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Genomic signatures of adaptive 
introgression from European 
mouflon into domestic sheep
Mario Barbato  1,2, Frank Hailer2, Pablo Orozco-terWengel  2, James Kijas3, Paolo Mereu  4, 
Pierangela Cabras5, Raffaele Mazza6, Monica Pirastru  4 & Michael W. Bruford2

Mouflon (Ovis aries musimon) became extinct from mainland Europe after the Neolithic, but remnant 
populations from the Mediterranean islands of Corsica and Sardinia have been used for reintroductions 
across Europe since the 19th-century. Mouflon x sheep hybrids are larger-bodied than mouflon, 
potentially showing increased male reproductive success, but little is known about genomic levels of 
admixture, or about the adaptive significance of introgression between resident mouflon and local 
sheep breeds. Here we analysed Ovine medium-density SNP array genotypes of 92 mouflon from 
six geographic regions, along with data from 330 individuals of 16 domestic sheep breeds. We found 
lower levels of genetic diversity in mouflon than in domestic sheep, consistent with past bottlenecks in 
mouflon. Introgression signals were bidirectional and affected most mouflon and sheep populations, 
being strongest in one Sardinian mouflon population. Developing and using a novel approach to 
identify chromosomal regions with consistent introgression signals, we infer adaptive introgression 
from mouflon to domestic sheep related to immunity mechanisms, but not in the opposite direction. 
Further, we infer that Soay and Sarda sheep carry introgressed mouflon alleles involved in bitter taste 
perception and/or innate immunity. Our results illustrate the potential for adaptive introgression even 
among recently diverged populations.

Introgression is increasingly documented as a potentially adaptive evolutionary force1, with recent developments 
in high-throughput genotyping and sequencing facilitating the detection of even small genomic regions that have 
been passed on from one taxon to another2. Since Darwin’s early work on domesticates, evolutionary biologists 
have devoted much attention to the relationships between domesticates and their wild ancestors. While much 
work has focused on describing the evolutionary consequences of domestication on modern sheep breeds3, less 
work has focused on their wild counterpart, the mouflon.

Sheep have a complex evolutionary history shaped by widespread extinctions in the wild, domestication, and 
feralisation. The European mouflon (O. aries musimon) is the only wild ovine currently occurring in Europe. 
Present in the archaeozoological record in Europe since the middle Pleistocene4, European mouflon went extinct 
across mainland Europe after the Neolithic5. Early agricultural societies then brought domesticated sheep into 
Europe during the Neolithic transition6. Archaeological evidence along with analysis of retroviral genomic mark-
ers in wild and domestic sheep breeds suggest two main domestication events: a first wave of domestication at 
around 11,000 years ago (YA), and a second wave around 6,000 YA7, 8. The European mouflon, together with the 
Cypriot mouflon (O. orientalis ophion) and some primitive domestic breeds present in Northern Europe such as 
the Soay and Spael sheep are considered remnants from the first wave of domestication8.

Humans translocated mouflon onto the Mediterranean island of Cyprus ~10,000 YA, and to Corsica and 
Sardinia ~6–7,000 YA9, where feral populations became established7. Since the late 18th century, Corsican and 
Sardinian mouflon have been used to repopulate several regions of mainland Europe10, 11. Corsican mouflon were 
introduced as game and park animals in Southern France, and subsequently into other European countries12, 
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whereas both Sardinian and Corsican animals were moved to central and northern Italy and Austria13, 14. 
Currently, continental European mouflon are distributed from the Iberian Peninsula to the Caucasus.

Feral mouflon populations of Sardinia, Corsica and Cyprus have coexisted with sheep populations since the 
arrival of the second wave of domesticated sheep. Even today, sheep herding practices in Sardinia involve seasonal 
transhumance from lower towards higher-altitude pastures, where mouflon reside and farmers habitually allow 
sheep to graze in the wild12. Records from ancient Rome and more recently from the 18th century (both based 
on ref. 15) describe interbreeding between wild and domestic sheep in Europe. Mouflon and domestic sheep 
have therefore occurred in sympatry on several Mediterranean islands for millennia, and historical records indi-
cate that admixture may be common15. Importantly, mouflon x sheep hybrids tend to be larger than mouflon16, 
and larger-bodied mouflon males have higher reproductive success17. Despite these records of mouflon x sheep 
admixture, and although sexual selection might act to enhance introgression into mouflon, little information is 
available on the scale, impact and adaptive significance of admixture between mouflon and domestic sheep.

Molecular approaches have been used to investigate the genetic structure of European and Mediterranean 
mouflon populations, including several phylogenetic studies with datasets comprising mouflon and domestic 
sheep18–20. Domestic Sardinian sheep and local mouflon show varying levels of admixture12, 21, and mtDNA can-
not be used to effectively infer gene flow between them, as both mouflon and domestic breeds belong to the same 
mitochondrial haplogroup (B)20. The OvineSNP50 BeadChip (Illumina Inc.) includes 54,241 domestic sheep 
polymorphisms, and while originally developed to assess genetic diversity22 and perform genome-wide associa-
tion studies23 in domestic sheep, it can also be used for other purposes such as studying conservation genetics24, 
domestication, local adaptation25, and admixture in wild and feral populations26, 27.

Here we used the OvineSNP50 BeadChip to analyse the most comprehensive genome-scale dataset of 
European mouflon to date. Our sampling covers the European mainland and Mediterranean islands, including 
Corsican, Corsican-derived (Spain, Hungary) and three Sardinian mouflon populations. Mouflon samples from 
Cyprus and Iran were also included, along with adjacent domestic breeds. We used this dataset to investigate 
the form, extent and potential adaptive significance of admixture between feral and domestic populations. We 
explored signals of local ancestry along sheep chromosomes, applying a novel approach to identify chromosomal 
regions of consistent ancient ancestry and to infer the direction of introgression (feral to domestic, or vice versa). 
We analysed sympatric mouflon and sheep populations from Sardinia to investigate the adaptive significance of 
introgression. We hypothesized that introgression from feral mouflon into recently imported local sheep breeds 
(Sarda) could have greater adaptive significance with regard to local environmental conditions, than introgression 
from domestic Sarda sheep into resident mouflon.

Materials and Methods
All of the animal procedures were performed in strict accordance with the guidelines of the Ethics Committee of 
Sassari University, Italy, which also approved this study.

Samples, DNA extraction and genotyping. We analysed 92 mouflon from eight populations across 
continental Europe, remnant populations on Mediterranean islands including Cyprus and three subpopulations 
from Sardinia, and from Iran (Fig. 1). For comparison, we collected data from 330 individuals from domestic 
European sheep breeds that either live in sympatry with or adjacent to mouflon, or have been generally described 
as ancient/autochthonous breeds. Other domestic sheep data were available from the Sheep HapMap project22 
(Table 1; for additional details see Supplementary Text S1). Genomic DNA was obtained from blood and muscle 
tissue using phenol/chloroform extraction. Sample quality and concentration was determined via spectropho-
tometry using a ND-8,000 (NanoDrop Technologies, Thermo Fisher Scientific Inc., Wilmington, DE).

Samples were genotyped using the OvineSNP50 BeadChip in the ‘Laboratorio Genetica e Servizi’ (Cremona) 
or as part of the ISGC HapMap experiment22. Markers with a call rate <0.99 and minor allele frequency (MAF) 
<0.05 were excluded from all analyses. For the Ovine 50 k SNP array, no mouflon were included in the discovery 
panel22, implying ascertainment bias when applying it to mouflon28. We therefore pruned SNPs on the basis of 

Figure 1. Sampling location. Geographic origin of mouflon and domestic sheep samples. For population 
abbreviations see Table 1. Map was generated in Inkscape v 0.91 (https://inkscape.org/).
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linkage disequilibrium (LD) in the total dataset, as this approach has been shown to reduce the impact of ascer-
tainment bias, allowing less biased comparisons among populations by preferentially reducing mean heterozygo-
sity within the populations used during SNP discovery22, 29. LD pruning was performed using the indep-pairwise 
function in PLINK v1.730, where SNPs with r2 > 0.5 were removed from sliding windows of 50 SNPs and with 10 
SNPs of overlap. Only autosomal markers were kept for analysis. After pruning for MAF and LD, 36,961 SNPs 
distributed across 26 chromosomes were retained for analysis.

Genetic diversity and population structure. Heterozygosity values were calculated using custom scripts 
and the inbreeding coefficient (F) was estimated using PLINK. Ne was estimated with the software SNeP v1.131. 
The software uses LD to infer Ne at different t generations in the past where t = 1/2c and c is the distance between 
SNPs in Morgans (in this case assuming 100 Mb = 1 Morgan22). The following options were used: sample size 
correction for unphased genotypes, correction to account for mutation, and Sved & Feldman’s mutation rate 
modifier. The most recent estimate of Ne was taken for c calculated at 1 Mb22.

Maximum likelihood analysis of population structure was conducted using ADMIXTURE v1.2332. Clustering 
solutions for the whole dataset were calculated for K values from 2 to 24, the latter corresponding to the total 
number of sampled populations/breeds in our study. Additional Admixture analyses were performed after 
removal of highly inbred and/or divergent sheep populations, and using supervised ancestry assignments 
(Supplementary Text S1). A principal component analysis (PCA) was performed to investigate the ordinal rela-
tionships between populations and individuals, using flashpca v1.233 with default settings. Neighbour-net graphs 
using Reynolds’ distances, calculated with a custom script, were generated using Splitstree v4.13.134. The occur-
rence of admixture was further investigated using Treemix v1.1235. This software models the relationship among 
the sample populations with their ancestral population using genome-wide allele frequency data and a Gaussian 
approximation of genetic drift35. The f index representing the fraction of the variance in the sample covariance 
matrix (W) accounted for by the model covariance matrix (W) was used to identify the information contribution 
of each migration vector added to the tree. Up to 20 possible migration vertices were computed.

Breed/population Acronym Origin Number Ho (SD) Ne F Source

Mouflon

Sardinian mouflon MSar1 Sardinia 19 0.22 (0.19) 261 0.45 This study

Sardinian mouflon MSar2 Sardinia 8 0.22 (0.24) 130 0.46 This study

Sardinian mouflon MSar3 Sardinia 28 0.34 (0.19) 273 0.16 KJa

Spanish mouflon MSpa Spain 21 0.20 (0.19) 96 0.51 KJa

Hungarian mouflon MHun Hungary 8 0.24 (0.21) 282 0.42 This study

Corsican mouflon MCor Corsica 3 0.24 (0.27) 259 0.41 This study

Cypriot mouflon MCyp Cyprus 3 0.09 (0.20) 244 0.78 This study

Iranian mouflon MIra Iran 2 0.25 (0.31) — 0.35 NGb

Total 92

Domestic sheep

Altamurana ALT Italy 24 0.37 (0.16) 628 0.06 KJa

Australian Merino ASM Spain 24 0.37 (0.15) 920 0.06 KJa

Castellana CAS Spain 23 0.38 (0.16) 813 0.02 KJa

Chios CHI Greece 23 0.33 (0.17) 391 0.15 KJa

Churra CHU Spain 24 0.37 (0.16) 617 0.05 KJa

Comisana COM Italy 24 0.38 (0.16) 1028 0.03 KJa

Cyprus Fat Tail CFT Cyprus 24 0.34 (0.19) 186 0.13 KJa

Iranian sheep IRS Iran 6 0.37 (0.22) 412 0.05 NGb

Milk Lacaune LAC France 24 0.37 (0.16) 607 0.06 KJa

Nera di Arbus sheep SAB Sardinia 20 0.36 (0.18) 366 0.08 KJa

Racka RAK Hungary 8 0.35 (0.21) 327 0.11 This study

Sarda sheep SAR Sardinia 10 0.37 (0.19) 755 0.07 This study

Scottish Blackface SBF UK 24 0.37 (0.17) 428 0.05 KJa

Soay SOA UK 24 0.27 (0.20) 179 0.32 KJa

Spael-white SPW Norway 24 0.34 (0.18) 367 0.14 KJa

Valais Blacknose 
sheep VBN Switzerland 24 0.31 (0.18) 306 0.22 KJa

Total 330

Table 1. Sample information and diversity indexes. Breed/population name and the corresponding code used 
throughout the manuscript, the country of origin and the number of individuals analysed in this work are 
shown in the first four columns, along with the observed heterozygosity (Ho) and its standard deviation (SD, 
in brackets), the effective population size (Ne) and the inbreeding coefficient (F). aKJ refers to Kijas et al.22. bNG 
refers to the NextGen Consortium (FP7/2010–2014, grant agreement no 244356 - “NextGen”).
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f3 and f4 admixture tests36 were performed using Treemix37. In the f3 test, the putative admixture of a target 
population (A) is tested against two source populations (B, C). A significant negative value of the resulting f3 
score indicates A being the result of admixture of B and C. Similarly, the f4 test investigates the tree topology of 
four populations, with resulting f4 scores significantly different from 0 in cases of a distorted topology likely being 
due to admixture. Extreme positive scores suggest gene flow between A and C and/or D and B that surpasses any 
gene flow between A and D and/or B and C, whereas extreme negative scores suggest gene flow between A and D 
and/or B and C that surpasses that between A and C and/or B and D. To determine extreme f3/f4 values, a data 
normalisation and outlier detection approach was implemented (see Supplementary Text S1).

Inference of local genomic ancestry (PCAdmix). We used PCAdmix v1.038 to infer local genomic 
ancestry. PCAdmix utilises haplotypes from ancestral representatives to infer ancestry of focal individuals. The 
software performs the inference chromosome-wide through PCA, via short windows along each chromosome. 
Using a hidden Markov Model, PCAdmix then returns the posterior probability (PP) of ancestry from each ref-
erence population for each haploid individual for each window. Additional information on PCAdmix parameters 
is available in Supplementary Text S1. PCAdmix requires phased genotypes, which we obtained using fastPHASE 
v1.239. Default parameters were used in fastPHASE, except that we allowed for the incorporation of subpopulation 
labels, as this has been shown to significantly improve the imputation accuracy40.

To perform the local genomic ancestry analyses we used three reference populations: one population repre-
sentative of the Sardinian mouflon lineage, one from the Corsican mouflon lineage, and one domestic sheep breed 
(see Supplementary Text S1 for details). Analyses were repeated using different domestic breeds as a third refer-
ence population, to assess how this choice affected the results. Additional analyses using a different combination 
of mouflon references were also performed (Supplementary Text S1).

A novel approach to identify consistent genomic windows of introgression. We observed rel-
atively high variation among PCAdmix results, when comparing a given focal population to different combi-
nations of ‘pure’ reference breeds (see ‘Results’). We therefore developed a pipeline that uses a sliding-window 
approach to identify genomic regions that show consistent PCAdmix signals of introgression (i) in all individuals 
of the focal population, and (ii) across different reference population comparisons (PCAdmix runs). Specifically, 
multiple PCAdmix analyses are performed, each utilizing different reference populations. The results of these 
analyses are filtered for highly concordant introgression signals using a sliding-window approach along chromo-
somes that assigns a concordance score to each window. A concordant signal is one that appears across individ-
uals of the focal population, and across multiple tests using different references (i.e. is not dependent on which 
reference population is used).

Chromosomal regions exhibiting concordance scores higher than a certain percentile of the genome-wide 
concordance score distribution are denoted as Consistently Introgressed Windows of Interest (CIWIs). Here we 
conducted the analysis based on both the 95th and 99th percentile. Additional information on the CIWI approach 
is available in Supplementary Text S1 and Supplementary Fig. S3.

GO term identification. To identify GO terms significantly overrepresented in the CIWIs, all genes located 
inside or within 20 kbp (half median distance between two SNPs in the Ovine 50 k SNP chip) from the endpoints 
of each CIWI were compared against a background set of 11,089 genes, each containing or being in close prox-
imity with a SNPs present in the 50 k SNP chip22. The comparisons were performed using GOrilla41, employing a 
false discovery rate (FDR) threshold of 0.05.

Results
In total 422 individuals from seven mouflon and 16 domestic sheep populations were analysed at 36,961 SNP 
positions, after pruning for MAF and LD. Observed heterozygosity ranged from 0.09 to 0.34 for mouflon popu-
lations, with MSar3 showing the highest value and MCyp the lowest (Table 1). Heterozygosity for domestic sheep 
breeds was generally higher (range: 0.30 to 0.38), with most values overlapping with those reported previously for 
the same populations21, 22. Effective population size (Ne) values of most mouflon populations were around 250, 
with the highest value recorded for MHun (282) and the lowest for MSpa (96). Ne values for domestic sheep were 
generally comparable with those from previous studies21, 22, showing differences in Ne < 50, with the exception of 
ALT, COM, CAS where the difference in Ne was >100. Estimated inbreeding values ranged around 0.40–0.45 in 
most mouflon populations, although a lower value was recorded for MSar3 (0.16) and the largest was recorded 
for MCyp (0.78). The inbreeding values for most domestic sheep populations were low (0.02–0.15); larger values 
were recorded for VBN (0.22) and SOA (0.32) in accordance with previous observations22.

Population structure and genome-wide signals of admixture. Results from (unsupervised) 
Admixture analysis at K = 2 clustered the samples into relatively distinct domestic sheep and mouflon groups, 
both when using the full dataset, and after removal of the most inbred and highly divergent populations (Fig. 2, 
Supplementary Fig. S1). Extensive signals of admixture were discernible in 24 individuals of the MSar3 pop-
ulation, showing 21–51% of sheep assignment, as well as in one individual of the MCor population. The east-
ern MCyp and MIra populations showed ~74% cluster membership consistent with domestic assignment. 
Otherwise, low admixture proportions (~5%; Fig. 2) were found in most mouflon. Also domestic breeds showed 
introgression, displaying on average 14% of mouflon cluster membership (Fig. 2). An exception were Eastern 
Mediterranean and SW Asiatic breeds (IRS, CHI and CFT), for which the mouflon component was <5%. At 
K = 5, a cluster restricted to mouflon derived from Corsican stocks (MCor, MHun and MSpa) was detected, 
which was absent from other mouflon populations in Sardinia and other regions. At K = 11, MCyp was detected 
as a distinct cluster, as was MSar2 at K = 12, while the Corsican and Hungarian mouflon formed a distinct clus-
ter at K = 18. A supervised Admixture analysis (Supplementary Fig. S1) identified the same overall pattern of 
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bidirectional sheep/mouflon introgression, but clustered SOA with MHun: a pattern not seen in any of the other 
analyses. Supervised and unsupervised clustering analyses were congruent, however, once SOA and other inbred 
and/or heavily inbred populations were removed (Supplementary Fig. S1).

In the PCA (Supplementary Fig. S4), the first principal component (PC) accounted for 7.3% of the variance 
and discriminated sheep and European mouflon, mirroring the admixture results obtained at K = 2. The sec-
ond PC accounted for 3.4% of the variance and reflected Admixture results for K = 3, discriminating northern 
sheep breeds from other domesticates. The third and fourth PCs split the Sardinian and Corsican mouflon and 
the Asiatic and European sheep breeds respectively. The Neighbour-net analysis of pairwise Reynolds’ distances 
between sampled populations (Supplementary Fig. S5) clearly differentiated mouflon from domestic sheep. The 
European mouflon occupied a separate branch and was further split into the Corsican and Sardinian lineages. 
Separate branches differentiated the North European domestic sheep breeds, the two Sardinians and the breeds 
from the East Mediterranean.

Maximum likelihood assessment of population history with overlaid admixture events using Treemix (Fig. 3, 
Supplementary Fig. S6) confirmed several aspects already detected by Admixture (Fig. 2). The first four migra-
tion edges (gene flow events) accounted for more than half of the total model significance explained by the f 
statistic, with the first migration edge having an f value of 0.98. Vectors from 9 to 20 brought only a small increase 
in f value (<0.001) and migration weights close to 0 (Fig. 3, inset). The first four vectors all indicated gene flow 
between sympatric mouflon and sheep (Fig. 3): vectors 1–3 denote gene flow from domestic sheep into mouf-
lon on Sardinia, Iran and Cyprus, mirroring K = 2 results from Admixture (Fig. 2). The fourth Treemix vector 
connected European mouflon to Sardinian domestic sheep breeds (SAR and SAB), indicating bidirectional gene 
flow. All 12 significant f3 test results confirmed the admixture of MSar3 (Supplementary Table S1). The two most 

Figure 2. Admixture plot. Admixture plot comprising the first 24 clustering solutions of all the 422 individuals 
analysed in this work. The analysis is based on 36,961 SNPs from the Ovine SNP50BeadChip. For population 
abbreviations see Table 1.
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extreme f3 scores (−25.43 and −22.12) were assigned to the geographically proximate populations of MSar1/SAR 
and MSar1/SAB as sources of admixture for MSar3, respectively. No significant result was obtained for any f4 test.

Inferring sheep versus mouflon ancestry of specific genomic locations. The observed widespread 
signals of genomic admixture prompted us to use PCAdmix to identify specific introgressed genomic regions. 
Graphical representations of all results are available as supplementary material (Supplementary Fig. S7).

MSar3 was the mouflon population with the highest proportion of its genome assigned to domestic sheep 
(30.6%), close to the mean estimate obtained from Admixture at K = 2 (29%). The average proportion of genomic 
regions assigned to domestic sheep for MSar1 and MSpa was 10.8% and 4%, respectively. Both estimates were 
larger than those obtained from Admixture, which identified ~1% sheep component in both mouflon popula-
tions. The highest PCAdmix component of MSar1 was assigned to Sardinian mouflon (26.3% assigned to MSar2; 
Table 2), while Corsican mouflon were assigned with 48.3% to MHun. The proportion of non-assigned regions 
(i.e. with a posterior probability (PP) smaller than 0.95) were similar for MSar1 and MSar3 (42.6% and 41.1% 
respectively), and the proportions of Sardinian and Corsican ancestry in MSar3 were each ~10 percentage points 
lower than for MSar1.

For domestic sheep, the average proportion of the genome assigned by PCAdmix with PP ≥ 0.95 to the domes-
tic gene pool was 83.5% (range 61.9–94.7%; Supplementary Table S2), a value comparable to Admixture results 
for K = 2, showing an average of 88% for the same populations. The highest and lowest mouflon admixture pro-
portions from PCAdmix were consistently recorded by SOA and CFT respectively (Table 2). A marked difference 
between mouflon and domestic sheep in the certainty of assignment was recorded, with mouflon showing a much 
higher proportion (~39%) of non-assigned regions (PP < 0.95) than domestic sheep (~12%).

Figure 3. Treemix plot. (a) Phylogenetic network inferred by Treemix of the relationships between mouflon 
and domestic sheep populations. The first four migration edges between populations are shown with arrows 
pointing in the direction toward the recipient group, and coloured according to the ancestry percentage received 
from the donor. The numbers associated with each vector identify the identification order. (b) The inset shows 
the f index representing the fraction of the variance in the sample covariance matrix (W) accounted for by the 
model covariance matrix (W), as a function of the number of modelled migration events. For population 
abbreviations see Table 1.
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PCAdmix therefore provided estimates of genome-wide admixture proportions for mouflon and domes-
tic sheep that were consistent with results from Admixture. However, PCAdmix results for particular genomic 
regions – the main goal of using this approach - showed inconsistency with regard to the location and length of 
inferred admixture regions (Fig. 4-d, Supplementary Fig. S7, S8): with the same genomic region being assigned 
to either mouflon or sheep ancestry, depending on the reference population used in PCAdmix. Consequently, 
we developed a consensus approach that jointly analysed the results obtained with the four different domestic 
sheep reference populations, and across all analysed individuals from the focal population, highlighting genomic 
regions that, independently of the reference population used, showed highly consistent signals of introgression 
(Fig. 4-c). The CIWI regions obtained with this approach were then crosschecked against all genes covered by (or 
adjacent to) SNPs on the ovine 50 k BeadChip. On average across mouflon populations, our method identified 
introgression signals for 524 genes associated with 2,044 CIWIs when using the 95th percentile confidence thresh-
old, and 116 genes associated with 397 CIWIs for the 99th percentile threshold. Across domestic sheep, a larger 
number of CIWIs were identified, with on average 996 genes located in 3,205 CIWIs, or 253 genes in 625 CIWIs 
(based on confidence thresholds of the 95th and 99th percentile, respectively; Supplementary Table S3).

GO term analysis of introgressed loci. Genes identified within CIWIs in MSar1, MSar3 and MSpa 
showed no significant enrichment of any gene ontology (GO) terms (FDR ≈ 1), independent of the percen-
tile threshold used. Conversely, seven GO terms associated to mouflon ancestry were identified in domestic 
breeds. All domestic breeds except SOA and SPW were enriched for GO terms involved in protein citrullination 
(Supplementary Table S4) whereas in both SAR and SOA, GO terms involved in the perception of bitter taste were 
significantly enriched (Supplementary Table S4). The genes involved in protein citrullination were located in four 
distinct chromosomal regions: two on chromosome 2, and one each on chromosomes 3 and 25 (Table 3). The 
genes related to bitter taste perception were located on chromosomes 2, 4 and 16 (Table 3). Similar results were 
obtained when the CIWI approach was applied to the extended Sardinian mouflon reference using both MSar1_p 
and MSar2 (resulting in eight ancestry analyses to be compared: two Sardinian mouflon and four domestics sheep 
reference populations; Supplementary Text S1). However, in this case no significant enrichment of GO terms 
related to bitter taste perception was detected (Supplementary Table S4).

Discussion
We analysed patterns of global and local introgression between European mouflon and domestic sheep. We fur-
ther investigated the potential adaptive nature of such introgression, since this process might provide a mecha-
nism by which hardy, extensively managed sheep breeds can survive in challenging environments. For the first 
time to our knowledge, local introgression approaches were applied to genome-wide data in feral and domestic 
sheep. We found that signals of domestic sheep introgression into mouflon were strongest for one enclosed mou-
flon population in Sardinia (MSar3), likely resulting from extensive recent crossbreeding. Signals of sheep intro-
gression into other European mouflon populations were generally weaker, with signal strength varying depending 

Reference populations

Sardinian 
mouflon

Corsican 
mouflon

Domestic 
sheep PP < 0.95

Focal population

Mouflon

MSar1 26.3 ± 0.40 20.4 ± 3.26 10.8 ± 1.74 42.6 ± 1.84

*MSar3 16.5 ± 0.59 11.5 ± 2.24 30.6 ± 3.49 41.4 ± 0.75

MSpa 16.8 ± 2.19 48.3 ± 5.50 4.0 ± 0.29 30.9 ± 3.21

Domestic sheep

ALT 1.5 ± 0.85 2.6 ± 2.69 82.3 ± 11.43 13.6 ± 7.89

CHI 1.4 ± 1.16 2.2 ± 2.87 85.8 ± 12.47 10.6 ± 8.45

CHU 1.7 ± 1.01 2.8 ± 3.03 82 ± 12.68 13.5 ± 8.68

COM 1.7 ± 0.92 2.5 ± 2.69 82.3 ± 11.47 13.5 ± 7.91

CFT 1.0 ± 0.73 2.3 ± 3.17 87.7 ± 11.06 9.0 ± 7.16

RAK 1.3 ± 0.60 2.3 ± 2.82 86.2 ± 10.74 10.2 ± 7.35

SAR 1.5 ± 0.67 2.1 ± 2.21 85.5 ± 8.22 11.0 ± 5.34

SBF 1.6 ± 0.84 3.3 ± 3.61 80.8 ± 12.86 14.3 ± 8.42

SOA 2.3 ± 0.63 4.1 ± 3.37 80.0 ± 10.24 13.6 ± 6.26

SPW 1.7 ± 1.05 3.3 ± 3.62 81.0 ± 12.76 14.1 ± 8.10

VBN 1.5 ± 0.88 2.6 ± 3.17 84.4 ± 12.07 11.5 ± 8.03

Table 2. Genome-wide local ancestry assignment values from PCAdmix. Shown is the average proportion 
of genome assigned by PCAdmix with posterior probability ≥ 0.95 to Sardinian mouflon, Corsican mouflon 
and domestic sheep, respectively. PP < 0.95 denotes the cumulative genome proportion remaining unassigned 
with posterior probability < 0.95. Averages were calculated across four reference sets (detailed in S5 Table), 
each comprising the same mouflon references (MSar2 and MHun for Sardinian and Corsican mouflon, 
respectively) and four different domestic sheep breeds (CAS, ASM, LAC and SAB_p). An asterisk highlights 
the mouflon population (MSar3) that presents a higher sheep genetic component than mouflon. For population 
abbreviations see Table 1.
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on the analysis approach used. We found that putatively introgressed genomic regions in mouflon were not sys-
tematically enriched for particular GO terms, while introgressed regions in domestic sheep were enriched for 
genes related to innate immunity (for most sheep breeds) and bitter taste recognition (for sheep breeds with broad 
dietary preferences). These results suggest that adaptive introgression has occurred from mouflon into domestic 
sheep, but not vice versa.

Levels of genetic variability. Estimates of genetic diversity were similar for most previously studied mouf-
lon populations, although lower variability and higher inbreeding levels were found for mouflon on Cyprus, indi-
cating strong genetic drift and inbreeding. In contrast, one mouflon population from Sardinia (MSar3) showed 
higher genetic variability and lower inbreeding (Table 1), likely a consequence of introgression of domestic sheep 
alleles.

Mouflon showed lower heterozygosity, higher inbreeding and lower Ne than domestic sheep breeds. 
Ascertainment bias may contribute to this observation29, 42, given that mouflon were not part of the panel of 
individuals included when selecting the markers for the OvineSNP50 BeadChip. While this complicates direct 
comparisons of observed heterozygosity between mouflon and domestic sheep, comparisons within groups (e.g. 
among mouflon populations) are affected to a lesser extent. Furthermore, ascertainment bias can be alleviated 
by pruning data for high levels of LD22, and by using multilocus or haplotype-dependent analyses that are less 
affected by ascertainment bias than single locus statistics42–44. Hence, here we removed loci with high levels of LD 

Figure 4. Graphical exemplification of the CIWI approach. Graphical representation of the inferred local 
ancestry for a domestic sheep breed (SAR) according to PCAdmix. (a) The 10 focal diploid individuals 
belonging to SAR are represented by the 10 numbered lines. Each line represents a diploid individual of the 
SAR population, and extends for the total length of the ovine chromosome 2 (249.99 Mb). The colour scheme 
indicates the assignment of each block to one of the three reference populations. (b) PCAdmix results for 
one individual (number 2) of the SAR population, obtained from comparison with four different reference 
populations for domestic sheep (CAS, ASM, LAC, SAB_p). Genomic regions not analysed by the software 
due to the absence of SNPs are visible as white gaps. (c) Within-analysis concordance scores (A-scores) are 
calculated along the chromosome to represent the concordance of ancestry assignment among the 10 focal SAR 
individuals. The A-scores relative to the four reference populations are represented by coloured segments. The 
CIWI score is then calculated from the A-scores and is represented by the black solid line. The inset expands 
the genomic region within chromosome 2, where genes related to the citrullination function are located. (d) 
Comparison between PCAdmix results for a portion of chromosome 4 in the same individual when compared 
to four different domestic sheep reference populations. Regions of discordance (i) and concordance (ii; a CIWI) 
are highlighted by dashed boxes.
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and carried out both multilocus (e.g. Admixture) and haplotype-based (e.g. PCAdmix) analyses. Furthermore, we 
note that previous studies comparing microsatellite variability of domestic sheep and European mouflon showed 
the same trend as our SNP chip data, with mouflon populations showing lower heterozygosity than domestic 
sheep45–47. While also microsatellites can be affected by ascertainment bias48, their high mutation rates reduce the 
effect of the bias in comparison to that in SNP data. Our findings therefore suggest that, despite impacts of SNP 
chip ascertainment bias, European mouflon harbour clearly lower levels of genetic diversity than their domestic 
counterparts.

The analysed mouflon populations have presumably all passed through several population bottlenecks14, 49, 
although no detailed population history information is available for the Iranian population. These bottlenecks 
would have reduced genetic variability in mouflon. Furthermore, while many sheep farmers use several rams 
to sire flocks, breeding practices in dogs, cattle and horses often involve the use of popular sires that are bred to 
father a large number of offspring50–54. Sheep breeding practices, particularly in extensively managed populations, 
are therefore likely to contribute to the observed higher variability in sheep than in mouflon.

Admixture between mouflon and domestic sheep. Similar to the findings of Lorenzini et al.12 who 
documented the presence of second-generation crossbred or backcrossed Sardinian mouflon sampled in the 
“Ogliastra” and “Nuoro” provinces, we found concordant signals of recent introgression for MSar3. Admixture, 
Treemix, and f3 test results suggest that most MSar3 individuals are admixed, with Sardinian sheep as putative 
introgression source. The MSar3 population was sampled in an enclosure, where mouflon were reared together 
with crossbred animals (Antonello Carta, personal communication). Our results indicate that this population, 
which so far has been used as a representative of Sardinian mouflon at large21, 55 is not representative of pure 
European mouflon, and that other mouflon population we studied may be more suitable as reference populations. 
We caution, however, that data from extinct continental European mouflon populations may be necessary to 
accurately quantify introgression of domestic sheep alleles into extant mouflon.

GO class Gene Chr Position (Mb)

Citrullination

CPS1 - carbamoyl-
phosphate synthase 1 2 211.16–211.3

ATIC − 
5-aminoimidazole-
4-carboxamide 
ribonucleotide 
formyltransferase/imp 
cyclohydrolase

2 216.27–216.3

PADI6 - peptidyl arginine 
deiminase, type vi 2 248.06–248.07

PADI4 - peptidyl arginine 
deiminase, type iv 2 248.08–248.11

PADI3 - peptidyl arginine 
deiminase, type iii 2 248.15–248.16

PADI1 - peptidyl arginine 
deiminase, type i 2 248.17–248.19

PADI2 - peptidyl arginine 
deiminase, type ii 2 248.31–248.35

MAT2A - methionine 
adenosyltransferase ii, 
alpha

3 57.23–57.24

MAT1A - methionine 
adenosyltransferase i, 
alpha

25 35.29–35.33

Bitter taste 
detection

TAS1R2 - taste receptor, 
type 1, member 2 2 246.63–246.65

TAS2R3 - taste receptor, 
type 2, member 3 4 104.79–104.79

TAS2R4 - taste receptor, 
type 2, member 4 4 104.81–104.81

TAS2R38 - taste receptor, 
type 2, member 38 4 104.95–104.96

PIP - prolactin-induced 
protein 4 105.91–105.92

TAS2R39 - taste receptor, 
type 2, member 39 4 106.01–106.01

TAS2R40 - taste receptor, 
type 2, member 40 4 106.07–106.07

TAS2R1 - taste receptor, 
type 2, member 1 16 63.38–63.38

Table 3. Genes with signals of adaptive introgression from mouflon into domestic sheep. Genes identified by 
the CIWI approach, involved in either citrullination or bitter-taste detection (GO class). The chromosome (Chr) 
and physical position are shown.
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A large genomic component (~75%; Fig. 2) assigned by Admixture to domestic sheep was also found in 
the two O. orientalis populations MCyp and MIra, a pattern also visible in the PCA (Supplementary Fig. S4). 
However, Neighbour-net clearly separated MIra from IRS (Supplementary Fig. S5), arguing against a substantial 
contribution of domestic sheep to MIra. These results are most likely an effect of ascertainment bias, as O. orienta-
lis are the most divergent populations with respect to the domestic sheep (i.e. the species for which the SNP chip 
was designed)49. We anticipate that genome sequencing and ascertainment bias-free characterization of genetic 
diversity will be important in ovine lineages that are more divergent from domestic sheep, such as mouflon from 
Cyprus and Iran.

Low levels of sheep introgression into mainland European mouflon may be explained by current mouflon 
management. On the mainland, mouflon populations derive from recent introductions (e.g. Hungary, Romania 
and Spain). These populations are kept as game for hunters and therefore either confined in enclosures, partially 
managed or monitored, potentially reducing the chances of crossbreeding. Additionally, sheep x mouflon hybrids 
tend to deviate phenotypically from mouflon (e.g., white fleece patches, woolly coat) and are in some areas 
actively removed from the wild gene pool by the hunting community56. In conclusion, mouflon-sheep hybrids are 
rare throughout Europe, and might in fact be actively selected against by humans.

Large effective size of historic mouflon populations may have limited the impact of any introgression from 
sheep. Cetti (1774) described Sardinian mouflon flocks each comprising hundreds of animals, much larger than 
the currently typical group sizes of less than ten individuals57. Furthermore, rarity of sheep introgression into 
mouflon could result from natural selection, with hybrid fitness being reduced under feral conditions, as recorded 
for wolf x dog hybrids58. Indeed, none of the regions in the mouflon genome that we infer to have domestic sheep 
ancestry shows any significant enrichment of GO terms, whether in the wild or in enclosures (MSar3). This is 
consistent with Corsican and Sardinian mouflon being adapted to local environmental conditions when domestic 
sheep arrived on the islands. Under this scenario, introgression of alleles from not locally adapted domestic sheep 
into resident mouflon might not have been favoured by natural or sexual selection. Hence, our results imply that 
hybrids – despite their larger body size and hence potentially increased reproductive success16, 17 – do not seem to 
have a larger reproductive success in the wild than purebred mouflon.

Most sheep breeds showed a small percentage of contribution from the mouflon cluster at K = 2 (Fig. 2). 
Among these, all SAR individuals showed similar amounts of Sardinian mouflon ancestry (at K = 24; Fig. 2). 
Additional support came from the Treemix analysis, which shows a migration vector starting from the root of 
Sardo-Corsican mouflon and ending at the root of the two Sardinian sheep breeds (Fig. 3). These results likely 
represent ancient admixture events.

While the Admixture and PCAdmix results mostly overlapped qualitatively, introgression estimates did not 
always coincide quantitatively; e.g. we inferred domestic ancestry in MSar1 of 1% or 11% with Admixture and 
PCAdmix, respectively (Fig. 2 and Supplementary Table S2). We attribute such discrepancies either to one or a 
combination of: (i) differences in assumptions/implementations between the two models, (ii) inaccuracies in gene 
flow estimation resulting from inferring past gene flow based on present populations rather than having ancient 
DNA data from the actually hybridising populations, and (iii) to biases resulting from phasing of SNP chip geno-
types38. While the second issue requires sequence data from ancestral mouflon and sheep, the recently developed 
high-density Ovine HD BeadChip59 will provide more accurate phased data for chromosome painting analyses. 
Caution is therefore required in interpreting our introgression results quantitatively.

Signals of adaptive introgression. Applying our consensus approach to identify CIWIs and associated 
genes in domestic sheep, we found mouflon ancestry in genomic regions related to the citrullination process. 
Citrullination enzymes such as PAD4 are essential in triggering the antibacterial innate immunity response 
known as neutrophil extracellular traps (NETs)60, with histone citrullination as the first step leading to NET 
assembly61, 62. Citrullination also plays a major role in bacteria-dependent inflammatory response in livestock, 
and enzymes responsible for this process are overrepresented in mastitic Sarda sheep milk63. We hypothesise that 
introgressed mouflon-derived alleles could have been positively selected in domestic sheep, because of fitness 
effects of higher plasticity of the antibacterial innate immunity provided by NETs. This adaptive introgression 
from mouflon into sheep could have helped translocated - and thus not necessarily locally adapted - domestic 
breeds cope in their novel environments.

We also found evidence of enrichment in GO terms related to bitter taste perception in Soay and Sarda sheep. 
Bitter taste perception is an important trait in ruminants, likely related to the avoidance of toxins and harmful 
substances in the diet64, 65. However, in domestic sheep, perception of bitter taste in a food item does not correlate 
with its rejection, probably reflecting a trade-off between toxicity avoidance and dietary plasticity64, 66. Although 
taste receptors are mostly located in the tongue, they can also be expressed in other tissues67. The function of the 
majority of these extraoral receptors is unknown, although bitter and sweet receptors in the airways have been 
linked to innate immunity functions67. Soay sheep live under particularly low management conditions68, which 
could explain the selective advantage of an introgressed genetic material from mouflon related to bitter taste per-
ception. Similarly, the Sarda sheep is known to have broad dietary preferences and is characterised by primitive 
management practices. These aspects could explain why mouflon-derived bitter taste genes proved adaptive in 
these breeds, regardless whether the involved genes are ultimately related to bitter taste perception or to innate 
immunity-derived functions.

When including additional Mouflon reference populations, our results generally remained unchanged, 
although fewer remaining CIWIs were identified. We still recovered signals of adaptive introgression of 
mouflon-derived protein citrullination functions into domestic breeds. The bitter taste perception signal, how-
ever, was no longer significant for SAR and SOA sheep. This finding reflects the typical balance between type-1 
and type-2 error in statistical inference, where reducing the false positive rate (as done here by increasing the 
number of comparisons) simultaneously increases the false negative rate. Despite the power inherent in large 
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data sets, even when analysed with advanced evolutionary models, signals of (adaptive) introgression and incom-
plete lineage sorting can remain difficult to discriminate1. It is therefore possible that domestic sheep from the 
first wave of domestication such as SOA8 might have retained ancestral alleles at bitter taste genes, rather than 
having acquired them due to adaptive introgression from mouflon. Data polarisation using ancient (pre-split) 
genomic data could shed light on these scenarios1, as well as future attempts to date the putative introgression 
event through demographic inference.

Conclusions. We have developed an approach to identify genomic regions that show consistent introgression 
signals (CIWIs), based on mid-density SNP array data from multiple reference populations and focal individuals. 
Due to its requirements of high stringency built in to reduce the occurrence of false positives, our strategy is prone 
to generate false negative results (increasingly so, when more sets of results are compared, see Supplementary 
Table S4). We also note that our approach focuses on introgression signals that are close to fixation in the receiv-
ing population, so cases where introgressed material is more rare might remain undetected69.

Despite millennia of coexistence of mouflon and domestic sheep, our findings indicate that – despite some 
signals of bidirectional introgression – only very limited adaptive introgression from domestics into the wild has 
occurred. Given expected better local adaptation of mouflon compared to recently domesticated and typically 
geographically translocated domestic breeds, this finding is not unexpected. Conversely, introgression from wild 
mouflon into sympatric domestics seems to have been favoured by positive selection. Adaptive introgression of 
mouflon alleles may be explained by limited local adaptation in domestics. Specifically, we here show that genes 
with functions related to innate immunity and bitter taste have been introgressed into numerous sheep breeds, 
putatively allowing them adapt to local parasite/disease pressures, and perhaps aiding in the utilization of local 
food resources.

Data accessibility. All relevant data and scripts are within the paper and its Supporting Information files.
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