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1.0 Abstract 18 
The three-spined stickleback (Gasterosteus aculeatus) is a model organism with an extremely 19 

well-characterised ecology, evolutionary history, behavioural repertoire and parasitology that 20 

is coupled with published genomic data. These small temperate zone fish therefore provide an 21 

ideal experimental system to study common diseases of cold water fish, including those of 22 

aquacultural importance. However, detailed information on the culture of stickleback 23 

parasites, the establishment and maintenance of infections and the quantification of host 24 

responses is scattered between primary and grey literature resources, some of which is not 25 

readily accessible. Our aim is to lay out a framework of techniques based on our experience 26 

in order to inform new and established laboratories about culture techniques and recent 27 

advances in the field. Here, essential knowledge on the biology, capture and laboratory 28 

maintenance of sticklebacks, and their commonly studied parasites is drawn together, 29 

highlighting recent advances in our understanding of the associated immune responses. In 30 

compiling this guide on the maintenance of sticklebacks and a range of common, 31 

taxonomically diverse parasites in the laboratory, we aim to engage a broader inter-32 
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disciplinary community to consider this highly tractable model when addressing pressing 33 

questions in evolution, infection and aquaculture.  34 

2.0 Introduction 35 
Aquaculture is currently the fastest growing animal food-producing sector, increasing by 6% 36 

annually in the 2000s (The World Bank, 2013a). In 2014, 73.8 million tonnes of fish were 37 

farmed, rising from 55.7 million tonnes in 2009 (FAO, 2016). In order to maintain the current 38 

level of consumption, whilst compensating for shortfalls from fisheries that have reached 39 

their maximum potential output, global aquaculture production will have to reach 93 million 40 

tonnes by 2030 (The World Bank, 2013b). As with agriculture, fish production can be 41 

increased via two main approaches: increasing the area turned over to the industry or 42 

improving yields. With the use of terrestrial and aquatic environments reaching their 43 

sustainable maximum, the focus of aquaculture is now firmly set on yield improvement via 44 

selective breeding, genetic modification and feed conversion efficiency (Myhr and Dalmo, 45 

2005; FAO, 2016; Janssen et al., 2016). These goals, however, must be coupled with a better 46 

understanding of host-parasite interactions and improved disease prevention, since a major 47 

inhibitory factor to fisheries’ yield improvement are losses to infectious diseases, many of 48 

which are caused by parasitic organisms (Meyer, 1991).  49 

 50 

Teleosts diverged from other vertebrates some 333-285 million years ago (Near et al., 2012) 51 

and are the largest group of vertebrates (ca. 30,000 species) with a diverse range of 52 

morphological and behavioural characteristics (Near et al., 2012). This diversity is attributed, 53 

in part, to a suspected whole-genome duplication event ca. 320-404 million years ago, after 54 

the divergence of ray-finned and lobe-finned fish, but prior to the teleost radiation (Amores et 55 

al., 1998; Hoegg et al., 2004). Such diversity makes the establishment of suitable teleost 56 

models challenging. While the zebrafish (Danio rerio) has been adopted by many research 57 

communities and is especially suitable for developmental biology, embryology and genetic 58 

disease research (e.g. Parng et al., 2002; Wienholds et al., 2005; Zon and Peterson, 2005; 59 

Lieschke and Currie, 2007), it does not sufficiently resemble economically-important food 60 

fish such as salmon that tend to be temperate, ancestrally marine and omnivorous.  61 

 62 

One candidate model species is the three-spined stickleback (Gasterosteus aculeatus) 63 

hereafter referred to as the ‘stickleback’, which has been described as a supermodel for 64 

ecological, evolutionary and genomic studies (Shapiro et al., 2004; Colosimo et al., 2005; 65 
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Gibson, 2005; Barber and Nettleship, 2010; Jones et al., 2012; Barber, 2013). This ancestrally 66 

marine fish occurs in coastal marine, brackish and freshwater environments north of 30°N 67 

latitude. Sticklebacks have been utilised as a model of adaptive radiation due to their 68 

remarkable morphological diversity, including variation in size, shape and protective armour, 69 

which has arisen following the post-glacial colonisation of innumerable freshwaters from 70 

marine refugia (Schluter, 1993; Reimchen, 1994; Walker, 1997; Colosimo et al., 2005; Jones 71 

et al., 2012). The reproductive isolation of populations inhabiting a wide variety of habitat 72 

types and exploiting diverse resources are generally thought to be the primary causes of 73 

stickleback adaptive radiation (Schluter, 1993; Lackey and Boughman, 2016); with 74 

phenologic differences among morphotypes being linked to idiosyncratic genome variation 75 

(Jones et al., 2012; Feulner et al., 2015; Marques et al., 2016; reviewed in Lackey and 76 

Boughman, 2016) and at least partially controlled by the epigenome (Smith et al., 2015a). Of 77 

particular interest are the Canadian limnetic-benthic ‘species pairs’ (that inhabit the pelagic 78 

and littoral zones respectively) and the river-lake morphs of sticklebacks which, despite that 79 

fact that hybridization is possible both in nature and the laboratory, display high levels of 80 

reproductive isolation (McPhail, 1992; Gow et al., 2006; Berner et al., 2009; Eizaguirre et al., 81 

2011). In the case of the limnetic-benthic pairs, both forms are thought to have evolved from 82 

independent marine ancestors (McPhail, 1992), while a mixed pattern of morphotypes is 83 

likely the cause of the river-lake differentiation (Reusch et al., 2001a; Berner et al., 2008). 84 

Supporting predictions of adaptive radiation, the limnetic and benthic stickleback forms each 85 

have growth advantages in their native habitats, which are lost in the alternative habitat, while 86 

hybrids are intermediate; the efficiency of this exploitation matches the observed 87 

morphological differences (Schluter, 1993, 1995). The same holds true for river-lake fish 88 

ecotypes, which are locally adapted and suffer from translocations in non-native habitats 89 

(Eizaguirre et al., 2012a; Räsänen and Hendry, 2014; Stutz et al., 2015).  90 

 91 

In addition to their wide geographic range and diverse morphology, the stickleback has many 92 

amenable features that make it ideal for experimental studies of host-parasite interactions. 93 

First, sticklebacks are easily maintained and bred in the laboratory as a result of their general 94 

hardiness, small size and low maintenance cost. Second, within their habitat range, 95 

sticklebacks can be collected easily from the wild. Third, unlike many vertebrates, there is 96 

comprehensive knowledge of stickleback parasitology (Arme and Owen, 1967; Kalbe et al., 97 

2002; Barber and Scharsack, 2010; MacNab and Barber, 2012), natural history and ecology 98 

(Wootton, 1976, 1984a; Östlund-Nilsson et al., 2006), evolutionary history (Schluter, 1996; 99 
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Taylor and McPhail, 1999; Mckinnon and Rundle, 2002; MacColl, 2009), physiology (Taylor 100 

and McPhail, 1986; Pottinger et al., 2002) and behaviour (Tinbergen and van Iersel, 1947; 101 

Giles, 1983; Milinski, 1985, 1987; Milinski and Bakker, 1990; Reusch et al., 2001b; Barber 102 

et al., 2004). Fourth, publication of the stickleback genome (Kingsley, 2003; Hubbard et al., 103 

2007; Jones et al., 2012) coupled with advanced post-genomic techniques makes this fish an 104 

ideal model for molecular study, including host immunology (Kurtz et al., 2004; Hibbeler et 105 

al., 2008; Brown et al., 2016; Hablützel et al., 2016). All of this allows one to focus, not on a 106 

single aspect of the system, but to take a holistic systems approach to studying host-parasite 107 

interactions.  108 

 109 

The regional parasitic fauna of sticklebacks is remarkably diverse, covering nine phyla to 110 

date (Kalbe et al., 2002; Wegner et al., 2003b; Barber, 2007; Eizaguirre et al., 2011), largely 111 

as a result of the host’s wide geographical distribution, diverse habitat exploitation, varied 112 

diet and central position in food webs. Virtually all niches of the stickleback have been 113 

exploited by at least one parasite species, including the skin and fins, gills, muscle, eye lens 114 

and humour, body cavity, swim bladder, liver, intestine, kidney and urinary bladder (e.g. 115 

Kalbe et al., 2002). Over 200 parasite species have been described infecting the stickleback, 116 

although many of these are cross-species infections from other teleosts (for complete list see 117 

Barber, 2007). Following the recent surge of interest relating variation in the gut microbiome 118 

to disease progression (Holmes et al., 2011), the stickleback’s microbiome appears to be 119 

largely determined by genetic and sex dependant factors rather than transient environmental 120 

effects (Bolnick et al., 2014; Smith et al., 2015b); although differences in gut microbiota are 121 

also correlated with variation in diet (Bolnick et al., 2014). Heightened innate immune 122 

responses also appear to result in a less diverse microbiota (Milligan-Myhre et al., 2016); 123 

however, the reciprocal relationship between microbiota and parasites has yet to be studied in 124 

this system.   125 

 126 

The impact of infection on host behaviour is well documented (Giles, 1983; Milinski, 1985, 127 

1990; Milinski and Bakker, 1990; Poulin, 1995; Urdal et al., 1995; Barber et al., 2004; 128 

Spagnoli et al., 2016) but uncontrolled parasitic infections may confound results (as recently 129 

demonstrated in zebrafish; Spagnoli et al., 2016). Parasitic contamination applies not only to 130 

behavioural studies but to all research (immunological, parasitological, molecular etc.) where 131 

uncontrolled parasite infections other than those under investigation may have confounding 132 

effects, via stimulation of the immune system or interactions with co-infecting parasites. 133 
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While pharmaceutical treatments may be useful to control or limit confounding parasitic 134 

factors, their use is a double-edged sword bringing other problems linked to the severity of 135 

the treatment (Buchmann et al., 2004; Srivastava et al., 2004) and it can never be assumed 136 

that such treatments have 100% efficacy (Schelkle et al., 2009). It is also increasingly 137 

important that infection models can conform to a ‘wild’ or ‘uncaged’ state (Leslie, 2010) in 138 

order to understand the complex interaction of parasites, host immunological responses and 139 

ecological variation that are the prevailing state. The immune systems of wild animals and 140 

humans are rarely naïve and co-infection is the norm (e.g. Lello et al., 2004; Behnke et al., 141 

2005, 2009; Benesh and Kalbe, 2016), partly explaining the many inconsistencies between 142 

laboratory models and wild animals.   143 

 144 

The difficulty and importance of maintaining parasite populations in the laboratory is often 145 

underestimated and partly hampered by the lack of published practical information on 146 

establishing and maintaining host-parasite systems. In addition, molecular (drug) and 147 

immunological (vaccine) based approaches are increasingly needed for mitigating the impacts 148 

of disease. Effective models of aquaculture fish species are limited: the zebrafish, although 149 

ideal for molecular studies, is unrepresentative in terms of habitat, evolutionary history and 150 

parasitology. In this respect the stickleback provides a useful study species, being susceptible 151 

to a range of problematic aquaculture diseases, including those caused by the oomycete 152 

Saprolegnia parasitica, Diplostomum trematodes and Gyrodactylus monogeneans, as well 153 

other parasites closely related to aquaculture-relevant species. This review first covers the 154 

basic husbandry of the three-spined stickleback and then focuses on the parasites that are 155 

most frequently used in research projects: Argulus spp., Camallanus lacustris, Diplostomum 156 

spp., Gyrodactylus spp., Saprolegnia parasitica and Schistocephalus solidus. For each taxon, 157 

culture methods, experimental infection techniques and host immune responses are outlined. 158 

Glugea anomala, although not widely used experimentally, is a common infection of 159 

sticklebacks and is included in this review to stimulate future research. Whilst all of these 160 

parasites are common, until now there has been no single resource that summarizes all 161 

available culture methods. We also provide an overview of the host’s immunological 162 

responses to these parasites, and to put these studies in a wider context we recommend 163 

reviews of vertebrate (Murphy 2012; Owen et al., 2013) and teleost immunology (see Miller, 164 

1998; Morvan et al., 1998; Press and Evensen, 1999; Claire et al., 2002; Watts et al., 2008; 165 

Takano et al., 2011; Forn-Cuni et al., 2014). Overall, we aim to provide a comprehensive and 166 

standardised approach to support new research utilising the three-spined stickleback as a 167 
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model for experimental parasitology and immunology, while increasing awareness of the 168 

impact of any infections for non-parasitological studies. 169 

3.0 Stickleback husbandry 170 
Here, methods for the collection, maintenance and breeding of three-spined sticklebacks are 171 

described. In some instances multiple methods are provided, the suitability of which is 172 

dependent on the focus of a particular study.  173 

3.1 Ethics 174 
All protocols carried out are subject to the relevant regulatory authority. Care, maintenance 175 

and infection of protected animals in UK laboratories are governed by local animal ethics 176 

committees and the Home Office under The Animals Scientific Procedures Act 1986. EU 177 

member states are subject to Directive 2010/63/EU on the protection of animals used for 178 

scientific purposes. The Animals Scientific Procedures Act outlines humane methods for 179 

animal euthanasia referred to as ‘Schedule 1 Procedures’. This nomenclature is used 180 

throughout the manual, but different guidelines are in place for other regulatory authorities. 181 

All experimental parasite research carried out at Cardiff University was approved by Cardiff 182 

University Ethics Committee and performed under Home Office Licence PPL 302357. 183 

3.2 Collection 184 
While some experiments require naïve hosts, for others, previous experience of endemic 185 

infections or specific ecotypes might be critical; information on fish provenance, parasite 186 

history and exposure to anti-parasitic treatments is therefore essential for most studies (see 187 

Giles, 1983; Poulin, 1995; Urdal et al., 1995; Barber et al., 2004; Spagnoli et al., 2016). 188 

When acquiring sticklebacks from wild populations, we advise multiple screens for 189 

ectoparasites and dissection for macroparasites (e.g. Kalbe et al., 2002); although the latter 190 

may not be necessary, particularly for breeding, as many macroparasites often require the 191 

presence of intermediate hosts to persist. Regardless, the presence of parasites should be 192 

reported for any study, and it should never be assumed that an animal is uninfected unless 193 

bred in specific pathogen free conditions. 194 

 195 

Sticklebacks may be acquired from other researchers actively breeding these fish, possibly 196 

holding multiple inbred and/or outbred lines (e.g. Mazzi et al., 2002; Aeschlimann et al., 197 

2003; Frommen and Bakker, 2006). Alternatively, they may be purchased from a commercial 198 

fish supplier (e.g. Katsiadaki et al., 2002a). Given the diversity and abundance of stickleback 199 

parasites, the principal of ‘buyer beware’ must apply, as rarely can a supplier guarantee 200 
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‘parasite-free’ fish and most fish will have been treated chemically (e.g. Giles, 1983; Poulin, 201 

1995; Urdal et al., 1995; Barber et al., 2004; Spagnoli et al., 2016). Fish suppliers or 202 

researchers may be willing to provide infected sticklebacks for research or teaching, 203 

particularly in the case of overt infections, such as Glugea anomala or Schistocephalus 204 

solidus. A third option is to collect wild fish and use them directly (e.g. Bakker, 1993; Cresko 205 

et al., 2004; Bernhardt et al., 2006) after treating for infections (e.g. Soleng and Bakke, 1998; 206 

Ernst and Whittington, 2001; Cable et al., 2002a; Morrell et al., 2012; Anaya-Rojas et al., 207 

2016; Hablützel et al., 2016) or breeding from these wild fish (e.g. Mazzi et al., 2002; 208 

Aeschlimann et al., 2003; Wegner et al., 2003a; Frommen and Bakker, 2006; Eizaguirre et 209 

al., 2012b).  210 

 211 

Most institutions in Europe and continental North America neighbour a water body 212 

containing sticklebacks, particularly around coastal regions. Sticklebacks can be captured in 213 

commercial (e.g. Hendry et al., 2002; Gow et al., 2007; MacColl et al., 2013) or hand-made 214 

minnow traps constructed from 2-3 L soft drinks bottles. Each bottle, with holes in the sides, 215 

is cut such that the spout may be inverted and reattached using cable ties to resemble a 216 

minnow trap and partially filled with pebbles so it remains immersed. Typically, the traps are 217 

placed into water with one end secured by string to a concealed marker. Bait is not normally 218 

required as sticklebacks are inquisitive and catching one fish entices others. The trap is left 219 

for a maximum of 24 h to prevent fish becoming overly stressed. Dip-netting, using a hand 220 

net, is also effective (e.g. Gow et al., 2007; Brown et al., 2016), especially targeting areas of 221 

vegetation along the bank or under bridges where sticklebacks shoal and hide (Wootton, 222 

1976). Permission should be sought from the landowner and appropriate regulatory authority 223 

before using traps or nets and these should be of a design so as not to endanger other aquatic 224 

organisms. Most wild sticklebacks will be infected with parasites (Barber, 2007) and 225 

appropriate measures must be taken to limit mortality (see Section 5). Importantly, ‘trapping’ 226 

stresses fish and compromises the immune system, but ‘netting’ can be used to sample fish in 227 

their natural state if euthanized immediately (e.g. Brown et al., 2016).  228 

3.3 Maintenance 229 
Sticklebacks are normally kept at densities not exceeding 1 fish/L to reduce fish stress (e.g. 230 

Mazzi et al., 2002; Aeschlimann et al., 2003; Barber, 2005; de Roij et al., 2011). 231 

Dechlorinated water is always used: 0.1-0.3 parts per million (ppm) of chlorine is lethal to the 232 

majority of fish (Wedemeyer, 1996), although brief exposure to chlorinated water (1-2 h) can 233 
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be beneficial in removing some parasites (Johnson et al., 2003; Ferguson et al., 2007). 234 

Dechlorinated water is typically obtained either through an activated charcoal filter, 235 

commercially available dechlorinating and water conditioning solutions (follow 236 

manufacturer’s instructions) or vigorous aeration of tap water for 24 h before use. 237 

Dechlorinated water should not be fed through copper pipes as high concentrations of copper 238 

ions can kill fish (Cardeilhac and Whitaker, 1988; Sellin et al., 2005; Grosell et al., 2007). 239 

Although sticklebacks are normally kept in fresh water, routine addition of 0.5-1 % salt water 240 

(aquarium or marine grade) inhibits some infections (e.g. Cresko et al., 2004; Bernhardt et al., 241 

2006; Schluter, 2016). Freshwater captured sticklebacks are exceptionally salt tolerant, even 242 

tolerating sea water levels (3% salt), by means of differential gene expression; particularly 243 

those associated with hypertension including MAP3K15 (Wang et al., 2014). Care should be 244 

taken to adjust salinity levels gradually over a period of several days to avoid osmotic shock. 245 

Aeration to each tank is often provided by means of an air stone or filter. The physiological 246 

temperature range of sticklebacks is 0-34.6°C (Jordan and Garside, 1972; Wootton, 1984b); 247 

fish in our laboratories are typically maintained between 10-20°C, 15-18°C being optimal 248 

(e.g. Cresko et al., 2004; Barber, 2005; Scharsack and Kalbe, 2014; Kalbe et al., 2016). 249 

Lower (5-7°C) and warmer (18-20°C) temperatures are often used to induce a winter- or 250 

summer-like state (Bakker and Milinski, 1991; Barber and Arnott, 2000; Katsiadaki et al., 251 

2002b; Kalbe and Kurtz, 2006; Hopkins et al., 2011; Eizaguirre et al., 2012b). Fish exposed 252 

to lower temperatures display growth rates that can be up to 60% slower (Lefébure et al., 253 

2011), whereas those at temperatures above 20°C are subject to higher stochastic mortality. 254 

Sticklebacks are typically kept on a summer 14-16 h light: 8-10 h dark cycle (e.g. Barber, 255 

2005; MacNab and Barber, 2012; Scharsack and Kalbe, 2014), which is altered to induce 256 

breeding (see Section 3.4).  257 

 258 

Adult sticklebacks are most commonly fed on live, frozen or freeze-dried bloodworm (larvae 259 

of the non-biting midge in the Family Chironomidae), Tubifex spp. (also commercially 260 

referred to as bloodworm) or Daphnia spp. The preferred laboratory food is frozen 261 

bloodworm, which is easily stored and the most nutrient dense (Wouters et al., 2001), but 262 

should be defrosted and rinsed in a strainer before use to maintain water quality. Due to 263 

dietary conservatism (Thomas et al., 2010), wild fish prefer live food and may not feed 264 

immediately after capture but will begin eating defrosted bloodworm after 48 h. Commercial 265 

flake food can be used to supplement the diet, particularly if used during fish rearing (e.g. 266 
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Katsiadaki et al., 2002a). Optimal diets for stickleback fry are outlined in Table 1. 267 

Precautions should be taken with live food that may contain parasites (e.g. copepods are the 268 

intermediate host for Schistocephalus solidus and Camallanus lacustris), although laboratory 269 

culture and gamma irradiated food will remove many of these risks. For experimental 270 

protocols, sticklebacks can be isolated in tanks at 1 fish/L, with 90% water changes at least 271 

every 48 h to prevent increased ammonia and nitrite levels (e.g. de Roij et al., 2011). 272 

Chemical cleaning products, particularly those containing chlorine, should be avoided or 273 

chosen carefully as they may impact parasite infections and fish health (Brungs, 1973; Finlay, 274 

1978). 275 

[Insert table 1 here] 276 

3.4 Breeding sticklebacks in vivo and in vitro 277 

Breeding sticklebacks has a major advantage in that it can produce naïve fish that are free 278 

from macroparasite infections, mitigating the risks associated with uncontrolled infections; 279 

however, it is time consuming and resource demanding. Females carrying eggs are 280 

identifiable by their swollen abdomens, sharply angled in the region of the cloaca, sometimes 281 

with a single egg protruding from the cloaca. Male stickleback breeding condition is apparent 282 

when the eye sclera is blue and the jaw and abdomen are bright orange-red (Wootton, 1984c). 283 

Photoperiod is considered an important stimulus in stickleback breeding, although this is 284 

dependent on the latitudinal origin of each fish population (Yeates-Burghart et al., 2009). 285 

Sticklebacks are typically exposed to a winter light cycle (8 h light: 16 h dark) for 2-3 286 

months, before the length of daylight is increased to a summer light cycle (15-16 h light: 7-8 287 

h dark) (Wootton, 1976; Bakker and Milinski, 1991; Barber and Arnott, 2000; Katsiadaki et 288 

al., 2002b; Kalbe and Kurtz, 2006; Hopkins et al., 2011); although Wootton (1984c) 289 

describes additional light cycles to induce reproduction. Temperature is also a major factor in 290 

inducing breeding condition (Borg, 1982; Sokołowska and Kulczykowska, 2009). We 291 

suggest a summer light cycle (see above) and a temperature of 18-20°C to be the most 292 

conducive for bringing fish into breeding condition. For both in vivo and in vitro breeding in 293 

the laboratory, a male and low density of females can be initially separated by sex in a tank 294 

divided with a mesh net, thus allowing reciprocal visual and chemical stimulation without 295 

direct contact. If males and females are housed in the same tank for in vitro breeding, the 296 

most gravid individuals are selected for fertilisation, and/or any males that become aggressive 297 

separated or euthanised for fertilisation. Alternatively, a female enclosed in a water filled 298 
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transparent container can be placed into a tank containing males twice daily for 299 

approximately 30 min (e.g. Barber and Arnott, 2000). The fish should be fed at least 2-3 300 

times a day on bloodworm; unrestricted feeding will also allow the sticklebacks to 301 

compensate for infection (Barber et al., 2008). Extra care should be taken to clean these tanks 302 

regularly, as a result of extra food waste and faeces. 303 

 304 

Breeding in vivo is a common practice that does not require euthanasia of fish: eggs and fry 305 

are often raised in hatcheries to inhibit parasite transmission (e.g. Aeschlimann et al., 2003; 306 

Frommen and Bakker, 2006; Kalbe and Kurtz, 2006; Kim and Velando, 2015). All aquaria 307 

should be equipped with environmental enrichment, such as gravel, rocks and pipes or plant 308 

pots for refugia. Males must be provided with a submerged Petri dish containing aquarium-309 

grade sand or gravel and 50-100 cotton threads (5 cm long), which they use for nest building 310 

(e.g. Kalbe and Kurtz, 2006; Little et al., 2008; Hopkins et al., 2011; Morrell et al., 2012). 311 

Alternatively, pondweed and other natural nest building material can be provided (see 312 

Jakobsson et al., 1999; Katsiadaki et al., 2002b; Östlund-Nilsson and Holmlund, 2003), but 313 

this may introduce unwanted pathogens or plant growth into the tank. Once the nest is built, 314 

once or twice a day the most egg bound female is introduced into the male tank for 30 min; if 315 

breeding does not occur within this period it is unlikely to do so. Stickleback courtship goes 316 

through a series of stages (see Wootton, 1984c; Östlund-Nilsson et al., 2006), then after the 317 

female has laid eggs she will swim out of the nest and the male will immediately enter, 318 

fertilise the eggs and proceed to chase away the female. At this stage, the female is removed 319 

from the tank and the male left to raise the clutch of eggs until they hatch or the eggs are 320 

removed into a hatchery (e.g. Barber and Arnott, 2000; Kalbe and Kurtz, 2006; Pike et al., 321 

2009). The use of a hatchery reduces the likelihood of pathogen transmission between the 322 

parent and offspring. The male may be used again for breeding by supplying it with more 323 

nest building material allowing generation of half-siblings.  324 

 325 

For in vitro breeding, the female is stripped of eggs, typically using a gloved hand dipped in 326 

Stress Coat® (API Fishcare), by gently squeezing the abdomen of a gravid female, moving 327 

fingers posteriorly from the pectoral girdle to the cloaca, and allowing the eggs to be 328 

collected in a 25 mm sterile Petri dish. Hanks’ solution without phenol red (Hank’ balanced 329 

salt solution, HBSS) may be added to the Petri dish to irrigate the eggs but this can reduce 330 

fertilisation rates (see Table 2). The eggs are released easily if the female is fully gravid, if 331 

not, the female should be replaced for a further 24 h to prevent damage by excessive force. 332 
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The released eggs should form a clump if fully developed, if the egg mass dissociates then 333 

they should be discarded. Using an approved euthanization procedure (see Section 3.1), 334 

sperm is collected from a male in breeding condition. An incision is made from the pelvic 335 

girdle cutting posteriorly, or at the anus cutting anteriorly, and a second incision just behind 336 

the operculum, pulling the flap off tissue back to expose the gut. An incision in the vas 337 

deferens is then made to remove the testes (Figure 1), which should be placed in sterile HBSS 338 

solution.  339 

 340 

Sperm may be stored by shredding the testes into multiple pieces using forceps, releasing the 341 

sperm into a small dish of HBSS or adjusted Ginsburg’s ringer solution and transferring it to 342 

an Eppendorf microtube containing HBSS. The sperm can then be stored at 4°C for 2-3 days 343 

with HBSS or 2 weeks in Ginsburg’s solution if it is refreshed after 7 days (see Schluter, 344 

2016 for Ginsberg's). Large testes can be cut into 2-3 sections using a sterile blade and the 345 

egg mass divided using artists’ fine paint brushes in order to perform multiple fertilisations 346 

and produce half siblings (Barber and Arnott, 2000). Similarly, sperm from different males 347 

can be combined for sperm competition assays (Kaufmann et al., 2015; Mehlis et al., 2015). 348 

Fertilisations are carried out by stirring the shredded testes around the egg mass or adding a 349 

portion of the stored sperm; the testes are then removed after a few minutes replacing the lid 350 

of the Petri dish. Testes may also be macerated in 300 μl of HBSS and 50 μl added to a ‘dry’ 351 

Petri dish containing eggs for fertilisation; maceration can be conducted using a 40 μm cell 352 

strainer to avoid contamination with the tissue (Kaufmann et al., 2014). After 30 min at 15°C, 353 

the eggs can be checked for successful fertilisation, as indicated by separation of the inner 354 

and outer membranes, using a low power microscope (x10-60). Cell division should begin 355 

within 45-60 min, after which the egg mass is transferred to a hatchery (described below). 356 

Breeding in vitro is more reliable than in vivo breeding, requiring less time, and allows 357 

generation of maternal half siblings (e.g. Barber and Arnott, 2000; Pike et al., 2009; de Roij 358 

et al., 2011; MacNab and Barber, 2012). 359 

[Insert Figure 1] 360 

[Insert table 2 here] 361 

3.5 Hatchery 362 
For the hatchery, a small tank is used (20-30 x 40-50 x 10-20 cm deep) containing Hatchery 363 

Water (Table 2), which inhibits bacterial, fungal and oomycete growth, particularly 364 

Saprolegnia declina (e.g. Barber and Arnott, 2000; Pike et al., 2009). Methylene blue fades 365 
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over time and should be replenished until the water is again a pale blue. Malachite green, at a 366 

concentration of 0.1 ppm, may be used as an alternative preventative measure (e.g. Kalbe and 367 

Kurtz, 2006). Hatcheries should be cleaned and re-made every 2-3 weeks to reduce infection 368 

risk. Newly fertilised eggs derived from in vivo or in vitro breeding can be placed in the 369 

hatchery within plastic cups suspended from the edge of the tank with the rims out of the 370 

water (Figure 2). The bottom of each cup is replaced with a fine mesh (0.5 mm) so that the 371 

eggs are suspended with sufficient water circulation. The mesh can be sandwiched between 372 

two cups or attached to a cup with aquarium silicone sealant. Air stones positioned under the 373 

cups provide oxygen and water circulation, but fine streams of bubbles that cause the egg 374 

mass to float and dry out must be avoided. Eggs will hatch in 7-8 days at 15°C, after which 375 

the cups are transferred and suspended from the edge of a standard 100 L tank containing a 376 

low salt concentration and methylene blue to inhibit infection of the fry (see Table 2). If eggs 377 

become infected with S. declina, the infected egg batch is removed, and all remaining eggs in 378 

the hatchery can be treated with malachite green (see low concentration bath; Section 5) (e.g. 379 

Barber and Arnott, 2000). Newly hatched fry fall through the mesh or can be tilted out of the 380 

hatching cups. The fry initially sink to the tank bottom where they remain for 1-3 days before 381 

establishing neutral buoyancy and they will then shoal in tank corners or around 382 

environmental enrichment. To prevent young fry being drawn into tank filters, they should be 383 

covered in a mesh or sponge and run at the lowest setting, or turned off entirely until 1-2 384 

weeks post-hatching. Newly emerged fry are fed as indicated in Table 2 (e.g. Barber, 2005; 385 

Kalbe and Kurtz, 2006; de Roij et al., 2011; Schluter, 2016). 386 

[Insert Figure 2 here.]  387 

4.0 Common Stickleback Parasite Cultures 388 

Here we provide updated culture methods for the parasites most commonly used in 389 

stickleback research that cover a broad range of phyla. Although not covered here, we 390 

recommend LaBauve and Wargo (2012) for information on Pseudomonas aeruginosa culture 391 

and Nielsen and Buchmann (2000) for Ichthyophthirius multifiliis culture.   392 

4.1 Argulus foliaceus 393 

4.1.1 Introduction 394 
Argulus foliaceus (Linnaeus, 1758) is an ectoparasitic crustacean of the sub-class Branchiura 395 

(Figure 3 A-C). It is a generalist parasite with a widespread distribution across much of 396 

Europe and is recorded on most freshwater fishes including: common carp (Cyprinus carpio), 397 

bream (Abramis brama), brown trout (Salmo trutta), pike (Esox lucius), rainbow trout 398 
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(Oncorhynchus mykiss) and roach (Rutilus rutilus) in addition to sticklebacks (Gasterosteus 399 

spp.) (see Bower-Shore, 1940). According to Kearn (2004), Argulus foliaceus may parasitise 400 

any freshwater British fish species. At high infection intensities, major fish stock losses have 401 

resulted in the closure of some fisheries (Northcott et al., 1997; Gault et al., 2002). When 402 

attaching to the host A. foliaceus makes use of circular sucking disks (see Figures 3 and 4), 403 

with contraction of disk muscles resulting in adhesion (Møller et al., 2008). Alternate 404 

relaxation and contraction of these two disks allows the parasite to move around the host’s 405 

surface. Further support is provided by a series of spines on the underside and edges of the 406 

carapace (Figure 4A). Individual A. foliaceus have two compound eyes for vision alongside 407 

olfaction and mechanoreceptors used for ambush detection of the host in light conditions 408 

(Mikheev et al., 2000). This behaviour switches in the dark to a ‘cruising search strategy’ 409 

accompanied by increased swimming speed, allowing the parasite to cover an area 3-4 times 410 

greater (Mikheev et al., 2000). Argulids feed using a stylet (Figure 4A) and proboscis (Figure 411 

4B), the latter possessing serrated mandibles surrounding the mouth. During feeding, the 412 

spine-like stylet is inserted into the host’s skin. Whilst the role of the stylet is still unclear, it 413 

is thought to involve injection of cytolytic substances that aid breakdown of tissues 414 

(Hoffman, 1977; Walker et al., 2011; Møller, 2012). This action with the rasping mouthparts 415 

and grazing behaviour of the parasite can inflict considerable damage to the skin of infected 416 

fish, particularly during heavy infection. Partly because of its feeding mechanism, A. 417 

foliaceus may act as a vector for viruses, bacteria and flagellates, including Spring Viremia 418 

Carp Virus (Ahne, 1985; Ahne et al., 2002). Depending on fish species, argulids will detach 419 

from their host and spend some time in the water column (Mikheev et al., 2015).  420 

[Insert Figure 3 & 4] 421 

Egg-laying of argulids is seasonal in the wild, being most active between July and August, 422 

but can occur all year round in the laboratory (Pasternak et al., 2000; Harrison et al., 2006). 423 

The first life stage is the nauplius, which depending on Argulus spp., develops to the 424 

metanauplius or first pre-adult stage prior to hatching (some authors refer to these stages as a 425 

‘copepodids’ because of the historical inclusion of the Argulus genus in the Copepoda 426 

subclass). After hatching, 7 pre-adult stages occur before adulthood (Hoffman, 1977). Males 427 

are generally smaller than females and both moult frequently once sexually mature. Once 428 

adult, sexes can be easily distinguished through examination of the abdominal lobes (Fryer, 429 

1982). 430 
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4.1.2 Source, culture and infection 431 
All life stages of A. foliaceus can be maintained in the laboratory: although the methodology 432 

outlined below refers specifically to this species, it probably applies to most Argulus species 433 

(e.g. A. coregoni see Hakalahti et al., 2004).  434 

 435 

As a generalist parasite A. foliaceus may be sampled from numerous freshwater fish species, 436 

although carp are a good source in the UK. Individual lice should be sexed, males have a 437 

larger and darker region defining the testes (Figure 3A), while the abdominal lobes of 438 

females possess small black spermathecae. In gravid females, the pale eggs (Figure 3B) may 439 

also be visible within the ovary running along the underside of the parasite. Although adult 440 

female A. foliaceus are generally too large for sticklebacks to eat (see Figure 3C), the 441 

swimming style makes them vulnerable to predation and fish will readily attack detached 442 

individuals. Therefore, abundant refugia (plant pots, fake or real weed, netting and/or plastic 443 

pipes) are necessary for shelter. Reduced lighting can also help reduce predation of parasites 444 

and may aid egg laying.   445 

 446 

Infections with all A. foliaceus life stages can be performed by anaesthetising a stickleback in 447 

0.02% MS222, transferring the fish to 100 ml of dechlorinated water and adding argulids. 448 

Alternatively, argulids can be allowed to infect fish naturally (e.g. Ruane et al., 1999; 449 

Forlenza et al., 2008; Kar et al., 2015); although we suggest placing the fish in the dark and 450 

adding refugia to reduce predation, which works well with metanauplii and pre-adults. To 451 

improve attachment, argulids can be starved for up to 24 h before exposure to a potential 452 

host. 453 

 454 

For A. foliaceus breeding, infected fish are kept at 15-25°C (optimally 20°C), with one adult 455 

male and female Argulus per host; temperatures below 8-10°C cause egg laying to cease 456 

(Hoffman, 1977; Pasternak et al., 2000; Gault et al., 2002; Harrison et al., 2006; Taylor et al., 457 

2009). Mating occurs on the host and then the female detaches to lay eggs, often in shaded 458 

areas on a hard substrate, such as the underside of rocks, stones or wood (Pasternak et al., 459 

2000; Taylor et al., 2009; Sahoo et al., 2013). The eggs are laid in 2-4 rows with between 20 460 

and 300 eggs per string (Figure 5A). Each egg is 0.3-0.6 mm in length and coated in cement, 461 

which anchors it firmly to the substrate. Tanks should be regularly checked for eggs to 462 

prevent unwanted infections when nauplii hatch. Eggs laid directly on the walls or bottom of 463 

the tank can be collected, but it is easier to transfer the infected fish to a new 1 L pot, as the 464 
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eggs can be damaged even if carefully removed using a cell scrapper. Alternatively, fertilised 465 

female argulids can be removed from the fish when they develop large ovaries and placed 466 

into a Petri dish (90 mm dia.) containing dechlorinated water for 24 h allowing them to lay 467 

their eggs.  468 

 469 

Egg hatching time varies with parasite species and temperature (Table 3). Argulus spp. eggs 470 

can be stored at 4-5oC, which arrests embryo development, causing the nauplii to go into an 471 

‘over winter’ state (Shimura, 1983; Gault et al., 2002; Harrison et al., 2006; Taylor et al., 472 

2009). Photoperiod may also alter hatching in A. siamensis (see Bai, 1981), but has not been 473 

fully explored in other species. As a result of the temperature range and potential photoperiod 474 

required for hatching, a domestic fridge (4°C) provides ideal storage conditions. It is 475 

unknown how long eggs can be maintained in an arrested state, but successful hatching of 476 

eggs up to 4 months old has been achieved in our Cardiff aquarium. To induce hatching, eggs 477 

are transferred to a 1 L container of freshwater with aeration (Table 3). Egg development can 478 

be monitored by examining the egg string under a low power microscope (x10-40) the 479 

conspicuous eye spots of the developing metanauplii are easily seen, along with increased 480 

movement prior to hatching. Once hatched the metanauplii (Figure 5B) can survive off the 481 

host for 2-3 days. The metanauplii and pre-adults can be kept on sticklebacks (maximum of 482 

5) or carp (20 max. on a 20 g fish). Infected fish should be maintained at 15-20°C; warmer 483 

temperatures will increase A. foliaceus growth rate but also stochastic fish mortality. To 484 

reduce pathology when argulids reach the later pre-adult and adult stages, all but two argulids 485 

should be removed, by gently encouraging them off the fish with a pipette tip or blunt 486 

forceps, and then excess detached argulids can be used to infect other fish. 487 

[Insert Figure 5 here] 488 

[Insert table 3 here] 489 

The intensity of Argulus spp. is simply determined by counting the number present on the 490 

fish (e.g. Saurabh et al., 2010; Kar et al., 2015), sometimes adjusted for fish mass (Ruane et 491 

al., 1999). Given the range of sizes that this parasite can attain at different life cycle stages, 492 

measuring mass or size of the parasite is also beneficial. The size of the lesions (characterised 493 

by thinning of the epithelium, oedema and haemorrhaging) produced by Argulus spp. and 494 

behavioural lethargy of the fish may be useful measures of infection pathology (see Walker et 495 

al., 2004). 496 
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4.1.3 Immunology 497 
Argulids induce a consistent innate response with the addition of an adaptive response 498 

approximately 7-10 days post-infection. The immunology of A. foliaceus infection has been 499 

little studied; there are however some closely related species for which the host immune 500 

phenotype has been documented. The majority of these studies have focused on sea lice of 501 

the genus Lepeophtheirus which, despite belonging to a different sub-class of the Copepoda, 502 

exhibit a similar life cycle to argulids. Typically, these studies have found constant increases 503 

in expression of il-1β, tnf-α and MHC II throughout the course of the experiment (9-40 days 504 

post-infection) (Fast et al., 2006a, b). Over a 6 day period A. japonicus, which infects 505 

common carp, produces a similar response to that of sea lice including up-regulation of tnf-α 506 

and the chemokines CXCa and CXCR1 in the skin (Forlenza et al., 2008). Infections of rohu 507 

(Labeo rohita) with A. siamensis also demonstrate increased expression in the skin, 508 

particularly of innate responses, including tnf-α (although later at 15 days-post infection), 509 

lysozyme and natural killer cell enhancing factor (Saurabh et al., 2011; Kar et al., 2015). Kar 510 

et al. (2015) demonstrated a further role for adaptive immunity as IgM and β2M also appear 511 

to be upregulated in the head kidney, although not consistently, from 0.5 to 15 days post-512 

infection. Of further interest is the downregulation of TLR22 early in infection, complement 513 

and α2M more or less consistently across experiments, demonstrating that A. siamensis has 514 

the ability to modulate the immune system and other biological responses (Saurabh et al., 515 

2010, 2011; Shailesh and Sahoo, 2010; Kar et al., 2015). Downregulation of the coagulation 516 

inhibitor α2M suggests a strategy that allows the argulid to inhibit clotting, making feeding 517 

easier. A key problem interpreting these studies is the harvesting of different organs and 518 

tissues, (skin, head kidney, kidney, serum and/or liver) for extraction of genetic material or 519 

immunological assays. While harvesting of the skin was performed in the majority of these 520 

studies, the range of other tissues taken and differences in methodology makes correlations 521 

between studies difficult to assess.  522 

4.2 Camallanus lacustris  523 

4.2.1 Introduction 524 
The nematode Camallanus lacustris (Zoega, 1776) is a parasite of predatory fish, primarily 525 

perch but also pike, eels, and sticklebacks as a paratenic host (Kalbe et al., 2002; Krobbach et 526 

al., 2007). As adults, camallanids attach to the blind sacs and anterior intestine causing an 527 

inflammatory reaction (Meguid and Eure, 1996) and exhibit a seasonally reproductive life 528 

cycle with first stage larvae (L1s) only produced during the summer months (Skorping, 1980; 529 
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Nie and Kennedy, 1991). Gravid female nematodes may contain several thousand active L1 530 

larvae, which are free moving, visibly coiling and uncoiling in the parental uterus. These 531 

larvae are shed from the vulva into the environment within fish faeces. Free-living L1s are 532 

viable in water for 12 days at 22°C and 80 days at 7°C (Campana-Rouget, 1961). They are 533 

ingested by a range of Cyclopidae copepods that act as intermediate hosts in which the larvae 534 

develop into L2s after 3 days at 25°C or 5 days at 20°C. For C. lacustris the second moult 535 

into the L3 stage occurs after 6 days at 25°C or 10-12 days at 20°C (Campana-Rouget, 1961). 536 

This is similar for other species within the genus, with C. oxycephalus reaching the L3 nine 537 

days post-infection at 25°C (Stromberg and Crites, 1974, 1975). Only at the L3 stage, coiled 538 

in the haemocoel of the copepod after migration from the digestive tract (De, 1999), is the 539 

camallanid larva infective to the definitive host on ingestion of the intermediate host 540 

(Moravec, 1969). These L3 larvae are relatively large within the haemocoel and at high 541 

intensities (>3 worms per copepod) copepod survival is reduced in a sex dependant manner 542 

(Benesh, 2011); smaller copepod species likely suffer reduced survival at lower infection 543 

intensities. Infected copepods are at a greater risk of predation upon attainment of C. lacustris 544 

infectivity (Wedekind and Milinski, 1996; Hafer and Milinski, 2016). Direct transmission 545 

from the copepod to the definitive host may occur by ingestion (Chubb, 1982), although more 546 

likely the copepods are first eaten by planktivorous fish, such as sticklebacks. When these 547 

paratenic hosts are predated, the camallanid reaches adulthood, producing in utero L1s within 548 

69 days (Chubb, 1982). 549 

4.2.2 Source, culture and infection 550 
Gravid C. lacustris adults can be collected from the intestinal tract of perch (Perca fluviatilis) 551 

during summer in the UK; although Salmonidae, Gadidae, Esocidae and Siluridae may also 552 

act as hosts (Moravec, 1971). Parasites attach between the intestinal folds and may be easily 553 

removed by means of forceps. C. lacustris may be distinguished from other intestinal 554 

nematodes by the presence of a scallop-shaped buccal capsule and scheloritised tridents 555 

(Moravec, 2013) (Figures 6A & B). 556 

 557 

The characteristic red adult Camallanus worms (Figure 6A) survive for 1-2 weeks in vitro at 558 

4°C in 50% PBS. L1s can be removed from the adult worm (Figure 6C), held in a watch glass 559 

with 50% PBS, by puncturing the uterus with watchmakers forceps and allowing uterine 560 

contractions to force out the larvae. The L1s are visible using a dissection microscope (x10-561 

60) and are conspicuous due to their high motility (Figure 6D), which is likely an adaption to 562 
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increase predation. L1s survive for a minimum of 2-3 days in vitro at 4°C in tank water. They 563 

can be transferred using a Caenorhabditis elegans worm pick or P2 pipette to a non-treated 564 

culture dish or watch glass with lid containing copepods from the Family Cyclopidae. For 565 

larger infections 100 copepods are kept in beakers (250-500 ml) with 500 L1 larvae for ~10 566 

days, changing the water 3 days post-infection. Larvae within the copepod should be counted 567 

before infection (see below). Previous experiments have used many copepod species as hosts 568 

for camallanids, including Mesocyclops, Thermocyclops (see Bashirullah and Ahmed, 1976), 569 

Macrocyclops (see Krobbach et al., 2007), Acanthocyclops (see Chubb, 1982) and Cyclops 570 

spp. The larger of the Macrocyclops spp. have been used as a host for up to six larvae of 571 

Camallanus lacustris (see Krobbach et al., 2007). Smaller copepod species may be less able 572 

to survive such a high infection. Female copepods are also subject to increased mortality at 573 

high infection intensities in comparison to males (Benesh, 2011).    574 

[Insert Figures 6 A-D here] 575 

Macrocyclops spp. should be fed on Artemia spp. (see Krobbach et al., 2007) although 576 

species such as Cyclops strenuus survive well on a daily mixture of Spirulina and yeast 577 

(approximately 1 ml per 10 L tank of copepods; see Table 2). For copepods kept in culture 578 

dishes, half their water should be removed and replaced with a dilute feed mixture (100 μl in 579 

100 ml) every 2-3 days.  580 

 581 

Development of Camallanus lacustris into the L3 takes approximately two weeks at 15-18°C 582 

on a 16:8 h light: dark cycle. Infectivity of the L3 can be checked using a recently deceased 583 

host, squashing the copepod onto a glass slide with a cover slip and a drop of water and 584 

viewing under a compound microscope (x40). Live copepods may also be checked 585 

individually by putting them on a slide with as little water as possible and rapidly counting 586 

the larvae under a compound microscope; this also allows dose determination (e.g. Eizaguirre 587 

et al., 2012b; Lenz et al., 2013). Striations on the buccal capsule are characteristic of the L3 588 

(Figures 6A & B), but may only be visible through microscopic examination of squash 589 

preparations of the whole copepod host; the buccal capsule itself is apparent first in the L2 590 

larvae. Prior to infection, sticklebacks should be acclimated to feeding on copepods. To infect 591 

sticklebacks with C. lacustris, the fish are starved for 24 h and then infected copepods are 592 

released into a crystallising dish containing the intended host. The optimal number of 593 

camallanids to feed each stickleback is six, which will give an infection rate of 40-50% 594 
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(Krobbach et al., 2007) with C. lacustris intensity measured by the number of individuals in 595 

the host’s gut (e.g. Krobbach et al., 2007; Lenz et al., 2013). 596 

4.2.3 Immunology 597 
The cellular immunological responses of the stickleback to C. lacustris infection are largely 598 

unknown. However, a role has been described for the MHC, pivotal for activation and control 599 

of the adaptive immune response by presenting parasite- and self-antigen to T-cells. 600 

Eizaguirre et al. (2012b) identified a link between C. lacustris infection and a shift in 601 

adaptive MHC allele frequency with selection for specific haplotypes conferring resistance in 602 

the offspring of parents exposed to the infection. Such a rapid change in frequency highlights 603 

the important role of the adaptive immune response in this infection system. 604 

Granulocyte/lymphocytes ratios were elevated during high intensity parasite infections, but 605 

with no elevation in respiratory burst and leucocyte responses (Krobbach et al., 2007).  606 

 607 

Within vertebrates the mucosal-associated lymphoid tissues direct immune responses at 608 

mucosal sites including the gut. The teleost gut-associated lymphoid tissue contains two 609 

predominate immune cell populations; lamina propria leukocytes (including granulocytes, 610 

macrophages, lymphocytes and plasma cells) and intraepithelial lymphocytes (T and B-cells 611 

found among epithelial cells) (see Rombout et al., 2014; Parra et al., 2015). In trout the T-cell 612 

receptor β was found to be relatively diverse and polyclonal, in comparison to the restricted 613 

diversity observed in mammals, an attribute possibly linked to the lack of Peyer’s patches and 614 

mesenteric lymph nodes in fish (Bernard et al., 2006). Additionally, while both IgM and IgT 615 

are found within the gut-associated lymphoid tissues IgT+ B-cells make up the predominate 616 

cellular repertoire, particularly in response to intestinal parasites (Zhang et al., 2010). Given 617 

the high degree of conservation in the vertebrate immune system, it is possible that a 618 

gastrointestinal nematode infection in teleosts will, as in mammals, stimulate a response 619 

involving T-helper cell type 2 (TH2) cells. In mammals TH2 responses are characterised by 620 

increased expression of signature cytokines such as IL-4, IL-5 and IL-13 resulting in 621 

eosinophilia, mast cell activity, IgE production and mucosal changes (Jackson et al., 2009). 622 

While the teleost immune system is relatively understudied, TH2-like cells and functional 623 

responses (involving teleost il4/il13) have been observed in zebrafish and salmonids (see 624 

Balla et al., 2010; Takizawa et al., 2011; Hammarén et al., 2014) and might be predicted to 625 

also occur in the stickleback.  626 
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4.3 Diplostomum spp.  627 

4.3.1 Introduction 628 
Trematodes of the genus Diplostomum (von Nordmann, 1832) are some of the most common 629 

parasite infections in sticklebacks (e.g. Pennycuick, 1971; Karvonen et al., 2013, 2015), 630 

especially for populations inhabiting lentic environments (Kalbe et al., 2002). Historically, 631 

three Diplostomum species have been frequently recorded; D. spathaceum (Rudolphi, 1819), 632 

D. pseudospathaceum (Niewiadomska, 1984) and D. gasterostei (Williams, 1966). Molecular 633 

approaches, however, have revealed an expanding assemblage of Diplostomum species 634 

complexes spanning the geographic range of sticklebacks (e.g. Locke et al., 2010; Georgieva 635 

et al., 2013; Blasco-Costa et al., 2014). Mitochondrial genomes and nuclear rDNA sequences 636 

for D. spathaceum and D. pseudospathaceum (see Brabec et al., 2015) now provide tools for 637 

landscape genetic mapping of these parasites. 638 

 639 

Diplostomum utilises a complex, three stage life cycle comprising freshwater snails (Family 640 

Lymnaeidae) as the first intermediate host, fish as second intermediate hosts and a range of 641 

piscivorous birds as definitive hosts (e.g. common gulls Larus canus; see Karvonen et al., 642 

2006a). Sticklebacks obtain Diplostomum infections by encountering free-swimming 643 

cercariae (Figure 7A) shed from infected snails, commonly of the genera Lymnaea or Radix. 644 

Whilst Diplostomum are typically described as eye flukes in the fish host, forming 645 

metacercariae (Figure 7B) in the lens, vitreous humour, and/or retina; specific lineages may 646 

also be present in brain tissue (see Blasco-Costa et al., 2014; Faltýnková et al., 2014). 647 

Although not covered here, Rieger et al. (2013) provide details for maintaining the parasite 648 

through its complete life cycle including the intermediate and definitive hosts Lymnaea 649 

stagnalis and the herring gulls (Larus argentatus) respectively. 650 

[Insert figures 7 A&B here] 651 

4.3.2 Source, culture and infection  652 
If an infection of Diplostomum has been identified in a stickleback population, it is highly 653 

likely that Lymnaea or Radix snails from the same habitat will be infected. The prevalence of 654 

Diplostomum, however, varies considerably between seasons, localities and snail species (e.g. 655 

Karvonen et al., 2006b, c; Rieger et al., 2013; Faltýnková et al., 2014). To optimise 656 

Diplostomum collection, individual snails of larger size classes (e.g. Lymnaea stagnalis shell 657 

length > 40 mm) should be selected during late summer/early autumn to coincide with high 658 

prevalence and fully developed cercarial infections (Karvonen et al., 2006b). Infected snail 659 

populations can be maintained in laboratory aquaria containing continuously aerated water 660 
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(dechlorinated tap or filtered from source locality), fed ad libitum on washed lettuce in 661 

controlled climate facilities (reflecting source environment or 18 h light: 6 h dark cycle, ca. 662 

15°C). Light stress is commonly used to stimulate cercarial release, by placing snails 663 

individually into beakers of water (ca. 100 ml) at 10-20°C under a light source (e.g. 664 

Scharsack and Kalbe, 2014). Cercariae will be shed within 2-4 h, provided that fully 665 

developed Diplostomum cercarial infections are present, at a rate of 400-2400 cercariae/ h 666 

depending on temperature (Lyholt and Buchmann, 1996). 667 

 668 

Identification of cercariae released from snails is necessary since aquatic snails may harbour 669 

single or multiple infections of other trematode species. Whilst Diplostomum cercariae can be 670 

distinguished from other cercariae based on their morphology and resting posture (see 671 

Niewiadomska, 1986) at x100 under a compound microscope, molecular techniques are 672 

essential to identify species and/or lineages of Diplostomum. Multiple lineages may be 673 

present in natural snail populations, which vary in their capacity to infect sticklebacks or 674 

other sympatric fish species (see Blasco-Costa et al., 2014; Faltýnková et al., 2014).  675 

 676 

Sticklebacks can be infected individually in ~ 1 L water containing freshly emerged 677 

cercariae; typical exposure doses range from 20-220 cercariae per fish (Brassard et al., 1982; 678 

Lyholt and Buchmann, 1996; Kalbe and Kurtz, 2006; Scharsack and Kalbe, 2014; Haase et 679 

al., 2016) to 5,000-10,000 for other fish species (Sweeting, 1974; Rintamäki-Kinnunen et al., 680 

2004). Whilst the parasite rapidly reaches the ocular tissues (within 24 h post-infection; 681 

Chappell et al. 1994), D. pseudospathaceum metacercariae establishment is best assessed 682 

after 1 week, since low numbers of early infections may be overlooked (Rauch et al., 2006). 683 

Kalbe and Kurtz (2006) have, however, demonstrated that 2 day and 8 week old 684 

metacercariae may be identified when sticklebacks are exposed to repeated cercarial 685 

infections. Diplostomum spp. infections are determined by counting the number of 686 

metacercariae in the eye tissues but this necessarily involves destructive sampling (e.g. Bortz 687 

et al., 1984; Lyholt and Buchmann, 1996; Kalbe and Kurtz, 2006; Locke et al., 2010; 688 

Scharsack and Kalbe, 2014). 689 

4.3.3 Immunology 690 
The eyes of teleosts are assumed to have the same immune privileged status of mammals (i.e. 691 

no localised immune response; Niederkorn, 2006; Sitjà-Bobadilla, 2008), thus for parasites 692 

invading the eye such as Diplostomum, we assume the immune response is limited to the 693 
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migratory period between epidermal penetration of the cercariae and their arrival in the eye. 694 

Given this short window of vulnerability, it is generally acknowledged that the classical 695 

adaptive response plays no role in resistance against a primary parasite infection (Rauch et 696 

al., 2006). Instead, oxidative burst and reactive oxygen species are thought to be the key 697 

components of the innate immune response against these pathogens. Head kidney lymphocyte 698 

respiratory burst activity is upregulated in fish 1.5 days post-infection but not from 5 days 699 

post-infection (Kalbe & Kurtz, 2006; Scharsack & Kalbe, 2014), while macrophages produce 700 

reactive oxygen species that are capable of killing larval Diplostomum (see Whyte et al., 701 

1989). The phagocytic activity of granulocytes and monocytes has also been cited as 702 

inhibiting Diplostomum migration into the eye (Erasmus, 1959; Ratanarat-Brockelman, 703 

1974). Despite this apparent bias towards the innate response against this parasite, a recent 704 

transcriptomic study identified antibody mediated responses and increased MHC and il-4r 705 

expression (a gene in mammals associated with adaptive helminth resistance) in response to 706 

infection (Haase et al., 2016). Such results support the notion that the innate and adaptive 707 

immune systems cannot be considered in isolation but must be viewed as a fluid and versatile 708 

network (Magnadóttir, 2006). There is also a level of concomitant immunity as sticklebacks 709 

that receive a primary infection of D. pseudospathaceum acquire lower levels of 710 

metacercariae in a secondary infection in contrast to the primary infection (Scharsack & 711 

Kalbe, 2014). In addition, sonicated metacercariae injected into sticklebacks induce antibody 712 

responses capable of providing immunity to subsequent infection (Bortz et al., 1984; Whyte 713 

et al., 1987); suggesting that the adaptive response may play a role in concomitant immunity 714 

if not the primary immune response. 715 

 716 

While the host genotype, particularly that of the MHC, is cited as a major factor in resistance 717 

and susceptibility, the parasite’s genotype is also involved in determining infection outcome, 718 

with differential gene expression in different Diplostomum clones (Haase et al., 2014). As 719 

with MHC experiments that find homozygous individuals to be more susceptible to infection 720 

(see Wegner et al., 2003a, b), infections using a single clone of Diplostomum were less 721 

successful than mixed infections (Haase et al., 2014). Lake ecotype sticklebacks carry heavier 722 

and more diverse infections than their riverine ecotype counterparts (Kalbe et al., 2002; 723 

Scharsack et al., 2007a), with lake fish demonstrating a heightened level of resistance to 724 

Diplostomum infection (Scharsack et al., 2007a; Scharsack and Kalbe, 2014), in part due to 725 

selection within the MHC (Kalbe and Kurtz, 2006; Eizaguirre et al., 2011). In addition, lakes 726 

typically harbour a greater diversity of snails making the presence of the intermediate host 727 
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more likely, but also making a greater range of parasite genotypes available, which may 728 

account for some of the ecotype variation (Karvonen et al., 2012).  729 

4.4 Glugea anomala 730 

4.4.1 Introduction 731 
Glugea anomala (Moniez, 1887) is a microsporidian pathogen that causes white tumour-like 732 

growths, ca. 1-4 mm dia., known as the xenoparasitic complex (Chatton, 1920; Lom and 733 

Dyková, 2005). This complex is formed of many polypoid host cells (Figure 8), in which the 734 

microsporidian replicates and grows, by stimulation of hypertrophic growth of host tissue 735 

(Lom and Dyková, 2005). For G. anomala infecting sticklebacks, the xenoparasitic complex 736 

was re-named the ‘xenoma’ (Weissenberg, 1968). Nutrients are acquired by G. anomala 737 

through production of a hyposome with rhizoids that extend into the host cell cytoplasm 738 

(Lom and Dyková, 2005). Species can be positively identified via ribosomal DNA 739 

sequencing (see Cecile et al., 2000). Infection with G. anomala is linked to a reduction in 740 

feeding optimisation (Milinski, 1984, 1985) as well as exerting a metabolic cost and 741 

increasing the host’s tendency to shoal (Ward et al., 2005).  742 

[Insert figure 8 here] 743 

4.4.2 Source, culture and infection 744 
There are multiple published methods for infection of fish with G. anomala and other 745 

microsporidians (Olson, 1976; Shaw and Kent, 1999; Kurtz et al., 2004; Lom and Dyková, 746 

2005), including Tetramicra brevifilum (see Figueras et al., 1992). It is assumed that G. 747 

anomala is transmitted orally during cohabitation of infected and uninfected fish (Lom and 748 

Dyková, 2005). In theory infection can be achieved experimentally by exposing fish to a 749 

spore suspension produced from infected fish (Kurtz et al., 2004), intraperitoneal, 750 

intramuscular or intravascular injection, and anal or oral gavage (Shaw and Kent, 1999). 751 

Crustaceans, including Artemia salina (brine shrimp) and Corophium spinocorne 752 

(amphipod), may also act as intermediate hosts for G. stephani (see Olson, 1976). However, 753 

preliminary testing of several infection methods in our Cardiff laboratory (oral transmission 754 

of extracted spores in the water column, oral gavage, intramuscular injection, co-habitation of 755 

infected and uninfected fish and exposure of putative intermediate hosts (Artemia salina, 756 

Cyclops strenuous and Daphnia magna to Glugea spores for 48 h) to date, has not resulted in 757 

parasite transmission 90 days post-treatment, despite xenomas reportedly developing 3-4 758 

weeks post-infection (Lom and Dyková, 2005). The intensity of G. anomala can be measured 759 

by the number and size of xenoma visible externally (e.g. Schmahl et al., 1990; Lom et al., 760 
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1995; Dezfuli et al., 2004; Kurtz et al., 2004), internal zenomas may occur and these can be 761 

identified during dissection (e.g.Dezfuli et al., 2004).   762 

4.4.3 Immunology 763 
To date, there is only preliminary data on the immune response to Glugea. There is little or 764 

no detectable host response to the microsporidian until the xenoma is fully developed. 765 

Macrophage aggregates occur around the outside of the xenoma wall with eosinophils and 766 

neutrophils being recruited to reduce the mass of spores within the xenoma (Dezfuli et al., 767 

2004; Lom and Dyková, 2005). Intermediate levels of individual allelic diversity in the MHC 768 

class IIB have been linked with increased G. anomala resistance (Kurtz et al., 2004). 769 

4.5 Gyrodactylus spp.  770 

4.5.1 Introduction 771 
Gyrodactylus species are ubiquitous monogenean parasites of teleosts with over 400 772 

described species (Harris et al., 2008). Identification of species is commonly conducted by 773 

rDNA internal transcribed spacer (ITS) region sequencing supplemented by the 774 

morphological characteristics of the marginal hooks and hamuli (Shinn et al., 2010), although 775 

mtDNA gene sequencing may also be necessary to reveal cryptic species (Xavier et al., 776 

2015). The viviparous nature of their reproductive life cycle means that they are capable of 777 

uncontrolled infrapopulation growth that at high densities become pathogenic (e.g. Scott and 778 

Anderson, 1984; Bakke et al., 1990), although this is limited in most species by thermally-779 

dependent host immune responses (e.g. Bakke et al., 1992; Harris et al., 1998; Lindenstrøm et 780 

al., 2004; Lindenstrøm et al., 2006; Kania et al., 2010) and hosts may seek elevated 781 

temperatures to ‘self-medicate’ (Mohammed et al. 2016).  782 

 783 

Gyrodactylus salaris (Malmberg, 1957) is of particular economic importance as it infects 784 

salmonids and has been the focus of intensive eradication schemes particularly in Norway 785 

since the 1980s (Linaker et al., 2012). As such, G. salaris has a published genome (Hahn et 786 

al., 2014). Studies on salmon are often costly and their fry are particularly sensitive to 787 

stressors (Barton et al., 1986). Therefore, many studies have used model fish, including the 788 

guppy and stickleback (reviews by Cable, 2011; Barber, 2013, respectively) to assess 789 

potential ecological, pathological or immunological effects of these parasites on tropical and 790 

temperate fish species (Bakke et al., 2007). Because the parasites infect the gills, body and/or 791 

fins of the host, and most detached parasites have no swimming ability (a notable exception 792 

being G. rysavji Ergens, 1973 see El-Naggar et al., 2004), transmission typically occurs 793 
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during host contact. Some parasite species, though, may drift or hang in the water column or 794 

attach to the substrate if detached from the host (Bakke et al., 1992; Soleng et al., 1999; 795 

Cable et al., 2002b), adopting a ‘sit-and-wait’ re-infection strategy. In high host density 796 

aquaculture systems, gyrodactylid infections can spread quickly with devastating 797 

consequences. 798 

4.5.2 Source, culture and infection 799 
Stickleback Gyrodactylus spp. may be obtained from research institutions or the wild. The 800 

two common species found infecting sticklebacks are: G. gasterostei (Glaser, 1974) and G. 801 

arcuatus (Bychowsky, 1933); G. alexanderi (Mizelle & Kritsky, 1967) and G. branchicus 802 

(Malmberg, 1964) are rare, whereas other species such as G. salaris or G. pungitii 803 

(Malmberg, 1964) may infect the three-spined stickleback but are not specialists; for a full 804 

list see Harris et al. (2008). Using a dissection microscope with fibre optic illumination, 805 

sticklebacks can be experimentally infected by anesthetizing a donor and recipient fish in 806 

0.02% MS222 and allowing Gyrodactylus worms to cross from one fish to another by 807 

overlapping the stickleback caudal fins. Infections can also be performed by removing 808 

parasites on a fin clip or scale, or gently dislodging the worms from donors using an insect 809 

pin (Buchmann and Bresciani, 1997; Buchmann and Uldal, 1997), and then bringing a known 810 

number of parasites into close contact with a recipient fish. Alternatively, infections can be 811 

performed by co-habitation of recipient and donor fish (e.g. Lindenstrøm et al., 2006; Kania 812 

et al., 2010; Ramírez et al., 2015), but this results in inconsistent starting infection intensities. 813 

For controlled infections, typically one or two worms are added to the caudal fin to initiate an 814 

infection (e.g. Cable et al., 2000; van Oosterhout et al., 2003; Cable and van Oosterhout, 815 

2007; de Roij et al., 2011; Konijnendijk et al., 2013; Smallbone et al., 2016a), but up to four 816 

have been used (Anaya-Rojas et al., 2016).  817 

 818 

To produce an isogenic culture of any Gyrodactylus species, fish are infected with a single 819 

gyrodactylid worm. Several fish should be infected as the Gyrodactylus worms may be at the 820 

natural end of their short life-span. The infected fish are left for a week at 15-20°C to allow 821 

the parasite to reproduce in situ. One fish infected with an isogenic line should be transferred 822 

to a tank with at least three other fish to allow natural transmission and maintenance of the 823 

line. Fish should be kept at densities of one fish per litre for adults or one juvenile (<20 mm 824 

standard length) per 250 ml. To avoid parasite extinction, 2-3 tanks of the culture are often 825 

maintained with at least 4 fish in each, adding new naïve fish in the event of host mortality 826 



 

26 

 

(Schelkle et al., 2009). Additionally, in order that infections do not reach their pathogenic 827 

maximum, every 2 weeks the fish should be screened to count the parasites by anaesthetising 828 

each fish in 0.02% MS222 under a dissection microscope with fibre optic illumination. If 829 

additional tank replicates are needed, 1-2 fish with a total of 40 parasites can be removed 830 

from the screened tank and placed in a fresh tank with sufficient naïve fish to make the 831 

numbers up to four. If there are greater than 40 parasites per fish, the fish should be treated to 832 

prevent mortality (see Schelkle et al., 2009).  Water should be changed regularly, every 48 h 833 

if unfiltered, as nitrates and nitrites can have a detrimental effect on Gyrodactylus survival 834 

(Smallbone et al., 2016b). 835 

 836 

Measuring the infection intensity of some gyrodactylid species is remarkably simple given its 837 

ectoparasitic nature. It is, however, important to note that some gyrodactylid species of the 838 

three-spined stickleback, e.g. G. arcuatus, infect the gills and therefore cannot be counted 839 

without autopsy (Harris, 1982; Raeymaekers et al., 2008). When using a species such as G. 840 

gasterostei, which is predominantly found on the skin and fins (Harris, 1982), the infection 841 

trajectory can be monitored non-invasively (e.g. Buchmann and Uldal, 1997; Cable et al., 842 

2000; Kania et al., 2010; Raeymaekers et al., 2011; Ramírez et al., 2015).  843 

4.5.3 Immunology 844 
Much of the immunological work conducted on gyrodactylids has been performed on 845 

Gyrodactylus salaris infected salmon, particularly the susceptible Norwegian salmon and 846 

resistant Baltic salmon (Bakke et al., 1990; Dalgaard et al., 2003; Lindenstrøm et al., 2006; 847 

Kania et al., 2010). There are some intermediate populations (see Bakke et al., 2004) but 848 

these have not yet been studied immunologically. Like other gyrodactylids there is also 849 

considerable variation among strains (Hansen et al., 2003; van Oosterhout et al., 2006). As 850 

with other parasite systems the MHC plays an important role in Gyrodactylus spp. resistance 851 

(e.g. Eizaguirre et al., 2009). Specific alleles of MHC class IIB genes in guppies, when 852 

present in high copy numbers, afford the host a measure of protection by reducing infection 853 

intensity (Fraser and Neff, 2009; Fraser et al., 2009, 2010). Furthermore, this protection is 854 

ecotype specific: river fish tend to be more resistant to infection than lake fish, probably 855 

because they are exposed to a narrower range of parasites and therefore are able to target 856 

specific parasites (Eizaguirre et al., 2011). 857 

 858 
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Immunity to Gyrodactylus spp. is primarily mediated by a ‘scorched earth strategy’, whereby 859 

parasites are starved of nutrients and exposed to increased expression of host complement 860 

(Buchmann, 1998; Harris et al., 1998; Kania et al., 2010). As such, resistant salmon show no 861 

increase in the mucus secretgogue il-1β while susceptible salmon show a marked increase in 862 

il-1β 24 h post-infection (Lindenstrøm et al., 2006; Kania et al., 2010). Likewise rainbow 863 

trout (Oncorhynchus mykiss), exposed to primary G. derjavini infections and then a 864 

secondary infection 35 days after parasite clearance, demonstrated susceptibility in the 865 

primary infections linked with increased il-1β transcript in the skin while resistant 866 

secondarily infected fish showed no increase in il-1β (Lindenstrøm et al., 2003). 867 

Gyrodactylids feeding on the mucus and epithelium will therefore be at a disadvantage on 868 

any host able to suppress the increase in il-1β production. Indeed, a reduction in the density 869 

of mucous cells is also associated with infection (Buchmann and Uldal, 1997; Dalgaard et al., 870 

2003), however, this relationship may reverse later in infection as the mucous begins to 871 

contain higher concentrations of anthelminthic effectors (Buchmann and Bresciani, 1997). 872 

The major effector associated with resistance is alternatively activated complement present in 873 

both the serum and mucus (Buchmann, 1998; Harris et al., 1998). Immuno-cytochemical 874 

assays demonstrated binding of C3 to the cephalic gland opening, body and hamulus sheath 875 

of the parasite but found no immunoglobulin binding (Buchmann, 1998). Resistant salmon 876 

also have increased il-10, mhc II and serum amyloid A transcript 3-6 weeks post-infection in 877 

the epidermis of infected fins (Kania et al., 2010). The immune response to gyrodactylids can 878 

therefore be separated into two distinct stages: the passive stage where mucus production is 879 

inhibited to restrict parasite population growth and the immunologically active stage where 880 

complement and other effectors reduce the intensity of infection allowing host recovery. In 881 

infections with Gyrodactylus spp. it is therefore possible to infer the point at which the 882 

immune system is most active by virtue of the declining parasite population. For example, on 883 

G. salaris infected Baltic salmon and G. gasterostei infected sticklebacks, population 884 

reduction occurs at 2-3 weeks post infection at 12°C (see Bakke et al., 2002; de Roij et al., 885 

2011; Raeymaekers et al., 2011), although such data may be confounded by the death of 886 

heavily infected fish during this time period.  887 

4.6 Saprolegnia parasitica 888 

4.6.1 Introduction  889 
Oomycetes present a major threat to food security in aquaculture, but also terrestrial food 890 

sources, the most prominent being Phytophthora infestans, which caused the 19th Century 891 
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Irish potato famine (Haverkort et al., 2008). In freshwaters, oomycetes from the genera 892 

Saprolegnia, Achlya and Aphanomyces (Order Saprolegniales, Sub-class 893 

Saprolegniomycetidae) are responsible for significant losses of fish (Jeney and Jeney, 1995; 894 

van West, 2006). As fungal-like heterotrophs they have branching tip-growing mycelia, 895 

typically thicker than fungi at 10 μm diameter, and unlike fungi they have cellulose and only 896 

a little chitin in their cell wall. Chitin synthases are present in the genome but are thought 897 

only to have a role in hyphal tip growth (Baldauf et al., 2000; Guerriero et al., 2010; Beakes 898 

et al., 2012; Jiang et al., 2013). Species identification typically depends on sequencing of the 899 

rDNA Internal Transcribed Spacer (ITS) region (Sandoval-Sierra et al., 2014). A full genome 900 

sequence is available for S. parasitica isolate CBS223.65 (Jiang et al., 2013).  901 

 902 

The Saprolegnia lifecycle, as with other oomycetes, has an asexual stage including the 903 

development of sporangia and zoospores, and a sexual stage resulting in the production of 904 

oospores (see van West, 2006). The asexual stage is the primary method of infecting new 905 

hosts as free-swimming zoospores are released into the environment (Hatai and Hoshiai, 906 

1994; Willoughby, 1994; Bruno and Wood, 1999). The sexual production of oospores is 907 

thought to enhance survival under acute stress conditions, such as temperature extremes or 908 

desiccation, until conditions become more favourable. Some Saprolegnia species (including 909 

most strains of S. parasitica Coker 1923), however, seem to lack a sexual cycle and do not 910 

produce oospores, at least under laboratory conditions. 911 

 912 

Two of the major oomycetes of fish S. parasitica and S. diclina infect adults and eggs 913 

respectively (van den Berg et al., 2013). Saprolegnia species were controlled using the 914 

organic dye malachite green until 2002 when it was banned in aquaculture because of its 915 

carcinogenic properties. Formalin, although also notionally carcinogenic, is still currently 916 

permitted as a treatment (Srivastava et al., 2004; van West, 2006; Sudova et al., 2007). 917 

Current control methods for salmonid eggs include formalin, salt and ozone water treatment 918 

(Fornerisa et al., 2003; Khodabandeh and Abtahi, 2006; van West, 2006) of which formalin 919 

can also be used to treat or reduce mortality in fry, parr, smolts and adult fish (Ali, 2005; 920 

Gieseker et al., 2006).   921 

 922 

During infection, S. parasitica secretes a SpHtp1 protein, which is able to translocate 923 

independently into fish cells via an interaction with a host cell surface tyrosine-O-sulphated 924 

molecule (van West et al., 2010; Wawra et al., 2012). The precise function of SpHtp1 is 925 
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unknown, but it likely plays a role in the infection process. This finding and the 926 

immunomodulation capabilities of S. parasitica (see Belmonte et al., 2014) suggest that the 927 

interaction is more complex than previously considered. It is now becoming clear that S. 928 

parasitica is a primary pathogen rather than a secondary opportunistic pathogen as has often 929 

been assumed (e.g. Hoole et al., 2001).  930 

4.6.2 Source, culture and infection  931 
Cultivated strains of S. parasitica are held at various institutions but the parasite can also be 932 

isolated from wild fish. The mycelia can be maintained on potato dextrose agar (PDA) (e.g. 933 

van West et al., 2010; Belmonte et al., 2014; Sun et al., 2014; Parra-Laca et al., 2015) (Table 934 

2) in 140 mm Petri dishes indefinitely at 15-25°C (light cycle and humidity unimportant). 935 

Cultures should be re-plated every month, to protect against bacterial and fungal 936 

contamination, by transferring a 5 mm dia. plug of healthy (white/grey in colour with no 937 

yellowing or other fungal growth) mycelium from one Petri dish to another. Cultures held on 938 

PDA should also be passaged though fish or cell lines every few generations in order to 939 

maintain virulence (Songe et al., 2014). To isolate a wild strain, mycelia are scrapped off an 940 

infected fish and inoculated onto a potato dextrose agar plate containing chloramphenicol at 941 

50mg/ml to inhibit contamination (e.g. Songe et al., 2014; Kalatehjari et al., 2015; Thoen et 942 

al., 2015); chloramphenicol should not be used to maintain the culture as it is fungistatic 943 

(Rooke and Shattock, 1983). The Saprolegnia mycelium should then be re-plated (typically 944 

2-5 times), taking 5 mm dia. plugs from the leading edge until a pure culture is obtained 945 

devoid of bacteria and fungi. The Saprolegnia mycelium is cotton-like and white/grey in 946 

colour, all other growth should be avoided when taking the plug for culture.  947 

 948 

To infect sticklebacks from a stock PDA culture, three mycelium plugs (5 mm dia.) should be 949 

taken from the PDA stock and placed on a 140 mm Petri dish with 70 ml of pea broth (Table 950 

2) for 72 h at 25°C. Following incubation, agar plugs are removed using sterile forceps and 951 

the pea broth withdrawn using a sterile syringe or pipette. The mycelium is then washed three 952 

times with 70 ml of a 50/50 mixture of distilled and tank water in the Petri dish. During each 953 

wash, after the addition of the water mix, the mycelium should be agitated before the water 954 

mix is removed. Finally, 30 ml of the 50/50 distilled and tank water mixture is added to the 955 

Petri dish and before it is incubated for a further 24-48 h at 15°C (Powell et al., 1972; 956 

Riberio, 1983). Alternatively, cleaned mycelium can be dispensed from one Petri dish into 957 

500 ml of 50/50 distilled and tank water, incubating for 24-48 h at 15°C. The cultures should 958 
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be checked for spore production under a microscope (x100), and the spores isolated by 959 

straining the Saprolegnia though a 40 μm cell strainer using a cell scraper to remove encysted 960 

spores from the Petri dish. Spore density is calculated using a haemocytometer, if necessary 961 

concentrating the sample by centrifuging at 3000 g for 5 min at room temperature, removing 962 

the excess supernatant and re-suspending the spores in distilled water. Fish are infected using 963 

the ami-momi technique, in which salmonids are typically shaken in a net for 2 min (Hatai 964 

and Hoshiai, 1994), this duration of shaking is excessive for sticklebacks instead we 965 

recommend 30 sec. Shaken fish are then exposed, ideally individually, to 3x105 spores per 966 

litre (e.g. Belmonte et al., 2014), consistent with spore concentrations found in fish farms 967 

(Thoen et al., 2010). 968 

 969 

The infection intensity of S. parasitica can be crudely analysed by photographing an infected 970 

fish and calculating the total body coverage of erupted hyphae (e.g. Fregeneda Grandes et al., 971 

2001), but qPCR methods are being developed (van West et al. unpublished). Given the rapid 972 

time to mortality for infected fish, morbidity and prevalence of infection can also be used as a 973 

measure of S. parasitica virulence (e.g. Pickering and Duston, 1983; Hussein and Hatai, 974 

2002; Gieseker et al., 2006).  975 

4.6.3 Immunology 976 
With true fungal infections it is generally accepted that cellular mediated immunity, 977 

particularly T-helper cell type 1 (TH1) responses, are required for clearance of an infection 978 

(Blanco and Garcia, 2008). In general, hosts infected with oomycetes induce innate immune 979 

responses to infection, but some aspects of humoral immunity have also been found (see 980 

Roberge et al., 2007; Blanco and Garcia, 2008; Belmonte et al., 2014; Minor et al., 2014). Of 981 

particular interest is the humoral response towards the protein SpSsp1, which may provide a 982 

novel target for vaccine development (Minor et al., 2014). Given the rapid and destructive 983 

progression of S. parasitica infections, immune responses must likewise be fast acting and 984 

avid. Upon infection with S. parasitica, fish undergo a rapid acute response including 985 

upregulation of genes transcripts involved in all three complement pathways (classical, 986 

alternative and lectin) (Roberge et al., 2007). Upregulation of C1r, C2, mannose-binding 987 

lectin (MBL) indicate involvement of the alternative and lectin pathways, while substantial 988 

up regulation of C3 and C6, beyond what might be expected from just classical and MBL 989 

pathway activation, is postulated as the main reason for involvement of the alternative 990 

pathway (Roberge et al., 2007). Other immune related genes including ATP-binding cassette 991 
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transporter (required for MHC class I antigen presentation), and the cytokine receptors 992 

CXCR4 (chemokine of importance in humoral immunity) and cd63 (cell development and 993 

growth of multiple immune cells) are upregulated (Roberge et al., 2007). Fish also produce a 994 

response to tissue damage caused by S. parasitica, including induction of proinflammatory 995 

genes such as il-1β, il-6, tnf-α and cox2 (Kales et al., 2007; de Bruijn et al., 2012; Belmonte 996 

et al., 2014). In addition to upregulation of inflammatory genes, the parasite is capable of 997 

immunomodulation by means of prostaglandin E2 causing suppression of cellular immunity, 998 

including a reduction in cd8a and ifn-γ transcripts (Belmonte et al., 2014). Proinflammatory 999 

genes are also upregulated by prostaglandin E2 (IL-6, IL-8, IL-17) (Belmonte et al., 2014); an 1000 

expression profile that in fungal infections is permissive to infection (Traynor and Huffnagle, 1001 

2001). Similar immune evasion strategies are employed by true fungi, which are capable of 1002 

driving anti-inflammatory response and a shift towards a TH2 profile, through TLR2 (Netea et 1003 

al., 2003; Netea et al., 2004).  1004 

4.7 Schistocephalus solidus 1005 

4.7.1 Introduction 1006 
Plerocercoid larvae of the diphyllobothriidean cestode Schistocephalus solidus (Müller, 1776) 1007 

(Figure 9) commonly infect sticklebacks in ponds, lakes and slow flowing rivers (Wootton, 1008 

1976; Barber, 2007). S. solidus is one of the most studied stickleback parasites, and was the 1009 

first parasite for which a complex, multi-host life cycle was demonstrated experimentally 1010 

(Abildgaard, 1790) (Figure 10). Experimental culture techniques, which permit physiological 1011 

and developmental studies of the maturing plerocercoid, have been in existence for decades 1012 

(Hopkins and Smyth, 1951; Clarke, 1954; Smyth, 1954, 1959, 1962; Arme and Owen, 1967) 1013 

and are well-established (Jakobsen et al., 2012). The stickleback-Schistocephalus host-1014 

parasite model has been widely used for studying the impacts of infection on host energetics 1015 

(Barber et al., 2008), growth and reproductive development (Heins and Baker, 2008) as well 1016 

as on host behaviour (Milinski, 1985, 1990; Barber and Scharsack, 2010; Hafer and Milinski, 1017 

2016). Recently, experimental infection studies have been used to investigate evolutionary 1018 

aspects of host-parasite interactions (MacColl, 2009; Barber, 2013) and host immune 1019 

responses (Scharsack et al., 2004, 2007b; Barber and Scharsack, 2010), as well as the impacts 1020 

of changing environments on patterns of infection (MacNab and Barber, 2012; Dittmar et al., 1021 

2014; MacNab et al., 2016). 1022 

[Insert figures 9 and 10 here]  1023 
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4.7.2 Source, culture and infection 1024 
Naturally infected sticklebacks, which are readily identifiable by their swollen profile 1025 

(Barber, 1997) can be collected from the wild and used as a source of infective parasites for 1026 

experimental culture (e.g. Arnott et al., 2000; Barber and Svensson, 2003; Scharsack et al., 1027 

2007b). Whilst sticklebacks can harbour multiple S. solidus plerocercoids, infected fish often 1028 

support a low number of large plerocercoids (Arme and Owen, 1967; Heins et al., 2002). The 1029 

total mass of plerocercoids can approach that of the host fish (Arme and Owen, 1967). 1030 

Plerocercoids can be successfully cultured in vitro from sizes of 20 mg (Tierney and 1031 

Crompton, 1992; Dörücü et al., 2007) but they are only reliably infective to avian hosts at a 1032 

body size of ≥ 50 mg (Tierney and Crompton, 1992).   1033 

 1034 

Infective S. solidus plerocercoids are readily recovered from the body cavity of euthanised, 1035 

naturally-infected sticklebacks following ventral incision. Complete, whole plerocercoids 1036 

should be transferred using sterilised laboratory forceps to a pre-autoclaved culture vessel 1037 

containing a loop of narrow-diameter semi-permeable membrane suspended in S. solidus 1038 

culture media (see Table 2). As they are hermaphroditic, worms can be cultured individually 1039 

(i.e. ‘selfed’) or in pairs (i.e. outcrossed) (Milinski, 2006). Compression of the worms by the 1040 

cellulose tubing simulates conditions in the intestine of the bird definitive host and 1041 

encourages fertilisation (Smyth, 1990). The worms, suspended in this ‘model gut’ inside the 1042 

culture vessel, are incubated at 40°C in darkness, ideally in a water bath with lateral shaking 1043 

at a frequency of 80 cycles per minute, which dissipates metabolic products. To reduce 1044 

bacterial and fungal infections, antibiotics and anti-fungal chemicals can be added to the 1045 

culture medium (Jakobsen et al., 2012). Plerocercoids are progenetic (i.e. exhibit advanced 1046 

sexual development in the larval stage) and the morphological transition to the adult worm is 1047 

rapid, with fertilised eggs being produced from day two onwards in vitro. Egg production 1048 

continues for several days, after which the adult worm dies (Dörücü et al., 2007). 1049 

 1050 

The eggs, along with the senescent or dead adult worm(s), should be flushed with dH2O from 1051 

the cellulose tubing into a Petri dish (12 cm dia.). To clean the egg solution, excess dH2O is 1052 

added to the dish and a gentle swirling movement used to concentrate the eggs; this is best 1053 

achieved whilst viewing under low power using a dissecting microscope with cold light 1054 

illumination. Because the eggs are negatively buoyant, they readily aggregate in the centre of 1055 

the Petri dish. A pipette can then be used to remove detritus, including tegument of the adult 1056 

worm, from the egg solution. Repeated iterations of this process, interspersed with dispersing 1057 
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the egg mass, generate a sufficiently clean egg solution for subsequent incubation. Eggs can 1058 

then be split between multiple sterile Petri dishes, filled to a depth of 5 mm with dH2O, 1059 

sealed with Parafilm and wrapped in aluminium foil to restrict premature exposure to light.  1060 

 1061 

Eggs are incubated for 21 d at 20°C in the dark before being exposed to natural daylight to 1062 

induce hatching (Scharsack et al., 2007b). Pre-exposure to a short (ca. 2 h) period of light, the 1063 

evening before desired hatching, may improve subsequent hatch rates (Dubinina, 1966). 1064 

Hatched eggs release coracidia, which are spherical, ciliated, free-swimming first stage 1065 

larvae. Coracidia move actively for ca. 12-24 h after hatching at normal laboratory 1066 

temperatures, but apparently senescent (i.e. motionless) coracidia can establish infections in 1067 

copepod hosts (unpublished data). Coracidia are collected using a Pasteur pipette and 1068 

transferred to a drop of dH2O on a watch glass, Petri dish, microscope slide, or in a well of a 1069 

96-well microtitre plate. An individual cyclopoid copepod (typically Cyclops strenuus 1070 

abyssorum or Macrocyclops albinus) is then added to the water drop containing the hatched 1071 

coracidium (coracidia) to allow trophic transmission. It is important to cover the water 1072 

droplet to prevent evaporation. The water droplet is visually inspected under a dissection 1073 

microscope to check that the coracidium has been ingested, after which the exposed copepod 1074 

can be transferred to a larger volume of water and fed under normal culture conditions for 7 1075 

d, fed either newly-hatched Artemia spp. nauplii or a few drops of Spirulina feed (Table 2). 1076 

Copepods are then screened at 7 d post-exposure for infection status. The procercoid stage 1077 

that develops within the copepod is infective to sticklebacks (Dubinina, 1966) when it 1078 

develops a hooked cercomer - a caudal appendage used by the parasite during invasion of the 1079 

fish host (Barber and Scharsack, 2010; Benesh and Hafer, 2012; Benesh, 2013). 1080 

 1081 

Infection of sticklebacks in the laboratory can be achieved by gavage feeding or allowing free 1082 

feeding by isolated sticklebacks (e.g. Barber and Svensson, 2003; Hammerschmidt and 1083 

Kurtz, 2005; Scharsack et al., 2007b; MacNab and Barber, 2012). Individual sticklebacks can 1084 

be held in a crystallising dish (15 cm dia.) filled to 3 cm with aquarium water, illuminated 1085 

from above using a cold light source and surrounded by black paper to improve contrast. 1086 

Feeding can be encouraged by moving an infected (i.e. cercomer-bearing procercoid) 1087 

copepod up and down within the neck of a long-form Pasteur pipette immediately in front of 1088 

a stickleback that has been starved for 24 h, before releasing it into the water. Alternatively, 1089 

fish can be left to forage for 6 h in a small (1 L) plastic aquarium containing a few newly-1090 

hatched Artemia spp. nauplii and an infected copepod. Exposure can be confirmed by direct 1091 
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observation of the ingestion event or by sieving the water to confirm ingestion of the 1092 

copepod.  1093 

 1094 

Infections of sticklebacks with S. solidus most commonly use the parasite mass as an 1095 

endpoint measurement to determine the intensity of infection. The mass of both the 1096 

stickleback and parasites in this infection system can vary dramatically and, as such, the 1097 

parasite index = 
𝑇𝑜𝑡𝑎𝑙 𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑒 𝑚𝑎𝑠𝑠𝑇𝑜𝑡𝑎𝑙 𝑓𝑖𝑠ℎ & 𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑒 𝑚𝑎𝑠𝑠  x100 (Arme and Owen, 1967) is often used as a 1098 

measure of intensity (e.g. Giles, 1983; Tierney et al., 1996; Kurtz et al., 2004; Barber, 2005). 1099 

Alternatively, a measure of volume can be produced for plerocercoids whose mass is too 1100 

small to be measured directly (e.g. Wedekind et al., 2000; Scharsack et al., 2007b): the 1101 

plerocercoid is photographed under a microscope and taking the maximal area of the 1102 

longitudinal section of its body and applying the following formula 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑚𝑚3) =1103  𝑒0.279 X 𝑎𝑟𝑒𝑎 (𝜇𝑚2) X 10−9 (see Wedekind et al., 2000).  1104 

 1105 

The growth of the plerocercoid stage in vivo can be estimated non-invasively using image 1106 

analysis based on the infection-induced swelling (Barber, 2007), facilitating longitudinal 1107 

studies of infection and parasite growth. Individual coracidia can be stained using persistent 1108 

fluorescent dyes (Kurtz et al., 2002), allowing differentiation of individual parasites in mixed 1109 

infections. Finally, there are now microsatellite markers and other ecological, genomic and 1110 

transcriptomic resources that facilitate taxonomic studies (Binz et al., 2000; Nishimura et al., 1111 

2011; Sprehn et al., 2015; Hébert et al., 2016). 1112 

4.7.3 Immunology 1113 
A rapid host immune response is thought to be crucial for host resistance against S. solidus, 1114 

preventing establishment within the body cavity. Infection prevalence drops from 60% in the 1115 

first week to 54-52% one month post-infection, but with no further decline thereafter 1116 

(Scharsack et al., 2007b; Benesh, 2013). In addition, no dead S. solidus are detected in the 1117 

body cavity after 17 days post-infection, suggesting that this is the effective limit of the 1118 

immune response against the parasite (Scharsack et al., 2007b). Resistance to S. solidus is 1119 

associated with early proliferation of head kidney monocytes and lymphocyte proliferation 7 1120 

days post-infection (Barber and Scharsack, 2010), the rate of lymphocyte production then 1121 

drops drastically in both resistant and susceptible fish 17 days post-infection (Scharsack et 1122 

al., 2007b). Monocyte production also undergoes changes during infection, being elevated in 1123 

susceptible fish at 7 and 27 days post-infection but reduced at 17 days post-infection 1124 
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compared to controls (Scharsack et al., 2007b). There is no obvious involvement of the 1125 

adaptive response in resistance to a primary S. solidus infection, as this would take 2-3 weeks 1126 

to be active in fish at 18°C, by which time plerocercoids are already established (Barber and 1127 

Scharsack, 2010). There is, however, evidence that at some levels the adaptive response is 1128 

involved at least in tolerating an infection. Intermediate MHC class IIB diversity has been 1129 

linked to a reduction in the parasite index and an increase in the respiratory burst response; 1130 

the prevalence of infection was unaffected by this diversity (Kurtz et al., 2004).  1131 

 1132 

The stickleback immune response to S. solidus also involves upregulation of responses, 1133 

including adaptive immunity, from 47 days post-infection that are not linked to resistance in a 1134 

primary infection as the pleroceroid is already well established. Head kidney lymphocyte 1135 

respiratory burst is upregulated 47-67 days post-infection (Barber and Scharsack, 2010) and 1136 

granulocytes increase in proportion until 63 days post-infection (Scharsack et al., 2004). 1137 

Further transcriptomic analysis found upregulation of innate toll-like receptor, complement 1138 

and macrophage genes as well as upregulation of adaptive MHC genes 50 days post-infection 1139 

(Haase et al., 2016). 1140 

 1141 

An active adaptive response late in infection may support a role for immunological tolerance 1142 

of S. solidus infections (Jackson et al., 2014), or concomitant immunity, though we are 1143 

unaware of any direct tests of this hypothesis. In addition, sticklebacks with high or low 1144 

diversity in the MHC class IIB, which is correlated with MHC expression (Wegner et al., 1145 

2006), harboured larger parasites while those with intermediate diversity had smaller worms 1146 

(Kurtz et al., 2004). This supports the notion of hosts with intermediate (optimal) MHC 1147 

diversity suffering less from infection (Wegner et al., 2003a, b). Such a result may also 1148 

support a role for tolerance, as the immune system shifts (~47 days post-infection) to focus 1149 

less on resistance and more on restricting plerocercoid growth rate and perhaps improving 1150 

fish condition. This late immune response, which is known to last from 45-67 days post-1151 

infection, correlates with plerocercoids reaching infective weight for the definitive host at 1152 

approximately 47 days post-infection (Scharsack et al., 2007b). Concomitant immunity may 1153 

therefore also be a viable hypothesis as this would inhibit secondary infections from 1154 

acquiring vital nutrients at this crucial life history stage (and S. solidus is known to alter the 1155 

susceptibility of the host to infection by other species; Benesh and Kalbe, 2016). In addition, 1156 

head kidney lymphocytes exposed to the excretory products of mature S. solidus (>50 mg) in 1157 



 

36 

 

conditioned culture media expressed higher respiratory burst activity, associated with 1158 

granulocyte viability, which may also manipulate host behaviour via the immune-1159 

neuroendocrine axis and aid transmission to the definitive host (Scharsack et al., 2013).  1160 

5.0 Treating common infections  1161 
Not all parasitic infections of sticklebacks can be eliminated, and the decision to treat fish, 1162 

and the nature of treatment chosen, will be dependent both on infection history and the nature 1163 

of the experiment as well as a cost benefit trade-off. A list of common treatments for 1164 

common parasite infections of fish is provided in Table 4.  1165 

[Insert table 4 here] 1166 

The most common endemic infections to occur in laboratory studies of sticklebacks are 1167 

microparasites, commonly Aeromonas spp., Flavobacterium spp., Pseudomonas spp., 1168 

Ichthyophthirius multifiliis and Saprolegnia parasitica. These infections often establish when 1169 

fish are physiologically stressed, for example by experimental procedures, altered 1170 

environmental conditions or following capture and/or transportation. These pathogens are 1171 

ubiquitous, present in most water bodies and therefore are difficult to eliminate from aquatic 1172 

systems. Additionally, Gyrodactylus spp. and Trichodina spp. (Figures 11A & B) are easily 1173 

introduced into tanks with other fish or as a result of imperfect net hygiene. Most Trichodina 1174 

spp. and other ecto-commensals including Epistylis spp. and Apiosoma spp. are asymptomatic 1175 

at low numbers but may become pathogenic at high intensities (Collymore et al., 2013). Even 1176 

low level endemic Gyrodactylus infections can result in epidemics after several weeks in 1177 

captivity if not treated immediately, and even mild infections probably affect host behaviour 1178 

and physiology. Wild sticklebacks may be infected with heteroxenous parasites such as 1179 

Schistocephalus solidus, Diplostomum spp. and Camallanus lacustris, but these parasites 1180 

cannot be transmitted without the presence of their intermediate hosts. Although Glugea 1181 

anomala may be transmitted directly, the details of transmission are unclear. Transfer of 1182 

water between tanks should be avoided in all cases. Nets are a common source of water 1183 

transfer and should be sterilised in Virkon or sodium metabisulfite (in accordance with 1184 

manufacturer’s instructions), rinsed and fully dried before reuse. Infected fish should be 1185 

isolated and treated as indicated in Table 4; early detection and rapid treatment is key for the 1186 

majority of infections.  1187 

[Insert Figure 11] 1188 
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Aeromonas spp. and P. fluorescens cause red ulcers, small white/grey marks on the fins and 1189 

head, fin rot and ultimately death. Because it is often difficult to distinguish these two 1190 

infections without biochemical or molecular techniques, a broad-spectrum antibiotic should 1191 

be used following consultation with a veterinarian; if severe damage occurs the fish should be 1192 

euthanized using a procedure approved by the relevant regulatory authority. 1193 

 1194 

The highly contagious protozoan parasite I. multifiliis causes small white spots on the fins 1195 

and skin of the fish. The simplest method of treatment is increasing water salinity (Selosse 1196 

and Rowland, 1990; Miron et al., 2003; Garcia et al., 2007) and adding methylene blue 1197 

(Tieman and Goodwin, 2001) (see Table 4). A low concentration formalin or malachite green 1198 

treatment may also be used (e.g. Leteux and Meyer, 1972; Tieman and Goodwin, 2001) 1199 

following the low and prolonged immersion dose (Table 4) or an off-the-shelf formulation 1200 

used following manufacturer’s instructions. Given the complexity of the life cycle, and the 1201 

fact that resistance is common, multiple treatment doses are likely to be required.  1202 

 1203 

For Saprolegnia infections, prevention (0.5% saline water) is definitely better than cure (Ali, 1204 

2005; van West, 2006); once a fish is symptomatic it may survive no more than a few days, 1205 

occasionally even hours, or be irreparably damaged and must be euthanized using an 1206 

approved procedure. If Saprolegnia infection does occur the most effective treatment is a 1207 

high dose malachite green in formalin treatment (Table 4), or a low concentration formalin 1208 

treatment (see van West, 2006). To aid recovery and prevent reinfection following formalin 1209 

exposure, the fish should be transferred to 0.5-1% salt solution, with the possible addition of 1210 

methylene blue (Table 4).  1211 

 1212 

Gyrodactylid treatments are problematic because 100% efficacy is required and transmission 1213 

can easily occur between adjacent tanks by water or net transfer. The only tested treatment 1214 

that works consistently for stickleback gyrodactylids in our laboratory at Cardiff University is 1215 

a high concentration formalin bath (Table 4) (Buchmann and Kristensson, 2003). Other less 1216 

damaging pharmaceutical treatments for the fish, such as Praziquantil and Levamisole, are of 1217 

variable efficacy that may depend on the exact conditions of exposure, at least for this fish 1218 

species (Schelkle et al., 2009). After treatment, screening for the parasite should be 1219 

performed three times, no more than once per day, to ensure the parasite has been removed 1220 

effectively from the entire host population (see Schelkle et al., 2009).  1221 

 1222 
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Ciliated Trichodina spp. protists are only visible under a low powered (x10-60 mag.) 1223 

microscope (Figure 11). They appear as ‘flying-saucer’ shaped disks gliding over the body, 1224 

fins and gills of the fish. Changing tank water regularly to keep the water crystal clear 1225 

effectively eliminates most Trichodina spp., which feed on bacteria (Lom, 1973). If the clean 1226 

water treatment fails, which is rare, low dose malachite green treatment is usually successful 1227 

after 2-3 doses (Table 4) (Leteux and Meyer, 1972). Other infections, G. anomala, 1228 

Diplostomum spp. and the macroparasitic internal parasites are either difficult to treat, cannot 1229 

be treated or may not need treatment. Diplostomum spp. found in the lens and vitreous 1230 

humour may be treated with Praziquantel, although efficacy is variable and depends on 1231 

undetermined factors. S. solidus worms that have migrated through the intestine and into the 1232 

body cavity cannot be treated. Glugea anomala also cannot be cured, although some success 1233 

has been achieved in reducing spore survival using benzimidazole treatments (Schmahl and 1234 

Benini, 1998).  1235 

6.0 Co-infecting parasites 1236 
Despite the overwhelming tendency for wild and even commercially bred sticklebacks to be 1237 

co-infected, there is relatively little knowledge about interspecific parasite competition in 1238 

sticklebacks (Benesh and Kalbe, 2016). Parasites occupying similar niches are in direct 1239 

physical and chemical competition for resources such as nutrients and habitat (Knowles et al., 1240 

2013). Such parasites are likely to be antagonistic and may alter their distribution on the host 1241 

in order to avoid direct competition; as is the case with co-infecting gyrodactylid species 1242 

(Harris, 1982) and co-infecting Proteocephalus filicolis and Neoechinorhynchus rutili (see 1243 

Chappell, 1969). On the other hand, parasites separated by niche may interact indirectly via 1244 

the immune system whilst simultaneously competing for host resources (Pedersen and 1245 

Fenton, 2007). Suppression or enhancement of the immune response by a parasite will then 1246 

alter the outcome of subsequent infections; changing host susceptibility and pathology, 1247 

parasite virulence and infection duration (Correa-Oliveira et al., 2002; Lively, 2005; Fleming 1248 

et al., 2006; Benesh and Kalbe, 2016). Such responses, particularly those mediated by the 1249 

immune system, may even be synergistic as immunosuppression by one parasite increases 1250 

prevalence or intensity of another (Su et al., 2005; Fleming et al., 2006; Benesh and Kalbe, 1251 

2016). There is a general lack of information on Glugea anomala infections and associated 1252 

immune responses and so this will not be covered here; however, given the site of infection 1253 

and the occasional severity of infection it is highly likely that this species does impact co-1254 

infecting parasites.  1255 
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 1256 

Some parasites may be used as a ‘marker of other infections’ (where a change in prevalence, 1257 

intensity or distribution indicates an interaction between co-infecting parasites); such 1258 

relationships may be synergistic or antagonistic. The ability to track viviparous gyrodactylid 1259 

population trajectories over time, directly and non-invasively, makes them particularly useful 1260 

as a marker for the consequences of co-infection. Modulation of the immune system (Section 1261 

4.5.3) and resource competition by co-infecting parasites will alter the population trajectory, 1262 

allowing the effects of co-infection to be tracked over time. In addition, the migration of 1263 

gyrodactylids across the exterior surfaces of hosts (Harris, 1982) allows population 1264 

distribution patterns to be utilised as a method of assessing the outcome of competition 1265 

among co-infecting parasites. Such spatial positioning assessments may also be made with 1266 

other ectoparasites, such as argulids, and endoparasites, for example by considering position 1267 

in the gut (e.g. Chappell, 1969). The terminal nature of this approach with endoparasites, 1268 

however, means that such studies cannot produce the repeated measures that make 1269 

gyrodactylids so useful. Changes in the prevalence of secondary infections will also be linked 1270 

to high levels of stress or immune modulation associated with the primary infection (e.g. 1271 

Shoemaker et al., 2008; Roon et al., 2015). As such, secondary S. parasitica infections as a 1272 

’marker’ might also prove possible in the absence of the ami-momi infection technique, 1273 

particularly if the strain is virulent and the primary infection induces stress.  1274 

 1275 

For co-infection studies where only a short period of immune regulation or infection is 1276 

required, Diplostomum spp. and Argulus spp. provide ideal models. As Diplostomum 1277 

migrates to the immune privileged eye it generates a short lived spike in the innate response 1278 

between 1.5 and 5 days post-infection (Kalbe and Kurtz, 2006; Scharsack and Kalbe, 2014), 1279 

after which it will no longer modulate the immune system and will not be in direct 1280 

competition with other parasite genera. Short-medium term competition and innate immune 1281 

responses can be induced by Argulus spp. with the period of co-infection dictated by 1282 

removing the infected individuals from the fish (see Section 4.1). The immunomodulatory 1283 

effects of Argulus also provide an opportunity to study the consequences of immune 1284 

suppression (Saurabh et al., 2010; Kar et al., 2015). Short-term co-infections with 1285 

Saprolegnia parasitica are also possible, but the usefulness of this pathogen is hindered by its 1286 

virulence and infection method.  1287 

 1288 
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Long term infections can usually be achieved with endoparasites, which – because of their 1289 

life cycles – will often provide long periods of competition with concurrently infecting 1290 

parasites and the host’s immune response. The major drawback with endoparasitic species is 1291 

an inability to accurately determine prevalence, intensity and distribution without destructive 1292 

sampling. Gastrointestinal parasites (e.g. C. lacustris) typically provide a sustained long-term 1293 

infection that will be in direct competition with other gastrointestinal parasites. Such 1294 

infections typically provide a long term immune response either as a result of host resistance, 1295 

tolerance or parasite induced immunomodulation (e.g. C. lacustris; Section 4.2.3). Being the 1296 

only species to inhabit the peritoneal cavity of the stickleback, the plerocercoid cestode S. 1297 

solidus is unique, and likely subject only to direct intraspecific competition. Once established 1298 

in the peritoneal cavity, at a mass of 50 mg, it is not possible for the fish to clear an infection. 1299 

The timing of the immunological response is therefore quite specific (Section 4.7.3); giving a 1300 

clear period of time in which the immune response could affect concurrent infections 1301 

(Scharsack et al., 2007b; Barber and Scharsack, 2010). The utility S. solidus is therefore 1302 

specific to its ability to induce long term competition for resources, a short term immune 1303 

resistance phenotype and a delayed response; the purpose of the delayed response is not yet 1304 

fully elucidated (Section 4.7.3).  1305 

7.0 Summary 1306 
With an increasing threat of disease in aquaculture and with climate change altering host-1307 

parasite interactions a reliable model for studying these impacts has been found in the 1308 

stickleback. The stickleback provides a particularly useful model as it shares many 1309 

characteristics with economically important fish species such as salmon and trout including 1310 

its temperate habitat, omnivorous nature and evolutionary history. In depth knowledge of the 1311 

stickleback’s evolutionary history, ecology, parasitology and genetic architecture has put this 1312 

species at the pinnacle of aquatic vertebrate research. Despite this, much of the knowledge of 1313 

parasite culture techniques and treatments along with basic stickleback husbandry was 1314 

confined to older and sometimes inaccessible literature, with methods that had been updated 1315 

sporadically or that varied between different research groups. This article has brought 1316 

together expertise in the culture of sticklebacks and parasites to generate a single text that 1317 

lays out a framework of techniques for new or established laboratories that wish to begin 1318 

investigating stickleback host-parasite interactions in the laboratory, or to expand their 1319 

repertoire of available parasite models.  1320 

 1321 
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While the number of studies on the three-spined stickleback immune system is increasing, 1322 

different laboratories have focussed on different aspects: direct measurements of ex vivo or in 1323 

vivo phenotypic responses, MHC genetics, or gene expression measurements employing real 1324 

time PCR or RNAseq, in response to different pathogens. As a result it can be difficult to 1325 

reconcile the different approaches. For example, while we know that MHC constitution plays 1326 

a part in parasite resistance, we know little about how that translates into the active immune 1327 

phenotype that actually combats infection. Certain alleles may stimulate specific immune 1328 

phenotypes or more simply allelic diversity may lead to an overall more active immune 1329 

response. At a functional level, greater diversity of MHC alleles means different repertoires 1330 

of peptides may be presented during an immune response, leading to expansion of T- and B-1331 

cell receptor specificities that affect the success of the adaptive response. When we begin to 1332 

take a more holistic approach to such problems it is likely that we will lift the shroud on 1333 

previously unknown aspects of the teleost immune system.  1334 
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