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A B S T R A C T

Background: Alcohol impairs response inhibition; however, it remains contested whether such impairments
affect a general inhibition system, or whether affected inhibition systems are embedded in, and specific to, each
response modality. Further, alcohol-induced impairments have not been disambiguated between proactive and
reactive inhibition mechanisms, and nor have the contributions of action-updating impairments to behavioural
‘inhibition’ deficits been investigated.
Methods: Forty Participants (25 female) completed both a manual and a saccadic stop-signal reaction time
(SSRT) task before and after a 0.8 g/kg dose of alcohol and, on a separate day, before and after a placebo. Blocks
in which participants were required to ignore the signal to stop or make an additional ‘dual' response were
included to obtain measures of proactive inhibition as well as updating of attention and action.
Results: Alcohol increased manual but not saccadic SSRT. Proactive inhibition was weakly reduced by alcohol,
but increases in the reaction times used to baseline this contrast prevent clear conclusions regarding response
caution. Finally, alcohol also increased secondary dual response times of the dual task uniformly as a function of
the delay between tasks, indicating an effect of alcohol on action-updating or execution.
Conclusions: The modality-specific effects of alcohol favour the theory that response inhibition systems are
embedded within response modalities, rather than there existing a general inhibition system. Concerning al-
cohol, saccadic control appears relatively more immune to disruption than manual control, even though alcohol
affects saccadic latency and velocity. Within the manual domain, alcohol affects multiple types of action up-
dating, not just inhibition.

1. Introduction

Impaired behavioural control is strongly linked with the develop-
ment of substance abuse disorders such as alcoholism (e.g., Lawrence
et al., 2009; Nigg et al., 2006). Moreover, the acute effects of in-
toxication on inhibitory control in healthy volunteers can produce a
feedback loop making further consumption likely (Weafer and Fillmore,
2008). However, the nature of such acute effects on response inhibition
− for example the extent to which they are general or modality specific
− remain relatively little understood.

Most reports of alcohol disrupting inhibitory control in healthy
volunteers have employed the go/no-go task (Mulvihill et al., 1997;
Weafer and Fillmore, 2008), cued go/no-go task (Marczinski and
Fillmore, 2003; Weafer and Fillmore, 2012) and the stop signal reaction
time task (Caswell et al., 2013; de Wit et al., 2000; Dougherty et al.,

2008; Fillmore and Vogel-Sprott, 1999; Gan et al., 2014; Loeber and
Duka, 2009; McCarthy et al., 2012; Nikolaou et al., 2013; Ramaekers
and Kuypers, 2006; Reynolds et al., 2006). Although there exist reports
where alcohol had no significant effect (Rose and Duka, 2008, 2007),
taken together, these studies suggest that even a relatively small dose of
alcohol (e.g., 0.45 g/kg) normally increases the number of commission
errors in the go/no-go task or slows the manual stop signal reaction
time (SSRT) in the stop signal task.

In order to extrapolate from these manual tasks, one must assume
that they represent all response inhibition processes. However, response
control mechanisms may be enmeshed in planning networks for each
kind of response, and thus may be independent for different domains
(e.g., Roberts et al., 2011). Within the field of response control, there
are studies on both manual inhibition and eye movement ('saccade')
inhibition and there are hints that alcohol may not impair eye
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movement inhibition in the same way as manual inhibition. If this were
true, it would both provide a means to distinguish and examine dif-
ferent inhibition networks and also show that the effect of alcohol has
more specificity than often assumed.

One of the most widely used eye movement tasks is the anti-saccade
task, which has been an important bridge between human research and
monkey neurophysiology. Participants make either a reflexive saccade
to a target location (pro-saccade) or a saccade to the opposite location
(anti-saccade) inhibiting their reflexive response. While two studies
found alcohol to increase anti-saccade error rates in either head-injured
participants (Crevits et al., 2000; blood alcohol levels between 1.89 and
3.84 g/l) or healthy participants (Marinkovic et al., 2013; alcohol dose
0.6 g/kg for males and 0.55 g/kg for females), two studies found no
effect (healthy participants, Blekher et al., 2002; breath alcohol con-
centration 80 mg/dl; Vorstius et al., 2008; breath alcohol concentration
65 mg/dl). Counter-intuitively, two studies even found decreases in
error rates (healthy participants, Khan et al., 2003; blood alcohol
concentration 0.08%; Vassallo et al., 2002; blood alcohol concentration
0.044%), which may be due to alcohol attenuating the reflexive re-
sponse rather than the inhibitory control process (Fillmore and Weafer,
2013). Similarly, in a saccade interference task in which saccade la-
tency is slowed by large interfering stimuli, alcohol produced no sig-
nificant effect (healthy participants, Abroms et al., 2006). In a third task
− the delayed ocular return task − moderate doses of alcohol (0.45 g/
kg and 0.65 g/kg) in healthy participants did increase the number of
premature saccades (a failure of inhibition; Abroms et al., 2006; Weafer
and Fillmore, 2012), but this impairment did not correlate with the
impairment to their manual task (cued go/no-go), indicating in-
dependent systems (Weafer and Fillmore, 2012). However, as these
authors pointed out, these eye movement tasks are not directly com-
parable to the commonly used manual tasks (go/no-go and stop signal)
– eye movement versions of these tasks have not been studied with
alcohol. Therefore, the reported differences between domains may re-
flect differing attentional requirements across the different tasks, for
example, rather than differences in response inhibition itself.

Here, we set out to measure the effects of alcohol on manual and eye
movement stop signal tasks (also called saccade countermanding) – a
paradigm allowing a direct comparison. Theoretical and computational
models of stopping behaviour have been cross-fertilized by both human
manual response distributions and single-cell recordings of saccade
countermanding in macaques (for a review see Schall and Boucher,
2007; Verbruggen and Logan, 2008). Boucher et al. (2007) conducted a
stop signal task that required both ocular and manual responses si-
multaneously. Saccade SSRTs were 100 ms to 150 ms shorter than
manual SSRTs (consistent with shorter latencies in general) but posi-
tively correlated with them. Relatedly, Leung and Cai (2007) reported a
common ventro-lateral prefrontal cortex network for response inhibi-
tion in both manual and ocular domains (though differential modality-
specific networks were also identified). Saccadic SSRT has not been
assessed under alcohol intoxication, but anaesthetics appear to cause
impaired inhibition through increased SSRT (in healthy participants,
Khan et al., 1999; Nouraei, 2003). These anaesthetics (isoflurane and
sevoflurane) have similar neuropharmacological actions to alcohol, i.e.,
potentiation of GABAergic activity at GABAA receptors and the
blockade of glutamatergic NMDA receptors (Farrant and Nusser, 2005;
Nishikawa and Harrison, 2003).

Our first aim was to test whether alcohol affects saccade counter-
manding; i.e., whether saccadic SSRT is lengthened during acute in-
toxication. Our second aim was to test whether any effect of alcohol on
saccadic countermanding is similar or different to alcohol-induced
impairment of manual countermanding (which we expect to replicate).
Similar effects would be consistent with a common motor inhibition
network, while different effects would suggest specificity in the in-
hibition mechanisms vulnerable to alcohol intoxication.

Our third aim was to unpack alcohol-induced impairment of manual
countermanding (and saccadic SSRT if it occurs) into separable

contributions from attentional processes and different types of in-
hibitory processes. Previous studies have assumed that any lengthening
of SSRT must reflect an impairment to inhibition, but have not further
specified the type of inhibition involved. Both reactive and proactive
inhibition are forms of behavioural control which contribute to stop
signal performance (e.g., Aron, 2011; Chikazoe et al., 2009; Hu and Li,
2012; Zandbelt et al., 2013). The effect of proactive control, in which
participants adjust their behaviour in anticipation of trials where they
might need to stop, can be assessed by comparing go trials in blocks
where stopping is occasionally required to go trials in blocks where
stopping is never required (the signal is ignored; Aron, 2011). This
comparison is available in one previous alcohol study, but while
proactive inhibition was numerically reduced under alcohol, the effect
was not statistically significant (Nikolaou et al., 2013) leaving open
either possibility − that alcohol may influence only reactive inhibition,
or may influence both proactive and reactive inhibition.

Moreover, even though studies of alcohol and stopping performance
have assumed that lengthened SSRT represents impaired inhibition (of
some kind), the extent to which changes in SSRT reflect specifically
inhibitory mechanisms at all has been debated. The task also requires
attention to the signal and may involve non-inhibitory action updating
processes (e.g., Verbruggen et al., 2010). It is possible that the pre-
viously measured effects of alcohol reflect these processes rather than
impaired inhibition. Such contributions can be assessed with blocks
where the ‘signal’ instructs an additional response, rather than a stop,
since in these trials attention to the signal and action updating are still
required, but response inhibition is not. Further, in these dual response
trials, the relative effects on attention and action updating can be dis-
entangled by applying the ‘locus of slack’ methodology to the psycho-
logical refractory period (see Pashler, 1994; Verbruggen et al., 2010).

2. Methods

2.1. Participants and screening

2.1.1. Sample size
The sample size was determined using a stopping rule based on the

Bayes factor for our most important comparison, which also likely has
the smallest effect size (see Section 2.8.2). The first look was at 16
participants, and participants were added in sets of 4 (see counter-
balancing, section 2.3) until there was substantial evidence for either
the experimental hypothesis (B > 3) or the null hypothesis (B ≤ 0.33)
(Dienes, 2011) or the maximum sample size (40) was reached, as oc-
curred. The study was approved by the School of Psychology Ethics
Committee at Cardiff University.

2.1.2. Recruitment and screening
Participants were undergraduate, postgraduate and staff volunteers

at the School of Psychology, Cardiff University, meeting the following
pre-registered inclusion criteria: body mass index (BMI) within the
range 18–28 (as McCarthy et al., 2012), self-reported alcohol use below
‘alcohol dependence' (less than 16 on both the Alcohol Use Disorder
Identification Test, AUDIT; Babor et al., 2001, and the Severity of Al-
cohol Dependence Questionnaire, SADQ; Stockwell et al., 1983); ex-
perience of consuming 6 UK units (1 unit = 8 g ethanol) of alcohol in
one session on at least 6 occasions within the past year (i.e., at least
once every other month on average); breath alcohol concentration
(BrAC) of 0 μg/100 ml on arrival, confirmation of 24 h abstinence of
alcohol, 1 week abstinence of illicit drug use and 4 h fasting; self-re-
portedly not pregnant; no allergic reaction to alcohol (or Orangina) or
clinically relevant self-reported anxiety or depression (measured by the
Hospital Anxiety and Depression Scale, HADS; Zigmond and Snaith,
1983, cut-off score of> 11 on either scale); no taking of neuroactive
medication or medication that may be affected by alcohol. Participants
also provided information about average alcohol consumption over the
past month and completed the Mother/Father-Short Michigan
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Alcoholism Screening Test (M/F-SMAST) and Family Tree Ques-
tionnaire (FTQ) to assess family history of alcohol-related problems. See
section 2.5 for pre-registered, task-related exclusion criteria. Partici-
pants were also able to withdraw themselves and their data for any
reason or without giving a reason.

2.2. Tasks

Over two testing days (alcohol and placebo) participants completed
separate blocks of each experimental task (outlined below) in a coun-
terbalanced order, in sessions before and after drink manipulation.

2.2.1. Manual response stop signal task (STOP block)
A white central fixation point (0.4° or 15 pixels square) was pre-

sented on a mean luminance grey background for 500 ms, and then
replaced by a peripheral target 12° from centre, of same colour and size
as the fixation point, to the left or right with equal frequency in a
randomised order (Fig. 1A). Participants made speeded responses with
right or left index fingers to the location of the target before it ex-
tinguished (after 1250 ms) at the end of the trial (total trial length
2500 ms). On 25% of trials a red central fixation point appeared (the
‘signal') at a variable delay following the target (50, 100, 166.67,
233.33, 316.67 or 400 ms e.g., Boucher et al., 2007), indicating that the
response should be withheld. There were 12 trials for each signal delay
randomly shuffled, and thus 72 stop signal trials with 216 no signal
trials, in 4 blocks of 72 trials (with the opportunity for a break between
each). Previous investigations of test-retest reliability in our group in-
dicate that this is the optimal number of trials, since the standard error
in measurement (SEM) of the SSRT asymptotes at approximately 200
no-signal trials (Fig. 1B). Participants were told not to wait for the

signal before responding and that for signal trials some would be easier
to inhibit than others due to the varying signal delay. Before the first
block there were 32 training trials containing 8 stop-signal trials. The
second 16 trials of the 32 were a criterion test, using only the shortest
signal delay (easiest condition), which were repeated until the parti-
cipant made≤2/12 errors on no-signal trials and≤1/4 errors on signal
trials within 8 iterations of this criterion test. If the participant failed to
achieve this level of performance within 8 iterations the participant was
excluded (see section 2.5.1). On day 2, we also applied the 16-trial
criterion test.

2.2.2. Manual signal-Ignore task (IGNORE block)
Using identical stimuli to that explained above (Section 2.2.1),

participants completed 4 blocks of 72 trials with the instruction (given
verbally and written) to ignore the signal and continue to make a
correct button press response. There was also training at the start of the
first IGNORE block as described above.

2.2.3. Manual dual task (DUAL block)
Using identical stimuli and training to that explained above (section

2.2.1), participants completed 4 blocks of 72 trials with the instruction
(given verbally and written) to complete their response to the first
target and make an additional speeded response if the ‘signal' appears
(using the thumb of either hand; as in Verbruggen et al., 2010).

2.2.4. Saccade stop signal task (Saccade countermanding − STOP block)
The same protocol was used as in the manual task, but participants

made saccades to the left and right targets. On signal trials participants
were instructed to inhibit these saccades. Gaze was monitored using a
Tobii TX300 eye tracker at a binocular sampling rate of 300 Hz.

Fig. 1. Schematic of task design and reliability estimates of SSRT by no-signal trial numbers A: Task design for both manual and saccade tasks. The variable delays between target onset
and signal are 50, 100, 166.67, 233.33, 316.67 and 400 ms (e.g., Boucher et al., 2007). Before first fixation participants were told which block they were completing (STOP, IGNORE or
DUAL). B. Estimation of trial numbers required to assay SSRT − The expected reduction in SEM and increase in intra-class correlation coefficient (ICC) of the SSRT as more trials are
included, estimated from subsampling previous data (Hedge et al., 2017.) investigating test-retest reliability with 47 participants. These asymptote at around 200 no signal trials (i.e.,
about 60–70 STOP trials), reaching an ICC of between 0.4 and 0.5. To be conservative, r = 0.4 is used for power calculations below.
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Participants were seated approximately 60 cm from a 51 × 29 cm (23
inch) monitor (as also in the manual task), and performed a standard
gaze calibration procedure at the start of each block.

2.2.5. Saccade signal ignore task (IGNORE block)
As for the manual task 4 blocks of the same protocol were completed

under the instruction to ignore the signal and to continue to saccade to
the target. For saccades, there is no precedent for the dual task condi-
tion, and no easy equivalent of the manual dual response. Thus, we did
not attempt to run a saccade dual response condition.

2.3. Procedure

2.3.1. Overall procedure
Participants completed a placebo day and alcohol day, consisting of

a ‘pre-drink’ session (all tasks, 1 h), the drink challenge (30 mins),
15 mins rest and then a ‘post-drink’ session (all tasks, 1 h). For each
participant testing sessions were at the same time of day 1 week apart.
For successful recruitment of participants there was a flexibility al-
lowance in this time gap (5–14 days gap). This also ensured sufficient
washout between sessions. Testing days were booked in advance with
participants to ensure this timeframe was adhered to. Participants
provided informed consent and completed all the screening ques-
tionnaires and confirmation of inclusion criteria on arrival. Participants
also completed the subjective high assessment scale (SHAS; Schuckit,
1980) and biphasic alcohol effects scale (BAES; Holdstock and de Wit,
1998) before each task session. Breathalyser measurements were taken
before each task session and between every two blocks (approximately
every 10 min). Once the tasks were complete participants completed
the SHAS and BAES again. Participants then remained in the laboratory
for 2 h and until BrAC was below 36 μg/100 ml.

Participants were given automated feedback and information about
the number of remaining blocks after each block, and the instruction to
‘respond as fast as possible whilst minimising errors' was repeated,
along with the information that some trials are meant to be difficult and
some errors are expected.

2.3.2. Counterbalancing
The order of placebo/alcohol and manual/saccade modalities was

counterbalanced across participants, which is why participants were
added in groups of 4 to satisfy the Bayesian stopping rule. We did not
counterbalance modalities across sessions because we were sub-
tracting/comparing data between sessions, not averaging over sessions
(averaging over different task orders reduces effects of learning or fa-
tigue, but subtracting data using different task orders introduces effects
of learning or fatigue). Within each modality, block order (STOP,
IGNORE, DUAL for manual or STOP, IGNORE for saccades) was pa-
lindromic with the local order counterbalanced across participants (we
did not anticipate that this would create important confounding effects,
but we did monitor it if the stopping rule meant that a complete set was
not completed). The total time for all blocks was approximately 1 h.

2.4. Alcohol challenge

The alcohol dose was 0.8 g/kg of body weight for males and 90% of
this for females (due to differences in body water content, Brumback
et al., 2007; Sutker et al., 1983). The appropriate dose of vodka (40%
alcohol by volume) was made up to a 500 ml solution with the carbo-
nated citrus drink Orangina and divided into 10 equal aliquots of 50 ml
each, and was consumed one every 3 min (Rose and Duka, 2008). This
dose and administration time was anticipated to give a peak blood al-
cohol concentration (BAC) of 0.1% (equivalent to 44 μg/100 ml BrAC)
at 30 min after the last drink had been consumed.

The placebo drink comprised ten 50 ml aliquots of Orangina with
the rim of each glass sprayed with vodka and a few drops of vodka
( < 5 ml) floated on top the drink to give the initial taste and smell of

alcohol (Rose and Duka, 2008). A double-blind procedure was em-
ployed where both the experimenter and participant were blind to
drink condition. Drinks were prepared by an experimenter not involved
with data collection prior to each testing session. This experimenter
later decoded datasets for group level data analyses. This was to reduce
any unconscious bias induced by the experimenter collecting data. In
any alcohol study, it is likely that many participants would detect which
drink contains alcohol as they are familiar with its effects, but alcohol
expectancy effects are not likely to mediate alcohol induced impair-
ments to inhibitory control (Caswell et al., 2013), and are very unlikely
to produce differential performance in manual vs. saccadic tasks.

2.5. Initial data processing and exclusion criteria

2.5.1. Pre-drink exclusion
Participants were not allowed to proceed to the drink challenge and

post-drink session if they failed to pass the criterion test within 8
iterations, their pre-drink error rate on no-signal trials or IGNORE trials
was above 10% or their mean RT was above 600 ms, or inhibition
failure rate on STOP trials was above 50% for the easiest condition
(50 ms delay − this would indicate they were not fully attempting to
stop) or below 50% for the hardest condition (400 ms delay − this
would indicate they were not fully attempting to go before the signal
occurs). This ensured the inhibition function (proportion of failed in-
hibitions by signal delay) crossed 50%.

2.5.2. Post-drink exclusion
Participants were excluded from further sessions if they did not

complete the alcohol challenge as specified, or if they did not complete
any session (e.g., due to adverse effects of alcohol, or self-withdrawal).
For participants with complete data for all sessions, their data was
excluded from further analysis if post-drink error rates on no-signal
trials or IGNORE trials were above 20%, their inhibition function did
not cross 50%, or mean RT for no-signal trials in all conditions exceeded
3SDs from the group mean in any session. For the dual task condition
data was not used if error rates were above 20% or grouping of re-
sponses was detected on more than 10% of dual response trials (defined
as the second response within 50 ms of the first).

2.5.3. Trial analysis and exclusion
Eye movement data was processed following standard procedures

(e.g., Bompas and Sumner, 2011). Briefly, accepted saccades were de-
tected using a velocity criterion of greater than 35°/s, an acceleration of
6000°/s2 trials, and an amplitude of at least 6° (halfway to the target).
Trials were excluded if they showed loss of tracking or blinks (visible on
the eye-trace as large deflections with temporary loss of tracking in the
middle) in the period 100 ms before target onset to 100 ms after sac-
cade offset, or small saccades (under 6°) from 100 ms before target
onset until the first 6° saccade. All eye movement data were plotted and
visually inspected to check the algorithm’s classification, as is standard
procedure for eye tracking experiments (the inspector was blind to
condition, so could not bias results). Visual inspection ensured that the
algorithm had detected appropriate saccades, not noise, had correctly
identified saccade start points, and ensured that trials with blinks,
tracking loss or fixation loss were removed.

For both manual and saccadic responses, RTs less than 80 ms (an-
ticipations) or greater than 3 SD from the mean for that participants’
session were removed from further analyses. SSRT for each task, time
and drink condition were calculated using the integration method
(Logan, 1994; Logan and Cowan, 1984).

2.6. Statistical approach

We adopted both a traditional approach using null hypothesis sig-
nificance testing and a Bayesian approach. Analyses of variance
(ANOVA) and t-tests were conducted where appropriate but we also
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calculated the Bayesian equivalents. The conventional significance tests
provide familiarity and ease of comparison with previous literature,
whereas the Bayesian statistics provide evidence for both the null hy-
pothesis and the alternative hypothesis (see Dienes, 2011). In the ma-
jority of cases a 2 (Drug: Alcohol, Placebo) by 2 (Time: Pre-Drink, Post-
Drink) within-subjects ANOVA was conducted on the relevant data
(e.g., SSRT, saccade velocity). For the Bayesian equivalent, the data
were collapsed as follows to derive a difference score: the relative
change from pre-drink to post-drink was calculated for placebo and
alcohol separately (post-drink score minus pre-drink score divided by
pre-drink score), then the difference between the placebo and alcohol
relative changes was calculated. A Bayesian test was conducted on
these difference scores using the default JZS prior described by Rouder
et al. (2009). Substantial evidence for the null or alternative was con-
sidered as Bayes factors of< 0.33 or> 3 respectively (Jeffreys, 1961 as
cited in Dienes, 2011).

2.7. Confirming expected effects

2.7.1. Alcohol intoxication: outcome-neutral manipulation check
To confirm intoxication, 2 (Drug: Alcohol, Placebo) by 2 (Time: Pre-

Drink, Post-Drink) within-subjects ANOVAs and equivalent Bayesian
tests were conducted on scores from the BAES and SHAS subjective
measures of intoxication. A further 2 × 2 within-subjects ANOVA and
equivalent Bayesian test was conducted on peak saccade velocity
(slowing of velocity is a robust measure of alcohol intoxication;
Lehtinen et al., 1979) from the no-signal trials across all blocks of the
saccade task. A Drug x Time interaction in at least one of these mea-
sures was required to confirm intoxication. In our recent study with the
same alcohol protocol (Campbell et al., 2014), all three showed clear
effects with only 13 (questionnaires) or 14 (saccades) participants (F
(1.12) = 35, p < 0.001; F(1.12) = 28, p < 0.001; F(1.13) = 16,
p = 0.002).

2.7.2. Alcohol increasing manual SSRT
A 2 (Drug: Alcohol, Placebo) x 2 (Time: Pre-, Post-Drink) within-

subjects ANOVA and complimentary Bayesian test was conducted on
the mean SSRTs from each participant. Table 1 shows previously pub-
lished effect sizes for the comparison of manual SSRT between alcohol
and placebo conditions. Note that these come from a variety of designs,
also with different numbers of trials. As Fig. 1B indicates, a stable es-
timate of SSRT requires at least 200 trials, and the most comparable
design to ours (entirely within-subjects with pre- and post-drink con-
ditions, in a standard laboratory, not during MRI scanning) is that of de
Wit et al. (2000) with an ηp2 = 0.26. Table 2 shows the minimum

effects we were able to detect for our sample size of 16–40.

2.8. Pre-registered analyses of interest

2.8.1. Does alcohol increase saccadic SSRT?
For saccadic SSRT, as for manual SSRT, we conducted a 2 (Drug:

Alcohol, Placebo) x 2 (Time: Pre-, Post-Drink) within-subjects ANOVA
and comparable Bayesian test. The range of effect sizes detectable was
the same as those detailed in Table 2. We are not aware of any pre-
viously published data for this comparison.

2.8.2. Does alcohol affect manual SSRT to a greater extent than saccadic
SSRT?

Because we were equally interested in the null possibility (similar
alcohol effects for manual and saccadic SSRT), we collapsed the data to
enable a Bayes factor to be calculated. Relative change in SSRT from
pre-drink to post-drink was calculated for alcohol and placebo for each
task modality. The difference in these relative changes was calculated
between alcohol and placebo for each response modality. This should
quantify the effects of alcohol on each modality separately. The dif-
ferences and similarities between how the modalities are affected can
then be quantified using a Bayes factor (as Rouder et al., 2009) applied
to the difference between modality-specific measures. Substantial evi-
dence for the null hypothesis (B ≤ 0.33) or experimental hypothesis
(B ≥ 3) would allow us to conclude whether the effect of alcohol on
SSRT across response modalities was similar or different. This Bayesian
inferential approach permits sequential sampling to establish partici-
pant numbers. To decide the minimum ('first look') sample size of 16,
we similarly used half the expected manual effect size from de Wit et al.
(thus ηp2 = 0.13 or f = 0.39, α= 0.05, 1-β = 0.90, correlation be-
tween variables = 0.4) for a 2 (Drug: Alcohol, Placebo) x 2 (Response:
Saccade, Manual) within-subjects ANOVA. Maximum sample size was
similarly set by using half the smallest published effect size for this

Table 1
Previously published studies comparing manual SSRT between alcohol and placebo conditions.

Study Alcohol to Placebo
Comparison

Pre-drink/baseline
condition

N Number of go trials Ratio Maximum Alcohol Dose Effect Size

Go:Stop

de Wit et al. (2000) Within Yes 17 192 75:25:00 0.8 g/kg ηp2 = 0.26
Reynolds et al. (2006) Within No 24 Not 75:25:00 0.8 g/kg ηp2 = 0.30

Stated
Loeber and Duka (2009) Between Yes 32 240 75:25:00 0.8 g/kg Time x Group Interaction

ηp2 = 0.11
Post-hoc pre vs post alcohol:
Cohen's dz = 0.91

McCarthy et al. (2012) Within No 29 Not Not Stated 0.72 g/kg ηp2 = 0.12
Stated

Caswell et al. (2013) Between No 48 90 75:25:00 0.8 g/kg ηp2 = 0.16
Nikolaou et al. (2013) Between Yes 42 120 75:25:00 0.8 g/kg Time x Group Interaction:

(fMRI) ηp2 = 0.156
High dose vs placebo:
Cohen's d = 0.93

Gan et al. (2014) Within No 50 320 80:20:00 0.6 g/kg Cohen's dz = 0.63
(fMRI)

Table 2
Range of effect sizes that could be detected at 4 possible sample sizes for a 2 × 2
within-subjects ANOVA at α = 0.05, 1-β = 0.9, correlation between repeated
measures = 0.4 (see Fig. 1 B for explanation). These detectable effect sizes
compare favourably to previously found effect sizes (Table 1).

Sample Size Minimum detectable effect size (ηp2)

16 0.13
24 0.09
32 0.06
40 0.05
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interaction of interest (regardless of within/between design or trial
numbers; ηp2 = 0.055; see Table 1). This gave 38, but due to coun-
terbalancing requirements participants were run in groups of 4, so the
maximum sample was set to 40. We used the contrast between alcohol
effects on manual and saccadic SSRT to set our sample size since this
was our most important question.

2.8.3. Does the alcohol-Induced effect on manual SSRT correlate with the
alcohol-Induced effect on saccade SSRT?

If alcohol affected both manual and saccadic SSRT, we planned to
test whether these effects were correlated across participants. This took
the form of a Pearson's correlation and its complementary Bayesian
equivalent described in Wetzels and Wagenmakers (2012).

2.8.4. Does alcohol affect proactive inhibition?
To confirm an effect of proactive inhibition without alcohol in each

modality, we compared mean latency in no-signal trials within STOP
blocks with mean latency from no-signal trials in IGNORE blocks across
pre-drink conditions using dependent samples t-tests and the Bayesian
equivalent. We expected a large effect size, as in the data of Nikolaou
et al. (2013); note that this analysis relied only on no-signal trials,
which are 3 times more numerous than signal trials. For converging
evidence, manual DUAL and STOP blocks were compared in the same
way. Then, to investigate the effect of alcohol, a 2 (Time: pre-, post-
drink) x 2 (Drug: placebo, alcohol) ANOVA and a complementary
Bayesian test compared the latency differences between STOP and IG-
NORE no-signal trials. Detectable effect sizes were those in Table 2.

2.8.5. Does alcohol affect action updating or attentional processing?
Following the logic of Verbruggen et al. (2010), if the effect of al-

cohol on SSRT is partly due to impairments to attention or action up-
dating, then alcohol was also predicted to affect the secondary response
in the DUAL blocks, the dual reaction time 2 (DRT2). This was assessed
with 2 (Time: pre-, post-drink) x 2 (Drug: placebo, alcohol) ANOVAs for
the RTs and error rates in the DUAL condition signal trials and the
equivalent Bayesian test. Further, attentional vs action updating effects
can be distinguished using the dependency of the secondary response
RTs on signal onset asynchrony (SOA); following the logic set out by
Verbruggen et al. (2010) and Maizey et al. (2013), an increase in the
alcohol-induced deficit on secondary RT with signal delay would imply
that the deficit has been absorbed into the bottleneck at short SOAs
(i.e., the psychological refractory period; PRP, see Fig. 2A). This would

imply that the deficit has occurred pre- rather than post-bottleneck,
suggesting an effect of alcohol on perceptual or attentional stages of
processing. However, if the alcohol-induced deficit is constant across
SOAs then it is likely to have occurred post-bottleneck and can be at-
tributed to deficits in updating of action plans (see Fig. 2B). With 16
participants and a 2 × 2 x 6 within-subjects ANOVA design we could
detect an effect size of ηp2 = 0.04 (α= 0.05, 1-β = 0.90, correlation
between variables = 0.4, assuming sphericity).

2.9. Subsidiary analyses

Given possible sex differences in baseline performance of the
manual stop-signal task (e.g., McCarthy et al., 2012), all analyses were
conducted additionally using gender as a covariate. Furthermore, as-
sessment of the impact of order effects of both block type and drink type
were conducted for all analyses to understand whether these are im-
pacting manual or saccadic SSRT.

2.9.1. Saccadic inhibition effect – additional analysis of potential interest
The inclusion of trials on which participants were required to ignore

the stop signal allowed for the investigation of whether the saccadic
inhibition effect from a visual distractor (e.g., Reingold and Stampe,
2002) was present in our data and whether it was affected by alcohol.
Latency distributions from both saccades and manual responses on
signal-present ignore trials were analysed for the presence, amplitude
and delay of ‘dips’ time-locked to the onset of the signal following the
procedure detailed in Bompas and Sumner (2011). In order to provide
enough trials to generate good quality saccade latency distributions,
data were pooled across all participants and statistical tests were not
able to be conducted. There was no precedent to know the likely effect
size of alcohol here, but the basic saccadic inhibition effect is very ro-
bust (N = 64 reported effects, mean r = 0.82, SD = 0.11, as calculated
in Harrison et al., 2014).

2.10. Post-Hoc analyses: confirming main results with improved bayesian
method

The pre-registered Bayesian approach of collapsing the 2 × 2 design
down into a single t-test through calculating relative changes from pre-
to post-drink, then taking the difference between alcohol and placebo,
does not maintain the separate variances attributable to each variable.
This can lead to an analysis that does not capture the appropriate

Fig. 2. Schematic representation of how alcohol may affect different stages of processing and how this would manifest in the reaction time difference according to SOA. During multiple
response selection, the central decision-making stages of processing cannot be conducted in parallel creating a bottleneck of processing where the decision stage of the first response must
be completed before the decision stage of the second response can start; therefore, the secondary response takes longer to execute. This increased reaction time is known as the
psychological refractory period. A For short SOAs (upper panel) if alcohol prolongs the perceptual stimulus detection stages this is absorbed into the bottleneck. At longer SOAs (lower
panel) there is no bottleneck so prolongation of perceptual stages increases overall reaction time and this should be detected. B Prolongation of the central decision-making stages
produces the same change in reaction time at both short and long SOAs as it has occurred after the bottleneck.
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variance of the entire dataset and is not comparable to the classical
ANOVAs used. An alternative approach is to assess the interaction term
in a within-subjects Bayesian ANOVA (using the “BayesFactor” package
in R: https://cran.r-project.org/package=BayesFactor; https://www.r-
project.org). This analysis is similar to the method registered, but dif-
fers in that it incorporates the sources of variance at each level rather
than summing them across conditions. This method is also more com-
parable to the classical statistics reported and provides a more appro-
priate comparison. See Supplementary Information (Section 6.2) for
further detail on how the post-hoc Bayesian model comparison proce-
dure was conducted.

Therefore, for each result we report the statistics: the pre-registered
Drug x Time interaction of the classical statistical test, the pre-regis-
tered collapsed design Bayesian t-test, and the Drug x Time interaction
for the post-hoc Bayesian ANOVA. In general, the results of the three
methods are in agreement.

3. Results

Anonymised study data and guidance notes are publicly archived at
https://figshare.com/s/b1640ebe17a405390ad8. Fifty-one participants
were recruited, 11 of which were excluded according to the pre-regis-
tered criteria. Of the 11 exclusions, three participants had at least one
session in which their inhibition function did not cross 50% failed stops
and a further six were excluded for mean go-trial reaction time ex-
ceeding 600 ms (of which 4 also had inhibition functions that did not
cross 50%). A further two participants withdrew after the first session.
The maximum sample size of 40 was reached before any other stopping
criteria were satisfied (25 female; mean age 23.5 years, SD = 3.4).
Participants had a mean body weight of 68.2 kg and BMI of 23.0. As per
inclusion criteria participants had AUDIT and SADQ scores below the
threshold for harmful drinking (mean AUDIT = 8.1, SD = 3.0; mean
SADQ = 4.1, SD = 3.2) and did not have clinical depression or anxiety
(mean HADS depression scores = 2.2, SD = 2.7, anxiety scores = 5.3,
SD = 2.7). Participants reached a mean peak BrAC of 48.4 μg/100 ml
on average at 30 min post-drink (see supplementary material for mean
breath alcohol concentration curve). Unexpectedly, males reached a
higher BrAC than females by 6.4 μg/100 ml; this difference was statis-
tically significant (t(38) = 2.52, p = 0.016, d = 0.82). Previous use of
the alcohol administration method did not produce significant gender
differences in peak BrAC (e.g., Campbell et al., 2014).

Additional checks for differences in effects between gender, block
order and drink order found no significant interactions apart from a
Drug x Time x Gender interaction for the dependent variable of manual
SSRT (output from all analyses can be found in Supplementary
Information2). Therefore, except for this case, we do not report further
the analyses of gender, block or drink order.

3.1. Confirming alcohol intoxication

One participant failed to complete the BAES and SHAS ques-
tionnaires following alcohol administration, therefore this participant is
left out of these analyses. As expected and illustrated in Fig. 3, parti-
cipants were subjectively and objectively intoxicated: a 2 (Drug: Al-
cohol/Placebo) by 2 (Time: pre-drink/post-drink) within-subjects
ANOVA of self-report measures of intoxication showed participants to
be subjectively affected by alcohol as indicated by significant Drug x
Time interactions for BAES and SHAS questionnaires (see Table 3 for
statistical test outcomes). Participants were also objectively intoxicated
as indicated by a significant Drug x Time interaction for peak saccade
velocity where velocity decreased following alcohol administration
(Ball et al., 1991).

3.2. Confirming manual SSRT increased during alcohol intoxication

As found in previous studies, alcohol increased manual SSRT (see

Fig. 4A; Table 4 for statistical test outcomes). This effect satisfied
conventional statistical significance at p < 0.05. The pre-registered
and post-hoc Bayes factors indicated that the data were roughly twice
as probable given a hypothesised alcohol effect relative to the null.

3.3. Alcohol does not increase saccadic SSRT

No significant Drug x Time interaction was observed for mean
saccadic SSRTs: Fig. 4B, Table 4 for statistical test outcomes, and both
the pre-registered and post-hoc Bayesian tests substantially favoured
the null hypothesis.

3.4. Inconclusive evidence for greater alcohol effect on manual SSRT than
saccadic SSRT

A 2 (Modality: Manual, Saccadic) x 2 (Drug: Alcohol, Placebo) x 2
(Time: Pre-, Post-Drink) within-subjects ANOVA revealed a significant
Modality x Drug x Time interaction (p < 0.05). Both the pre-registered
and post-hoc Bayesian methods yielded inconclusive Bayes factors (see
Table 4 for statistical test outcomes).

3.5. Effect of alcohol on manual SSRT does not correlate with the effect of
alcohol effect on saccadic SSRT

Both a Pearson’s correlation and a Bayesian correlation analysis
revealed no strong relationship between the difference in relative
change from pre-drink to post-drink between alcohol and placebo for
the saccadic task and the manual tasks (r = 0.197, p = 0.22,
BF = 0.41), though these correlational analyses are underpowered
compared to the within-subjects tests.

3.6. No clear effect of alcohol on proactive inhibition

As anticipated, proactive inhibition (defined as slower go reaction
times in the stop context compared to the ignore or dual contexts) was
present within both the manual task (STOP vs IGNORE t(39) = 21.4,
p< 0.001, d = 3.4; BF = 9.1 × 1019; STOP vs DUAL t(39) = 30.7,
p < 0.001, d = 4.9; BF = 3.9 × 1025) and the saccade task (STOP vs
IGNORE t(39) = 19.6, p < 0.001, d = 3.1; BF = 4.3 × 1018). The
extent of this slowing can be seen in the no-signal reaction times in
Fig. 5A and D).

Two-way Drug x Time interactions reveal a significant effect of al-
cohol on proactive slowing when comparing manual stop and ignore
contexts with traditional statistics (Fig. 5B, Table 5 for statistical test
outcomes), however the outcome of the pre-registered Bayesian test did
not reflect this result (BF = 0.47). It is possible that this discrepancy is
due to the baselined collapsed design used in the Bayesian analysis
where variance attributable to each variable is lost when relative
change measures are used. Although Figs. 5B, C and E all show similar
patterns, there were no significant Drug x Time interactions for manual
STOP vs DUAL contexts (Fig. 5C; Table 5) and Bayesian analyses offer
no support for saccadic STOP vs IGNORE contexts (Fig. 5E; Table 5).
Therefore, there is no clear effect of alcohol on proactive slowing, and
even if it is present, it is clearly small (about 20 ms) compared with the
overall effects of proactive slowing (100–160 ms).

3.6.1. Post-Hoc analysis: analysis of No-Signal reaction times
As the measure of proactive control was calculated from differences

in no-signal reaction times, it is important to assess whether there were
any alcohol induced changes to no-signal reaction time in each context.
A 2 (Drug: Alcohol, Placebo) x 2 (Time: pre-, post-drink) within-sub-
jects ANOVA was conducted on no-signal trials in the STOP and
IGNORE contexts for both the manual and saccadic tasks and for the
DUAL context no-signal trials in the manual task. All BFs are as the
model comparison method above. As Figs. 5A and 5D suggest, alcohol
significantly increased no-signal reaction times for all contexts in which
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Fig. 3. Alcohol affects all mean measures of intoxication. Mean self-reported feelings of intoxication from the BAES (A) and SHAS (B) and peak saccade velocity (C). Error bars
indicate± 1 standard error of the mean corrected for the within-subject design (as Cousineau, 2005).

Table 3
Output of statistical analyses of intoxication conducted using pre-registered classical
statistical tests, pre-registered collapsed design Bayesian t-tests and post-hoc model
comparisons of Bayesian ANOVA Bayes factors.

Analysis Pre-registered Post-hoc

Classical Drug x
Time interaction

Collapsed design
Bayesian t-test

Model comparison Bayes
Factor

Alcohol effect on intoxication
BAES F(1.38) = 15.90,

p < .001,
BF = 37.20 BF = 43.59

ηp2 = 0.295
SHAS F(1.38) = 46.25,

p < .001,
BF = 23.31 BF = 2.36 × 109

ηp2 = 0.549
Peak velocity F(1.39) = 6.88,

p = 0.012,
BF = 126.49 BF = 4.48

ηp2 = 0.15

Fig. 4. Alcohol affects manual SSRT but not saccadic
SSRT. Mean SSRT for: (A) the Manual Stop-Signal
task and (B) the Saccade Stop-Signal task. Error bars
are ± 1 standard error of the mean for within-sub-
jects design.

Table 4
Output of statistical analyses on SSRTs conducted using classical statistical tests, col-
lapsed design Bayesian t-tests and model comparisons of Bayesian ANOVA Bayes factors.

Analysis Pre-registered Post-hoc

Classical Drug x
Time interaction

Collapsed design
Bayesian t-test

Model comparison
Bayes Factor

Alcohol effect on SSRT
Manual F(1.39) = 5.6,

p = 0.02,
BF = 1.80 BF = 2.35

ηp2 = 0.13
Saccadic F(1.39) = 0.08,

p = 0.77,
BF = 0.21 BF = 0.23

ηp2 < 0.01
Manual vs saccadic

(3-way
interaction)

F(1.39) = 4.7,
p = 0.037,

BF = 0.73 BF = 0.75

ηp2 = 0.12
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the participant was not required to stop their response; Manual IGNORE
Drug x Time interaction: F(1,39) = 49, p < 0.001, BF = 4037; Sac-
cade IGNORE Drug x Time interaction: F(1,39) = 41.2, p < 0.001,
BF = 2.53e6; Manual DUAL Drug x Time interaction: F(1,39) = 33.6,
p < 0.001, BF = 106.89. In the STOP context, there was a marginally
significant Drug x Time interaction for the manual context: F(1,39)
= 4.28, p = 0.045, however the Bayes factor revealed inconclusive
evidence, BF = 0.65. In the saccade stop task there was no significant
Drug x Time interaction F(1,39) = 0.36, p = 0.55, BF = 0.36.

These alcohol-induced increases in reaction time of no-signal trials
have implications for the analysis of proactive slowing. The inter-
pretation now, as opposed to the outcome of the pre-registered analysis
alone, would be that the changes in proactive slowing occur due to the
increase in no-signal reaction time in the comparison context (either
IGNORE or DUAL) rather than decreases in no-signal reaction time in
the STOP context that would have indicated a decrease in caution.
Therefore, because the effect on the proactive inhibition measure ap-
pears to be driven by changes in the conditions that do not require
response inhibition, an alcohol-induced reduction in caution cannot be
concluded securely from these results.

Looking at error rates on no-signal trials in the DUAL context there
was a significant Drug x Time interaction for incorrect no-signal re-
sponses where alcohol increased the number of errors (i.e., pressing left
when the target appeared on the right), F(1,39) = 15.6, p < 0.001,
ηp2 = 0.29; this is consistent with the increased no-signal reaction time
following alcohol intoxication.

3.7. Alcohol affects action-updating

According to the logic of the PRP, set out in Sections 1 and 2.8.5 and
detailed in Fig. 2, if alcohol affects any stage prior to central decision
making of the secondary response (i.e., visual detection or attentional
orienting toward the stimulus) then we would anticipate the difference
in secondary dual response (DRT2) between post-drink alcohol and pre-

Fig. 5. There is a strong proactive slowing effect of between 100 and 160ms as demonstrated by the slower no-signal reaction times in the STOP context. The acute effect of alcohol on this
slowing is small in comparison and appears to be due to motoric slowing in non-STOP contexts. A: Effects of alcohol and placebo on manual no-signal reaction times for the manual STOP
context (squares), IGNORE context (triangles) and the DUAL context (stars) for alcohol (solid lines) and placebo (dashed lines); B: Effects of alcohol and placebo on proactive slowing of
the STOP vs IGNORE contexts in the manual domain. Proactive slowing is calculated as the subtraction of the comparison context (e.g. IGNORE context - triangles) from the STOP context
(squares). The difference between the solid lines in panel A forms the solid black line in panel B (alcohol) and the subtraction of the dashed lines forms the dashed grey line (placebo) C:
Proactive slowing of the manual STOP vs DUAL contexts (squares minus stars of panel A); D: No-signal reaction times for the saccadic STOP context (squares) and IGNORE context
(triangles); E: Proactive slowing of the saccadic responses (STOP vs IGNORE).

Table 5
Output of statistical analyses on proactive slowing conducted using pre-registered clas-
sical statistical tests, pre-registered collapsed design Bayesian t-tests and post-hoc model
comparisons of Bayesian ANOVA Bayes factors.

Analysis Pre-registered Post-hoc
Classical Drug x
Time interaction

Collapsed design
Bayesian t-test

Model comparison
Bayes Factor

Alcohol effect on proactive slowing
Manual Stop vs

Ignore
F(1.39) = 5.9,
p= 0.020,

BF = 0.47 BF = 1.93

ηp2 = 0.13
Manual Stop vs

Dual
F(1.39) = 2.3,
p= 0.14,

BF = 0.21 BF = 0.57

ηp2 = 0.06
Saccadic Stop vs

Ignore
F(1.39) = 3.8,
p= 0.06,

BF = 0.84 BF = 1.52

ηp2 = 0.09
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drink conditions and post-drink placebo to increase with the SOA. At
shorter SOAs prolonged visual perception/attentional stages can be
absorbed into the bottleneck period but at longer SOAs the bottleneck is
much shorter or absent so this prolongation of visual perception stages
increases overall DRT2. If, however, alcohol acts on the central deci-
sion-making stage or at motor execution stages of the secondary re-
sponse (after the bottleneck) we would anticipate DRT2 to be uniformly
elevated as a function of SOA.

Collapsed across SOA alcohol increased DRT2 as assessed by a sig-
nificant 2 (Drug: Alcohol, Placebo) x 2 (Time: Pre-drink, Post-drink)
interaction (see Table 6 for statistical test outcomes). To assess the ef-
fect of alcohol across SOA, a 2 (Drug: Alcohol, Placebo) by 2 (Time: Pre-
Drink, Post-Drink) by 6 (SOA: 50, 100, 166.7, 233.3, 316.7, 400 ms)
within-subjects ANOVA was undertaken, which revealed no significant
3-way interaction and a Bayes factor strongly in favour of the null
(Table 6). These results therefore suggest that the effect of alcohol arose
post-bottleneck.

3.8. Saccadic inhibition effect − additional analysis of potential interest

At the shortest SOA (50 ms) we observed dips in saccade latency
distributions of signal present IGNORE trials compared to the saccade
latency distributions of the no-signal distribution. These dips represent
a knock-out of saccade plans, time-locked to the onset of the signal
attributed to neuronal competition between saccades to the target or to
the signal (e.g., Bompas and Sumner, 2011). The dips began approxi-
mately 100 ms following signal onset. The dips were not present at later
SOAs as the onset was too late in the distribution. We observed no effect
of alcohol on this dip; thus, no evidence that alcohol influences low-
level automatic lateral inhibition within saccade execution and in-
hibition networks. A table of dip characteristics and a figure showing
these dips can be found in the Supplementary Information.

4. Discussion

We sought to use alcohol to address the question of domain general
vs domain specific response control systems. We also sought to de-
lineate what kinds of control systems are affected by alcohol in response
control tasks: reactive inhibition, proactive inhibition, action updating
or attentional/perceptual systems. There were four key findings ap-
parent from the results of this experiment. First, participants demon-
strated an impairment to manual motor inhibition during alcohol in-
toxication, which was indexed by increased stop signal reaction time
(SSRT). Second, alcohol did not show an effect on saccadic motor in-
hibition, where the Bayes factor indicated the data observed were 5
times more probable under the null hypothesis than the alternative.
Third, there was no reliable reduction of proactive slowing during al-
cohol intoxication. Finally, the effect of alcohol on secondary dual re-
sponses indicates that alcohol has a more general effect than just

inhibition, and its consistency across SOA indicates that alcohol influ-
ences processing following the bottleneck of the psychological re-
fractory period; together these dual task results indicate an effect on
action updating rather than perception.

4.1. Alcohol effect on manual SSRT is smaller than previously reported

Our first main result replicates a substantial literature reporting
alcohol-induced impairments to manual SSRT (e.g., Caswell et al.,
2013; de Wit et al., 2000; Dougherty et al., 2008; Fillmore and Vogel-
Sprott, 1999; Gan et al., 2014; Loeber and Duka, 2009; McCarthy et al.,
2012; Nikolaou et al., 2013; Ramaekers and Kuypers, 2006; Reynolds
et al., 2006). However, the effect size and Bayes factors were smaller
than anticipated. Thus, the effect of alcohol on manual SSRT may not be
as robust as previously thought, possibly due previously to less pow-
erful designs and some publication bias for positive results (see Button
et al., 2013).

Of 7 previous studies (see Table 1), 4 were within-subjects designs,
and of these only one used a baseline measure of inhibition (before a
drink was consumed). This study (de Wit et al., 2000) had the closest
design to our own, an effect size larger than ours (ηp2 = 0.26 compared
to ηp2 = 0.13) but a smaller sample size (n = 17). The other studies
report effect sizes ranging from ηp2 = 0.113 to 0.299 and some report
larger effect sizes of Cohen’s d = 0.93; however, these studies either
used a between-subjects design or did not have a pre-drink or baseline
condition. Given the large variability in responses to alcohol intoxica-
tion between individuals, within-subjects designs are desirable. A pre-
drink or baseline measure of behaviour also provides a means for
controlling for day-to-day fluctuations in behaviour. This is particularly
important for the stop-signal task given its relatively low test-retest
reliability in healthy individuals (Kuntsi et al., 2001; Weafer et al.,
2013; Wöstmann et al., 2013; Hedge et al., 2017) i.e., intra-class cor-
relation coefficients between 0.03 (Wöstmann et al., 2013) and 0.65
(Weafer et al., 2013).

However, despite these methodological differences, it is also pos-
sible that our measured effect size simply reflects sampling-related
error around a true effect size larger than that measured here. In ad-
dition, as we have used a stopping rule to determine our sample size,
based on the Bayesian outcome of our most important analysis, noise in
the direction of the null may have led us to stopping at a high N,
meaning that we may have underestimated our effect. If we had used a
fixed N, the estimate would have been unbiased (Schönbrodt et al.,
2017).

4.2. Alcohol does not affect saccadic SSRT

The lack of an effect of alcohol on saccadic inhibitory control was
reflected both in classical and Bayesian statistical analyses with evi-
dence favouring the null hypothesis five-fold over the alternative hy-
pothesis. This is broadly consistent with some previous reports of acute
effects of alcohol on saccadic inhibitory control tasks. For example,
more studies report a lack of alcohol effect or even a positive alcohol
effect on anti-saccade task performance (Blekher et al., 2002; Khan
et al., 2003; Vassallo et al., 2002; Vorstius et al., 2008) than report an
impairment (Crevits et al., 2000; Marinkovic et al., 2013). Nonetheless,
studies considering the effect of alcohol on the delayed ocular response
task find significant effects of alcohol on premature saccades (e.g.,
Abroms et al., 2006; Weafer and Fillmore, 2012). Given the correlation
between hand and eye SSRT (Boucher et al., 2007) and overlap of a
common functional network observed using fMRI (Leung and Cai,
2007) it was anticipated that alcohol would affect saccadic SSRT.
Nevertheless, this was not the case.

It could be extrapolated that alcohol affects systems that are specific
to manual responses, including manual response inhibition, whereas
systems specifically related to saccadic responses, particularly the in-
hibition of saccades, are relatively ‘immune’ to alcohol intoxication.

Table 6
Output of all statistical analyses conducted using pre-registered classical statistical tests,
pre-registered collapsed design Bayesian t-tests and post-hoc model comparisons of
Bayesian ANOVA Bayes factors.

Analysis Pre-registered Post-hoc
Classical Drug x Time
interaction

Collapsed design
Bayesian t-test

Model comparison
Bayes Factor

Alcohol effect on action updating
DRT2 F(1.39)

= 31.0,p< 0.001,
BF = 3826 BF = 201.19

ηp2= 0.44
Errors F(1.39)

= 6.15,p = 0.018,
BF = 21.66

ηp2= 0.14
DRT2 by

SOA
F(5195) = 0.49,p =
0.784,

BF = 0.011

ηp2 = 0.012
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More generally, these findings indicate that the manual and saccadic
versions of the stop-signal task (as used in this experiment) are unlikely
to assay the function of a single, common motor inhibition network.
These findings offer support for the notion that modality specific action
plans are inhibited within the neural architecture of each modality. The
absence of correlation between alcohol's influence on manual and
saccadic tasks was also consistent with independent effects on separate
systems.

However, the 3-way interaction between Modality (manual/sac-
cadic), Drug (alcohol/placebo) and Time (pre-drink/post-drink) offered
less clear-cut support: while the traditional interaction was significant,
the corresponding Bayesian analyses were inconclusive even with 40
participants. Bayesian ANOVA is yet to become mainstream and it is
beyond our expertise to comment on this discrepancy. It is also possible
a 3-way interaction is not the best statistical method for assessing dif-
ferences in alcohol effect between the two modalities, where we expect
3 conditions to be similar (pre-alcohol and both placebo conditions)
and wish to test whether one condition stands out (post alcohol), and
whether this effect is different between modalities despite varying de-
grees of noise across all cells (Rosnow and Rosenthal, 1996).

If we accept that the simple presence of the manual effect and strong
evidence against the saccadic effect points to different control systems,
we can only speculate as to why these systems would be differentially
sensitive to alcohol. The frontal eye fields (FEF) have been proposed as
a key area involved in the inhibition of saccades (e.g., Schall and
Boucher, 2007). Similarly, the pre-supplementary motor area (preSMA)
has been proposed as an important area involved in the inhibition of
manual responses (Cai et al., 2012; Chen et al., 2009; Nachev et al.,
2007). It is possible that alcohol affects the preSMA more than the FEF,
but there is no a priori reason to predict this. Rather than a difference in
brain area susceptibility, we suspect the difference may be related to
the unique push-pull antagonism between saccade planning and fix-
ating known to exist within the eye-movement system (e.g., Hanes
et al., 1998; Munoz and Wurtz, 1993a, 1993b). Thus, saccades can be
inhibited by exciting fixation cells in a simple and fast way that is di-
rectly related to the position of the stop signal on the screen. There is no
direct neuronal equivalent in manual control areas. Hand movements
have a relatively longer process of execution and inhibition which may
be where the system becomes vulnerable to alcohol intoxication. For
saccades, the effect of alcohol on saccadic velocity indicates the system
is not entirely immune to the effects of alcohol at all levels; however, it
is likely the portion responsible for inhibitory control of eye movements
remains functionally intact following alcohol administration at the
doses used here.

4.3. Potential alcohol effects on proactive slowing could Be masked by
motor slowing

It is important to distinguish proactive slowing as a measured effect
in the data, and proactive slowing as a functional explanation akin to
caution (there are many examples of terms with similar conflation of
meaning in the literature). As a behavioural effect, it is defined as the
difference in reaction time between similar types of trial in different
contexts − one context where inhibition might be required and one
where it never is. In this case, it is customary to use no-signal trials in
the STOP context compared to either the IGNORE or DUAL context.
This effect was large in all conditions (Fig. 5), but any decrease fol-
lowing alcohol consumption was small and inconclusive; numerically, it
is only around 20 ms, in comparison to the overall proactive slowing
effect of ∼150 ms.

A small decrease in proactive slowing would be consistent with the
trend observed in the data of Nikolaou et al. (2013) and could be ex-
plained as a decrease in caution – an impairment to functional proactive
slowing − following alcohol administration. However, not only is this
potential effect very small in our data, on closer inspection, the re-
duction in behavioural ‘proactive slowing’ is driven by increases in

reaction time in other contexts rather than a decrease in reaction time
in the STOP context. Therefore, the notion that alcohol decreases cau-
tion cannot be directly concluded by these data (Fig. 6).

4.4. Alcohol affects action-Updating and motor execution

Our results revealed a clear increase in secondary reaction time
(DRT2) following alcohol as compared to post-placebo and pre-drink
baseline. This result replicates previous findings reporting an effect of
alcohol on dual task reaction times (Fillmore and Van Selst, 2002;
Marczinski and Fillmore, 2006; Marczinski et al., 2012; Miller et al.,
2009; Schweizer et al., 2005; Schweizer and Vogel-Sprott, 2008).

To establish the stage of information processing in which this effect
occurs, the effect of alcohol on DRT2 across SOAs was evaluated. In the
PRP logic it is assumed that the central decision-making stages cannot
be conducted in parallel and thus there is a time-limiting factor for
secondary responses, particularly when the temporal gap between sti-
muli is short (short SOAs) (Pashler, 1994). Using the locus-of-slack
method, the location of an effect of alcohol on information processing
can be determined as pre- or post-bottleneck. In our data alcohol in-
creases DRT2 to a similar extent across all or most SOAs, indicating a
post-bottleneck effect on decisional and execution processes. In the
DUAL task participants were not required to inhibit a prepotent action
plan but instead to update it to include an additional action. Thus, from
our findings we conclude that this updating mechanism was impaired
during intoxication, potentially also accounting for the effects on SSRT
without the need for specific effects on inhibition.

However, whether alcohol has affected central decision making or
motor execution stages still needs to be disentangled. Previous studies
assessing effects of alcohol on secondary response times find that al-
cohol increased DRT2 up until SOAs of approximately 500 ms; DRT2 to
stimuli that appeared after 500 ms showed no significant effect of al-
cohol compared to placebo or baseline (Schweizer et al., 2005). The
authors argue that alcohol has affected the central decision-making
stage. However, in our section on proactive slowing, we noted that the
increase of no-signal reaction time in the non-stop contexts might in-
dicate additional motoric slowing.

5. Conclusions

To summarise, the present experiment demonstrated an effect of
alcohol on response control, but only when measured using manual and
not saccadic responses. Alcohol also affected secondary dual responses
indicating an impairment to post-perceptual action updating processes.
Thus, effects of alcohol on the stop-signal task cannot be solely inter-
preted as impairments to inhibition. Proactive slowing− in the sense of
a strategic functional inhibition akin to caution, rather than a label for a
subtraction between conditions − did not appear to be affected. We
conclude that alcohol impairs the execution and updating of actions in a
modality-specific manner.
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