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Dupin’s indicatrix: a tool for quantifying periclinal folds on maps
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Abstract – The elliptical and hyperbolic outcrop patterns characteristic of periclinal folds can be used
to classify structures according to different curvature attributes. Elliptical patterns indicate domal-
basinal structures with synclastic curvature, that is, principal curvatures of the same sign. Hyperbolic
patterns are diagnostic of anticlastic curvature (saddle-like structures). Such outcrop geometries are
geological examples of Dupin’s indicatrix, the geometrical figure obtained by sectioning a curved
surface on a plane parallel and almost coincident with the tangent plane. The aspect ratio of Dupin’s
indicatrix is theoretically related to the ratio of the principal curvature values for the part of the
structure being considered. This new method allows quantitative assessment of structures on maps and
on remote sensing images. Illustrations are given from Wyoming, USA, and Yorkshire, England.
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1. Introduction

Fleuty (1964) provided a terminological framework
for the description of folds that has served structural
geologists well for four decades. Fleuty’s classic paper
represented a significant advance because of the way
existing basic descriptive terms such as ‘hinge’, ‘limb’
and ‘interlimb angle’ were given exact definitions based
on geometry. It enabled structural geologists to apply
familiar terms to fold structures in a more objective
fashion.

Most of the definitions in that paper, including
the fundamental terms ‘fold hinge line’, ‘fold limb’,
‘axial surface’ and ‘inflection line’ are founded on
a simple geometrical model of fold geometry: the
cylindrical model. A cylindrical fold is one whose
surface everywhere contains a line of fixed orientation;
its surface can be generated or swept out by a line which
moves while remaining parallel to itself. Such folds
show a curvature only in one sense. The assumption of
cylindrical geometry lies at the heart of the geometrical
analysis of folds. The methods based on this assumption
have even been applied to structures of more complex
geometry such as refolded folds, by subdividing these
non-cylindrical structures into smaller regions with
approximately cylindrical properties.

There is a general awareness amongst structural geo-
logists that all natural folds deviate from a cylindrical
form to some degree. For predicting fold geometry in
the subsurface from scant information obtained at the
surface, the cylindrical model may be a satisfactory ap-
proximation. However, where more complete data are
available, as in regions investigated by 3D seismic sur-
veys, the cylindrical model is seriously inadequate for
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characterizing the fold structures. This is particularly so
in the analysis of folds in hydrocarbon provinces, where
structural closure implies the presence of doubly curved
non-cylindrical fold forms. Basic morphological terms
such as ‘inflection line’, ‘hinge line’ and ‘limb’ cannot
be employed in a strict sense when describing such
folds.

In summary, there is a general lack of tools for
the geometrical analysis of non-cylindrical folds. It is
well known that such structures give rise to distinctive
outcrop patterns on geological maps or satellite images.
For example, many textbooks describe the concentric
patterns that are diagnostic of domes and basins and
the oval disposition of formations that characterizes
doubly-plunging brachyanticlines and brachysynclines
(e.g. Billings, 1954; Roberts, 1982; Lisle, 1995).
This paper explains how more information can be
extracted from such features and outlines the theoretical
basis for a semi-quantitative interpretation of such
patterns in terms of the geometry of the surface fold
involved.

2. Folded surfaces and their curvature

Once the assumption that geological folds have
cylindrical forms is relaxed, a more general approach
is required to describe the geometry of their surfaces.
The theoretical framework for a general treatment of
surfaces is to be found in the literature on differential
geometry.

At any point P on a folded surface the curvature can
be defined with reference to a cross-section oriented
normal to the surface, that is, a plane passing through
the surface normal N at P (Fig. 1). The value of normal
curvature is given by kn = 1/r , where r is the radius of
curvature of the curve obtained in the section plane.
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Figure 1. Curvature of a folded surface at some point, P . Cross-
sections perpendicular to the surface, that is, sections parallel
to surface normal N , display different values of curvature
depending on the direction of the section. The normal curvature
adopts extreme values in two perpendicular directions: the
principal curvature directions.

Unless the local surface geometry around point P is
a flat plane or forms a part of a spherical surface, the
curvature obtained in the normal section will vary de-
pending on the direction of the section plane. For
all points, regardless of the surface to which they
belong, the change of curvature with change in the
direction of the section is orderly and systematic;
there is a direction in which the curvature is greatest
and another perpendicular direction along which the
normal curvature has a minimum value. The extreme
values are called the principal curvatures at P and
have values k1 and k2, respectively. These values can
take positive or negative values depending on whether
the corresponding centre of curvature lies below or
above the surface, that is, whether the curvature is
convex upwards or concave upwards. For normal
sections through P in other directions the curvature
has an intermediate value given by Euler’s equation
(see Weatherburn, 1947, p. 73):

kn = k1 cos2 θ + k2 sin2 θ, (1)

where θ is the angle between the normal section and the
direction of the maximum curvature (Fig. 1). Although
the curvature properties of all points on all surfaces
obey equation (1), three classes of points can be
distinguished on the basis of the signs of the principal
curvatures. Points where the principal curvatures have
the same sign, like a small fragment of an eggshell, are
called synclastic points. Where the curvature is convex
in one principal direction but concave in the other, like a
saddle, the point is classified as anticlastic (‘oppositely
curved’). A third class of points which has one principal
curvature equal to zero, like a part of a cylindrical or
conical fold, could be termed monoclastic because the

Figure 2. (a) Normal section of a surface. The surface crops out
at points A and B, distance 2d apart. The distance depends on the
radius of curvature, r , and the distance between the tangent plane
and the section plane, h. (b) In the section plane, the distances
d1 and d2 are in a ratio that relates to the ratio of the values of
the principal curvatures.

surface around such a point is curved in one direction
only.

If we accept that natural folded surfaces are generally
non-cylindrical, then points of all three kinds might be
expected to occur upon them. The question that now
arises is how such points may be recognized from the
two-dimensional outcrop patterns observed on outcrop
surfaces or geological maps.

3. Planar sections through non-cylindrical folds

It is well known that a cross-section of a fold reveals
geometrical features of the fold. For a cylindrical fold,
the most logical and informative cross-section is one
oriented perpendicular to the fold axis. For surfaces
that are more complex, the equivalent natural cross-
section does not exist because the curvature attributes
vary from point to point in such a way that cannot be
displayed in a single planar slice. Nevertheless, a cross-
section almost coincident with one of the tangent planes
of the surface (Fig. 2) is most revealing about the local
curvature characteristics. It is demonstrated below that
such unorthodox cross-sections correspond to certain
outcrop patterns observed on geological maps.

Figure 2a illustrates how a planar cut through a
surface on a section plane AB just below the plane of
tangency at point P will intersect the surface twice,
at points A and B. The folded surface with radius
of curvature r will crop out at these two points with
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Figure 3. Air photograph of a periclinal fold in Wyoming (U.S.
Geological Survey photo). The elliptical outcrop has an aspect
ratio of 4.2 indicating the principal curvatures are in the ratio of
4.22 = 18.0.

distance 2d apart. Referring to Figure 2a, by Pythagoras
we have

r 2 = (r − h)2 + d2. (2)

Provided the section plane AB is close to the tangent
plane, that is, when h is very small and therefore h2 is
of negligible magnitude, the curvature is approximately
given by

kn = 1

r
= 2h

d2
. (3)

If this relationship is applied in the two principal
directions at a synclastic point (Fig. 2b), the distances
of separation of the two outcrop positions 2d1 and 2d2

will be in the ratio

Rd = 2d2

2d1
. (4)

From (3) it can be deduced that the ratio of the aspect
ratio of the oval outcrop, Rd , relates to the ratio of the
principal curvatures in absolute values:

R2
d =

(
d2

d1

)2

= max |k|
min |k| . (5)

This is an important result because it permits an in-
terpretation of the geometry of the oval outcrop shape in
terms of the principal curvatures at the synclastic point
on the folded surface. This is illustrated in Figure 3,
where the elliptical outcrop has an aspect ratio of 4.2,
indicating a curvature ratio of 18.0:1.

4. Dupin’s indicatrix

The result above can be generalized for all three
types of points. By combining (1) with (3) we
obtain the equation in polar co-ordinates of the curve

corresponding to the ‘glancing slice’ of a fold, that is,
the polar distance d for each direction θ :

d =
√

2h

k1 cos2 θ + k2 sin2 θ
. (6)

The curve (d, θ), illustrated in Figure 4, is a conic called
Dupin’s indicatrix after Charles Dupin, the French
mathematician who investigated its properties in the
early nineteenth century. It is the figure obtained by
taking a very thin slice off a folded surface, parallel to
the tangent plane. The radius of the indicatrix in any
direction is proportional to the square root of the radius
of normal curvature in this direction (Hilbert & Cohn-
Vossen, 1952). If the point is synclastic (k1 and k2 have
the same sign) the curve is an ellipse (Fig. 4a). If the
principal curvatures differ in sign, as they do in the case
of an anticlastic point, the real values of d define a pair
of hyperbolas (Fig. 4b). Finally if the local curvature is
monoclastic (k1 or k2 are zero), the figure consists of a
pair of straight parallel lines (Fig. 4c).

Where Dupin’s indicatrix of elliptical, hyperbolic or
straight-line types can be recognized on a geological
map or cross-section, we have the opportunity to
investigate principal curvatures and their directions for
that small part of the folded structure. The practicalities
of the method are explained in the next section.

5. Method

The first stage in the analysis of local curvature
from maps or sections is to correctly identify Dupin’s
indicatrix, that is, elliptical, hyperbolic or straight-
line outcrop patterns. In the case of observations
from maps, care must be taken not to confuse the
patterns with similar shapes arising from the effects
of topography, in particular where there are isolated
hills (elliptical shapes) and mountain cols (hyperbolic
forms). In general, the accuracy of the method will
be detrimentally affected by any non-planarity of
the cross-section surface. Inspection of topographic
contours in the vicinity of the shape should help check
whether the pattern is indeed a valid Dupin’s indicatrix,
that is, whether the pattern is an expression of folding.

Where geological boundaries exhibit a nested ar-
rangement of ellipses or hyperbolas, the shape of the
innermost boundary should be taken as the Dupin
indicatrix (DI) (Fig. 4). These are shapes produced by
surfaces whose tangent plane is closest to the section
plane, a condition that produces an outcrop pattern
closest in form to a DI. To obtain a true DI, the section
plane must be close to the tangent plane (h is small; see
Fig. 2a). In this respect, it is not simply the distance h
but this value as a proportion of the radius of curvature
that influences the degree to which the outcrop shape
departs from the ideal DI. Where h/r is large the
outcrop pattern may deviate significantly from the ideal
shape of a DI. This is illustrated in the fold interference
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Figure 4. Dupin’s indicatrix. (a) Elliptical type indicating synclastic curvature. (b) Hyperbolic type indicating anticlastic curvature.
(c) Pair of straight lines indicating a fold with a zero principal curvature value (‘monoclastic’).

pattern in Figure 5 by the crescentic shapes of the traces
of outermost surfaces.

5.a. Elliptical patterns

Once an elliptical DI is identified, we can conclude
that the local curvature of fold is synclastic in nature.
Furthermore, the directions of the minor and major
axes of the ellipse indicate the principal curvature
directions, k1 and k2. The ratio of the lengths of
minor and major axes Rd can be used to calculate
the ratio of the principal curvatures using equation (4).
The elliptical pattern on its own does not allow
the sign of the curvatures to be determined, though
the short axis direction indicates the direction of
greatest curvature (ignoring the sign). Therefore,
without additional information, the DI will not indicate
whether the structure is convex (antiformal) or concave
(synformal).

5.b. Hyperbolic patterns

Dupin indicatrices of hyperbolic type indicate that the
folded layering in the vicinity has anticlastic curvature,
that is, they are associated with points on saddle-

Figure 5. Interference pattern due to refolding (based on
Roberts, 1989, fig. 241). Innermost closed traces of banding
define an elliptical Dupin’s indicatrix, whereas outer traces show
more complex forms.
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Figure 6. The analysis of hyperbolic patterns. See text for
explanation.

shaped structures, or their upside-down equivalents,
called ‘shoe horns’ by Lisle (1995, p. 35). The principal
curvature directions are determined from the symmetry
of the hyperbolic pattern, but from the DI geometry
alone it is not possible to distinguish k1 from k2.
The ratio of the absolute maximum and minimum
curvatures is found as follows (Fig. 6):

(1) Locate the points of maximum curvature on each
arm of the hyperbola (points A and B in Fig. 6). One of
the principal curvature directions is parallel to the line
AB, whilst the other principal direction is perpendicular
to AB. We refer to these principal curvatures as k p and
kq respectively.

(2) From the mid-point of line AB, sketch the lines
that are asymptotic to the hyperbola. These represent
the directions of lines of zero normal curvature (kn = 0)
within the folded surface.

(3) Measure the angle, θ , between the asymptote and
the line AB (see Fig. 6).

The angle of inclination of the asymptotic lines, θ ,
relates to the ratio of the principal curvatures. By setting
kn to zero in equation (1), and rearranging, we obtain∣∣∣∣kp

kq

∣∣∣∣ = tan2 θ. (7)

The maximum curvature (ignoring sign) is therefore in
the q direction when θ is less than 45◦ and in the p
direction when θ exceeds 45◦.

5.c. Straight line patterns

Where the outcrop of a geological boundary consists
of two closely spaced parallel lines, the structural
interpretation is straightforward. This figure implies
a monoclastic geometry for the folded surface, that is,
the case where one of the principal curvatures equals
zero and ratio of the principal curvatures is infinite. The
direction of the bisector of the straight lines indicates
the zero principal curvature direction.

Figure 7. Curvature analysis from Dupin’s patterns in the
Chesterfield area, England. Geological boundaries taken from
Sheet 112, 1 inch scale map, Geological Survey of Great Britain.
The ratio of the principal curvatures are shown, together with
the directions of the principal curvature axes.

6. Examples

Dupin patterns are common. This is because the
sheet dip of folded horizons is frequently close
to horizontal so that the topographic surface often
intersects such horizons tangentially. Examples abound
on geological maps of the Variscan fold belt of the
Ardennes, the Cantabrian Mountains and South Wales
and on Landsat images of the Appalachian fold belt
in Pennsylvania. Figure 7 is a geological map of
a region 8 km southeast of Chesterfield, England,
where Dupin patterns are defined by the outcrop
pattern of contacts within the Upper Carboniferous
Coal Measures. Elliptical and hyperbolic outcrop
shapes both indicate that direction of greatest absolute
curvature varies from 019◦ and 049◦N. The ratio of
the principal curvatures varies between 2.0 and 2.7 and
relates to the relative intensities of Variscan folding
in two directions analysed by other means (Lisle,
1999).

Dupin patterns are also abundant on structure
contour maps because each structure contour portrays
the shape of a horizontal slice of a geological
surface. Figure 8 illustrates examples of elliptical and
hyperbolic types on the structure contour map (top
of El Abra Limestone) of the Atn field, Veracruz,
Mexico. These can be interpreted in terms of principal
curvatures and their directions.
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Figure 8. Examples of elliptical (E) and hyperbolic (H) Dupin
indicatrices on structure contour maps. Atún oilfield, Veracruz,
Mexico (from Viniegra & Castillo-Tejero, 1970).

7. Conclusions

The qualitative significance of the various patterns re-
ferred to in this paper is already well known. However,
the new method outlined here delivers quantitative
information of three-dimensional geometry from such

two-dimensional structural images from outcrop maps,
structure contours, seismic time slices and satellite
images. It is stressed that information relates to local
structural characteristics and its accuracy is adversely
affected by irregularities of the cross-section surface
(that is, the flatness of the land surface) and the distance
separating the section surface and the tangent plane to
the folded surface.
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