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Highlights 

 A systematic review protocol provides unbiased and meaningful meta-information 

 A direct model accuracy comparison across studies is meaningless 

 A taxonomy for an informed forecasting model’s selection is proposed 

 Recommendations on writing electrical load forecasting related paper are given 

 

ABSTRACT 

Electricity forecasting is an essential component of smart grid, which has attracted increasing 

academic interest. Forecasting enables informed and efficient responses for electricity 

demand. However, various forecasting models exist making it difficult for inexperienced 

researchers to make an informed model selection. This paper presents a systematic review of 

forecasting models with the main purpose of identifying which model is best suited for a 

particular case or scenario. Over 113 different case studies reported across 41 academic 

papers have been used for the comparison. The timeframe, inputs, outputs, scale, data sample 
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size, error type and value have been taken into account as criteria for the comparison. The 

review reveals that despite the relative simplicity of all reviewed models, the regression 

and/or multiple regression are still widely used and efficient for long and very long-term 

prediction. For short and very short-term prediction, machine-learning algorithms such as 

artificial neural networks, support vector machines, and time series analysis (including 

Autoregressive Integrated Moving Average (ARIMA) and the Autoregressive Moving 

Average (ARMA)) are favoured. The most widely employed independent variables are the 

building and occupancy characteristics and environmental data, especially in the machine 

learning models. In many cases, time series analysis and regressions rely on electricity 

historical data only, without the introduction of exogenous variables. Overall, if the 

singularity of the different cases made the comparison difficult, some trends are clearly 

identifiable. Considering the large amount of use cases studied, the meta-analysis of the 

references led to the identification of best practices within the expert community in relation to 

forecasting use for electricity consumption and power load prediction. Therefore, from the 

findings of the meta-analysis, a taxonomy has been defined in order to help researchers make 

an informed decision and choose the right model for their problem (long or short term, low or 

high resolution, building to country level).  

KEYWORDS 

Electric consumption and load prediction; forecasting models; Machine Learning; 

Regression; Time Series Analysis; Long-term/short-term forecasting 

1 INTRODUCTION 

Forecasting models are widely used in different domains; e.g. in finance to forecast stock 

exchange courses or indices of stock markets (Bianco et al. 2009), in business to schedule 
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staff, manage inventory and predict demand (Hyndman & Athanasopoulos 2014), in 

medicine to monitor the spread of diseases (Generous et al. 2014), and in meteorology for 

predicting weather. Equally, forecasts play an essential role in the control of power plants and 

electric power exchange in interconnected systems (Mohandes 2002). Forecasting supports 

energy planners in understanding the influence of some variables on energy consumption and 

thus inform decision making (Al-Ghandoor et al. 2009). On a temporal scale, forecasts can be 

short-term for instance for balancing electricity supply; and long-term forecasts, including for 

capacity expansion, capital investment return studies, and revenue analysis (Parlos et al. 

1996). Over the years, many different forecasting models have been applied for electricity 

and power predictions such as multivariate and multiple regression (Azadeh & Faiz 2011; 

Filik et al. 2011; Wang 2012; Al-Hamadi & Soliman 2005; Farzana et al. 2014), SVM 

(Massana et al. 2015; Mohandes 2002; Garulli et al. 2015), time series (including 

Autoregressive Integrated Moving Average (ARIMA) and the Autoregressive Moving 

Average (ARMA)) (Fan et al. 1994; Gonzales Chavez et al. 1999; Hoffman 1998; Chujai et 

al. 2013). Equally, artificial neural networks (ANN) have become widely used for prediction 

scenarios. ANN has been used for various tasks such as (a) short-term load forecasting 

(STLF) in microgrids (Hernandez et al. 2014; Hernández et al. 2014; Hernandez et al. 2013; 

Hernández et al. 2012; Twanabasu & Bremdal 2013), (b) optimisation scenarios at building 

level (Platon et al. 2015; Hsiao 2015), and (c) long term horizon scenarios to determine 

annual electricity consumption of a region, district or building (Farzana et al. 2014; Azadeh 

& Faiz 2011). There is no consensus over a particular forecasting model and the use of a 

method over another is often the result of the expert’s preference. Moreover, in his paper 

showing the outcomes of the M3 competition (competition comparing the accuracy of 

different forecasting methods, realised in 1982, 1993 and 2000), Makridakis states that 

“simple methods developed by practicing forecasters do as well, or in many cases better, than 
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sophisticated ones” (Makridakis & Hibon 2000). This means that there are no evidences that 

complex models will outperform “simple” ones. Therefore, it is relevant to identify which 

model fits a particular situation.  

The need for forecasting varies from one scenario to another; the setting of a model is subject 

to numerous variations: including the available data used as inputs, the timeframe wanted, the 

time resolution (from every minute to annually), the scale (from a simple building to a whole 

country consumption). The aim of this review is to critically analyse and identify the quality 

of a method compared to some other potential solutions in a specific forecasting scenario and 

to assist users in their forecasting method’s selection by simply answering questions such as 

“Which model do I need to generate hourly electricity demand/consumption of a building for 

the next 2 years?”. 

The paper will first introduce the systematic review process employed (Section 2.1) for the 

selection of case studies. Equally, a short description of the most commonly encountered 

forecasting models is given. Each of these forecasting models has advantages and 

disadvantages and none is 100% efficient. It is important to know their limitations before 

considering their use.  Section 3 gives an overview of the main context characteristics of the 

study cases across the paper references (e.g. location, year, scale, data used, model used, 

timeframe considered…) as well as the results of their application in various scenarios and 

field studies. A taxonomy for the decision making of prediction models is presented as the 

main output of this review. Finally, a discussion section elaborates on the open questions 

resulting from the study and suggestions of the authors. 

2 METHODOLOGY 

The study is based on the critical review of academic research aimed at power and electricity 

forecasting. The selection of the different papers has followed a rigorous systematic protocol. 
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In this section the systematic process used for the review is described. The different steps for 

the papers’ selection are described. The different keywords used and domains’ restrictions are 

explained for an objective, non-biased papers’ selection. Additionally, some of the most 

popular forecasting models namely ANN, Time series analysis (including AR, MA, ARMA, 

ARIMA, SARIMA), SVM and Bottom-up model are briefly explained in this section. 

2.1 Systematic review protocol 

For the study, a systemic approach of the literature has been employed. Systematic reviews 

vary from the traditional review by extensive literature searches and meta-analysis of the 

finding, reducing the effect of chance and biases (Tranfield et al. 2003). A systematic review 

must follow a well-defined protocol introduced to bring more clarity, rigour and repeatability. 

The author must first define the research question(s); then define the research criteria to apply 

in order to select accurate publications. Once the selection done, the author can analyse the 

data and finally discuss the results (Righi et al. 2015; Higgins JPT, Green S 2006).  In this 

process, the selection of the criteria is particularly important. The research criteria have been 

selected according to the research question. While developing the research question some 

keywords appeared naturally like “electricity forecasting models”, “electricity prediction 

models” or “electricity demand models”. Using the online database Scopus, one of the 

established abstract and citation databases of reviewed literature (Anon n.d.), and its 

advanced search tool, the  search results were first limited to these keywords. The appearance 

of the keywords in the main text has been excluded as criteria due to a high probability of 

occurrences. The threefold Title-Abstract-Keyword provides more relevant results because it 

targets better the global content of the text. On this 1st search, 10 667 results were returned. 

A statistical analysis shows the distribution of the returned results by area of study. From the 

10 667 results 39.1% are from Engineering; 38.1% are from Energy; 16.3% from Computer 
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Science and 14.6% from Environment science. The other areas are not relevant in this study 

and therefore have been excluded (Figure 1). 

 

Texts in languages other than English have been excluded. The reduction to the four areas: 

Engineering, Energy, Computer science and Environmental Science leads to a new selection 

of 5845 papers. In order to fit even better to the desired topic, other keywords were targeted 

within the previous results. The texts including the keywords “building”, “dwelling” or 

“household” inside the title, abstract or keywords have been selected. 900 papers have been 

identified under these criteria. Finally, Scopus provides the overall of the keywords allocated 

to each paper. A quick overview on the keywords has enabled the identification of some 

irrelevant papers like “electric vehicles”, “wind power” or “global warming”. In order to 

avoid irrelevant studies, papers associated to the specific keywords “electricity demands” and 

“electric load forecasting” have been selected. At the end, 153 have been identified and will 

constitute the study basis. The whole process is shown in Figure 2 

Among the 153 studies, 76 are articles, 68 are conference papers, five are reviews, three are 

articles found in the press and one is a short survey; all from 44 different countries. Among 

the 153 references found on the topic, 411 have been reviewed in depth. Within the 41 

references, 113 different implementations of forecasting models have been identified. Having 

explicit criteria against which to assess studies helps to avoid hidden bias, by having clear 

consistent rules about which studies are being used to answer the review's specific research 

                                                            
1 (Abdel-aal & Al-Garni 1997; Al-Ghandoor et al. 2009; Al-Hamadi & Soliman 2005; Aydinalp et al. 2004; Azadeh 
& Faiz 2011; Beccali et al. 2008; Bianco et al. 2009; Boulaire et al. 2014; Cheng & Steemers 2011; Chujai et al. 
2013; Ciabattoni et al. 2013; Dilaver & Hunt 2011; Fan et al. 2015; Farzana et al. 2014; Filik et al. 2011; Fischer 
et al. 2015; Garulli et al. 2015; Gonzales Chavez et al. 1999; Gul et al. 2011; Hernández et al. 2014; Hoffman 
1998; Hsiao 2015; Inglesi 2010; Jurado et al. 2015; Koprinska et al. 2011; Marvuglia & Messineo 2012; Massana 
et al. 2015; Mathieu et al. 2011; McLoughlin et al. 2013; McLoughlin et al. 2012; Mena et al. 2014; Mohandes 
2002; Newsham & Birt 2010; Platon et al. 2015; Richardson et al. 2010; Swan et al. 2011; Twanabasu & 
Bremdal 2013; Wang 2012; Widen & Wackelgard 2010; Yoo & Hur 2013; Zahedi et al. 2013) 
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questions (Eppi 2007). Thus, the systematic review approach allows the reduction of biases 

and to consider the distribution of the cases as a good representation of the overall 

framework.   

2.2 Cases comparison 

From this point, the cases have been rigorously studied following specific characteristics. A 

relevant selection of a case characteristic is important because it is the starting point for an 

accurate and meaningful comparison between different electricity forecasting models. The 

idea is to best represent a particular situation through those characteristics without leaving out 

aspects that could influence the forecasting performance. A first analysis of the references 

helped in this matter. The authors have identified the different characteristics to take into 

account by considering the aspects that repeatedly appeared in the literature in order to 

describe a case. Table 1 gives the characteristics considered and a description of their 

suitability. 

From there, a second analysis has been done and an excel spreadsheet has been populated 

with all the needed information for every case. 

2.3 Forecasting models highlights 

From the 113 cases studied, 16 different models have been identified. The first observation is 

that some models can be categorised under a same label. For example, AR, MA, ARMA, 

ARIMA, seasonal or not, with or without exogenous variables can be seen as a part of time 

series analysis model. Therefore, they will be gathered into the label “Time Series”. 

It is interesting to study the models’ distribution through all the references in order to have a 

representation of the current trend in the forecasting model use. If the models’ distribution 

does not give an exact representation of the practices of the expert community, it still 
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provides a good overview.  Figure 3 illustrates the distribution of the different analysed 

forecasting models. Because one paper can proceed to several applications on one specific 

prediction model, the distribution of each forecasting model through the reviewed papers 

provides a better representation of the actual trend. Therefore, distribution will always be 

considered as a number of papers in which a particular forecasting model is used rather than 

the number of application.  

 

A clear trend is observed in the use of forecasting models. The regression model (most often 

multiple regressions or multivariate regressions) is the most widely used, and is present in 17 

papers out of 41 (43.6% of the papers), followed by the artificial neural networks (ANN) 

present in 15 papers (38.5%). Time series models are present in 30.8% of the papers, i.e.  12 

papers. In a lesser proportion, SVM and Bottom up models are used in 15.4% and 10.3%, 

respectively. The other models are singularities. The relatively high quantity of regression, 

ANN and time series models can be explained by their popularity in the research community. 

This observation strengthens their status as leading models in the field. SVM and bottom up 

model are present in a lesser extent but there is a clear framework developed around these 

models sustained by an increasing number of studies. Overall, five main models were 

identified from the review of the articles.  A short description of the most encountered 

forecasting models is given below. 

2.3.1 Artificial Neural Network  

Conventional models such as regression are limited and can sometime lead to unsatisfactory 

solutions (Aggarwal & Song 1997). The reasons include the too high number of 

computational possibilities leading to large solution times and the complexity of certain non-

linear data patterns (Aggarwal & Song 1997). On this type of challenges, artificial neural 
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networks and intelligent machine learning technique, provide a promising and attractive 

alternative. The increasing computational power has facilitated forecasting in a large set of 

power system management from load forecasting to security assessment or fault diagnosis 

(Wehenkel 1997). However, on some problems, the use of conventional models lead to 

unsatisfactory solutions due to the high complexity of variables' relationships and the extent 

of computation power requirements (Landau & Taylor 1998). It is in these cases that artificial 

neural networks (ANN) are used. Two references have been mainly used for the ANN 

description: the work of Raj Aggarwal and Yonghua Song that gives an introduction to the 

field of ANN via three tutorials which are proposed to engineers with an application in power 

systems (Aggarwal & Song 1997; Song & Aggarwal 1998a; Song & Aggarwal 1998b); and 

the book of Lawrence Jay Landau and John Gerald Taylor that gives a broad view on the 

concept of neural networks. It explains the basics of artificial neural networks and the 

mathematical underpinnings (Landau & Taylor 1998). ANN is an intelligent machine 

learning method based on the structure of the human brain. As the human brain, ANN is 

composed of neurons and interactions within multiple layers. Even if current ANNs are far 

from reflecting the complexity of a human brain, they remain powerful tools in pattern 

recognition. A neuron is the main element of the ANN, it can receive or send a normalised 

signal from and to the other neurons of the network. The wires between neurons are called 

“weight” 𝑤𝑘𝑝, one for each wire coming to a neuron from another one. Overall, there are 

three main features that determine an ANN: the architecture of the net (feedforward or 

recurrent), the learning rule used for defining the weights during training (perceptron, 

Hebbian, etc.), the activation function between neuron input and output. One of the most 

commonly used ANN is the Multi-Layer-Perceptron. This multilayer network is based on a 

backpropagation rule which evaluates the output’s error and reduces it, adjusting the weights 

by back-propagating the error from the output to the hidden layer. ANNs are particularly 
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suited for energy forecast. They provide a good estimation in cases where data is incomplete 

(Aggarwal & Song 1997), and can address complex nonlinear problems while demonstrating 

robustness and fault tolerance (Zhai 2005). More, it is a data-driven self-adaptive model 

(Zhai 2005; Pantic 2000) that (a) includes pattern recognition and captures subtle 

relationships (Aggarwal & Song 1997; Pantic 2000), (b) deals with noise (Aggarwal & Song 

1997), (c) does not depend on the programmer's prior knowledge of rules (Song, 1997); and 

(d) identical and independent operations can be done simultaneously (Aggarwal & Song 

1997). However, ANN’s results cannot be easily explained as (a) they are not mathematically 

based (Aggarwal & Song 1997), (b) it is computation time consuming (Aggarwal & Song 

1997), (c) the training process optimisation is  complex (Askarzadeh & Rezazadeh 2013), (d) 

extended data is required (Zhai 2005) and (e) the model may never converge in some cases 

(Zhai 2005). 

2.3.2 Time series analysis 

Some of the most widely used methods for time series analysis and forecasting are the 

Autoregressive Integrated Moving Average (ARIMA) and the Autoregressive Moving 

Average (ARMA). The ARMA and ARIMA have been introduced in 1970 by two 

statisticians, George Box and Gwilym Jenkins (Box et al. 2008). The basic ARMA model is 

composed of an autoregressive model (AR) and a moving average model (MA). The 

autoregressive model is a linear regression of the current value based on one or more 

previous values. Just as an AR, the MA is a linear regression, at the difference that it 

regresses current values against the white noise or errors of one or more past values. Note 

that an essential condition to process an ARMA model is that the time series is stationary. If 

not, the stationarity is achieved by differencing a non-stationary series in first place. The 

introduction of this step lead to a new model called ARIMA with the “I” standing for 

“Integrated”. In order to deal with the seasonality, Box and Jenkins introduced a new model, 
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the seasonal ARIMA or SARIMA. The most commonly used seasonal ARIMA is probably 

the ARIMA(0,1,1)x(0,1,1) which corresponds to a seasonal exponential smoothing model. 

Overall, Box-Jenkins forecasting model is (a) adaptable, (b) can deal with seasonality and 

with non-stationarity and (c) only requires the past value of a time series (Zhai 2005). 

Nevertheless, it is unlikely to perform well on long-term prediction (Zhai, 2005), is 

computation time-consuming (Zhai 2005), is subjective and requires a good understanding of 

the underlying statistics (Zhai 2005) . 

2.3.3 Bottom up end-use approach  

We call “bottom up approach” the construction of a complex system by aggregating 

elementary systems. Applied to the electricity consumption, it is simply the aggregation of all 

appliances loads within a household in order to determine the overall load of this household. 

The bottom up approach the most commonly cited is the Capasso bottom up model (Capasso 

et al. 1994). This approach evaluates the probability for a specific appliance to be “on” at 

every time step of a day by considering various factors involving the appliances and 

household members’ characteristics. Each appliance is related to one or more activities. The 

probability that an appliance is “on” is then linked with the probability for an activity to be 

done at a certain time of the day by one or more members. A calibration is applied to this 

probability taking into account (i) if the activity can be done by the person available, (ii) how 

many people the activity requires, and (iii) can the activity be done simultaneously with 

another activity. Once the activity probability is computed, socio-economic criteria are used 

to determine the penetration of appliances in the household. The power requirement and 

duration of each of these appliances is extracted and used to determine if they are suitable for 

a given activity and building type.  For that, the minimum duration of usage of an appliance 

has to fit the activity probability in which the appliance is involved and the power required 

has to be smaller than 𝑃𝑙𝑖𝑚𝑖𝑡 , the maximum power load allocated to the household 
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(considering that other appliances might be used in the exact same time). These steps lead to 

the creation of the appliance load profile and finally the daily load profile of the household. 

The bottom up model has the advantage to consider behaviour of the various types of 

customer and lifestyle-related psychological factors. It describes interrelations between 

appliances and members of the household and is easily understandable. Moreover, it can deal 

with missing values and its maintenance is simple. Among its disadvantages are the large 

number of data and tenants behaviour surveys required, the lack of information regarding 

customers’ behaviours in the long-term, thus inherently inaccurate in the long-term (Ghods & 

Kalantar 2011) and that the model assumes a constant relationship between electricity 

consumption and end-use (Ghods & Kalantar 2011) . 

2.3.4 Support Vector Machine 

Support Vector Machines have been first introduced by Vladimir Vapnik with a paper at the 

COLT 1992 conference (Boser et al. 1992). Then, in 1995, the soft margin classifier was 

introduced by Cortes and Vapnik in the paper Support Vector Networks (Cortes & Vapnik 

1995). Originally, SVMs were created to deal with pattern classification problems like 

character recognition, face identification and text classification. In 1995, Vladimir Vapnik 

extends SVM to a regression algorithm in his book, The Nature of Statistical Learning 

Theory (Cherkassky 1997). Over the years various applications were found in the literature; 

e.g. time series prediction problem. The purpose of an SVM is to create an optimal separating 

hyperplane in a higher dimensional feature space such that subsequent observations can be 

classified into separate subsets. In practice, real data are not as perfectly separable. In order to 

provide a hyperplane, one has to relax the requirement that a separating hyperplane will 

perfectly separate every training observation. For that, a soft margin classifier (SVC) has 

been constructed. In the case of non-linear boundaries, the use of SVM is convenient (Auria 

& Moro 2008). Indeed, the SVM allows non-linear decision boundaries by using an 
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appropriate transformation that makes them linear on a higher dimensional feature space. 

Unfortunately, computation on high dimension feature space can be very costly and SVM 

depend a lot on the proper selection of the hyper-parameters (Adhikari & Agrawal 2013). To 

improve the computation efficiency, a solution also called the “Kernel trick” is used 

(Adhikari & Agrawal 2013). Kernels are functions used to represent inner products between 

observations rather than observations themselves. Thus, it modifies how we calculate 

"similarity" between two observations in a more flexible way, allowing to change and solve a 

non-linear problem by a linear problem on a higher-dimensional space. 

2.3.5 Regression 

A regression is the simple statistical method that allows the observation of relationship 

between variables. Thus, the response, outcome, or dependent variable can be defined by 

other variables called predictor, explanatory, or independent variables. The most common 

form of regressions analysis used for prediction are the linear regressions and the polynomial 

regressions. The linear regression links the response 𝑦 and the predictor 𝑥 by the simple 

linear model: 

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜀. 

Where 𝛽0, 𝛽1 and 𝜀 are the intercept and the slope of the line and the random “error” 

respectively (Hyndman & Athanasopoulos 2014). The extension of the simple linear 

regression is the multiple linear regression. The difference between simple and multiple 

linear regression being the number of variables introduced as predictors that goes from one 

variable in the simple model to several in the multiple. Thus, the regression can not only be 

time related but also integrate some other independent variables. Four conditions, however, 

must be taken into account: the mean of the response at each set of values of the predictors is 

a linear function of the predictors, errors are independent, errors at each set of values of the 
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predictors are normally distributed, errors at each set of values of the predictors have equal 

variances (Anon n.d.). In the same way, the polynomial regression is a regression analysis 

where the predictor is related to the response via a polynomial of degree 𝑛. It is used to fit 

nonlinear data. 

3 FORECASTING MODELS COMPARATIVE ANALYSIS 

The initial phase involves analysing each paper’s scope and scenario objectives. The focus is 

then on the analysis of the forecasting models used, prediction horizon, variables and 

processes employed. Finally, key patterns in the use of the selected forecasting models are 

described. 

In term of application, the objectives are various. The most frequently encountered objective 

is the demand response for production and distribution of electricity. This objective requires 

short-term horizon predictions with high-resolution data in order to have a fast response to 

the electrical loads. This can be applied to a single building when several electricity sources 

are involved (Mathieu et al. 2011; Mena et al. 2014) or at district level with the increasing 

development of smart grids (Garulli et al. 2015; Hernandez et al. 2014; Hernández et al. 

2014). Another application is associated with mid to long term forecasting (1 week to a year) 

where the prediction is employed for power system planning (Al-Hamadi & Soliman 2005), 

maintenance or production and resell market (Filik et al. 2011). Long term prediction (several 

years) with large time step are often applied for policy making (Azadeh & Faiz 2011), large 

scale planning (Gonzales Chavez et al. 1999), statistical prevision (Bianco et al. 2009) or 

business plan (Wang 2012). Some applications are more household oriented with a great 

emphasis on appliances’ running time and on occupancy (Ciabattoni et al. 2013; Fischer et al. 

2015; Widen & Wackelgard 2010; Richardson et al. 2010). In the latter cases, the researcher 

seeks a reproducible model that can fit several household types. Thus, the prediction can 
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apply from a single house up to an entire district by aggregation. Finally, some studies 

attempt to cover all the previously cited applications with high a resolution model that has a 

long-term horizon (Filik et al. 2011). 

3.1 Scope and scenario objectives 

This section presents the different use cases found in the literature by giving their main 

features such as if they have been pre-processed, the timeframe, inputs, and resolution. This 

gives a better insight of the references listed. 

3.1.1 Forecasting data pre-processing  

Many studies have concerns about the variables they present as inputs of their models. 

Indeed, many studies support the use of data pre-processing in order to improve forecasting 

accuracy ((Chujai et al. 2013; Hsiao 2015; Azadeh & Faiz 2011)), especially when using 

machine learning algorithms  (Crone et al. 2006; Huang et al. 2015; Suhartono & Subanar 

2006). It appeared than in 66.0% of the cases, a pre-processing has clearly been done. Note 

that the remaining 33% do not necessarly mean a lack of pre-process but simply that it has 

not been mentioned. Overall, data pre-processing is a common practice for forecasting. Four 

different kinds of pre-processing can be identified: (1) smoothing and filling missing values, 

(2) measurement of variables dependency and significance, (3) data decomposition and 

classification and (4) check order of integration and stationarity. For that, several 

mathematical and statistical tools are used, the most widely spread are principal component 

analysis (PCA), which uses principles to transforms a number of possibly correlated variables 

into a smaller number of variables called principal components, Pearson correlation (PCC) 

which show the interdependency of sets of variables, 𝑝-value that is used for testing a 
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statistical hypothesis, analysis of variance (ANOVA), Kernel density estimation (KDE) 

which is a non-parametric density estimator and Canonical Correspondence Analysis (CCA). 

3.1.2 Forecasting timeframe and resolution 

Another important characteristic is the time-term considered for the prediction. Indeed, the 

timeframe and resolution that are chosen for a prediction will highly influence the results and 

the choice of a model over another. The timeframe has been classified into 4 categories such 

as “very short term” (less than an hour), “short term” (1 hour to several days), “mid-term” (1 

month to a season) and “long term” (a year or more). The time resolution represents the time-

step considered for the prediction. It goes from every minutes to annually. Table  illustrates 

the term distribution through the different papers and cases. The distribution in percentage is 

based on the number of paper in which the timeframe is used. 

  

With respectively 61.5% and 43.6%, the long-term and short term prediction represents the 

actual needs for electrical loads forecasting in buildings. In the vast majority of cases, the use 

of forecasting model is for 1 hour, 1 day or 1 year ahead prediction. Very short-term and mid-

term prediction are not highly represented within the cases. This can be explained by the 

needs of the industry for short term and long-term prediction. Indeed, short-term prediction 

has a direct application for quick electricity demand response while long term prediction are 

often used for prevision and strategies. 

3.1.3 Forecasting input variables 

For electricity and power prediction, a forecasting model can be implemented with a large 

range of inputs. Independent variables such as income, occupancy, electricity price, 
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temperature, building size, rainfall, dwelling type, GDP, population are just few examples of 

the various possible inputs. For the purpose of the study, the different exogenous variables 

have been classified into 4 categories: “Socio-economic” related to the socio-economic 

situation of the zone considered, “Environmental” related to the weather conditions, 

“building and occupancy” related to the building type and activity and “time index”. Table  

presents the input used distribution across the papers and cases. The building characteristics 

are, with 48.7% of paper considering them, the most used exogenous variables. 

Environmental variables and socio-economic variables follow and are present in respectively 

41.0% and 38.5% of the papers. The time index data, which are simply the date stamps series 

introduced as an input, are used in a lesser proportion with 28.2% of papers found. Finally, 

models without exogenous inputs are present in 30.8% of the papers. 

  

In order to fully understand this distribution, it is important to look at when these inputs are 

used. Figure 4 illustrates how the inputs are split into the different timeframe. In the same 

way, Figure 5 shows the repartition of the input depending on the scale of the study. Some 

trend can be identified. Indeed, socio-economic variables are in a high majority of cases used 

for long-term prediction as well as large-scale studies (from a city level to entire country). 

Environmental variables are implemented in models that aim to predict short-term and small 

to mid-scale studies (building to district level). Overall, electricity historical data (past 

patterns) are equally present in short or long term, small or big scale studies. If building and 

occupancy inputs are almost equally used for short-term and long-term prediction, they are 

mainly employed for small and mid-scale level (building to district). Finally, time index are 

mainly introduced for short-term and small-scale prediction. 
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One of the reasons for input variables selection is the meaning that the developer wants to 

give to his / her model. Indeed, some studies target some particular variables to highlight the 

relationship between them and impact for instance on electricity consumption. 

Finally, the introduction of a time index in certain cases has proven improving the accuracy 

when time series have been clustered (Hernandez et al. 2014; Yoo & Hur 2013) or when the 

model highly depends on the occupancy such as in (Ciabattoni et al. 2013). 

3.2 Key observations 

The study aims to identify which forecasting model best fits particular situations and 

variables. Indeed, following the situation and the variables available, the use of a model will 

be preferred in order to obtain the best accuracy possible.  This section presents the different 

observations done on the use of forecasting models by highlighting potential correlation 

between a scenario parameter such as timeframe and/or inputs variables and a particular 

model. The outcome is the overall representation of the practices within the expert 

community. Those practices are assumed as being representatives of the good use of the 

models. 

3.2.1 Model vs timeframe 

In this section, the models have been compared by considering the timeframe they are meant 

to predict. Only the five most commonly encountered models that are ANN, bottom up, time 

series analysis, regression and SVM are being compared. The singularity of the other models 

listed in Figure 3 does not allow any interpretations about the case they best fit. Figure 6 

shows the number of papers in which a timeframe is considered given a certain model. The 
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majority of the regression models are used for long-term prediction, one year or more. Only 

four on 19 configurations are against short or very short-term prediction. On the other hand, 

ANN is mainly used for short-term prediction with 10 papers studying this configuration. In a 

lesser extent, the use of ANN for a long or mid-term prediction follows with a total of 6 

papers. Likewise, the time series analysis and SVM models have been mainly applied for a 

short and very short-term prediction with respectively 10 and 6 different references 

considering this configuration. The bottom up model seems to be slightly preferred for long 

term forecast.  

The regression remains widely used for long term forecasts due to its simplicity and accuracy 

on this timeframe, especially when the time resolution is large as states AlRashidi in Section 

2 of his paper “Long term electric load forecasting based on particle swarm optimization” 

(AlRashidi & EL-Naggar 2010). Short term predictions require more sophisticated models 

such as machine learning or ARIMA because the variables interrelationship are more 

complex and sensitive on this time scale (Hippert et al. 2001; Ho et al. 2002). 

3.2.2 Model vs input 

This last section presents the repartition of the inputs implemented within the model 

following the model.  

Figure 7 shows the number of papers in which input variables are introduced in a given 

model. The regression models have been mainly set up with socio-economic inputs. Note that 

if regressions models are using socio-economic variables, a direct correlation between the 

model and the variable is debatable. Indeed, regression models are widely used for long-term 
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forecasts (see section 3.2.1) and long-term forecasts are correlated with the use of socio-

economic variables (see section 3.1.3). ANN shows a preference for environmental, building 

and time index inputs. Overall, ANN has been implemented with a relatively large range of 

variables which indicates flexibility of the models toward the data introduced as inputs. In the 

case of the ANN and SVM, the relatively high amount of time index data introduced is 

mainly due to a possible need in order to increase their accuracy. Time series analysis is most 

often set up without exogenous variables. In this model, exogenous variables are introduced 

for a better performance but are not mandatory for its proper functioning. Finally, the bottom 

up model systematically uses building related data such as available appliances or occupancy, 

due to the nature of the model itself (see section 2.3.3). 

3.2.3 Model vs output resolution 

Lastly, it is interesting to look at the time step considered for the prediction. Indeed, forecasts 

serve different purposes that may require a specific resolution. From less than an hour to 

yearly, several examples have been found in the literature. Often a model is test on different 

output resolution since its accuracy will be relative to those. Thus, a model can show poor 

performance on an hourly basis but overall good accuracy on a weekly or monthly resolution. 

Figure 8 shows the repartition of the different models according to the timeframe and 

resolution considered. If there is no evident clear trend, some observation can be done. 

Firstly, the graph confirms the observation done in the section 3.2.1 where ANN, SVM and 

time series analysis are preferred for short-term forecasts while regression and bottom up for 

The  
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long-term. Secondly, hourly resolution on short-term forecast represents slightly more cases 

and those in every model applied. Lastly, on long-term forecasts, regression is favoured on an 

annual resolution of predictions over several years while bottom up is slightly preferred on 

lower time steps.  

Discussion 

The accuracy of each studies has been investigated in order to define which model performs 

the best in a given scenario context.  However, a direct comparison of the study cases seems 

irrelevant because of the numerous variables influencing their performance. Indeed, models 

are implemented for different locations, in different time periods, with data of more or less 

good quality and supported by scripts more or less well written. Even the mean for accuracy 

determination are different (mean absolute percentage error, mean percentage error, root 

mean square error (RMSE), coefficient of variance of RMSE) making comparison difficult. 

Overall, none of the model clearly outperforms the others and seeking the most accurate is 

meaningless in this case. Instead, the study assumes that the most commonly used practices 

by the expert community are representative of the best use of forecasting models. If the 

position of the author is in favour of this theory, it remains obviously debatable. 

The above elements of response following the analysis of the critically reviewed papers have 

informed the development of a simple taxonomy summarizing the use of "major" models 

(ANN, regression, time series analysis, bottom up, SVM) in particular scenarios / 

applications. It is designed to answer the following type of questions: 

“Which model do I need to generate hourly electricity demand/consumption of a building for 

the next 2 years?”  
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 Figure 9 presents a first taxonomy faithful to the cases found in the literature. Associated 

with Table , it gives real cases found in the literature in order to solve a specific problem. 

Thus, this taxonomy does not necessarily generalized on the model that need to be used but 

leads the user to references they can consult. 

A broader taxonomy can be developed according to the results of the previous analysis. In the 

same way, the user can refer to the taxonomy and choose between the recommended models. 

All colours superior to a particular case can be applied to this one. Table  explains the values 

of each colour and the model associated.  For instance, the daily electricity consumption on a 

long term period at the building level can be forecasted using a regression or a bottom up 

model with building related data for instance. 

It should be noted that the use of the bottom up model highly depend on the availability of 

precise data concerning the building(s) and their appliances. 

Overall, the authors suggest that the researcher tries the few models given by the forecasting 

models’ taxonomies fitting his or her situation (term, scale, available inputs). Thus, to the 

above question:  

“Which model do I need to generate hourly electricity demand/consumption of a building for 

the next 2 years?” 

we can answer: 

“A bottom up model introduced with high resolution and disaggregated (by appliances) 

historical data that have been smoothed and building data such as occupancy, appliance 
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availability etc., as exogenous inputs. Environmental data such as weather condition and 

time index can eventually be introduced (see Ciabattoni et al. 2013; Fischer et al. 2015).” 

Last concern is about the writing of academic papers. Indeed, information retrieval had been 

particularly difficult and the authors suggest that while presenting his or her work, the 

researcher provides explicitly the frame of the forecasting implementation (timeframe, time 

resolution, scale, inputs, outputs, pre-processing…). Moreover, the researcher should present 

several means for error measurement (mean absolute percentage error, mean percentage 

error, root mean square error (RMSE), coefficient of variance of RMSE) in order to facilitate 

a direct comparison across studies. 

4 CONCLUSION 

In this review, 113 different applications of various forecasting models distributed into 41 

international papers have been studied. Many criteria have been checked such as the scale of 

the project, the time-term, time resolution, input employed, data pre-processing, error etc. 

Overall, if the models ‘selection via a direct accuracy comparison appeared to be meaningless 

in this study because of external elements that can interfere, some patterns in the use of the 

models are interesting. Considering the numerous use cases and papers studied, it is 

reasonable to assume that recurrence in the use of forecasting models reflects good practices. 

Some models seem to be favoured for electricity and power forecasting such as multivariate 

regression or Multiple Linear Regression, Artificial neural network and Time series analysis. 

Regression models are often employed for long-term prediction where periodicity and 

changes are less significant. This long-term predictions are often associated with socio-

economic variables and building characteristics reflecting the correlation between these 

variables and electricity consumption on the long–term. ANN and Time series analysis are 
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mainly used for short-term predictions where electricity and power consumption patterns are 

more complex.  Time series analysis leans principally on past electrical loads data while 

ANN are mainly set up with past values, Environmental and building/ occupancy data. 

Support vector machine and bottom up models are present in a significant amount of paper 

showing increasing interest thereof.  In the case of SVM, they are similar to the ANN in their 

usage (short-term with Environmental, past values and occupancy inputs). In the case of 

bottom up models, they have the advantage to be easily understandable and can be used for 1 

day to 1week ahead prediction at building level. However, the model requires a well detail 

dataset about appliances electricity consumption and occupancy. In some cases, a time series 

index is introduced in order to increase the accuracy of certain models. A time index is 

particularly useful when a model strongly depends on occupancy such as the bottom up 

model or when the time series has been decomposed in underlying patterns. Additionally, a 

pre-analysis and pre-processing of the input data is recommended in order to have better 

results. Indeed, it is recommended to smooth time series from errors and to fill missing 

values. A measurement of variables dependency and significance can help both on speed of 

computation and accuracy. Data decomposition and classification allow breaking down 

complex series into simpler models and thus give better performance on forecasting. Two 

simple taxonomies are presented therefore, one that leads to real cases found in the literature 

and a second that generalizes the outcomes of the study. When a researcher has to make a 

choice on the model to use, one can refer to the general taxonomy, going across the different 

branches of the tree that fit his or her situation and then try the recommended forecasting 

models. Equally, one can refer to the 1st taxonomy to have real use cases of the model coming 

from the literature. If these taxonomies do not have the ambition to reflect all the complexity 

of electricity power and consumption prediction, they nevertheless give a good overview and 

can lead to the selection of a potential model solution. 
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Figure 1 Fields' distribution through the papers 

 

 

Figure 2 Selection procedure 
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Figure 3 Classified forecasting models distribution 

 

 

 

Figure 4 Input distribution depending of the time horizon 

 

 

Figure 5 Input distribution depending of the scale 
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Figure 6 Models vs time horizon distribution 

 

 

Figure 7 Models vs inputs distribution 
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Figure 8 Models distribution by time horizon and resolution 
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Figure 9 Study taxonomy 
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Figure 10 General taxonomy 
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Table 1 Cases characteristics 

Frame Describe the context of the study and give an overview of the study 

purposes. 

Location Country of the case. 

Scale Scale of the study, from a single building to an entire country. Size of the 

sample are taken into account. 

Term From very short (1 min ahead) to very long term (several years ahead), 

gives the timeframe of the case. 

Time resolution Gives the time step considerate in the forecast: every minute, hours, day, 

years… 

Inputs Inputs implemented in the forecasting model.  

Historical Data Gives the length of the data sample used for the prediction as well as 

their origin (meters, statistical…). 

Pre-processing Indicates if the data have been pre-processed before being introduced 

into the forecasting model and which type of pre-process have been 

done. 

Forecasting model Gives the forecasting model employed 

Error Gives the type of error measured (CV(RMSE), MAPE, RMSE…). 
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Table 2 Term distribution through the reviewed papers and cases 

Term nb studies nb papers Distribution 

percentage 

Very Short-Term 5 1 2.6% 

Short-term 40 17 43.6% 

Mid-term 9 3 7.7% 

Long-Term 58 24 61.5% 

 

Table 3 Inputs distribution through the papers and cases 

 

Exogenous Input nb studies nb paper Distribution percentage 

None 36 12 30.8 % 

Socio-economic 42 15 38.5% 

Environmental 41 16 41.0% 

Building 44 19 48.7% 

Time index 33 11 28.2% 
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Table 4 Taxonomy references 

      

# Model Input 

resolution 

Exogenous Inputs data Pre-process 

recommended 

Reference 

1 Bottom up Subhourly Building & time index Smoothing (Ciabattoni et al. 2013; Fischer et al. 2015) 

2 Bottom up Subhourly 

Building & socio-

economic 

None (Fischer et al. 2015) 

3 Regression Monthly Building 

Dependency & 

significance 

(Wang 2012) 

4 Bottom up Subhourly 

Building & 

environmental 

Smoothing 

(Widen & Wackelgard 2010; Richardson et 

al. 2009)  

5 Regression Daily 

Socio-economic, 

environmental, building 

Dependency & 

significance 

(Fan et al. 2015) 

6 Bottom up Subhourly Building None (Richardson et al. 2009) 

7 ANN Annual 

Socio-economic & 

building 

None (Aydinalp et al. 2004; Farzana et al. 2014) 

8 Regression Annual 

Socio-economic & 

building 

None (Farzana et al. 2014) 

9 ANN Subhourly None Clustering (Koprinska et al. 2011) 

10 TSA Monthly None None 

(Abdel-aal & Al-Garni 1997; Gonzales 

Chavez et al. 1999) 

11 Regression Hourly None Smoothing, Clustering 

(Filik et al. 2011; Al-Hamadi & Soliman 

2005) 

12 Regression Annual Socio-economic 

Dependency & 

Stationarity eventually 

(Filik et al. 2011; Azadeh & Faiz 2011; 

Bianco et al. 2009; Gul et al. 2011; Dilaver & 

Hunt 2011; Al-Ghandoor et al. 2009) 

13 TSA Subhourly None Smoothing, Clustering (Chujai et al. 2013) 

14 ANN Subhourly None Clustering (Koprinska et al. 2011) 

15 Regression Subhourly None Clustering (Koprinska et al. 2011) 

16 SVM Subhourly None Clustering (Koprinska et al. 2011) 

17 SVM Hourly None Smoothing, Clustering (Mohandes 2002) 

18 ANN Hourly 

Environmental, building 

& time index 

Clustering 

(Hernández et al. 2014; Marvuglia & 

Messineo 2012) 

19 SVM Subhourly 

Socio-economic, 

environmental,  time 

index 

Smoothing, Clustering (Garulli et al. 2015; Hsiao 2015) 
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Table 5 General taxonomy references 

 

20 ANN Subhourly 

Socio-economic, 

environmental, time 

index 

Smoothing, Clustering (Garulli et al. 2015; Hsiao 2015) 

21 ANN Hourly 

Environmental, building 

& time index 

Smoothing, 

Dependency & 

significance 

(Platon et al. 2015; Jurado et al. 2015; 

Twanabasu & Bremdal 2013; Massana et al. 

2015; Beccali et al. 2008) 

22 SVM Hourly 

Environmental, building 

& time index 

Smoothing eventually 

(Twanabasu & Bremdal 2013; Massana et al. 

2015) 

23 TSA Hourly Environmental Smoothing 

(Newsham & Birt 2010; Jurado et al. 2015; 

Yoo & Hur 2013; Twanabasu & Bremdal 

2013) 

24 ANN Subhourly 

Environmental, building 

& time index 

Dependency & 

significance 

(Mena et al. 2014) 

Colour Model Inputs resolution Inputs Pre-process 

  

Regression Subhourly to Hourly 

Building data can eventually be introduced 

for better performance. 

Smoothing high-resolution dataset is 

recommended.   Clustering dataset in 

seasonal pattern can eventually be done to 

improve performance. 

  
Regression Hourly to Annual Socio-economic data are often introduced 

Dependency & significance in order to 

lower the amount of input data 

  

Bottom 

Up 

Subhourly 

Building data are always introduced due to 

the nature of the model. Environmental 

data and time index can eventually be 

introduced for better performance. 

Smoothing high resolution data is 

recommended 

  

ANN Subhourly to Hourly 

Can be set with a large variety of data. 

Mainly environmental, building and time 

index. Time index often improve 

performance. 

Dependency & significance in order to 

lower the amount of input data. 

Smoothing high-resolution data is 

recommended. 

  
SVM Subhourly to Hourly 

Can be set with a large variety of data. 

Mainly environmental, building and time 

Smoothing high-resolution data is 

recommended. 
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index. Time index often improve 

performance. 

Clustering dataset in seasonal pattern can 

eventually be done to improve 

performance. 

  

Time 

series 

analysis 

Subhourly to Hourly 

Environmental and time index data can 

eventually be introduced for better 

performance. 

 Smoothing high-resolution data is 

recommended. 

Clustering dataset in seasonal pattern can 

eventually be done to improve 

performance. 

    

The few amount of cases on mid-term forecast does not allow any generalisation on the model to employ. A large variety of 

unique models have been employed in the literature. 

  


