip’ in the SED at H-band,;
see Figure D.1 for an example.

To establish whether this was indicative of some sort of sys-
tematic issue, we calculated the [J/H] and [H/Kg] colours of
our galaxies using our aperture-matched CAAPR photometry.
If the H-band fluxes were suffering from a systematic artefact,
we would expect the colours calculated with our CAAPR pho-
tometry to be systematically offset from the equivalent colours
calculated with the 2MASS LGA photometry. However, we find
that the CAAPR colours show no systematic difference from the
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Fig. C.1: Comparison of CAAPR photometry performed using the apertures employed by the 2MASS-LGA, to photometry the

2MASS-LGA themselves report. Plots as per Figure 10.
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Fig. D.1: UV-mm SED of NGC 3631, showing an especially
pronounced example of a ‘bump’ in our 2MASS H-band pho-
tometry. 2MASS photometry is plotted in dark blue, with H-band
hence being the central of the three 2MASS fluxes plotted (at
1.65 wm).

2MASS LGA colours; an offset can be ruled out to the < 1.4%
level. What we do find is that the CAAPR photometry exhibits a
much larger scatter in colour than the 2MASS LGA photometry.
Whilst we should expect CAAPR colours to exhibit more scatter
(due to the larger uncertainties of our aperture-matched photom-
etry), the degree to which the scatter is larger for the CAAPR
colours is greater than we would predict assuming the photo-
metric uncertainties to be Gaussian — specifically, 65% greater
for [J/H] and 26% greater for [H/Kj].

For comparison, we also calculated the [J/Kg] colours for
both the CAAPR and 2MASS-LGA photometry. Once again,
we found greater scatter with the CAAPR photometry than with
that of the 2MASS-LGA - however, the increase was within the
bounds of what would be expected given the larger CAAPR un-
certainties (assuming they behave in a Gaussian manner).

We can therefore infer that the conspicuous H-band off-
sets found for some sources are due to non-Gaussianity in our
H-band uncertainties. This results in there being more outliers
amongst our H-band photometry than we would otherwise ex-

pect (such as that shown in Figure D.1). Users who are con-
cerned by the this non-Gaussianity have the option of not us-
ing the H-band photometry — the J-band Kg-band fluxes do not
seem to suffer from a similar problem, given that [J/Kj] colours
behave as expected.

The non-Gaussianity of the H-band uncertainties could arise
from the complex nature of the sky brightness suffered by
2MASS H-band observations. The arcminute scales of the H-
band sky brightness make it particularly problematic for nearby-
galaxy photometry.
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