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One Sentence Summary: We propose to change the default P-value threshold for 

statistical significance for claims of new discoveries from 0.05 to 0.005. 

 

 

Main Text:  

The lack of reproducibility of scientific studies has caused growing concern over 

the credibility of claims of new discoveries based on “statistically significant” findings. 

There has been much progress toward documenting and addressing several causes of this 

lack of reproducibility (e.g., multiple testing, P-hacking, publication bias, and under-

powered studies). However, we believe that a leading cause of non-reproducibility has 

not yet been adequately addressed: Statistical standards of evidence for claiming new 

discoveries in many fields of science are simply too low. Associating “statistically 

significant” findings with P < 0.05 results in a high rate of false positives even in the 

absence of other experimental, procedural and reporting problems. 

For fields where the threshold for defining statistical significance for new 

discoveries is 𝑃 < 0.05, we propose a change to 𝑃 < 0.005. This simple step would 

immediately improve the reproducibility of scientific research in many fields. Results that 

would currently be called “significant” but do not meet the new threshold should instead 

be called “suggestive.” While statisticians have known the relative weakness of using 

𝑃 ≈ 0.05 as a threshold for discovery and the proposal to lower it to 0.005 is not new (1, 

2), a critical mass of researchers now endorse this change. 

We restrict our recommendation to claims of discovery of new effects. We do not 

address the appropriate threshold for confirmatory or contradictory replications of 

existing claims. We also do not advocate changes to discovery thresholds in fields that 

have already adopted more stringent standards (e.g., genomics and high-energy physics 

research; see Potential Objections below). 

We also restrict our recommendation to studies that conduct null hypothesis 

significance tests. We have diverse views about how best to improve reproducibility, and 

many of us believe that other ways of summarizing the data, such as Bayes factors or 

other posterior summaries based on clearly articulated model assumptions, are preferable 

to P-values. However, changing the P-value threshold is simple, aligns with the training 

undertaken by many researchers, and might quickly achieve broad acceptance.    

 

 Strength of evidence from P-values 
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 In testing a point null hypothesis 𝐻! against an alternative hypothesis 𝐻! based on 

data 𝑥obs, the P-value is defined as the probability, calculated under the null hypothesis, 

that a test statistic is as extreme or more extreme than its observed value. The null 

hypothesis is typically rejected—and the finding is declared “statistically significant”—if 

the P-value falls below the (current) Type I error threshold α = 0.05. 

	 From a Bayesian perspective,	a more direct measure of the strength of evidence 

for 𝐻! relative to 𝐻! is the ratio of their probabilities. By Bayes’ rule, this ratio may be 

written as: 

	

	 Pr 𝐻!|𝑥obs

Pr 𝐻!|𝑥obs
=
𝑓 𝑥obs|𝐻!

𝑓 𝑥obs|𝐻!
×
Pr 𝐻!

Pr 𝐻!

≡ 𝐵𝐹 × prior odds ,	 (1)	

	

where 𝐵𝐹 is the Bayes factor that represents the evidence from the data, and the prior 

odds can be informed by researchers’ beliefs, scientific consensus, and validated 

evidence from similar research questions in the same field. Multiple hypothesis testing, 

P-hacking, and publication bias all reduce the credibility of evidence. Some of these 

practices reduce the prior odds of 𝐻! relative to 𝐻! by changing the population of 

hypothesis tests that are reported. Prediction markets (3) and analyses of replication 

results (4) both suggest that for psychology experiments, the prior odds of 𝐻! relative to 

𝐻! may be only about 1:10. A similar number has been suggested in cancer clinical trials, 

and the number is likely to be much lower in preclinical biomedical research (5).  

There is no unique mapping between the P-value and the Bayes factor since the 

Bayes factor depends on 𝐻!. However, the connection between the two quantities can be 

evaluated for particular test statistics under certain classes of plausible alternatives (Fig. 

1). 

 



	 7	

 

Fig. 1. Relationship between the P-value and the Bayes Factor. The Bayes factor (BF) 

is defined as 
! !obs|!!

! !obs|!!
. The figure assumes that observations are drawn i.i.d. according to 

𝑥 ~ 𝑁 𝜇,𝜎! , where the mean 𝜇 is unknown and the variance 𝜎! is known.  The P-value 

is from a two-sided z test (or equivalently a one-sided 𝜒! 

!  test) of the null hypothesis 

𝐻!: 𝜇 = 0. 

“Power”: BF obtained by defining 𝐻! as putting ½ probability on 𝜇 = ±𝑚 for the value 

of 𝑚 that gives 75% power for the test of size α = 0.05. This 𝐻! represents an effect size 

typical of that which is implicitly assumed by researchers during experimental design. 

“Likelihood Ratio Bound”: BF obtained by defining 𝐻! as putting ½ probability on 

𝜇 = ±𝑥, where 𝑥 is approximately equal to the mean of the observations. These BFs are 

upper bounds among the class of all 𝐻!’s that are symmetric around the null, but they are 

improper because the data are used to define 𝐻!. “UMPBT”: BF obtained by defining 𝐻! 

according to the uniformly most powerful Bayesian test (5) that places ½ probability on 

𝜇 = ±𝑤, where 𝑤 is the alternative hypothesis that corresponds to a one-sided test of size 

0.0025.  This curve is indistinguishable from the “Power” curve that would be obtained if 

the power used in its definition was 80% rather than 75%. “Local-𝐻! Bound”: BF =
!

!!" !"!
, where 𝑝 is the P-value, is a large-sample upper bound on the BF from among all 

unimodal alternative hypotheses that have a mode at the null and satisfy certain regularity 

conditions (15). For more details, see the Supplementary Online Materials (SOM). 

 

A two-sided P-value of 0.05 corresponds to Bayes factors in favor of 𝐻! that range from 

about 2.5 to 3.4 under reasonable assumptions about 𝐻! (Fig. 1). This is weak evidence 

from at least three perspectives. First, conventional Bayes factor categorizations (6) 
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characterize this range as “weak” or “very weak.” Second, we suspect many scientists 

would guess that 𝑃 ≈ 0.05 implies stronger support for 𝐻! than a Bayes factor of 2.5 to 

3.4. Third, using equation (1) and prior odds of 1:10, a P-value of 0.05 corresponds to at 

least 3:1 odds (i.e., the reciprocal of the product 
!

!"
× 3.4) in favor of the null hypothesis! 

 

Why 0.005? 

 The choice of any particular threshold is arbitrary and involves a trade-off 

between Type I and II errors. We propose 0.005 for two reasons. First, a two-sided P-

value of 0.005 corresponds to Bayes factors between approximately 14 and 26 in favor of 

𝐻!. This range represents “substantial” to “strong” evidence according to conventional 

Bayes factor classifications (6). 

 Second, in many fields the 𝑃 < 0.005 standard would reduce the false positive 

rate to levels we judge to be reasonable. If we let 𝜙 denote the proportion of null 

hypotheses that are true, (1− 𝛽) the power of tests in rejecting false null hypotheses, and 

𝛼 the Type I error/significance threshold, then as the population of tested hypotheses 

becomes large, the false positive rate (i.e., the proportion of true null effects among the 

total number of statistically significant findings) can be approximated by  

	

	
false positive rate ≈  

𝛼𝜙

𝛼𝜙 + (1− 𝛽)(1− 𝜙)
.	 (2)	

 

For different levels of the prior odds that there is a true effect, 
!!!

!
, and for significance 

thresholds 𝛼 = 0.05 and 𝛼 = 0.005, Figure 2 shows the false positive rate as a function 

of power 1− 𝛽. 
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Fig. 2. Relationship between the P-value threshold, power, and the false positive 

rate. Calculated according to Equation (2), with prior odds defined as 
!!!

!
=

!" !!

!"(!!)
. For 

more details, see the Supplementary Online Materials (SOM). 

 

In many studies, statistical power is low (e.g., ref. 7). Fig. 2 demonstrates that low 

statistical power and 𝛼 = 0.05 combine to produce high false positive rates. 

 For many, the calculations illustrated by Fig. 2 may be unsettling. For example, 

the false positive rate is greater than 33% with prior odds of 1:10 and a P-value threshold 

of 0.05, regardless of the level of statistical power. Reducing the threshold to 0.005 

would reduce this minimum false positive rate to 5%. Similar reductions in false positive 

rates would occur over a wide range of statistical powers. 

Empirical evidence from recent replication projects in psychology and 

experimental economics provide insights into the prior odds in favor of 𝐻!. In both 

projects, the rate of replication (i.e., significance at P < 0.05 in the replication in a 

consistent direction) was roughly double for initial studies with P < 0.005 relative to 

initial studies with 0.005 < P < 0.05: 50% versus 24% for psychology (8), and 85% 

versus 44% for experimental economics (9). Although based on relatively small samples 

of studies (93 in psychology, 16 in experimental economics, after excluding initial studies 

with P > 0.05), these numbers are suggestive of the potential gains in reproducibility that 

would accrue from the new threshold of P < 0.005 in these fields. In biomedical research, 

96% of a sample of recent papers claim statistically significant results with the P < 0.05 

threshold (10). However, replication rates were very low (5)  for these studies, suggesting 

a potential for gains by adopting this new standard in these fields as well. 
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Potential Objections 

 We now address the most compelling arguments against adopting this higher 

standard of evidence. 

  The false negative rate would become unacceptably high. Evidence that does not 

reach the new significance threshold should be treated as suggestive, and where possible  

further evidence should be accumulated; indeed, the combined results from several 

studies may be compelling even if any particular study is not. Failing to reject the null 

hypothesis does not mean accepting the null hypothesis. Moreover, the false negative rate 

will not increase if sample sizes are increased so that statistical power is held constant.   

For a wide range of common statistical tests, transitioning from a P-value 

threshold of 𝛼 = 0.05 to 𝛼 = 0.005 while maintaining 80% power would require an 

increase in sample sizes of about 70%. Such an increase means that fewer studies can be 

conducted using current experimental designs and budgets. But Figure 2 shows the 

benefit: false positive rates would typically fall by factors greater than two. Hence, 

considerable resources would be saved by not performing future studies based on false 

premises. Increasing sample sizes is also desirable because studies with small sample 

sizes tend to yield inflated effect size estimates (11), and publication and other biases 

may be more likely in an environment of small studies (12). We believe that efficiency 

gains would far outweigh losses. 

The proposal does not address multiple hypothesis testing, P-hacking, publication 

bias, low power, or other biases (e.g., confounding, selective reporting, measurement 

error), which are arguably the bigger problems. We agree. Reducing the P-value 

threshold complements—but does not substitute for—solutions to these other problems, 

which include good study design, ex ante power calculations, pre-registration of planned 

analyses, replications, and transparent reporting of procedures and all statistical analyses 

conducted.  

The appropriate threshold for statistical significance should be different for 

different research communities. We agree that the significance threshold selected for 

claiming a new discovery should depend on the prior odds that the null hypothesis is true, 

the number of hypotheses tested, the study design, the relative cost of Type I versus Type 

II errors, and other factors that vary by research topic. For exploratory research with very 

low prior odds (well outside the range in Figure 2), even lower significance thresholds 

than 0.005 are needed. Recognition of this issue led the genetics research community to 

move to a “genome-wide significance threshold” of 5×10
-8 

over a decade ago. And in 

high-energy physics, the tradition has long been to define significance by a “5-sigma” 

rule (roughly a P-value threshold of 3×10
-7

). We are essentially suggesting a move from a 

2-sigma rule to a 3-sigma rule. 

 Our recommendation applies to disciplines with prior odds broadly in the range 

depicted in Figure 2, where use of P < 0.05 as a default is widespread. Within those 

disciplines, it is helpful for consumers of research to have a consistent benchmark. We 

feel the default should be shifted. 
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Changing the significance threshold is a distraction from the real solution, which 

is to replace null hypothesis significance testing (and bright-line thresholds) with more 

focus on effect sizes and confidence intervals, treating the P-value as a continuous 

measure, and/or a Bayesian method. Many of us agree that there are better approaches to 

statistical analyses than null hypothesis significance testing, but as yet there is no 

consensus regarding the appropriate choice of replacement. For example, a recent 

statement by the American Statistical Association addressed numerous issues regarding 

the misinterpretation and misuse of P-values (as well as the related concept of statistical 

significance), but failed to make explicit policy recommendations to address these 

shortcomings (13) . Even after the significance threshold is changed, many of us will 

continue to advocate for alternatives to null hypothesis significance testing.   

 

Concluding remarks 

Ronald Fisher understood that the choice of 0.05 was arbitrary when he 

introduced it (14).  Since then, theory and empirical evidence have demonstrated that a 

lower threshold is needed. A much larger pool of scientists are now asking a much larger 

number of questions, possibly with much lower prior odds of success.   

For research communities that continue to rely on null hypothesis significance 

testing, reducing the P-value threshold for claims of new discoveries to 0.005 is an 

actionable step that will immediately improve reproducibility.  We emphasize that this 

proposal is about standards of evidence, not standards for policy action nor standards for 

publication.  Results that do not reach the threshold for statistical significance (whatever 

it is) can still be important and merit publication in leading journals if they address 

important research questions with rigorous methods. This proposal should not be used to 

reject publications of novel findings with 0.005 < P < 0.05 properly labeled as suggestive 

evidence. We should reward quality and transparency of research as we impose these 

more stringent standards, and we should monitor how researchers’ behaviors are affected 

by this change. Otherwise, science runs the risk that the more demanding threshold for 

statistical significance will be met to the detriment of quality and transparency. 

 Journals can help transition to the new statistical significance threshold. Authors 

and readers can themselves take the initiative by describing and interpreting results more 

appropriately in light of the new proposed definition of “statistical significance.” The 

new significance threshold will help researchers and readers to understand and 

communicate evidence more accurately. 
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R code used to generate Figures 1 and 2 

 

Supplementary Materials: 

Supplementary Text 

Figure 1  

All four curves in Figure 1 describe the relationship between (i) a P-value based 

on a two-sided normal test and (ii) a Bayes factor or a bound on a Bayes factor.  The P-

values are based on a two-sided test that the mean 𝜇 of an independent and identically 

distributed sample of normally distributed random variables is 0.  The variance of the 

observations is known.  Without loss of generality, we assume that the variance is 1 and 

the sample size is also 1.  The curves in the figure differ according to the alternative 

hypotheses that they assume for calculating (ii). 



	 13	

Because these curves involve two-sided tests, all alternative hypotheses are restricted to 

be symmetric around 0.   That is, the density assumed for the value of 𝜇 under the 

alternative hypothesis is always assumed to satisfy 𝑓 𝜇 = 𝑓 −𝜇 . 

The curve labeled “Power” corresponds to defining the alternative hypothesis so that 

power is 75% in a two-sided 5% test.  This is achieved by assuming that 𝜇 under the 

alternative hypothesis is equal to ± 𝑧!.!"# + 𝑧!.!" = ±2.63.  That is, the alternative 

hypothesis places ½ its prior mass on 2.63 and ½ its mass on -2.63.   

The curve labeled UMPBT corresponds to the uniformly most powerful Bayesian test (2) 

that corresponds to a classical, two-sided test of size 𝛼 = 0.005.  The alternative 

hypothesis for this Bayesian test places ½ mass at 2.81 and ½ mass at -2.81.   The null 

hypothesis for this test is rejected if the Bayes factor exceeds 25.7.  Note that this curve is 

nearly identical to the “Power” curve if that curve had been defined using 80% power, 

rather than 75% power.  The Power curve for 80% power would place ½ its mass at 

±2.80. 

The Likelihood Ratio Bound curve represents an approximate upper bound on the Bayes 

factor obtained by defining the alternative hypothesis as putting ½ its mass on ±𝑥, where 

𝑥 is the observed sample mean.  Over the range of P-values displayed in the figure, this 

alternative hypothesis very closely approximates the maximum Bayes factor that can be 

attained from among the set of alternative hypotheses constrained to be of the form 0.5×

[𝑓 𝜇 + 𝑓 −𝜇 ] for some density function f. 

The Local-H1 curve is described fully in the figure caption.	A	fuller	explanation	and	

discussion	of	this	bound	can	be	found	in	ref.	15. 

 

Equation 2 and Figure 2   

This equation defines the large-sample relationship between the false positive 

rate, power 1− 𝛽, type I error rate 𝛼, and the probability that the null hypothesis is true 

when a large number of independent experiments have been conducted.  More 

specifically, suppose that n independent hypothesis tests are conducted, and suppose that 

in each test the probability that the null hypothesis is true is 𝜙.   If the null hypothesis is 

true, assume that the probability that it is falsely rejected (i.e., a false positive occurs) is 

𝛼.  For the test 𝑗 = 1,… ,𝑛, define the random variable 𝑋! = 1 if the null hypothesis is 

true and the null hypothesis is rejected, and 𝑋! = 0 if either the alternative hypothesis is 

true or the null hypothesis is not rejected.  Note that the 𝑋! are independent Bernoulli 

random variables with Pr 𝑋! = 1 = 𝛼𝜙.  Also for test j, define another random variable 

𝑌! = 1 if the alternative hypothesis is true and the null hypothesis is rejected, and 0 

otherwise.   It follows that the 𝑌! are independent Bernoulli random variables with 

Pr 𝑌! = 1 = 1− 𝜙 1− 𝛽 .  Note that 𝑌! is independent of 𝑌! for 𝑗 ≠ 𝑘, but 𝑌! is not 

independent of 𝑋!.  For the n experiments, the false positive rate can then be written as: 

 

𝐹𝑃𝑅 =  
𝑋!

!

!!!

𝑋! + 𝑌!
!

!!!
!

!!!

=
𝑋!/𝑛

!

!!!

𝑋!/𝑛 + 𝑌!/𝑛
!

!!!
!

!!!

. 
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By the strong law of large numbers, 𝑋!/𝑛
!

!!!  converges almost surely to 𝛼𝜙, and 

𝑌!/𝑛
!

!!!  converges almost surely to 1− 𝜙 1− 𝛽 .  Application of the continuous 

mapping theorem yields 

 

𝐹𝑃𝑅
a.s.

 
𝛼𝜙

𝛼𝜙 + (1− 𝜙)(1− 𝛽)
. 

 

Figure 2 illustrates this relationship for various values of 𝛼 and prior odds for the 

alternative, 
!!!

!
. 
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R code used to generate Figure 1: 

 
type1=.005 
type1Power=0.05 
type2=0.25 
p=1-c(9000:9990)/10000 
xbar = qnorm(1-p/2) 
 
# alternative based on 80% POWER IN 5% TEST 
muPower = qnorm(1-type2)+qnorm(1-type1Power/2) 
bfPow = 0.5*(dnorm(xbar,muPower,1)+dnorm(xbar,-
muPower,1))/dnorm(xbar,0,1) 
 
muUMPBT = qnorm(0.9975) 
bfUMPBT = 0.5*(dnorm(xbar,muUMPBT,1)+dnorm(xbar,-
muUMPBT,1))/dnorm(xbar,0,1) 
 
# two-sided "LR" bound 
bfLR = 0.5/exp(-0.5*xbar^2) 
 
bfLocal = -1/(2.71*p*log(p)) 
 
#coordinates for dashed lines 
data = data.frame(p,bfLocal,bfLR,bfPow,bfUMPBT) 
U_005 = max(data$bfLR[data$p=="0.005"]) 
L_005 = min(data$bfLocal[data$p=="0.005"]) 
U_05 = max(data$bfLR[data$p=="0.05"]) 
L_05 = min(data$bfUMPBT[data$p=="0.05"]) 
 
# Local bound; no need for two-sided adjustment 
 
 
#plot margins 
par(mai=c(0.8,0.8,.1,0.4)) 
par(mgp=c(2,1,0)) 
 
matplot(p,cbind(bfLR,-1/(2.71*p*log(p))),type='n',log='xy', 
        xlab=expression(paste(italic(P) ,"-value")), 
        ylab="Bayes Factor", 
        ylim = c(0.3,100), 
        bty="n",xaxt="n",yaxt="n") 
lines(p,bfPow,col="red",lwd=2.5) 
lines(p,bfLR,col="black",lwd=2.5) 
lines(p,bfUMPBT,col="blue",lwd=2.5) 
lines(p,bfLocal,col="green",lwd=2.5) 
legend(0.015,100,c(expression(paste("Power")),"Likelihood Ratio 
Bound","UMPBT",expression(paste("Local-",italic(H)[1]," 
Bound"))),lty=c(1,1,1,1), 
       lwd=c(2.5,2.5,2.5,2.5),col=c("red","black","blue","green"), 
cex = 0.8) 
#text(0.062,65, "\u03B1", font =3, cex = 0.9) 
 
#customizing axes 
#x axis 
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axis(side=1,at=c(-
2,0.001,0.0025,0.005,0.010,0.025,0.050,0.100,0.14), 
     labels = 
c("","0.0010","0.0025","0.0050","0.0100","0.0250","0.0500","0.1000",
""),lwd=1, 
     tck = -0.01, padj = -1.1, cex.axis = .8) 
#y axis on the left - main 
axis(side=2,at=c(-0.2, 0.3,0.5,1,2,5,10,20,50,100),labels = 
c("","0.3","0.5","1.0","2.0","5.0","10.0","20.0","50.0","100.0"),lwd
=1,las= 1, 
     tck = -0.01, hadj = 0.6, cex.axis = .8) 
#y axis on the left - secondary (red labels) 
axis(side=2,at=c(L_005,U_005),labels = c(13.9,25.7),lwd=1,las= 1, 
     tck = -0.01, hadj = 0.6, cex.axis = .6,col.axis="red") 
#y axis on the right - main 
axis(side=4,at=c(-0.2, 0.3,0.5,1,2,5,10,20,50,100),labels = 
c("","0.3","0.5","1.0","2.0","5.0","10.0","20.0","50.0","100.0"),lwd
=1,las= 1, 
     tck = -0.01, hadj = 0.4, cex.axis = .8) 
#y axis on the right - secondary (red labels) 
axis(side=4,at=c(L_05,U_05),labels = c(2.4,3.4),lwd=1,las= 1, 
     tck = -0.01, hadj = 0.4, cex.axis = .6,col.axis="red") 
 
###dashed lines 
segments(x0 = 0.000011, y0= U_005, x1 = 0.005, y1 = U_005, col = 
"gray40", lty = 2) 
segments(x0 = 0.000011, y0= L_005, x1 = 0.005, y1 = L_005, col = 
"gray40", lty = 2) 
segments(x0 = 0.005, y0= 0.00000001, x1 = 0.005, y1 = U_005, col = 
"gray40", lty = 2) 
 
segments(x0 = 0.05, y0= U_05, x1 = 0.14, y1 = U_05, col = "gray40", 
lty = 2) 
segments(x0 = 0.05, y0= L_05, x1 = 0.14, y1 = L_05, col = "gray40", 
lty = 2) 
segments(x0 = 0.05, y0= 0.00000001, x1 = 0.05, y1 = U_05, col = 
"gray40", lty = 2) 
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R code used to generate Figure 2: 

 
 
pow1=c(5:999)/1000   # power range for 0.005 tests 
pow2=c(50:999)/1000  # power range for 0.05 tests 
alpha=0.005 # test size 
pi0=5/6  # prior probability 
N=10^6  # doesn't matter 
 
 
#graph margins 
par(mai=c(0.8,0.8,0.1,0.1)) 
par(mgp=c(2,1,0))   
 
 
plot(pow1,alpha*N*pi0/(alpha*N*pi0+pow1*(1-pi0)*N),type='n',ylim = 
c(0,1), xlim = c(0,1.5), 
     xlab='Power                                      ', 
     ylab='False positive rate', bty="n", xaxt="n", yaxt="n") 
#grid lines 
segments(x0 = -0.058, y0 = 0, x1 = 1, y1 = 0,lty=1,col = "gray92") 
segments(x0 = -0.058, y0 = 0.2, x1 = 1, y1 = 0.2,lty=1,col = 
"gray92") 
segments(x0 = -0.058, y0 = 0.4, x1 = 1, y1 = 0.4,lty=1,col = 
"gray92") 
segments(x0 = -0.058, y0 = 0.6, x1 = 1, y1 = 0.6,lty=1,col = 
"gray92") 
segments(x0 = -0.058, y0 = 0.8, x1 = 1, y1 = 0.8,lty=1,col = 
"gray92") 
segments(x0 = -0.058, y0 = 1, x1 = 1, y1 = 1,lty=1,col = "gray92") 
 
 
lines(pow1,alpha*N*pi0/(alpha*N*pi0+pow1*(1-
pi0)*N),lty=1,col="blue",lwd=2) 
odd_1_5_1 = alpha*N*pi0/(alpha*N*pi0+pow1[995]*(1-pi0)*N) 
alpha=0.05 
pi0=5/6  
lines(pow2,alpha*N*pi0/(alpha*N*pi0+pow2*(1-
pi0)*N),lty=2,col="blue",lwd=2) 
odd_1_5_2 = alpha*N*pi0/(alpha*N*pi0+pow2[950]*(1-pi0)*N) 
 
 
alpha=0.05 
pi0=10/11 
lines(pow2,alpha*N*pi0/(alpha*N*pi0+pow2*(1-
pi0)*N),lty=2,col="red",lwd=2) 
odd_1_10_2 = alpha*N*pi0/(alpha*N*pi0+pow2[950]*(1-pi0)*N) 
alpha=0.005 
pi0=10/11 
lines(pow1,alpha*N*pi0/(alpha*N*pi0+pow1*(1-
pi0)*N),lty=1,col="red",lwd=2) 
odd_1_10_1 = alpha*N*pi0/(alpha*N*pi0+pow1[995]*(1-pi0)*N) 
 
alpha=0.05 
pi0=40/41 
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lines(pow2,alpha*N*pi0/(alpha*N*pi0+pow2*(1-
pi0)*N),lty=2,col="green",lwd=2) 
odd_1_40_2 = alpha*N*pi0/(alpha*N*pi0+pow2[950]*(1-pi0)*N) 
alpha=0.005 
pi0=40/41 
lines(pow1,alpha*N*pi0/(alpha*N*pi0+pow1*(1-
pi0)*N),lty=1,col="green",lwd=2) 
odd_1_40_1 = alpha*N*pi0/(alpha*N*pi0+pow1[995]*(1-pi0)*N) 
 
 
 
 
#customizing axes 
axis(side=2,at=c(-0.5,0,0.2,0.4,0.6,0.8,1.0),labels = 
c("","0.0","0.2","0.4","0.6","0.8","1.0"), 
     lwd=1,las= 1,tck = -0.01, hadj = 0.4, cex.axis = .8) 
axis(side=1,at=c(-0.5,0,0.2,0.4,0.6,0.8,1.0),labels = 
c("","0.0","0.2","0.4","0.6","0.8","1.0"), 
     lwd=1,las= 1, tck = -0.01, padj = -1.1, cex.axis = .8) 
 
 
 
legend(1.05,1,c("Prior odds = 1:40","Prior odds = 1:10","Prior odds 
= 1:5"),pch=c(15,15,15), 
       col=c("green","red","blue"), cex = 1) 
 
 
###############  Use these commands to add brackets in Figure 2 
 
library(pBrackets) 
 
 
#add text and brackets 
text(1.11,(odd_1_5_2+odd_1_40_2)/2, expression(paste(italic(P)," < 
0.05 threshold")), cex = 0.9,adj=0) 
text(1.11,(odd_1_5_1+odd_1_40_1)/2, expression(paste(italic(P)," < 
0.005 threshold")), cex = 0.9,adj=0) 
brackets(1.03, odd_1_40_1, 1.03, odd_1_5_1, h = NULL, ticks = 0.5, 
curvature = 0.7, type = 1, 
        col = 1, lwd = 1, lty = 1, xpd = FALSE) 
brackets(1.03, odd_1_40_2, 1.03, odd_1_5_2, h = NULL, ticks = 0.5, 
curvature = 0.7, type = 1, 
         col = 1, lwd = 1, lty = 1, xpd = FALSE) 
 
 
 

 

	


