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Abstract

This paper investigates the recursive Morton ordering of two-dimensional arrays as an efficient way to access

hierarchical memory across a range of heterogeneous computer platforms, ranging from many-core devices, multi-

core processor, clusters, and distributed environments. A brief overview of previous research in this area is given,

and algorithms that make use of Morton ordering are described. These are then used to demonstrate the efficiency

of the Morton ordering approach by performance experiments on different processors. In particular, timing results are

presented for matrix multiplication, Cholesky factorisation, and fast Fourier transform algorithms. The use of the Morton

ordering approach leads naturally to algorithms that are recursive, and exposes parallelism at each level of recursion.

Thus, the approach advocated in this talk not only provides convenient and efficient access to hierarchical memory, but

also provides a basis for exploiting parallelism.

Keywords

Morton ordering; hierarchical memory; parallel algorithms

Introduction

Modern high performance computers are characterised

by deeply nested hierarchical memories, and application

performance may be significantly degraded if data movement

between the different memory layers is not performed

efficiently. Maintaining high spatial and/or temporal locality

of reference is necessary to reduce data movement overhead

and to keep more frequently used data in the higher levels

of the memory hierarchy, and may be achieved through

compiler transformations, or by the programmer at the source

code level. Two and three-dimensional arrays are commonly-

used data structures in scientific computing, and are usually

stored in memory in one of two canonical layouts: row-

major (RM) order or column-major (CM) order. In the case

of an m× n array that is stored contiguously in memory,

the address offset in elements from the start of the array

of the element at row i and column j is in+ j for RM

order, and jm+ i for CM order. Tiled algorithms are often

used to achieve good locality of reference, and hence good

performance. A tiled algorithm transforms nested loops by

first organising each loop as a loop over blocks of some

size, and an inner loop over items in a block. Where

algorithmically valid, the resulting loops are then re-ordered

so the “block” loops are the outer loops and the loops over

items in a block are the inner loops. For a 2D matrix this is

equivalent to dividing the matrix into rectangular tiles and

acting on each one at a time. Tiled algorithms are expressed

in terms of interactions between tiles. For example, in a

tiled matrix multiplication algorithm, C = AB, each tile of

the output matrix can be formed by multiplying a row of

tiles of A by a column of tiles of B. Tiling an algorithm

changes the execution order of operations and hence the

data access pattern. Given a matrix with a canonical layout

the aim is to maximise reuse of a tile’s data in the higher

levels of the memory hierarchy, with the tile size being

chosen to match the capacity of some level in the memory

hierarchy. Whereas the tiles in a tiled algorithm are all the

same size and shape, blocked algorithms are expressed in

terms of interactions between blocks in which the blocks do

not have to be identical in size. For example, the LAPACK

library1 is largely based on blocked algorithms through the

use of BLAS3 operations5. A tiled algorithm is a particular
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type of blocked algorithm. In a blocked algorithm the

same computations are carried as in the unblocked version;

however, the order of execution is changed.

For a canonically ordered array, spatial locality can only be

exploited with respect to one array dimension. In the absence

of an API allowing the programmer to control explicitly

the movement of data between the levels of the memory

hierarchy, tiled and blocked algorithms for such an array

will still not be optimal in managing data movement. The

basic idea of the research presented in this paper is that the

performance of tiled algorithms can be improved by using

non-canonical data orderings, such as space-filling curves

and Morton ordering12. It is posited that such non-canonical

orderings can support efficient access to hierarchical memory

across a range of heterogeneous computer platforms, ranging

from many-core devices, multi-core processor, clusters, and

distributed environments. Morton ordering (see the next

section) has been used to optimise database access, in

image processing algorithms, and in dense linear algebra

computations15. The use of Morton ordering in matrix

multiplication was also investigated by Valsalam and

Skjellum for an earlier generation of processors16, who

considered a number of matrix multiplication algorithms,

including Strassen’s algorithm. The use of the Hilbert curve

and Morton ordering in data layout has been investigated in

molecular dynamics applications11.

This paper makes the following contributions:

1. The use of partial Morton orderings is considered so

that the minimum tile size is larger than 2× 2 (the case

considered by Thiyagalingam et al.15).

2. Performance results are presented for a tiled fast

Fourier transform (FFT) algorithm, as well as for

matrix multiplication and Cholesky factorization, and

the optimal tile size for Morton order matrices is

investigated.

The use of the Morton ordering approach, and similar

approaches based on space-filling curves, leads naturally

to algorithms that are recursive, and exposes parallelism at

each level of recursion. Thus, the approach advocated in this

paper not only provides convenient and efficient access to

hierarchical memory, but also provides a basis for exploiting

parallelism. Furthermore, good spatial locality is maintained

at all levels of the recursion.

Morton Ordering

Morton ordering takes a two-dimensional array stored in

row-major order and re-orders it as a 2× 2 block array in

r = 1 r = 2

Figure 1. The lefthand part of the figure shows the original

array. The middle part of the figure shows the result of Morton

ordering to level r = 1. The righthand part of the figure shows

the result of Morton ordering to level r = 2. Each small square

represents one array item, and the continuous line between cell

centres shows the order in which they are stored, starting in the

top left corner. The shading highlights the division into

sub-blocks.

which the items of each block is stored in row-major order.

This process can then be applied recursively to each of the

four blocks, and after r levels of recursion the array will

be re-ordered as 4r sub-arrays, each in row-major order.

This is illustrated in Fig. 1 for m = n = 8, which shows

Morton ordering being applied to level r = 2, resulting in

16 sub-arrays. A similar approach can be applied to arrays

in column-major order, and for arrays of dimension greater

than 2.

Morton ordering can be applied to arbitrary arrays,

however, for the rest of this paper attention will focus on

Morton ordering of n× n arrays, where n = 2t. Applying

Morton ordering to such an array to level r results in sub-

arrays of size 2t−r × 2t−r. Level r = 0 corresponds to the

original array, and so 0 ≤ r < t. If r = t− 1 the Morton

blocks are of minimum size, namely 2× 2.

Applying Morton ordering to a depth r can be expressed as

a manipulation of the bitwise representation of the row and

column array indices, (i, j), to give the Morton index, kr.

The upper r bits of i are interleaved with the corresponding

bits of j to form the upper 2r bits of kr. The lower t− r bits

of i form the next least significant bits of kr, and the lower

t− r bits of j form the least significant bits of kr. This is

shown in Fig. 2. The sub-arrays defined by Morton ordering

can be numbered consecutively from 0 according to the order

in which they are visited. The interleaved upper r bits of

i and j give the number of the sub-array containing (i, j),

while the lower t− r bits of i and j give the row and column

index within the sub-array. For example, consider position

(2, 3) in an 8× 8 matrix, which corresponds to location

k = 2 ∗ 8 + 3 = 19 in a row-major ordering. Applying one

level of Morton ordering (r = 1) this item would be at index

(001011)2 = 11. The upper 2 bits indicate that the item in in

sub-array 0. Applying a second level (r = 2) gives an index

of (001101)2 = 13, where the upper 4 bits indicate that the

item is in sub-array 3. This example can be verified using

Fig. 1.
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Methods for converting between canonical and Morton

ordering based on dilated integers have been investigated

by Raman and Wise17. The dilated form of an integer is

obtained by interposing a 0 between each of its bits. For

example, consider i = 13 so that i = (1101)2: then the

dilated form of i is d(i) = (01010001)2 = 81. The bits of

two integers, i and j, can be interleaved by forming 2d(i) +

d(j).

Given a level r − 1 Morton ordering, a level r Morton

ordering can be achieved by cyclically rotating bits t− r to

2(t− r) of the index one position to the right. To go from a

level r to a level r − 1 Morton ordering it is simply necessary

to cyclically rotate the same set of bits one position to the

left. Returning to the example above, for which item (2, 3)

of an 8× 8 array has index 19 in a row-major ordering, then

to go from level 0 to level 1 of the Morton ordering requires

bits t− r = 2 to 2(t− r) = 4 to be cyclically rotated to the

right. Since 19 = (010011)2, cyclically rotating bits 2 to 4

one step to the right gives (001011)2 = 11. To go from level

1 to level 2 requires bits 1 to 2 to be cyclically shifted to the

right (i.e., exchanged), giving (001101)2 = 13.

i t-1 j t-1 i t-2 j t-2 … i t-r j t-r i t-r-1 … i0 j t-r-1 … j0

        

2r interleaved bits

    

t-r lower bits
of i

    

t-r lower bits
of j

Figure 2. The bits of the Morton index kr at level r ≥ 1.

Morton ordering can also be represented in terms of linear

algebra operations. Suppose X0 is an n× n matrix, where

n = 2t. Let x0 be the row vector created by concatenating

the rows of X0, i.e., x0 represents X0 stored in row-major

order. Let Xr denote the matrix obtained by applying Morton

ordering to level r to X0, and let xr be the corresponding

vector of concatenated rows. Then,

xr = xr−1(Ip ⊗ (Π2b ⊗ Ib)) (1)

where b = 2t−r, p = 22r−1, and 1 ≤ r < t. Πm is an m×m

permutation matrix such that vΠT
m performs a perfect shuffle

operation on the elements of the row vector, v, and A⊗B

denotes the Kronecker product of the matrices A and B.

An n× n array, A, in row-major order with n = 2t, can

be re-ordered as a level 1 Morton order array, consisting

of four n/2× n/2 sub-arrays A00, A01, A10 and A11, by

a simple in-place algorithm. Consider row k of A, where

0 ≤ k < n/2, which consists of the n/2 elements that form

row k of A00 followed by the n/2 elements that form row

k of A01. Thus, if we denote row k of A00 and A01 by ak

and bk, respectively, then the first k rows of A are laid out as

follows in linearised index space:

a0b0a1b1 . . . an/2−1bn/2−1. (2)

Level 1 Morton ordering transforms this layout by means

of an unshuffle operation (see next subsection) to give the

ordering:

a1a2 . . . an/2−1b0b1 . . . bn/2−1 (3)

A recursive algorithm for converting a power-of-two array

from row-ordered to a level r Morton order using unshuffle

operations is shown in Alg. 1. It is a simple matter to extend

this algorithm to more general arrays.

ALGORITHM 1: morton: recursive routine for transforming row-

ordered power-of-two array to level r Morton order.

Function morton(A,n,r)

Input: Array A of size n× n, integer n = 2t, and integer r
(0 ≤ r < t) for terminating recursion.

Output: The array A in level r Morton order.

if (r ≤ 0) then

return

end

n1=n/2
unshuffle (A00, n1, n1, n1)

unshuffle (A10, n1, n1, n1)

morton (A00, n1, r − 1)

morton (A01, n1, r − 1)

morton (A10, n1, r − 1)

morton (A11, n1, r − 1)

return

end

Unshuffle and Shuffle Operations

Consider the following contiguous sequence of 2m row

vectors: a1b1a2b2 . . . ambm, where each ai is itself a

contiguous vector of ℓa elements, and each bi is a

contiguous vector of ℓb elements. Then the unshuffle

operation corresponds to the following reordering of the

vectors:

a1b1a2b2 . . . ambm → a1a2 . . . amb1b2 . . . bm (4)

The shuffle operation performs the inverse of this reordering:

a1a2 . . . amb1b2 . . . bm → a1b1a2b2 . . . ambm (5)

In the algorithms presented in this paper, use is made of

the shuffle and unshuffle functions, in which the

first argument is (a pointer to) the data to be reordered,

and the subsequent arguments are ℓa, ℓb, and m. The

shuffle and unshuffle operations can themselves be expressed

recursively9.
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Matrix Multiplication

Suppose the matrices A and B are multiplied to give the

matrix C, where all matrices are of size n× n where n = 2t.

This matrix multiplication can be expressed in block form as:





C00 C01

C10 C11



 =





A00 A01

A10 A11









B00 B01

B10 B11





=





A00B00 +A01B10 A00B01 +A01B11

A10B00 +A11B10 A10B01 +A11B11





where each of the blocks is of size n/2× n/2. This shows

how the product of two matrices can be expressed in terms

of the products of smaller matrices, and can be used as the

basis of a recursive algorithm for matrix multiplication. At

each level of the recursion the matrices to be multiplied are

partitioned into quadrants. The recursion terminates at some

specified depth, r < t. If the matrices A and B are Morton

ordered then only contiguously stored matrix blocks are

multiplied and the recursive matrix multiplication algorithms

can be expressed as in Alg. 2, where the routine matmul can

be any general-purpose matrix multiplication routine, such as

DGEMM from the LAPACK library1.

ALGORITHM 2: mmRecursive: Recursive matrix multiplication

of power-of-two matrices. Routine matmul performs C ← C +

AB.

Function mmRecursive(A,B,C,n,r)

Input: Matrices A, B, and C of size n× n, integer n = 2t,

integer r (0 ≤ r < t) for terminating recursion. All

elements of matrix C must be zero initially,

Output: On exit, the matrix C contains AB.

if (r ≤ 0) then

matmul (A,B,C, n)

else

n1=n/2
mmRecursive (A00, B00, C00, n1, r − 1)

mmRecursive (A01, B10, C00, n1, r − 1)

mmRecursive (A00, B01, C01, n1, r − 1)

mmRecursive (A01, B11, C01, n1, r − 1)

mmRecursive (A10, B00, C10, n1, r − 1)

mmRecursive (A11, B10, C10, n1, r − 1)

mmRecursive (A10, B01, C11, n1, r − 1)

mmRecursive (A11, B11, C11, n1, r − 1)

end

end

Algorithm 2 is a tiled algorithm as all the computation

involves the multiplication of tiles of size 2t−r × 2t−r in the

leaves of the recursion tree. It should also be noted that, if A

and B are Morton order matrices, then Alg. 2 will leave the

output matrix C in Morton order.

Cholesky Factorisation

Cholesky factorisation decomposes a real, symmetric,

diagonally-dominant matrix A as LLT , where L is a

lower triangular matrix. The blocked Cholesky factorisation

algorithm is based on the following matrix partitioning in

which A00 is b× b, A10 = AT
01 is (n− b)× b, and A11 is

(n− b)× (n− b):





A00 A01

A10 A11



 =





L00 0

L10 L11









LT
00 LT

10

0 LT
11





=





L00L
T
00 L00L

T
10

L10L
T
00 L10L

T
10 + L11L

T
11





The recursive right-looking Cholesky factorisation

algorithm is shown in Alg. 3, in which routine

cholesky performs a Cholesky factorisation on a

b× b block; triangularSolve solves L10L
T
00 = A10;

symmetricRankUpdate performs a symmetric rank-b

update on A11, replacing it with A11 − L10L
T
10. Algorithm

3 exhibits tail recursion, but as noted by Gustavson8, the

algorithm can also be cast in binary recursive form, as shown

in Alg. 4

ALGORITHM 3: choleskyTailRecursive: Tail recursive Cholesky

factorisation of real symmetric matrix.

Function choleskyTailRecursive(A,n,b)
Input: Real symmetric matrix A of size n× n, integer n,

integer b is the block size.

Output: On exit, the lower-triangular part of matrix A
contains the Cholesky factor, L.

if (n = b) then

cholesky (A, b)

else

cholesky (A00, b)

triangularSolve (A10, A00, n− b, b)

symmetricRankUpdate (A11, A10, n− b, b)

choleskyTailRecursive (A11, n− b, b)

end

end

Fast Fourier Transform

The discrete Fourier transform (DFT) of a two-dimensional

array, X , of size n× n is given by:

yjk =

n−1
∑

p=0

n−1
∑

q=0

xpq exp (−2πi(jp+ kq)/n) (6)

where i =
√
−1 and 0 ≤ j, k < n. xpq is the element in

row p and column q of X , and this is also indicated by

writing X = (xpq). The 2D DFT can be expressed in terms

of matrices as:

Y = FnXFn (7)

Prepared using sagej.cls
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ALGORITHM 4: choleskyBinaryRecursive: Binary recursive

Cholesky factorisation of real symmetric matrix. A00, A01, A10

and A11 are the four quadrants of the input matrix A, and are all

n/2× n/2 matrices.

Function choleskyBinaryRecursive(A,n,b)
Input: Real symmetric matrix A of size n× n, integer n,

integer b is the block size at which the recursion

terminates.

Output: On exit, the lower-triangular part of matrix A
contains the Cholesky factor, L.

if (n = b) then

cholesky (A,n, b)

else

choleskyBinaryRecursive (A00, n/2, b)

triangularSolve (A10, A00, n/2, n/2)

symmetricRankUpdate (A11, A10, n/2, n/2)

choleskyBinaryRecursive (A11, n/2, b)

end

end

where Fn = (ωpq
n ) and wn = exp (−2πi/n). It should be

noted that the complex matrix Fn is symmetric: Fn = FT
n .

It is well known that the fast Fourier transform (FFT)

replaces the dense matrix multiplications in Eq. 7 by a

series of sparse matrix multiplications (for example, see Van

Loan10). Thus, when n = 2t, Eq. 7 may be written as,

Y = FnXFn = FnXFT
n

= At . . . A1P
T
n XPnA

T
1 . . . AT

t (8)

where PT
n is an n× n permutation matrix that, when applied

to a column vector v, stores vj at the index obtained by

reversing the t bits of j. Thus, PT
n XPn re-orders the rows

and columns of X by bit-reversing the row and column

indices. In addition,

Aq = Ir ⊗BL (9)

BL =

[

IL∗
ΩL∗

IL∗
−ΩL∗

]

(10)

ΩL∗
= diag(1, ωL, . . . , ω

L∗−1
L ) (11)

where Im is the m×m identity matrix, L = 2q , r = n/L,

L∗ = L/2. Equations 8-11 express the Cooley-Tukey radix-

2 formulation of the FFT algorithm.

Common 2D FFT Algorithms

There are two common approaches to evaluating a 2D FFT

based on Eq. 8, which are presented here for clarity of

exposition.

1. The first algorithm is shown in Alg. 5, and will

be referred to as the transpose FFT algorithm.

This algorithm performs all the pre-multiplications

of X in Eq. 8 to give X̃ = At . . . A1P
T
n X and then

transposes Eq. 8 to give Y T = At . . . A1P
T
n X̃T . The

pre-multiplications done here on X̃T are identical

to those performed on X in the first stage of the

algorithm, and correspond to performing 1D FFTs

along the n rows of the matrix. Having performed the

second set of multiplications the result is transposed to

give Y . This approach separates out the operations on

the rows and columns of X , and maintains unit stride

when X is stored in row-major order. For column-

major matrices unit stride access is achieved by doing

all the post-multiplications first. Step q of each pre-

multiplication stage can be expressed as:

X ← AqX (12)

2. An alternative approach is to operate on both rows and

columns in each stage of the algorithm, as shown in

Alg. 6, which is referred to as the vector-radix FFT

algorithm in Van Loan10. Step q of Alg. 6 can be

expressed as:

X ← AqXAT
q (13)

ALGORITHM 5: transposeFFT: 2D FFT with transpose.

Function transposeFFT(X,n)
Input: Matrix X of size n× n.

Output: The matrix X is overwritten by its Fourier transform.

t = log
2
n

X = PT
n XPn

for q = 1, 2, . . . , t do

X = AqX
end

transpose (X,n)

for q = 1, 2, . . . , t do

X = AqX
end

transpose (X,n)

end

ALGORITHM 6: vectorradixFFT: Vector-radix 2D FFT.

Function vectorradixFFT(X,n)
Input: Matrix X of size n× n.

Output: The matrix X is overwritten by its Fourier transform.

t = log
2
n

X = PT
n XPn

for q = 1, 2, . . . , t do

X = AqXAT
q

end

end

From Eq. 9 it may be seen that Aq is a block-diagonal

matrix in which each of the r diagonal blocks is BL.

Partitioning X in the same way as BL, i.e., as a 2× 2 block

matrix with blocks of size L∗ × L∗, then Eq. 12 of Alg. 5

can be written as

Xij ← BLXij (14)

Prepared using sagej.cls
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which gives,

Xij ≡





X00
ij X01

ij

X10
ij X11

ij





←





X00
ij +ΩL∗

X10
ij X01

ij +ΩL∗
X11

ij

X00
ij − ΩL∗

X10
ij X01

ij − ΩL∗
X11

ij



(15)

where the superscripts 00, 01, 10, and 11 refer to the upper-

left, upper-right, lower-left and lower-right quadrants of Xij .

Applying a similar approach to Eq. 13 of Alg. 6 shows that

the blocks of X are updated at each stage of the algorithm as

follows:

Xij ← BLXijB
T
L (16)

The product BLXij may be computed as in Eq. 15, and the

result is then post-multiplied by BT
L , which further updates

the blocks of X:





X00
ij X01

ij

X10
ij X11

ij



←





X00
ij +X01

ij ΩL∗
X01

ij −X01
ij ΩL∗

X10
ij +X11

ij ΩL∗
X10

ij −X11
ij ΩL∗





(17)

For row-ordered matrices, the updates in Eq. 15 can be

done with unit stride accesses to X . Unit stride access can

also be maintained in the updates in Eq. 17 by transposing

X before and after the second set of updates. However,

this requires two transpositions to be performed in each of

the t stages of Alg. 6, which may result in excessive data

movement.

Recursive 2D FFTs

Both of the algorithms presented above involve loops over

q = 1, . . . , t. For each value of q, blocks of X of size 2q × 2q

are updated using the four constituent sub-blocks, according

to Eqs. 15 and 17. The number of rows and columns in each

block doubles for successive values of q. This means that the

2D FFT can readily be performed by a recursive algorithm

when the matrix X is stored in Morton order.

To formulate a recursive version of the 2D FFT algorithms

presented in Algs. 5 and 6 for Morton order arrays the

algorithm should terminate the recursion at some level in the

recursion tree when the block size is b = 2s for 0 < s < t.

A 2D FFT is performed on each of the b× b blocks of X ,

using any algorithm, and the algorithm then moves back up

the recursion tree, first assembling 2b× 2b blocks, and then

4b× 4b blocks, and so on. To develop the recursive algorithm

the following three lemmas are required:

• Lemma 1: The radix-2 splitting equation (Theorem

1.2.1 from Van Loan10)

FnΠn = Bn(I2 ⊗ Fn/2) (18)

where Πn is an n× n matrix such that Πnv performs a

perfect shuffle operation on the elements of the column

vector, v.

• Lemma 2: (A⊗B)(C ⊗D) = (AC)⊗ (BD), if the

matrix multiplications AC and BD are defined.

• Lemma 3: Ip ⊗ (Iq ⊗A) = Ipq ⊗A.

It should be noted that Lemma 2 and Lemma 3 correspond to

the properties of the Kronecker product referred to as Kron1

and Kron7, respectively, in Van Loan10. The following

theorem provides the basis for a recursive 2D FFT algorithm.

Theorem 1. If 1 ≤ b ≤ n then

FnΠb,n = Bb,n(In/b ⊗ Fb) (19)

where

Πb,n = Πn(I2 ⊗Πn/2)(I4 ⊗Πn/4) . . . (In/(2b) ⊗Π2b)

Bb,n = Bn(I2 ⊗Bn/2)(I4 ⊗Bn/4) . . . (In/(2b) ⊗B2b)

(20)

Proof. Proof is by induction on b. Equation 19 holds when

b = n since in this case Πb,n = Πn and Bb,n = Bn and

Eq. 18 is recovered. Now suppose Eq. 19 is true for b = 2β

for 1 ≤ β ≤ n/2. Then,

FnΠβ,n = FnΠ2β,b(In/(2β) ⊗Π2β)

= B2β,n(In/(2β) ⊗ F2β)(In/(2β) ⊗Π2β)

= B2β,n(In/(2β) ⊗ (F2βΠ2β)) by Lemma 2

= B2β,n(In/(2β) ⊗ (B2β(I2 ⊗ Fβ)) by Lemma 1

= B2β,n(In/(2β) ⊗B2β)(In/(2β) ⊗ (I2 ⊗ Fβ))

by Lemma 2

= B2β,n(In/(2β) ⊗B2β)(In/β ⊗ Fβ)

by Lemma 3

= Bβ,n(In/β ⊗ Fβ)

Thus, Eq. 19 is also true for b = β, which completes the

inductive proof.

Using Eq. 19 the 2D FFT of X may be written,

FnXFn = FnXFT
n

= Bb,n(In/b ⊗ Fb)Hb,n(In/b ⊗ Fb)B
T
b,n

(21)
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where Hb,n = ΠT
b,nXΠb,n. Now, (In/b ⊗ Fb)Hb,n(In/b ⊗

Fb) is the result of partitioning the matrix Hb,n into b× b

blocks and independently performing a 2D FFT on each

block. The matrix In/k ⊗Πk is a permutation matrix such

that (In/k ⊗Πk)v performs a perfect shuffle on blocks of the

column vector v of size n/k. This is equivalent to cyclically

rotating the lower p bits of the vector index one step to the

left, where k = 2p. Repeating such operations, as in Eq. 20, it

may be seen that Πb,n is a permutation matrix that performs

a partial bit reversal, i.e., if w = Πb,nv then wj′ = vj where

j′ is the partial bit reversal of j. If the bits of j are,

(j)2 = jt−1jt−2 . . . j1j0 (22)

where j0 is the least significant bit, then,

(j′)2 = js−1 . . . j1j0jsjs+1 . . . jt−2jt−1 (23)

A recursive algorithm for performing partial bit-reversal

on a vector is shown in Alg. 7. This makes use of a shuffle

operation, introduced above, in which the vectors being

shuffled are all of length 1.

ALGORITHM 7: PBR: Recursive routine for performing partial

bit-reversal on a vector. x← Πb,nx.

Function PBR(x,n,b)

Input: Vector x of length n, integer n = 2t, and integer

b = 2s.

Output: The vector x in partially bit-reversed order.

if (n <= b) then

return

end

PBR (x, n/2, b)

PBR (x+ n/2, n/2, b)

shuffle (x, 1, 1, n/2)

end

Note that when s = 0 then b = 1, and Π1,n = Pn,

corresponding to a complete bit reversal. Equation 21 may

be written,

FnXFn = FnXFT
n = At . . . As+1Kb,nA

T
s+1 . . . A

T
t (24)

where Kb,n = (In/b ⊗ Fb)Hb,n(In/b ⊗ Fb).

Equation 24 shows how to modify Algs. 5 and 6 to give

corresponding recursive algorithms in which the recursion

terminates at block size b× b. The algorithm shown in

Algs. 8 and 9 is the recursive version of Alg. 5, and that

shown in Algs. 10 and 11 is the recursive version of Alg. 6. In

Algs. 9 and 11 the routine FFT2D performs a 2D FFT on the

matrix X of size b× b, overwriting the input with the result.

Algorithm 8 calls routine recursiveFFT two times, so the

recursion tree is traversed twice. The first call evaluates Kb,n

(see Eq. 24) in each of the leaf nodes of the recursion tree,

and then calls routine butterflyPre to apply the butterfly

operations in Eq. 15 at each non-leaf node to give:

Yb,n = At . . . As+1Kb,n (25)

This is then transposed and used to evaluate At . . . As+1Y
T
b,n

in the second call to recursiveFFT. Transposing the

result of this gives the required result. As in Alg. 5,

this approach ensures unit stride access when performing

the butterfly operations. However, in Alg. 11 the butterfly

operations in Eqs. 15 and 17 are both applied in the same

node of the recursion tree, which is traversed only once.

Unit stride access is not maintained in the post-multiplicative

butterfly operations in Eq. 17. This will result in more data

movement, particularly in higher levels of the recursion tree,

but this is offset by avoiding the data movement in the

transposition operations.

ALGORITHM 8: transposeFFT2: FFT using recursion and block

size b.

Function transposeFFT2(X,n,b)
Input: Matrix X of size n× n, integer n, integer block size b.

Output: The matrix X is overwritten by its Fourier transform.

X = ΠT
b,nXΠb,n

recursiveFFT (X,n, b, 1)

transpose (X,n)

recursiveFFT (X,n, b, 0)

transpose (X,n)

end

ALGORITHM 9: recursiveFFT: recursive FFT with block size b.

Function recursiveFFT(X,n,b,dofft)
Input: Matrix X of size n× n, integer n, integer termination

size b, boolean dofft.

Output: The matrix X is overwritten by its partial Fourier

transform, or the full transform if L = b.

if (n==b) then

if (dofft) fft2D (X, b)

else

n2 = n/2
recursiveFFT (X00, n2, b, dofft)

recursiveFFT (X01, n2, b, dofft)

recursiveFFT (X10, n2, b, dofft)

recursiveFFT (X11, n2, b, dofft)

butterflyPre (X,n)

end

end

ALGORITHM 10: vectorradixFFT2: Vector-radix FFT using

recursion and block size b.

Function vectorradixFFT2(X,n,b)
Input: Matrix X of size n× n, integer n, integer block size b.

Output: The matrix X is overwritten by its Fourier transform.

X = ΠT
b,nXΠb,n

recursiveVRFFT (X,n, b)

end

Prepared using sagej.cls



8 Journal Title XX(X)

ALGORITHM 11: recursiveVRFFT: recursive vector-radix FFT.

Function recursiveVRFFT(X,n, b)
Input: Matrix X of size n× n, integer n, integer termination

size b.

Output: The matrix X is overwritten by its partial Fourier

transform, or the full transform if L = b.

if (n==b) then

fft2D (X, b)

else

n2 = n/2
recursiveVRFFT (X00, n2, b)

recursiveVRFFT (X01, n2, b)

recursiveVRFFT (X10, n2, b)

recursiveVRFFT (X11, n2, b)

butterflyPre (X,n)

butterflyPost (X,n)

end

end

Recursive FFTs of Morton Order Matrices

In the matrix multiply algorithm shown in Alg. 2 all the

work is performed in the leaf nodes of the recursion tree.

If the input matrices are stored in Morton order this has no

effect on the computation, and Alg. 2 will work correctly

provided the matrices multiplied by the routine matmul in

the leaf nodes are row-major order blocks (or column-major

order blocks if that is what matmul expects). However,

for the FFT algorithms in Algs. 8-11 there are three types

of operation associated with non-leaf nodes: (1) partial bit

reversal, X ← ΠT
b,nXΠb,n; (2) butterfly computations; and

(3) matrix transposition. The algorithms for these operations

have to be modified if the matrices are stored in Morton

order.

Partial Bit Reversal. A partial bit reversal can be performed

on a matrix either by bitwise manipulations or by matrix

operations. The bitwise approach for performing partial bit

reversal on a Morton ordered matrix is as follows:

1. Find the index k′ such that after converting the matrix

to Morton order xk′ is now stored at index k. The bits

of k′ are:

k2t−1, k2t−3, . . . , k2t−2r+1|k2t−2r−1, . . . , kt−r|
k2t−2, k2t−4, . . . , k2t−2r|kt−r−1, . . . , k0

2. Let k′′ be the index at which the element at index k′ of

the row-major order matrix is stored after the Morton

order and partial bit reversal operations. From the

bitwise transformations that occur in these operations

the bits of k′′ are given by:

k′t, k
′
0, k

′
t+1, k

′
1 . . . , k

′
t+r−1, k

′
r−1|k′2t−1 . . . , k

′
t+r|

k′t−1, . . . , k
′
r

3. Store the element at index k in the Morton order matrix

at index k′′.

The matrix approach is based on the observation that

ΠT
b,nXΠb,n = (ΠT

b,n(Π
T
b,nX)T )T , and that ΠT

b,nX can be

evaluated as shown in Alg. 12, in which the unshuffle

routine performs an unshuffle permutation on the rows of X .

Thus, to evaluate ΠT
b,nX when X is stored in Morton order

requires a Morton order version of the unshuffle operation.

ALGORITHM 12: pbrMorton: recursive routine for evaluating

X ← ΠT
b,nX for a Morton ordered matrix.

Function pbrMorton(X,n, b)
Input: Matrix X of size n× n, integer n = 2t, and integer

b = 2s.

Output: The matrix ΠT
b,nX .

if (n > b) then

unshuffle (X,n, n, n/2)

pbrMorton (X00, n/2, b)

pbrMorton (X01, n/2, b)

pbrMorton (X10, n/2, b)

pbrMorton (X11, n/2, b)

end

end

If the column vector x is formed of the concatenated rows

of the n× n matrix, X, then the partial bit reverse over rows

of X can be represented in terms of x as:

Ln,n . . .L2b,nLb,nx

where Lb,n = In/b ⊗ (Πb ⊗ In).

Butterfly Operations. When pre- or post-multiplying a

Morton ordered matrix by a butterfly matrix it is necessary

to process each element in the upper-left quadrant by row

(if pre-multiplying) or by column (if post-multiplying). Each

such element is updated, together with the corresponding

elements in the other three quadrants. The Morton butterfly

algorithm follows the row-major version, but for each row

and column index, (j, i), it is necessary to find the index k of

the corresponding element in the Morton ordered matrix, as

follows:

(k)2 = jn−1, in−1, jn−2, in−2 . . . , jn−r, in−r|
jn−r−1 . . . , j0|in−r−1, . . . , i0

Transposition. A matrix stored in Morton form can be

transposed recursively as shown in Alg. 13. In this algorithm

transpose performs a standard matrix transpose, and

exchange swaps the upper-right and lower-left quadrants.

The algorithm is based on the observation that:

X =

[

X00 X01

X10 X11

]

⇒ XT =

[

XT
00 XT

10

XT
01 XT

11

]
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ALGORITHM 13: transposeMorton: matrix transpose of a

Morton ordered matrix.

Function transposeMorton(X,n, b)
Input: Matrix X of size n× n, integer n, integer block size b.

Output: The matrix X is overwritten by its transpose.

if (n==b) then

transpose (X, b)

else

exchange (X01, X10, n/2)

transposeMorton (X00, n/2, b)

transposeMorton (X01, n/2, b)

transposeMorton (X10, n/2, b)

transposeMorton (X11, n/2, b)

end

end

A Variant of the Algorithm

If v is a column vector, the product ΠT
b,nv permutes v

through a partial bit reversal into blocks of length b, with

the elements in each block being of the form vi+k(n/b) for

k = 0, 1, . . . , b− 1. The n/b blocks are then permuted in

bit-reverse order. This can be verified from Eq. 23. The

block-based bit reversal can be removed by multiplying Πb,n

by (Pm ⊗ Ib), where m = n/b and Pm is the m×m bit-

reversal matrix. This results in the same blocks of v, but

now the first block is v(0 : b : m− 1), the second block

is v(1 : b : m), and so on. The permutation that gives this

ordering is:

Pm,n = Πb,n(Pm ⊗ Ib). (26)

If, in addition:

Bm,n = Bb,n(Pm ⊗ Ib), (27)

then the properties of the Kronecker product allow Eq. 19 to

be written as:

FnPm,n = Bm,n(Im ⊗ Fb) (28)

which is the standard radix-m splitting equation (see section

2.1.3 of Van Loan10). This allows the 2D Fourier transform

to be expressed as:

FnXFn = FnXFT
n

= Bb,n(Pm,n ⊗ Ib)(Im ⊗ Fb)

PT
m,nXPm,n(Im ⊗ Fb)(P

T
m,n ⊗ Ib)B

T
b,n

The algorithmic variant expressed in this equation first

evaluates Hm,n = PT
m,nXPm,n and then finds the 2D FFT

of the resulting b× b blocks. The blocks are then permuted

in bit-reversed order, before applying the butterfly operations

in Bb,n. The effect has been to split the permutations

ΠT
b,nXΠb,n in Eq. 19 into two simpler permutation

operations.

Performance Experiments

The run-time performance of the Cholesky factorisation and

the recursive matrix multiplication and 2D FFT algorithms

for Morton order arrays, described in the preceding sections,

has been compared with canonical non-recursive algorithms

on two different computing platforms. In these experiments

the input arrays were taken to be n× n, where n is an

exact power of 2. The block size, b, at which the recursion

terminated was varied for each matrix size. b is also the

minimum block size used in the Morton ordering of the

matrix. Each reported time is the average over 10 separate

program executions. The standard deviation for each time

was also found and in all cases was less than 2% of the

average time. In all cases the input and output matrices are in

Morton order, and the timings reported are for the algorithms

described in the previous sections.

In the performance experiments presented below there is

no direct programmatic control over the content of the cache;

this is determined by the caching policies of the different

platforms. Being able to explicitly control the movement of

data in and out of the cache might be expected to further

improve the performance of Morton order algorithms since

it would then be possible to ensure that both blocks were in

cache before multiplying them.

Platform 1: Intel Core i7

The first computing platform is a MacBook Pro with a 2.5Gz

Intel Core i7 processor. This processor has four cores, with a

256 KB L2 cache per core, and a 6 MB L3 cache. The system

has a 16GB main memory, and the operating system is OS X

10.10.4. Version 4.8.2 of the gcc compiler was used with the

“O3” optimisation flag set.

Platform 2: Xeon E5-2620

The second platform, named g00, is a node with two sockets,

each containing a 2GHz Intel Xeon E5-2620 processor. This

processor has 6 cores with a 256 KB L2 cache per core, and

a 15MB L3 cache. The system has a 16 GB main memory

and the operating system is Red Hat Enterprise Linux Server

release 6.2. Version 4.8.5 of the gcc compiler was used with

the “O3” optimisation flag set.

Performance Results for Matrix Multiplication

The recursive matrix multiplication algorithm shown in

Alg. 2 multiplies 2t−r × 2t−r matrix tiles at the leaves of
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the recursion tree. The algorithm chosen to do this, and

its implementation, has a large impact on the performance

of Alg. 2. The issues involved in designing algorithms for

high performance matrix multiplication have been discussed

by Goto and Van de Geijn7 who point out the importance

of a layered approach based on a small number of highly

optimized kernels, and the efficient use of L2 cache and the

Translation Look-aside Buffer. These kernels may be written

in assembly code. The impact of the choice of routine for

the matrix multiplication of the tiles is shown in Fig. 3,

which presents results for platform1 using (a) the BLAS

matrix multiplication routine GEMM, and (b) a reference

implementation making use of an ikj loop ordering that

ensures unit stride in accessing the matrices. The matrix

elements are stored as 4-byte floating-point values.
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Figure 3. Matrix multiplication using (a) GEMM and (b) a

reference ikj implementation: time for tiled Morton order

algorithm relative to untiled row-major order algorithm on

Platform 1.

Figure 3(b) shows that Morton ordering reduces the

runtime by over 35% in some cases when the reference ikj

algorithm is used. For a small block size the Morton ordering

case is slower than the untiled RM case, possibly because the

loops are shorter, and for larger blocks sizes Morton ordering

does not give any significant advantage for matrices smaller

than 4096× 4096. However, the performance benefits of

0

1

2

3

4

5

6

7

16 32 64 128 256 512 1024 2048 4096 8192

R
e
la
ti
v
e
	  t
im
e

Tile	  size

Platform	  2:	  GEMM

n	  =	  16384

n	  =	  8192

n	  =	  4096

n	  =	  2048

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

16 32 64 128 256 512 1024 2048 4096 8192

R
e
la
ti
v
e
	  t
im
e

Tile	  size

Platform	  2:	  ikj

n	  =	  16384

n	  =	  8192

n	  =	  4096

n	  =	  2048

(b)

Figure 4. Matrix multiplication using (a) GEMM and (b) a

reference ikj implementation: time for tiled Morton order

algorithm relative to untiled row-major order algorithm on

Platform 2.

Morton ordering can be seen for larger matrices and block

sizes b ≥ 32, as the improved cache performance outweighs

the effect of the shorter loops. Once the blocks no longer

fit into L3 cache, then the performance of the Morton order

case worsens. Figure 3(a) shows that for small blocks the

tiled Morton ordering case reduces the performance by

up to a factor of about 20. For block sizes greater than

1024 the performance of the tiled and untiled algorithms

is comparable, with the tiled algorithm being 5% faster for

n = 16384 and b = 4096.

The timings results for platform 2, shown in Fig. 4,

exhibit similar behaviour to those in Fig. 3. However,

the performance improvement of the tiled Morton ordered

algorithm is less marked than for platform 1. For matrices

larger than 2048× 2048 and block sizes b between 256 and

1024 the tiled Morton order algorithm reduces the execution

time by up to 13%. There is no performance advantage for

block sizes of b = 2048 or larger, and again this may be

attributed to the fact that for such block sizes the input matrix

blocks do not fit in the L3 cache.
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Performance Results for Cholesky Factorisation

The relative timings for Cholesky factorisation for platform

1 are shown in Fig. 5. For each size of matrix times are

shown relative to the time to perform the factorisation using

the LAPACK routine DPOTRF, and it should be noted that

this routine uses a blocked algorithm with the block size

automatically chosen according to the matrix size. Figure

5(a) shows results for a matrix in row-major order using a

blocked algorithm that calls DPOTRF, DTRSM, and DSYRK

to perform the main steps of Alg. 3. Figure 5(b) also shows

results for a row-major matrix, but for a tiled algorithm

constructed using LAPACK and BLAS routines. Finally,

Fig. 5(c) shows results for a tiled algorithm, but for a Morton

order matrix.

Comparison of Figs. 5(a) and 5(b) shows that for a

row-major matrix the blocked algorithm is faster than

the tiled algorithm with the same block size. However,

Figs. 5(b) and 5(c) show that Morton ordering gives some

improvement over the row-major case for all matrix sizes.

Similar behaviour is seen in the timing results for platform

2, shown in Fig. 6. Figures 5 and 6 show that for a given

block size, the time relative to DPOTRF is smaller for smaller

matrices. This is because DPOTRF runs more efficiently for

larger matrices, as may be seen in Fig. 8, which shows the

time per floating-point operation as a function of matrix

size, n, assuming the number of floating-point operations for

Cholesky factorisation is n3/3.

Figure 7 shows the relative times for the binary recursive

Cholesky factorisation algorithm, given in Alg. 4, for

Platform 1. Figure 7(a) shows that the binary recursive

algorithm is faster than DPOTRF for all matrix and tile sizes

presented. It can also be seen that Morton order gives some

performance advantage over RM order for sufficiently small

tile sizes, but there is not much difference at larger tile sizes.

Similar results were found for Platform 2, and so are not

shown, although the relative performance of DPOTRF was

better in this case.

Performance Results of FFT

Two main options were considered for performing the FFTs

in the leaves of the recursion tree, i.e., the routine fft2D in

the Alg. 11:

1. The transpose based Alg. 5 that maintains unit stride

and make use of multiple one-dimensional FFTs.

2. The two-dimensional vector-radix routine, Alg. 6.

In addition, different ways of evaluating the dilated integers

needed to index Morton ordered arrays were considered.
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Figure 5. Cholesky factorisation using (a) a blocked algorithm

and RM order, (b) a tiled algorithm and RM order, and (c) a tiled

algorithm and Morton order on Platform 1. All times are relative

to the time taken by the LAPACK routine DPOTRF.

Timing results are shown for platforms 1 and 2 in Figs. 9 and

10, respectively. In all cases, the fft2D, butterflyPre,

and butterflyPost routines in Algs. 9 and 11 were

implemented in the C language.

Figure 9(a) shows that for a given array size the relative

time for the vector radix case tends to be larger for smaller

tiles, decreases as the tile size increases, and then begins

to rise again as the tile size increases further. A similar

trend can be seen in Fig. 9(b), except that for large arrays

no increase in relative time is seen for the larger tile sizes.

The vector-radix algorithm involves O(n2 log n) large stride
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Figure 6. Cholesky factorisation using (a) a blocked algorithm

and RM order, (b) a tiled algorithm and RM order, and (c) a tiled

algorithm and Morton order on Platform 2. All times are relative

to the time taken by the LAPACK routine DPOTRF.

array accesses, which impacts performance once a tile does

not fit into cache. The transpose-based algorithm maintains

unit stride access in the FFT computation at the added

expense of having to perform two array transposes, which

requires O(n2) data movements that in general involve non-

unit stride accesses. Thus, for large tiles the performance

of the vector-radix algorithm is degraded more by cache

misses than the transpose-based algorithm. This is evident

from Fig. 11, which shows the times per flop for the vector-

radix and transpose-based 2D FFT algorithms on platforms 1

and 2, assuming that the number of floating-point operations
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Figure 7. Cholesky factorisation using the binary recursive

algorithm: (a) a blocked algorithm and RM order, (b) a tiled

algorithm and RM order, and (c) a tiled algorithm and Morton

order on Platform 2. All times are relative to the time taken by

the LAPACK routine DPOTRF.

to do a complex n× n FFT is 10n2 log2 n. The time

per flop increases with array size, n, for the vector-radix

algorithm, whereas it is almost constant for the transpose-

based algorithm.

Discussion

Morton ordering is expected to be most effective if most of

the floating-point operations in an algorithm are performed

in the leaves of the recursion tree because this maximises

the ratio of computation to data movement (assuming the
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Figure 8. Cholesky factorisation: dependence of time per

floating-point operation on matrix size, n.
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Figure 9. Platform 1: FFT for Morton order arrays using (a) the

vector radix algorithm, and (b) the standard transpose-based

algorithm, for performing the FFTs in the leaves of the recursion

tree. In both cases times are relative to the time for a standard

transpose-based algorithm on a RM array of the same size.

tiles involved in the computation fit into higher-level memory

such as the L3 cache). In the tiled algorithm for matrix

multiplication, shown in Alg. 2, all the computation is done

in the leaves of the recursion tree, and the total number of

floating-point operations performed is 2n3.

In contrast, the algorithm for block Cholesky factorisation

in Alg. 3 exhibits tail recursion, which most modern

compilers will convert to an iterative algorithm to avoid

the overhead of allocating a new stack frame on each

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

16 32 64 128 256 512 1024 2048 4096 8192

R
e
la
ti
v
e
	  T
im
e

Tile	  size

Platform	  2:	  Vector	  Radix	  FFT

n	  =	  16384

n	  =	  8192

n	  =	  4096

n	  =	  2048

(a)

0

0.5

1

1.5

2

2.5

3

16 32 64 128 256 512 1024 2048 4096 8192

R
e
la
ti
v
e
	  T
im
e

Tile	  size

Platform	  2:	  Transpose	   FFT

n	  =	  16384

n	  =	  8192

n	  =	  4096

n	  =	  2048

(b)

Figure 10. Platform 2: FFT for Morton order arrays using (a)

the vector radix algorithm, and (b) the standard

transpose-based algorithm, for performing the FFTs in the

leaves of the recursion tree. In both cases times are relative to

the time for a standard transpose-based algorithm on a RM

array of the same size.
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Figure 11. Dependence of time per floating-point operation on

array size, n, for the vector-radix and transpose-based FFT

algorithms.

recursive call. Thus, whereas for matrix multiplication

recursion provided a natural and simple way of expressing

the Morton order algorithm, there is no such advantage

for Cholesky factorisation. The number of floating-point

operations involved in each phase of Alg. 3 is as follows:

1. Cholesky factorisation of A00: b3/3 flops.

2. Triangular solve of L10L
T
00 = A10: mb2 flops, where

m is the number of rows of L10 and A10.
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3. Symmetric rank-b update L11L
T
11 = A11 − L10L

T
10:

mb(m+ b)/2 flops.

Summing these expressions over the n/b stages of the

algorithm gives a total flop count of:

TCF (n, b) =
n3

3
+

bn(n− b)

2
(29)

In the tiled implementation used in this work, the routine

DGEMM is used to multiply the tiles when doing the

symmetric rank-b update. This means that when updating

the diagonal tiles extra work is done to update the elements

above the diagonal, which accounts for the second term in

Eq. 29. This extra work could be avoided by using DSYRK to

update the diagonal tiles; however, it was found that although

this improves the performance for larger tile sizes, it results

in a small reduction in performance for smaller tile sizes.

In the tiled Algs. 9 and 11 for performing a 2t × 2t FFT

on a 2D Morton ordered array, there are 4k nodes at level k

of the recursion tree. Each leaf node computes a b× b FFT,

where b = 2t−r. This involves 10b2 log2 b floating-point

operations. Thus, the number of floating-point operations

associated with the leaf nodes is:

10(2t)2(t− r) (30)

From Eqns. 15 and 17, non-leaf node multiplies four

2t−k−1 × 2t−k−1 matrices by a diagonal matrix, and does

eight matrix additions. Since, in general, the matrices are

complex, the number of floating-point operations associated

with a non-leaf node is 40× (2t−k−1)2, and the total number

for all the non-leaf nodes in the recursion tree is:

40
r−1
∑

k=0

4k × 22t−2k−2 = 10× (2t)2r (31)

It can be seen that the total number floating-point operations

is, as expected, 10× n2 log2 n, where n = 2t. However, the

ratio of non-leaf to leaf flops is r/(t− r). For the matrix

multiplication algorithm the corresponding ratio is zero.

Thus, in the FFT case relatively more computational work

is done in the higher levels of the recursion tree, which

explains why Morton ordering is less effective in improving

the performance of the FFT algorithm when compared with

matrix multiplication.

It might be expected that the recursive algorithms

presented here would incur overheads that are not applicable

in loop-based algorithms. The number of recursive calls

in the Cholesky factorisation algorithm is O(n/b). For

the recursive 2D FTT and matrix multiplication algorithms

the number of recursive calls is O(n2/b2) and O(n3/b3),

respectively. Thus, if recursive overhead has a large impact

on performance this should be more apparent for large values

of n/b in the matrix multiplication timings.

Summary and Conclusions

The timing results presented here show that, for the three

algorithms considered, Morton ordering of arrays results

in optimal performance for intermediate tile sizes of about

256× 256. For smaller tile sizes performance decreases due

to the overhead associated with managing recursion, such as

stack frame allocation. For larger tile sizes the tiles no longer

fit into cache, which again degrades performance. In some

cases it was found that a tiled algorithm based on Morton

ordering has higher performance than the corresponding

canonical implementation, although this is dependent on the

algorithm and hardware. The efficient use of the Translation

Look-Aside Buffer (TLB) can also have a significant effect

on performance, as demonstrated by Park et al.13.

In the timing experiments presented here no attempt

has been made to explicitly control the transfer of data

between different levels in the memory hierarchy – this

is under the control of the run time system and possibly

the compiler. It could be argued that tiled algorithms using

Morton ordering would have even better performance if

data movement were controlled more at the program level.

This idea of “programming the memory hierarchy” underlies

the Sequoia programming language developed at Stanford

University2;6. Sequoia represents the memory hierarchy

directly in the programming model and provides abstractions

that separate the expression of algorithms from machine-

dependent optimisation. The lessons learned from Sequoia

have now been carried forward into the Legion programming

model and runtime system3, which allows the programmer

to achieve good performance through reasoning about data

locality and task independence. Similar ideas have been

put forward by Schneider et al.14, who compare the use

and performance of the Cellgen and Sequoia programming

models with the Cell SDK for two applications running on

the Cell Broadband Engine processor.

Support for tiled algorithms has been investigated by

Bikshandi et al.4, based on their Hierarchically Tiled Array

(HTA) datatype, of which Morton ordering is a special

case. Bikshandi et al. point out that in many cases the

HTA approach facilitates the expression of parallelism,

and demonstrate efficient parallel HTA implementations

of several algorithms. Similarly, the recursive matrix

multiplication and FFT algorithms for Morton order arrays

presented in Algs. 2 and 11 are readily parallelisable as
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each recursive call can be made independently. However,

in the recursive Cholesky factorisation algorithm in

Alg. 4 the triangular solve and symmetric update tasks

must be executed in order between the recursive calls

to choleskyBinaryRecursive, so the latter cannot

be executed in parallel. The parallelisation of recursive

algorithms applied to Morton order arrays on modern

multicore and manycore processors will be presented in a

subsequent paper.
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Karczewski K and Waśniewski J (eds.) Parallel Processing

and Applied Mathematics: 10th International Conference,

PPAM 2013, Warsaw, Poland, September 8-11, 2013, Revised

Selected Papers, Part II. Berlin, Heidelberg: Springer Berlin

Heidelberg. ISBN 978-3-642-55195-6, pp. 105–117. DOI:

10.1007/978-3-642-55195-6 10. URL http://dx.doi.

org/10.1007/978-3-642-55195-6_10.

10. Loan CV (1992) Computational Frameworks for the Fast

Fourier Transform. SIAM Press.

11. Mellor-Crummey J, Whalley D and Kennedy K (2001) Improv-

ing memory hierarchy performance for irregular applications

using data and computation reorderings. International Journal

of Parallel Programming 29(3): 217–247. DOI:10.1023/A:

1011119519789. URL http://dx.doi.org/10.1023/

A:1011119519789.

12. Morton GM (1966) A computer oriented geodetic data base;

and a new technique in file sequencing. Technical report, IBM

Ltd.

13. Park N, Hong B and Prasanna VK (2003) Tiling, block

data layout, and memory hierarchy performance. IEEE

Transactions on Parallel and Distributed Systems 14(7): 640–

654. DOI:10.1109/TPDS.2003.1214317.

14. Schneider S, Yeom JS and Nikolopoulos DS (2009) Program-

ming multiprocessors with explicitly managed memory hierar-

chies. Computer 42(12): 28–34. DOI:10.1109/MC.2009.407.

15. Thiyagalingam J, Beckmann O and Kelly PHJ (2006) Is

Morton layout competitive for large two-dimensional arrays

yet? Concurrency and Computation: Practice and Experience

18(11): 1509–1539. DOI:10.1002/cpe.v18:11. URL http:

Prepared using sagej.cls



16 Journal Title XX(X)

//dx.doi.org/10.1002/cpe.v18:11.

16. Valsalam V and Skjellum A (2002) A framework for

high-performance matrix multiplication based on hierarchical

abstractions, algorithms and optimized low-level kernels.

Concurrency and Computation: Practice and Experience

14(10): 805–839. DOI:10.1002/cpe.630. URL http://dx.

doi.org/10.1002/cpe.630.

17. Wise DS and Raman R (2008) Converting to and from dilated

integers. IEEE Transactions on Computers 57(4): 567–573.

DOI:10.1109/TC.2007.70814.

Prepared using sagej.cls


	Introduction
	Morton Ordering
	Unshuffle and Shuffle Operations

	Matrix Multiplication
	Cholesky Factorisation
	Fast Fourier Transform
	Common 2D FFT Algorithms
	Recursive 2D FFTs
	Recursive FFTs of Morton Order Matrices
	Partial Bit Reversal.
	Butterfly Operations.
	Transposition.

	A Variant of the Algorithm

	Performance Experiments
	Platform 1: Intel Core i7
	Platform 2: Xeon E5-2620
	Performance Results for Matrix Multiplication
	Performance Results for Cholesky Factorisation
	Performance Results of FFT
	Discussion

	Summary and Conclusions

