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Abstract Due to the vast and rapid increase in the size of

data, machine learning has become an increasingly more

popular approach for the purpose of knowledge discovery

and predictive modelling. For both of the above purposes,

it is essential to have a data set partitioned into a training

set and a test set. In particular, the training set is used

towards learning a model and the test set is then used

towards evaluating the performance of the model learned

from the training set. The split of the data into the two sets,

however, and the influence on model performance, has

only been investigated with respect to the optimal pro-

portion for the two sets, with no attention paid to the

characteristics of the data within the training and test sets.

Thus, the current practice is to randomly split the data into

approximately 70% for training and 30% for testing. In this

paper, we show that this way of partitioning the data leads

to two major issues: (a) class imbalance and (b) sample

representativeness issues. Class imbalance is known to

affect the performance of many classifiers by introducing a

bias towards the majority class; the representativeness of

the training set affects a model’s performance through the

lack of opportunity for the algorithm to learn, by not pre-

senting it with relevant examples—similar to testing a

student on material that was not taught. To solve the above

two issues, we propose a semi-random data partitioning

framework, in the setting of granular computing. While we

discuss how the framework can address both issues, in this

paper, we focus on avoiding class imbalance when parti-

tioning the data, through the proposed approach. The

results show that avoiding class imbalance results in better

model performance.

Keywords Granular computing � Machine learning � Data
partition � Multi-granularity learning � Class imbalance �
Sample representativeness

1 Introduction

Machine learning is a branch of artificial intelligence,

which is increasingly used in the big data era for the pur-

pose of knowledge discovery and predictive modelling.

The former purpose generally means that a model is

learned from data and some previously unknown patterns

can be extracted from the model (Liu et al. 2016). The

latter purpose means that a model is learned from data and

the model is then used to predict on any new data instances.

For both knowledge discovery and predictive modelling, it

is essential to partition a data set into a training set and a

test set (Liu et al. 2016). In particular, for the purpose of

knowledge discovery, the training set is used for a machine

learning algorithm to discover any new patterns, and the

test set is then used to validate the degree to which the

patterns truly exist and are trustable. In contrast, for the

purpose of predictive modelling, the training set is used for

a machine learning algorithm to build a model, and the test

set is then used to evaluate against the predictive accuracy

of the model.
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In the context of partitioning a data set into a training set

and a test set, it has been critical to decide effectively on

which part of the data set is selected as the training set, and

which part is selected for the test set (Liu et al. 2017). In

the traditional machine learning, it is a normal practice that

researchers and practitioners choose to do the data parti-

tioning in a fully random way. This way of partitioning,

however, leads to two major issues: (a) class imbalance and

(b) sample representativeness issues.

The first issue of class imbalance (Longadge et al. 2013;

Ali et al. 2015) is known to affect many classifiers’ per-

formance (Sotiropoulos and Tsihrintzis 2017). Randomly

partitioning the data, however, can lead to class imbalance

in the training and the test set, even when there is no

imbalance in the overall data set. For example, let us

consider a 2-class (e.g., positive class and negative class)

data set with a balanced distribution of instances across

classes, i.e., 50% of the instances belong to the positive

class and 50% of the instances belong to the negative class.

When the data set is partitioned by selecting training/test

instances randomly, it is likely that the class balance of the

data set will be broken, which would lead, for example, to

more than 50% of the training instances belonging to the

positive class and more than 50% of the test instances

belonging to the negative class, i.e., the training set has

more positive instances than negative ones, while the test

set has the opposite situation.

The second issue is about sample representativeness and

the fact that the random partitioning may lead to high

dissimilarity between training and test instances. In the

context of student learning, the training instances are like

the revision questions and the test instances are like the

exam questions. To test effectively the performance of

student learning, the revision questions should be repre-

sentative with respect to the learning content covered in the

exam questions. The random partitioning of data, however,

can result in the case that the training instances are dis-

similar to the test instances, which corresponds to the sit-

uation that students are tested on what they have not yet

learned. Such a situation not only leads to a poor perfor-

mance, but also to a poor judgment of the learner capa-

bility. Thus, in the context of predictive modelling, some

algorithms may be judged as not being suitable for a par-

ticular problem due to a poor performance, when in reality

the poor results are not due to the algorithm, but to the

representativeness of the training sample.

To address the two issues mentioned above, we propose,

in this paper, a semi-random data partitioning framework in

the setting of granular computing, towards effective

selection of training and test instances. In particular, we

focus on dealing with the class imbalance issue and provide

a brief proposal towards dealing effectively with the sam-

ple representativeness issue.

The rest of this paper is organized as follows: Sect. 2

provides theoretical preliminaries on data partitioning and

granular computing concepts. In Sect. 3, we present a

multi-granularity data partitioning framework for control-

ling effectively the partitioning of data into a training set

and a test set, towards overcoming the class imbalance and

sample representativeness issues. In Sect. 4, we report an

experimental study on controlling the class balance of the

training and test sets; the results are discussed critically and

comparatively. In Sect. 5, we highlight the contributions of

this paper and provide further directions towards dealing

effectively with the issue of sample representativeness, as

well as how to use our framework to change the class

balance in the training set for highly imbalanced data sets

to further address poor performance due to class imbalance.

2 Theoretical preliminaries

In this section, we provide theoretical preliminaries on data

partitioning and granular computing. In particular, we

describe two ways of machine learning experimentation

through data partitioning, namely cross-validation and

partitioning into training/test sets. In addition, we describe

the concepts of information granules and information

granularity which are used in the proposed framework

described in Sect. 3.

2.1 Data partitioning

In machine learning, there are several ways of data parti-

tioning for experimentation. The most popular ways are

typically referred to as training/test partitioning or cross-

validation (Kohavi 1995; Geisser 1993; Devijver 1982).

The training/test partitioning typically involves the

partitioning of the data into a training set and a test set in a

specific ratio, e.g., 70% of the data are used as the training

set and 30% of the data are used as the test set. This data

partitioning can be done randomly or in a fixed way (e.g.

the first 70% of the instances in the data set are assigned to

training set and the rest to the test set). The fixed way is

typically avoided (except when order matters) as it may

introduce systematic differences between the training set

and the test set, which leads to sample representativeness

issues. To avoid such systematic differences, the random

assignment of instances into training and test sets is typi-

cally used.

Cross-validation is conducted by partitioning a data set

into n folds (or subsets), followed by an iterative process of

combining the folds into different training and test sets. For

n folds, there will be n iterations, where at each iteration,

one of the folds is used as the test set, while the others, i.e.,

n� 1 folds, are used as the training set. In other words,

358 Granul. Comput. (2017) 2:357–386

123



each of the n folds is, in turn, used as the test set at one of

the n iterations, while the rest of the folds are combined

together as the training set. In laboratory research, tenfold

cross-validation is a popular practice, i.e., the original data

set is partitioned into ten subsets. Cross-validation is gen-

erally more expensive in terms of computational cost than

training/test partitioning.

There have been some new perspectives identified

in Liu et al. (2017) regarding the two above ways of data

partitioning used for machine learning experimentation. In

particular, cross-validation is considered as an effective

measure of the learnability of an algorithm, i.e., the degree

to which the algorithm is suitable to learn a high-quality

model from the given training data. This is to enable

appropriate employment of the suitable learning algorithms

towards producing predictive models on the basis of

existing data. The way of partitioning a data set into a

training set and a test set is taken typically towards learning

a model that covers highly complete patterns from the

training data and evaluating the model accuracy using

highly similar but different instances from the test data.

This is to make sure that the model accuracy is evaluated in

a trustworthy way using a suitable test set. Section 3 will

present a proposed approach for more effective partitioning

of data into a training set and a test set.

2.2 Granular computing

Granular computing has been an increasingly popular

approach for in-depth processing of information. It is

aimed at structural thinking at the philosophical level, as

well as at structural problem solving at the practical leve-

l (Yao 2005). In general, granular computing involves two

operations, namely, granulation and organization. The

former operation means to decompose a whole into several

parts, whereas the latter operation means to integrate sev-

eral parts into a whole. From computer science perspective,

granulation corresponds to the top-down approach and

organization corresponds to the bottom-up approach. The

nature of granular computing involves two commonly used

concepts, namely, granule and granularity.

In the context of information granule, a granule is

defined as ‘‘a small particle, especially, one of numerous

particles forming a larger unit’’, according to the Merriam-

Webster Dictionary (Merriam-Webster 2016). In practice,

there have been various examples of granules in broad

application areas.

In the setting of set theory, a set of any formalism can be

viewed as a granule, since a set is a collection of elements.

In this context, each element is viewed as a particle. Dif-

ferent formalisms of sets include deterministic sets (Liu

et al. 2016), probabilistic sets (Liu et al. 2016), fuzzy

sets (Zadeh 2015), and rough sets (Pedrycz 2011).

In the area of computer science, a granule can act as a

class due to the fact that a class is a group of objects which

are highly similar to each other. An object can also be

viewed as a granule, since each object involves a number

of attributes, each of which is considered as a particle.

Moreover, a granule can also act as a cluster due to the fact

that clustering is another way of grouping objects.

In the area of natural languages, a document could be

organized in different forms of text units, such as chapters,

sections, paragraphs, sentences, and words. In this context,

each form of text units can be viewed as a special type of

granule. Moreover, each word is viewed as the finest

granule due to the fact that a word consists of letters, each

of which is viewed as a particle (Liu and Cocea 2017b).

The concept of information granules is also popularly

involved in other application areas, such as image pro-

cessing, machine learning, and rule-based systems. More

details on information granules can be found in Pedrycz

(2011), and Pedrycz and Chen (2011, 2015a, b).

In the context of information granularity, information

granules can be located in different levels of granularity. In

set theory, a set S may have several subsets (S1; S2; . . .; Sn)
and each subset may also have several subsubsets

(S1:1; S1:2; . . .; S1:m; . . .; Sn:1; Sn:2; . . .; Sn:m). In this context,

the set S is a granule in the top level of granularity, the

subsets (S1; S2; . . .; Sn) are in the middle level of granu-

larity, and the subsubsets (S1:1; S1:1; . . .; S1:m; . . .; Sn:1;

Sn:2; . . .; Sn:m) are in the bottom level of granularity. In

computer science, a class can be specialized into several

subclasses through information granulation. In addition,

subclasses can be generalized into a super class through

information organization.

In natural language processing, a document can be

managed in a granular structure, as illustrated in Fig. 1. In

particular, the complexity of a text instance (granule) can

be reduced through top-down decomposition (granulation)

to enable text units (granules) in different levels of gran-

ularity (such as paragraphs, sentences, and words) to be

processed separately. In addition, the outcomes for pro-

cessing text units in the same level of granularity can be

combined through bottom-up aggregation (organization)

towards deriving the outcome for processing larger text

units in a higher level of granularity.

In real applications, techniques of granular computing

have been involved very often in other popular areas, such

as artificial intelligence (Wilke and Portmann 2016; Yao

2005; Skowron et al. 2016), computational intelligence

(Dubois and Prade 2016; Yao 2005; Kreinovich 2016; Livi

and Sadeghian 2016), and machine learning (Min and Xu

2016; Peters and Weber 2016; Liu and Cocea 2017a;

Antonelli et al. 2016).

Furthermore, ensemble learning is also a subject that

involves applications of granular computing concepts (Liu
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and Cocea 2017a). In particular, ensemble learning

approaches, such as Bagging, involve information granu-

lation through decomposing a training set into a number of

overlapping samples and combining the predictions made

from different classifiers towards classifying a test

instance; a similar perspective has also been stressed and

discussed in Hu and Shi (2009). Section 3 will show how

granular computing concepts can be used towards more

effective partitioning of data for machine learning

experimentation.

3 Semi-random partitioning of data into training
and test sets

In this section, we propose a multi-granularity framework

for effective control of the partitioning of a data set into a

training set and a test set. We also justify how the proposed

approach can address the class imbalance and sample

representativeness issues that can arise from random

partitioning.

3.1 Key features

The multi-granularity framework for semi-random data

partitioning is illustrated in Fig. 2. In particular, this

framework involves three levels of granularity as outlined

below:

1. Level 1 Data Partitioning is done randomly on the basis

of the original data set towards getting a training set

and a test set.

2. Level 2 The original data set is divided into a number

of subsets, with each subset containing a class of

instances. Within each subset (i.e., all instances with a

particular class label), data partitioning into training

and test sets is done randomly. The training and test

sets for the whole data set are obtained by merging all

the training and test subsets, respectively.

3. Level 3 Based on the subsets obtained in Level 2, each

of them is divided again into a number of subsubsets,

where each of the subsubsets contains a subclass (of

the corresponding class) of instances. The data parti-

tioning is done randomly within each subsubset. The

training and test sets for the whole data set are obtained

by merging all the training and test subsubsets,

respectively.

In this multi-granularity framework, Level 2 is aimed at

addressing the class imbalance issue, i.e., to control the

distribution of instances by class within the training and

test sets. Level 3 is aimed at addressing the issue of sample

representativeness, i.e., it is to avoid the case that the

training instances are highly dissimilar to the test instances

following the data partitioning.

In the setting of granular computing, the proposed

framework involves explicitly both granulation and orga-

nization. In particular, granulation is involved through the

operation that a data set is divided into a number of subsets

and each subset is divided into a training subset and a test

subset (Level 2), or further divided into subsubsets and

then split into training and test subsubsets (Level 3). In

addition, organization is involved by integrating the train-

ing subsets or subsubsets into a whole training set, and the

Fig. 1 Fuzzy information granulation for text processing (Liu and Cocea 2017b)
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test subsets or subsubsets into a whole test set. In addition,

in each level of the granularity as shown in Fig. 2, a set of

data is viewed as a granule, which also has hierarchical

relationships with sets of data (granules) located in other

levels of granularity.

3.2 Justification

Level 2 of the proposed multi-granularity framework is

aimed at controlling effectively the selection of training/

test instances towards avoiding the issue of class imbal-

ance, especially when the original data set is balanced. In

particular, Level 2 is designed to ensure that for each class

of instances, a fixed percentage of the instances would be

included in the training/test set. For example, if we suppose

that a data set is divided into a training set and a test set in

the ratio of 70:30, the strategy of semi-random data parti-

tioning involved in Level 2 of the multi-granularity

framework can ensure that for each class of instances, there

would be 70% of the instances selected as training

instances and the rest of them selected as test instances.

The above statement can be proven as follows:

Let us suppose that a data set contains two classes

(positive and negative) of instances with the frequency

distribution of p : ð1� pÞ, and the size of the data set is m.

Following data partitioning, the percentage of the training

set is q, whereas the percentage of the test set is 1� q.

While the above strategy of semi-random data parti-

tioning is taken, the following steps would be involved:

1. Step 1 The data set is divided into two subsets,

respectively, for the positive and negative classes,

which results in mp positive instances and mð1� pÞ
negative instances.

2. Step 2 Each class subset is partitioned into a training

subset and a test subset. In particular, for the positive

class, the size of the training subset is mpq and the size

of the test subset is mpð1� qÞ. Similarly, for the

negative class, the size of the training subset is mð1�
pÞq and the size of the test subset is mð1� pÞð1� qÞ.

3. Step 3 The two training subsets resulting from Step 2

are merged into a whole training set and the frequency

distribution between the positive and negative classes

is mpq : mð1� pÞq, which is equivalent to p : ð1� pÞ,
i.e., the original class distribution.

4. Step 4 The two test subsets resulting from Step 2 are

merged into a whole test set and the frequency

distribution between the positive and negative classes

is mpð1� qÞ : mð1� pÞð1� qÞ, which is equivalent to

p : ð1� pÞ, i.e., the original class distribution.

Thus, the procedure for Level 2 ensures that the original

class distribution for the whole data set is reflected within

the training and test sets. The above proof, although

demonstrated for a 2-class problem, also applies to multi-

class classification problems, since the frequency distri-

bution between different classes does not have any

dependency on the number of classes as shown above.

The above procedure is inspired from the stratified

sampling technique, used in statistics (Srndal et al. 1992).

In this context, a population (data set) is divided into

subpopulations (data subsets), and then, simple random

sampling is used within each subpopulation for getting a

subsample (strata). In the context of machine learning, each

class represents a subpopulation and a training/test subset

for a class represents a strata. Stratified sampling is typi-

cally used for improving the sample representiveness by

reducing the data variability and thus reducing sampling

error (Esfahani and Dougherty 2014; Lang et al. 2016).

However, for the purpose of avoiding class imbalance

through preserving the class distributions for training and

test sets, the classic stratified sampling technique needs to

calculate the size of each strata based on its percentage of

the total, whereas the procedure for Level 2 of the proposed

Fig. 2 Multi-granularity framework for semi-random data partitioning
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multi-granularity framework only needs to divide a data set

into subsets (each subset for a class) and then partition (in a

fixed ratio) each subset into a training subset and a test

subset, without the need to calculate the size of each

training/test subset.

For example, a data set has three classes with the dis-

tribution 40:40:20; the data partitioning needs to result in

70% of the data set for the training subset and 30% for the

test subset.

While stratified sampling is adopted, Table 1 shows that

each class needs to be given a probability for its instances

to be selected into either the training set or the test set, i.e.,

it is needed to calculate the sampling probability for each

class regarding the selection of its instances for the train-

ing/test set. This way aims to preserve the original class

distribution in both the training and test sets but leads to

higher computational complexity.

Table 2 shows that it is not needed to calculate the

sampling probability for each class regarding the selection

of its instances for the training/test set. Instead, it is only

needed to divide the original data set into n subsets, where

n is the number of classes. For each subset corresponding

to a class, it is just simply selecting an instance for the

training/test set with 70%/30% chance.

On the basis of the above description, stratified sampling

pays only attention to preserving the original class distri-

bution by giving each class a sampling probability for its

instances to be selected, without taking into account the

balance between training and test samples, whereas the

proposed semi-random partitioning pays more attention to

balancing training and test sets by simply giving each

instance 70%/30% chance to be selected for the training/

test set.

Level 3 of the proposed multi-granularity framework is

aimed at controlling effectively the selection of training/

test instances to ensure sample representativeness. In par-

ticular, the lack of sample representativess is likely to lead

to overfitting, which means that a model performs well on

the training data, but poorly on the test data. Thus, what the

algorithm learns from the training data is not useful for the

test data—something that is typically referred as a lack of

generalization; in other words, the model is too specialized,

i.e., it has learned from the training data very well, but

cannot generalize this knowledge to other situations such

as the ones in the test set.

To avoid this problem, the sample of data in the training

set should be representative of the whole data, by ensuring

that there is not a large dissimilarity between the training

set and the test set. To avoid this dissimilarity, level 3 of

the proposed multi-granularity framework is thus designed

to involve grouping instances on the basis of their simi-

larity to each other, and perform the partitioning within

these groups, such that instances from the group will be

present in both the training and the test sets.

4 Experiments, results, and discussion

In this section, we report two experimental studies. In

particular, the first study involves comparing our proposed

approach of semi-random data partitioning with the strati-

fied sampling approach. The second study is to validate the

effectiveness of the strategy of semi-random data parti-

tioning involved in Level 2 of the multi-granularity

framework proposed in Sect. 3. In particular, we compare

the strategy of the semi-random data partitioning with the

one of the traditional random data partitioning, in terms of

class frequency distribution within the training and test

sets, as well as the influence of this distribution on classi-

fication performance.

The experimental studies are conducted using 12 UCI

data sets (Lichman 2013). The characteristics of the data

sets are shown in Table 3. All the chosen data sets are

either balanced or slightly imbalanced, except for the

‘anneal’ and ‘autos’ data sets, in terms of class frequency

distribution. For using both balanced or slightly imbal-

anced data sets, the aim is to show that it is necessary to

manage to keep the balance level of both the training and

test sets as close to the balance level of the original data set

as possible, towards avoiding any impact on the learning

performance of the algorithms and on the classification

Table 1 Sampling probability

by stratified sampling
Weight Probability for class 1 (%) Probability for class 2 (%) Probability for class 3 (%)

Training set: 70% 28 28 14

Test set: 30% 12 12 6

Table 2 Sampling probability

by semi-random partitioning
Weight Probability for class 1 (%) Probability for class 2 (%) Probability for class 3 (%)

Training set: 70% 70 70 70

Test set: 30% 30 30 30
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performance of the learned classifiers. The imbalanced data

sets, i.e., ‘anneal’ and ‘autos’, as well as the ‘segment’

balanced data set, have a larger number of classes, while

the other nine data sets have two or three classes. These

will allow us to analyze the results in terms of number of

classes, as well.

Three popular machine learning algorithms, i.e., the

C4.5 decision tree learning algorithm (Quinlan 1993),

Naive Bayes (Rish 2001), and K-nearest neighbour (Liu

et al. 2016), are used for validation, since these three

algorithms are all sensitive to class imbalance (Longadge

et al. 2013).

Regarding the first experimental study, the results are

shown in Tables 4, 5, and 6. In these three tables, SS

stands for stratified sampling and SR stands for semi-ran-

dom partitioning.

Table 4 shows that the proposed semi-random parti-

tioning outperforms stratified sampling in 9 out of 12 cases,

and the two approaches perform the same in the other 3

cases, in terms of overall accuracy of classification. In

addition, the proposed semi-random partitioning outper-

forms stratified sampling in terms of precision and recall

with respect to each single class in most cases.

Table 5 shows that the proposed semi-random parti-

tioning outperforms stratified sampling in 9 out of 12 cases,

and the two approaches perform the same in 2 out of the

other 3 cases, in terms of overall accuracy of classification.

In addition, the proposed semi-random partitioning out-

performs stratified sampling in terms of precision and

recall with respect to each single class in most cases.

Table 6 shows that the proposed semi-random parti-

tioning outperforms stratified sampling in 7 out of 12 cases,

and the two approaches perform the same in 3 out of the

other 5 cases, in terms of overall accuracy of classification.

In addition, the proposed semi-random partitioning out-

performs stratified sampling in terms of precision and

recall with respect to each single class in most cases.

Regarding the second experimental study, Table 7 dis-

plays the original distribution of instances across classes

for each data set in terms of frequency (designated by #)

and percentages (designated by %). For example, the

anneal data set (first row in Table 7) has 6 classes, and in

the original distribution, class 1 has 8 instances (repre-

senting 1% of all instances), class 2 has 99 instances

(representing 11% of the data), and so on. The same

information is also displayed for the training and test sets

used with the semi-random partitioning approach. The

percentage numbers have been rounded to integers for ease

of comparison. The loss of precision due to this rounding

means that the sum across all classes may not be precisely

100%. In addition, when the number of instances is low, a

small difference in the number of instances may lead to a

much bigger difference in the percentages values.

Tables 8, 9, 10 show the original distribution, as well as

the distribution within the training and test sets for C4.5,

NB, and K-NN, respectively. The original distribution was

included in all tables for ease of comparison.

The random selection of data for training and test sets

leads to different effects on the distribution of instances

across classes within the training and test sets, which are

outlined below:

• For initially balanced data sets such as ‘iris’, ‘segment’,

and ‘tae’, the random partitioning may lead to a loss of

balance within the training and test sets; this loss can be

observed for C4.5 on the ‘iris’ and ‘tae’ data sets, while

for the ‘segment’ data set, the variation is smaller;

similarly, for NB, the loss of balance can be noticed for

the ‘iris’ and ‘tae’ data sets, while for the ‘segment’

data set, the variation is smaller, but more noticeable

than for C4.5; for K-NN, a loss of balance can be

observed for the ‘tae’ data set, while for the iris data

set, the imbalance is very small, and for the ‘segment’

Table 3 Data sets
Data set Feature types #Attributes #Instances #Classes

Anneal Discrete, continuous 38 798 6

Autos Discrete, continuous 26 205 7

Credit-a Discrete, continuous 15 690 2

Heart-stalog Continuous 13 270 2

Iris Continuous 4 150 3

kr-vs-kp Discrete 36 3196 2

Labor Discrete, continuous 17 57 2

Segment Continuous 19 2310 7

Sonar Continuous 60 208 2

Tae Discrete, continuous 6 151 3

Vote Discrete 16 435 2

Wine Continuous 13 178 3
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Table 4 Comparison with

stratified sampling in terms of

C4.5 performance

Data set Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Accuracy

Anneal

SS

Precision 0.00 0.88 0.99 0.00 1.00 1.00 0.98

Recall 0.00 1.00 0.98 0.00 1.00 1.00

SR

Precision 0.00 0.97 0.99 0.00 1.00 1.00 0.99

Recall 0.00 1.00 1.00 0.00 1.00 1.00

Autos

SS

Precision 0.00 0.00 0.63 0.88 0.72 0.80 0.80 0.77

Recall 0.00 0.00 0.71 0.7 0.81 0.80 1.00

SR

Precision 0.00 0.50 1.00 0.95 0.69 0.55 0.89 0.79

Recall 0.00 1.00 0.57 0.95 0.69 0.60 1.00

Credit-a

SS

Precision 0.80 0.85 0.83

Recall 0.82 0.83

SR

Precision 0.82 0.97 0.89

Recall 0.97 0.83

Heart-statlog

SS

Precision 0.80 0.68 0.74

Recall 0.71 0.78

SR

Precision 0.79 0.89 0.83

Recall 0.93 0.69

Iris

SS

Precision 1.00 0.93 0.93 0.96

Recall 1.00 0.93 0.93

SR

Precision 1.00 1.00 0.94 0.98

Recall 1.00 0.93 1.00

kr-vs-kp

SS

Precision 0.99 1.00 0.99

Recall 1.00 0.99

SR

Precision 0.99 1.00 0.99

Recall 1.00 0.99

Labor

SS

Precision 0.80 0.85 0.83

Recall 0.67 0.92

SR

Precision 0.83 0.91 0.88

Recall 0.83 0.91
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data set, the variation is small and similar to the

variation for C4.5.

• For slightly imbalanced data sets, the random parti-

tioning may lead to a more balanced distribution in the

training set, but a more imbalanced one in the test set,

i.e., for C4.5., ‘heart-statlog’; for NB, labor, and vote;

for K-NN, ‘credit-a’, ‘labor’, and ‘sonar’. Sometimes,

the imbalance in the test set may mean that the majority

class from the training set becomes minority class in the

test set— this occurs only for one data set, i.e., ‘sonar’

with K-NN, which is probably due to the fact that the

distribution in this data set is very close to perfect

balance (47:53).

• For slightly imbalanced data sets, the random parti-

tioning may lead to a more balanced distribution in the

test set, but a more imbalanced distribution in the

training set, i.e., for C4.5, ‘kr-vs-kp’, and ‘labor’ by

C4.5; for NB, ‘heart-statlog’. For two of these, C4.5—

‘kr-vs-kp’ and NB—‘heart-statlog’, in the test set, the

majority class is reversed in comparison with the

training set.

• For slightly imbalanced data sets, the random parti-

tioning may lead to both the training and test sets to

become more imbalanced, with a different class being

the majority class in the training and test sets; for

example, in the ‘sonar’ data set with C4.5, class 2 is the

Table 4 continued
Data set Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Accuracy

Segment

SS

Precision 0.98 1.00 0.89 0.92 0.84 0.99 1.00 0.95

Recall 0.98 1.00 0.90 0.92 0.83 1.00 0.99

SR

Precision 0.97 1.00 0.89 0.99 0.88 1.00 1.00 0.96

Recall 0.97 1.00 0.89 0.94 0.93 1.00 1.00

Sonar

SS

Precision 0.65 0.72 0.68

Recall 0.69 0.68

SR

Precision 0.81 0.87 0.84

Recall 0.86 0.82

Tae

SS

Precision 0.40 0.39 0.46 0.41

Recall 0.53 0.33 0.38

SR

Precision 0.55 0.67 0.55 0.57

Recall 0.73 0.27 0.69

Vote

SS

Precision 0.94 0.98 0.96

Recall 0.96 0.96

SR

Precision 0.97 0.94 0.96

Recall 0.96 0.96

Wine

SS

Precision 1.00 0.96 0.93 0.96

Recall 1.00 0.96 0.93

SR

Precision 1.00 0.91 1.00 0.96

Recall 0.94 1.00 0.93
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Table 5 Comparison with

stratified sampling in terms of

NB performance

Data set Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Accuracy

Anneal

SS

Precision 1.00 0.87 0.98 0.00 1.00 1.00 0.93

Recall 1.00 0.87 0.92 0.00 1.00 0.50

SR

Precision 0.50 0.79 0.99 0.00 1.00 0.30 0.86

Recall 1.00 1.00 0.82 0.00 1.00 0.92

Autos

SS

Precision 0.00 0.00 1.00 0.46 0.65 0.44 0.50 0.53

Recall 0.00 0.00 0.14 0.6 0.81 0.40 0.38

SR

Precision 0.00 1.00 0.42 0.80 0.55 0.20 0.67 0.53

Recall 0.00 1.00 0.71 0.40 0.69 0.20 0.75

Credit-a

SS

Precision 0.77 0.87 0.82

Recall 0.85 0.79

SR

Precision 0.91 0.78 0.83

Recall 0.67 0.95

Heart-statlog

SS

Precision 0.91 0.82 0.86

Recall 0.84 0.89

SR

Precision 0.86 0.94 0.89

Recall 0.96 0.81

Iris

SS

Precision 1.00 0.93 0.88 0.93

Recall 1.00 0.87 0.93

SR

Precision 1.00 1.00 1.00 1.00

Recall 1.00 1.00 1.00

kr-vs-kp

SS

Precision 0.86 0.89 0.88

Recall 0.91 0.84

SR

Precision 0.88 0.89 0.89

Recall 0.91 0.87

Labor

SS

Precision 1.00 0.86 0.89

Recall 0.67 1.00

SR

Precision 1.00 1.00 1.00

Recall 1.00 1.00
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majority class in the training set, while class 1 is the

majority class in the test set. This situation occurs on

the ‘sonar’ data set for C4.5 and NB, and on the ‘wine’

data set for all algorithms (C4.5, NB, and K-NN).

• For the data sets with a high number of classes and an

imbalanced distribution, e.g., anneal and autos, the

random partitioning may preserve the original distri-

bution for some classes, while for others, there is an

imbalance in the training set, the test set or both, i.e.,

the ‘autos’ data set for all algorithms (C4.5, NB, and

K-NN); sometimes, the majority class in the training set

is no longer the majority class in the test set, e.g., for

C4.5—‘autos’, class 5 is the majority class in the

training set, while class 4 is the majority class in the test

set (as well as the original data set). For the anneal data

set, the distribution changes slightly, but the majority of

the changes are less than 2%—for this reason, we

consider that the distribution for this data set with all

algorithms is very similar to the original distribution.

• For all data sets, the randompartitioningmay lead to a very

similar distribution in the training and test sets as in the

original data set. i.e., for C4.5, ‘anneal’, ‘credit-a’, and

‘vote’; for NB, ‘anneal’, ‘credit-a’, and ‘kr-vs-kp’; for

K-NN, ‘anneal’, ‘heart-statlog’, ‘kr-vs-kp’, and ‘vote’.

Table 11 shows the experimental results for the C4.5

algorithm with random (R) and semi-random (SR)

Table 5 conitinued
Data set Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Accuracy

Segment

SS

Precision 1.00 1.00 0.68 0.53 0.49 1.00 1.00 0.75

Recall 0.48 1.00 0.87 0.85 0.56 0.51 0.99

SR

Precision 0.79 1.00 0.57 0.90 0.43 0.95 1.00 0.80

Recall 0.97 1.00 0.12 0.87 0.68 0.97 1.00

Sonar

SS

Precision 0.92 0.66 0.71

Recall 0.41 0.97

SR

Precision 0.73 0.83 0.77

Recall 0.83 0.73

Tae

SS

Precision 0.41 0.44 0.46 0.44

Recall 0.47 0.53 0.31

SR

Precision 0.65 0.63 0.69 0.65

Recall 0.73 0.67 0.56

Vote

SS

Precision 0.84 0.96 0.91

Recall 0.94 0.89

SR

Precision 0.97 0.83 0.91

Recall 0.88 0.96

Wine

SS

Precision 1.00 0.92 1.00 0.96

Recall 0.94 1.00 0.93

SR

Precision 0.94 0.95 1.00 0.98

Recall 0.97 1.00 1.00
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Table 6 Comparison with

stratified sampling in terms of

K-NN performance

Data set Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Accuracy

Anneal

SS

Precision 0.00 0.63 0.86 0.00 0.75 0.83 0.83

Recall 0.50 1.00 0.98 0.00 1.00 0.62

SR

Precision 1.00 0.90 0.99 0.00 1.00 0.69 0.96

Recall 1.00 0.93 0.96 0.00 1.00 0.92

Autos

SS

Precision 0.00 0.00 0.00 0.33 0.54 0.11 0.00 0.32

Recall 0.00 0.00 0.00 0.60 0.44 0.10 0.00

SR

Precision 0.00 0.00 0.71 0.58 0.55 0.50 0.67 0.58

Recall 0.00 0.00 0.71 0.55 0.75 0.40 0.50

Credit-a

SS

Precision 0.66 0.71 0.69

Recall 0.63 0.74

SR

Precision 0.91 0.88 0.89

Recall 0.84 0.93

Heart-statlog

SS

Precision 0.64 0.54 0.59

Recall 0.60 0.58

SR

Precision 0.84 0.88 0.85

Recall 0.91 0.79

Iris

SS

Precision 1.00 1.00 0.94 0.98

Recall 1.00 0.88 0.92

SR

Precision 1.00 0.88 1.00 0.96

Recall 1.00 1.00 0.87

kr-vs-kp

SS

Precision 0.52 0.00 0.52

Recall 1.00 0.00

SR

Precision 0.94 0.97 0.96

Recall 0.97 0.94

Labor

SS

Precision 0.86 1.00 0.94

Recall 1.00 0.92

SR

Precision 1.00 0.92 0.94

Recall 0.83 1.00

368 Granul. Comput. (2017) 2:357–386

123



partitioning, which include the accuracy (last column), as

well as precision and recall per class.

In terms of accuracy, the results show three situations:

(a) the semi-random partitioning leads to the same accuracy

as random partitioning, i.e., ‘anneal’, ‘kr-vs-kp’, and ‘seg-

ment’; (b) the semi-random partitioning displays small

improvements in accuracy (up to 3%), i.e., ‘autos’, ‘credit-a’,

‘heart-statlog’, ‘sonar’, ‘tae’, and ‘vote’; (c) the semi-ran-

dom partitioning displays large improvements in accuracy

(5% or more), i.e., iris (7%), labor (23%), and wine (5%).

Figures 3, 4, 5 display the class distribution, as well as

the precision and recall for the experiments with C4.5 on

all data sets (4 per graph). The class distribution for the

whole data set is represented by the middle bar for every

class; the distribution into the training and test sets for

random partitioning is represented by the bars on the left,

while the ones for semi-random partitioning are repre-

sented by the bars on the right. The lines with the square

points represent the values for precision—yellow for ran-

dom partitioning and brown for semi-random partitioning;

the lines with the triangle points represent the values for

recall—blue for random partitioning and green for semi-

random partitioning. The left axis on the graphs represents

the number of instances (or class frequency), while the

right axis represents the values for precision and recall,

with a range from 0 to 1.

Table 6 continued
Data set Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Accuracy

Segment

SS

Precision 0.96 1.00 0.88 0.93 0.89 1.00 1.00 0.95

Recall 0.96 1.00 0.92 0.89 0.88 1.00 1.00

SR

Precision 0.96 1.00 0.85 0.99 0.87 0.96 1.00 0.95

Recall 0.98 1.00 0.95 0.86 0.83 1.00 1.00

Sonar

SS

Precision 0.88 0.82 0.84

Recall 0.76 0.91

SR

Precision 0.84 0.78 0.81

Recall 0.72 0.88

Tae

SS

Precision 0.25 0.43 0.40 0.37

Recall 0.20 0.40 0.50

SR

Precision 0.54 0.57 0.63 0.59

Recall 0.47 0.53 0.75

Vote

SS

Precision 0.89 0.97 0.94

Recall 0.96 0.93

SR

Precision 0.96 0.90 0.94

Recall 0.94 0.94

Wine

SS

Precision 0.84 0.65 0.44 0.65

Recall 0.94 0.50 0.53

SR

Precision 0.95 1.00 0.93 0.96

Recall 1.00 0.90 1.00
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For the data sets where the accuracy is the same for both

random and semi-random partitioning, i.e., ‘anneal’, ‘kr-

vs-kp’, and ‘segment’, the class distribution (see Table 8;

Figs. 3, 4) is very similar for both random and semi-ran-

dom partitioning. For the ‘kr-vs-kp’ data set, although the

test set is more balanced (and the training one more

imbalanced) compared with the original distribution, the

change is very small, especially for the training set where

the change is of 1%. For this data set, we also observed that

the majority class in the training set becomes the minority

class in the test set—the difference, however, is very small,

i.e., 2%. Given the large size of this data set and only a

slight imbalance in the distribution of classes, it is not

surprising that such a small change in distribution does not

impact the results.

For the data sets where the accuracy is slightly higher

when semi-random partitioning is used, i.e., ‘autos’,

‘credit-a’, ‘heart-statlog’, ‘sonar’, ‘tae’, and ‘vote’, the

random partitioning has different effects on the class dis-

tribution within the training and test sets.

For the ‘autos’ data set, we notice several situations for

different classes:

(a) for class 2, all instances are assigned to the training

set; thus, while the model learned something about

Table 7 Class frequency

distribution with semi-random

partitioning

Data set Original distribution Training set Test set

Anneal

# 8:99:684:0:67:40 6:69:479:0:47:28 2:30:205:0:20:12

% 1:11:76:0:7:4 1:11:76:0:7:4 1:11:76:0:7:4

Autos

# 0:3:22:67:54:32:27 0:2:15:47:38:22:19 0:1:7:20:16:10:8

% 0:1:11:33:26:16:13 0:1:10:33:27:15:13 0:2:11:32:26:16:13

Credit-a

# 307:383 215:268 92:115

% 44:56 45:55 44:56

Heart-statlog

# 150:120 105:84 45:36

% 56:44 56:44 56:44

Iris

# 50:50:50 35:35:35 15:15:15

% 33:33:33 33:33:33 33:33:33

kr-vs-kp

# 1669:1527 1168:1069 501:458

% 52:48 52:48 52:48

Labor

# 20:37 14:26 6:11

% 35:65 35:65 35:65

Segment

# 330:330:330:330:330:330:330 231:231:231:231:231:231:231 99:99:99:99:99:99:99

% 14:14:14:14:14:14:14 14:14:14:14:14:14:14 14:14:14:14:14:14:14

Sonar

# 97:111 68:78 29:33

% 47:53 47:53 47:53

Tae

# 49:50:52 34:35:36 15:15:16

% 32:33:34 32:33:34 33:33:35

Vote

# 267:168 187:118 80:50

% 61:39 61:39 62:38

Wine

# 59:71:48 41:50:34 18:21:14

% 33:40:27 33:40:27 34:40:26
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this class, nothing is tested and, consequently, the

performance for this class is 0;

(b) for class 3 and class 6, the random distribution leads

to proportionately more instances in the training set

for random partitioning than for the semi-random

one—for these, the performance is higher with the

random partitioning, which could be explained by

the more opportunities for learning for the random

partitioning and/or by the lack of sample represen-

tativeness for the semi-random partitioning; this will

be discussed in more detail further on;

(c) for class 4 and class 7, the opposite situation occurs,

i.e., for the random partitioning, there are propor-

tionally less instances in the training set for random

partitioning than for the semi-random one—for

these, the performance is higher with the semi-

random partitioning; similarly, this could be due to

lack of learning opportunities for the random parti-

tioning and/or sample representativeness for the

semi-random partitioning;

(d) finally, for class 5, there are proportionally more

instances in the training set for random partitioning

Table 8 C4.5: class frequency distribution in training and test sets for random partitioning

Data set Original distribution Training set Test set

Anneal

# 8:99:684:0:67:40 7:73:483:0:39:27 1:26:201:0:28:13

% 1:11:76:0:7:4 1:12:77:0:6:4 0:10:75:0:10:5

Autos

# 0:3:22:67:54:32:27 0:3:17:41:43:23:17 0:0:5:26:11:9:10

% 0:1:11:33:26:16:13 0:2:12:28:30:16:12 0:0:8:43:18:15:16

Credit-a

# 307:383 211:272 96:111

% 44:56 44:56 46:54

Heart-statlog

# 150:120 99:90 51:30

% 56:44 52:48 63:37

Iris

# 50:50:50 38:30:37 12:20:13

% 33:33:33 36:29:35 27:44:29

kr-vs-kp

# 1669:1527 1196:1041 473:486

% 52:48 53:47 49:51

Labor

# 20:37 13:27 7:10

% 35:65 33:68 41:59

Segment

# 330:330:330:330:330:330:330 223:223:230:239:242:229:231 107:107:100:91:88:101:99

% 14:14:14:14:14:14:14 14:14:14:15:15:14:14 15:15:14:13:13:15:14

Sonar

# 97:111 62:84 35:27

% 47:53 42:58 56:44

Tae

# 49:50:52 34:32:40 15:18:12

% 32:33:34 32:30:38 33:40:27

Vote

# 267:168 186:119 81:49

% 61:39 61:39 62:38

Wine

# 59:71:48 42:55:28 17:16:20

% 33:40:27 34:44:22 32:30:38
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than for the semi-random one; in addition, this is the

majority class in the test set (while class 4 is the

majority one in the training set); for this class, the

precision value is higher with semi-random parti-

tioning, while recall is higher with the random

partitioning; precision is about how many of the

instances labeled by the model are truly class 5 (as

opposed to other classes), while recall is about how

many of all of the class 5 instances are correctly

identified as class 5; thus, a small precision indicates

that class 5 instances are wrongly labeled with

another class, while a small recall indicates that the

model has not learned sufficiently how to identify

class 5 (due to either not enough opportunities for

learning or due to overfitting); a possible explanation

for the higher recall with random partitioning is that

the higher number of instances in the training set for

the random partitioning leads to a model that has

learned ‘‘better’’ how to recognize a class 5 instance

based on the knowledge about class 5, while the

opposite effect occurs for the semi-random parti-

tioning; the better precision for semi-random

Table 9 NB: class frequency distribution in training and test sets for random partitioning

Data set Original distribution Training set Test set

Anneal

# 8:99:684:0:67:40 4:67:484:0:44:30 4:32:200:0:23:10

% 1:11:76:0:7:4 1:11:77:0:7:5 1:12:74:0:9:4

Autos

# 0:3:22:67:54:32:27 0:2:15:45:39:23:20 0:1:7:22:15:9:7

% 0:1:11:33:26:16:13 0:1:10:31:27:16:14 0:2:11:36:25:15:11

Credit-a

# 307:383 216:267 91:116

% 44:56 45:55 44:56

Heart-statlog

# 150:120 111:78 39:42

% 56:44 59:41 48:52

Iris

# 50:50:50 37:31:37 13:19:13

% 33:33:33 35:30:35 29:42:29

kr-vs-kp

# 1669:1527 1164:1073 505:454

% 52:48 52:48 53:47

Labor

# 20:37 16:24 4:13

% 35:65 40:60 24:76

Segment

# 330:330:330:330:330:330:330 245:228:229:220:245:218:232 85:102:101:110:85:112:98

% 14:14:14:14:14:14:14 15:14:14:14:15:13:14 12:15:15:16:12:16:14

Sonar

# 97:111 60:86 37:25

% 47:53 41:59 60:40

Tae

# 49:50:52 34:31:41 15:19:11

% 32:33:34 32:29:39 33:42:24

Vote

# 267:168 183:122 84:46

% 61:39 60:40 65:35

Wine

# 59:71:48 48:43:34 11:28:14

% 33:40:27 38:34:27 21:53:26

372 Granul. Comput. (2017) 2:357–386

123



partitioning could be explained by the better balance

of distribution between classes with semi-random

partitioning, which leads to a model that can

distinguish better between a class 5 instance and

instances of other classes.

For the ‘credit-a’ and ‘vote’ data sets, the class distribution

is very similar for random and semi-random partitioning—

in this case, the difference is likely to be due to sample

representativeness. For the ‘heart-statlog’, ‘sonar’, and

‘tae’, the class distribution changes for the majority of

classes when using random partitioning, which has a mixed

effect on the results for different classes, i.e., precision and/

or recall are sometimes higher for semi-random partition-

ing and sometimes higher for random partitioning. In

addition, when the distribution is similar for random and

semi-random partitioning, e.g., class 1 of ‘tae’ data set, the

results are different, which may be due to sample

representativeness.

For the data sets where the accuracy is considerably

higher when using semi-random partitioning, i.e., iris (7%),

labor (23%), and wine (5%), we notice that the random

partitioning leads to class distribution imbalance in the

training sets, and something in the test sets as well (i.e., iris

and wine). The difference in results is likely to be due to

Table 10 K-NN: class

frequency distribution in

training and test sets for random

partitioning

Data set Original distribution Training set Test set

Anneal

# 8: 99:684:0:67:40 4:64:484:0:50:27 4:35:200:0:17:13

% 1:11:76:0:7:4 1:10:77:0:8:4 1:13:74:0:6:5

Autos

# 0:3:22:67:54:32:27 0:3:16:49:38:21:17 0:0:6:18:16:11:10

% 0:1:11:33:26:16:13 0:2:11:34:26:15:12 0:0:10:30:26:18:16

Credit-a

# 307:383 224:259 83:124

% 44:56 46:54 40:60

Heart-statlog

# 150:120 106:83 44:37

% 56:44 56:44 54:46

Iris

# 50:50:50 35:34:36 15:16:14

% 33:33:33 33:32:34 33:36:31

kr-vs-kp

# 1669:1527 1177:1060 492:467

% 52:48 53:47 51:49

Labor

# 20:37 15:25 5:12

% 35:65 38:63 29:71

Segment

# 330:330:330:330:330:330:330 220:223:231:238:241:234:230 110:107:99:92:89:96:100

% 14:14:14:14:14:14:14 14:14:14:15:15:14:14 16:15:14:13:13:14:14

Sonar

# 97:111 64:82 33:29

% 47:53 44:56 53:47

Tae

# 49:50:52 33:35:38 16:15:14

% 32:33:34 31:33:36 36:33:31

Vote

# 267:168 186:119 81:49

% 61:39 61:39 62:38

Wine

# 59:71:48 34:55:36 25:16:12

% 33:40:27 27:44:29 47:30:23
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Table 11 C4.5 performance on

accuracy, precision, and recall
Data set Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Accuracy

Anneal

R

Precision 0.00 0.96 0.99 0.00 1.00 1.00 0.99

Recall 0.00 1.00 1.00 0.00 1.00 0.85

SR

Precision 0.00 0.97 0.99 0.00 1.00 1.00 0.99

Recall 0.00 1.00 1.00 0.00 1.00 1.00

Autos

R

Precision 0.00 0.00 1.00 0.92 0.50 0.78 0.75 0.77

Recall 0.00 0.00 0.80 0.85 0.73 0.78 0.60

SR

Precision 0.00 0.50 1.00 0.95 0.69 0.55 0.89 0.79

Recall 0.00 1.00 0.57 0.95 0.69 0.60 1.00

Credit-a

R

Precision 0.82 0.90 0.86

Recall 0.90 0.83

SR

Precision 0.82 0.97 0.89

Recall 0.97 0.83

Heart-statlog

R

Precision 0.97 0.67 0.81

Recall 0.73 0.97

SR

Precision 0.79 0.89 0.83

Recall 0.93 0.69

Iris

R

Precision 1.00 0.94 0.81 0.91

Recall 0.92 0.85 1.00

SR

Precision 1.00 1.00 0.94 0.98

Recall 1.00 0.93 1.00

kr-vs-kp

R

Precision 0.99 0.99 0.99

Recall 0.99 0.99

SR

Precision 0.99 1.00 0.99

Recall 1.00 0.99

Labor

R

Precision 0.67 0.64 0.65

Recall 0.29 0.90

SR

Precision 0.83 0.91 0.88

Recall 0.83 0.91
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the class imbalance issue, as well as sample representa-

tiveness (e.g., class 1 of the ‘wine’ data set has similar

distribution for both random and semi-random partitioning,

but different precision results).

Table 12 displays the experimental results for Naive

Bayes (NB), including recall and precision per class, and

accuracy—for random (R) and semi-random (SR) parti-

tioning. Figures 6, 7, 8 display the precision and recall

results, as well as the class distribution, with the similar

structure as for the previous graphs (with the C4.5 results).

When looking at accuracy, the results for NB show four

situations: (a) the semi-random partitioning has lower

accuracy than the random one, i.e., ‘segment’ and ‘wine’;

(b) the accuracy is the same for both types of partitioning,

i.e., ‘sonar’; (c) the accuracy for semi-random partitioning

is slightly higher than for the random one (up to 4%), i.e.,

‘anneal’, ‘autos’, ‘credit-a’, ‘iris’, ‘kr-vskp’, and ‘vote’;

(d) the accuracy for semi-random partitioning is consider-

ably higher (5% or more), i.e., ‘heart-statlog’(5%), ‘labor’

(12%), and ‘tae’ (18%).

For the data sets displaying lower accuracy for the semi-

random partitioning, i.e., ‘segment’ and ‘wine’, the dif-

ference in accuracy compared with random partitioning is

very small, i.e., 1% for ‘segment’ and 2% for ‘wine’. For

the ‘segment’ data set, there is a small change in the class

distribution with random partitioning; for the classes where

Table 11 continued
Data set Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Accuracy

Segment

R

Precision 0.97 0.98 0.92 0.99 0.84 1.00 0.99 0.96

Recall 0.99 1.00 0.91 0.88 0.90 1.00 1.00

SR

Precision 0.97 1.00 0.89 0.99 0.88 1.00 1.00 0.96

Recall 0.97 1.00 0.89 0.94 0.93 1.00 1.00

Sonar

R

Precision 0.85 0.79 0.82

Recall 0.83 0.81

SR

Precision 0.81 0.87 0.84

Recall 0.86 0.82

Tae

R

Precision 0.50 0.56 0.60 0.56

Recall 0.40 0.56 0.75

SR

Precision 0.55 0.67 0.55 0.57

Recall 0.73 0.27 0.69

Vote

R

Precision 0.95 0.96 0.95

Recall 0.98 0.92

SR

Precision 0.97 0.94 0.96

Recall 0.96 0.96

Wine

R

Precision 0.94 0.83 0.94 0.91

Recall 0.94 0.94 0.85

SR

Precision 1.00 0.91 1.00 0.96

Recall 0.94 1.00 0.93
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Fig. 3 Class distribution and performance (precision and recall) by C4.5 for random and semi-random partitioning for the ‘anneal’, ‘autos’,

‘credit-a’, and ‘heart-statlog’ data sets

Fig. 4 Class distribution and performance (precision and recall) by C4.5 for random and semi-random partitioning for the ‘iris’, ‘kr-vs-kp’,

‘labor’, and ‘segment’ data sets
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the change results in more instances in the training set, the

recall values are higher, while for the classes where the

change results in more instances in the test set, the preci-

sion is higher; for the classes where there is little or no

change, the difference in results may be due to sample

representativeness. For the ‘wine’ data set, the random

partitioning results in a more balanced distribution across

classes in the training set, which may explain the better

performance.

The accuracy for random and semi-random partitioning

is the same on the ‘sonar’ data set, for which the random

partitioning leads to a more imbalanced training set, with

the same effect as above, i.e., when there are more

instances in the training set, the recall is higher, while when

there are more instances in the test set, the precision is

higher.

For 6 data sets, i.e., ‘anneal’, ‘autos’, ‘credit-a’, ‘iris’,

‘kr-vs-kp’, and ‘vote’, the semi-random partitioning has up

to 4% better accuracy than random partitioning. For the

‘anneal’, ‘credit-a’, and ‘kr-vs-kp’, the class distribution is

very similar for random and semi-random partitioning—

thus, the small difference is likely to be due to sample

representativeness. For the ‘autos’, ‘iris’, and ‘vote’, the

random partitioning leads to more class imbalance, which

may affect the results.

The accuracy for the semi-random partitioning is

higher than for the random one on three data sets, i.e.,

‘heart-statlog’(5%), ‘labor’ (12%), and ‘tae’ (18%). For

the ‘heart-statlog’ and ‘tae’, the random partitioning

leads to higher class imbalance in the training set,

which may explain the results. For the ‘labor’ data set,

the random partitioning leads to a better balance within

the training set, but lower results than the semi-random

partitioning which matches the original distribution—

we believe that sample representativeness plays a big

role in this situation and will investigate this in future

work.

Table 13 and Figs. 9, 10, and 11 display the results for

the experiments with K-nearest neighbour (K-NN)

algorithm.

Similar to the results for Naive Bayes, we have four

situations: (a) the accuracy for semi-random partitioning is

slightly lower than for random partitioning, i.e., ‘wine’

(2%); (b) the two ways of partitioning have the same

accuracy for the ‘anneal’ and ‘labor’ data set; (c) the semi-

random partitioning has slightly better (up to 3%) accuracy,

i.e., ‘credit-a’, ‘iris’, ‘kr-vs-kp’, ‘segment’, ‘sonar’, and

‘vote’; (d) the accuracy is considerably higher (5% or

more) for the semi-random partitioning, i.e., ‘autos’ (6%),

‘heart-statlog’, and ‘tae’.

For the ‘wine’ data set, on which the random parti-

tioning leads to 2% better accuracy, the partitioning leads

to a higher number of instances in the training set for

classes 2 and 3, which have the same or higher recall

compared with semi-random partitioning. For class 1, there

are more instances in the test set for the random parti-

tioning, which has a higher precision than semi-random

partitioning.

Fig. 5 Class distribution and performance (precision and recall) by C4.5 for random and semi-random partitioning for the ‘sonar’, ‘tae’, ‘vote’,

and ‘wine’ data sets
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Table 12 NB performance on

accuracy, precision, and recall
Data set Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Accuracy

Anneal

R

Precision 0.66 0.76 0.99 0.00 1.00 0.24 0.84

Recall 0.50 1.00 0.79 0.00 1.00 1.00

SR

Precision 0.50 0.79 0.99 0.00 1.00 0.30 0.86

Recall 1.00 1.00 0.82 0.00 1.00 0.92

Autos

R

Precision 0.00 1.00 0.30 0.50 0.59 0.50 0.67 0.52

Recall 0.00 1.00 0.43 0.32 0.87 0.44 0.57

SR

Precision 0.00 1.00 0.42 0.80 0.55 0.20 0.67 0.53

Recall 0.00 1.00 0.71 0.40 0.69 0.20 0.75

Credit-a

R

Precision 0.89 0.79 0.82

Recall 0.68 0.93

SR

Precision 0.91 0.78 0.83

Recall 0.67 0.95

Heart-statlog

R

Precision 0.77 0.94 0.84

Recall 0.95 0.74

SR

Precision 0.86 0.94 0.89

Recall 0.96 0.81

Iris

R

Precision 1.00 1.00 0.87 0.96

Recall 1.00 0.89 1.00

SR

Precision 1.00 1.00 1.00 1.00

Recall 1.00 1.00 1.00

kr-vs-kp

R

Precision 0.87 0.89 0.88

Recall 0.91 0.85

SR

Precision 0.88 0.89 0.89

Recall 0.91 0.87

Labor

R

Precision 0.75 0.92 0.88

Recall 0.75 0.92

SR

Precision 1.00 1.00 1.00

Recall 1.00 1.00
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For the ‘anneal’ data set, the class distribution is similar

for random and semi-random partitioning, thus justifying

the similar performance. For the ‘labor’ data set, the ran-

dom partitioning leads to a better balance in the training set

and a similar performance to the semi-random partitioning.

This better class balance occurred also for the NB algo-

rithm; however, the results were worst—the different

results for the K-NN algorithms support our hypothesis that

sample representativeness plays an important role in

explaining these results.

When the semi-random partitioning leads to slight

improvements in accuracy, i.e., ‘credit-a’, ‘iris’, ‘kr-vs-kp’,

‘segment’, ‘sonar’, and ‘vote’, we notice similar patterns:

(1) for similar distributions, i.e., ‘kr-vs-kp’ and ‘vote’, the

difference is likely to be due to sample representativeness;

(2) when the random sampling leads to changes in the class

distribution, an increase in the number of instances in the

training set is associated with increase in recall, while the

increase in the number of instances in the test set is asso-

ciated with an increase in precision.

For the data sets with considerably higher accuracy for

semi-random partitioning, there are two situations: (a) the

class distribution is the same, i.e., ‘heart-statlog’—conse-

quently, the difference in results is probably due to sample

representativeness; (b) the random partitioning leads to

higher imbalance for some classes, which together with the

Table 12 continued
Data set Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Accuracy

Segment

R

Precision 0.76 1.00 0.69 0.91 0.41 0.98 1.00 0.81

Recall 0.99 1.00 0.18 0.83 0.71 0.97 0.99

SR

Precision 0.79 1.00 0.57 0.90 0.43 0.95 1.00 0.80

Recall 0.97 1.00 0.12 0.87 0.68 0.97 1.00

Sonar

R

Precision 0.77 0.79 0.77

Recall 0.89 0.60

SR

Precision 0.73 0.83 0.77

Recall 0.83 0.73

Tae

R

Precision 0.63 0.50 0.25 0.47

Recall 0.80 0.26 0.36

SR

Precision 0.65 0.63 0.69 0.65

Recall 0.73 0.67 0.56

Vote

R

Precision 0.96 0.81 0.90

Recall 0.88 0.93

SR

Precision 0.97 0.83 0.91

Recall 0.88 0.96

Wine

R

Precision 1.00 1.00 1.00 1.00

Recall 1.00 1.00 1.00

SR

Precision 0.94 0.95 1.00 0.98

Recall 0.97 1.00 1.00

Granul. Comput. (2017) 2:357–386 379

123



sample representativeness explain the results, i.e., ‘autos’

and ‘tae’.

To summarise, we noticed that the distribution of classes

within the training and test sets has an effect on the

performance results. In particular, there is an association

between a larger number of instances in the training set and

a higher recall and between a larger number of instances in

the test set and a higher precision. A higher number of

Fig. 6 Class distribution and performance (precision and recall) by NB for random and semi-random partitioning for the ‘anneal’, ‘autos’,

‘credit-a’, and ‘heart-statlog’ data sets

Fig. 7 Class distribution and performance (precision and recall) by NB for random and semi-random partitioning for the ‘iris’, ‘kr-vs-kp’,

‘labor’, and ‘segment’ data sets
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instances in the training set can mean more opportunities

for learning, and, thus, a better knowledge of a particular

class, which explains the higher recall. For a good per-

formance, however, recall needs to be balanced with pre-

cision, i.e., ensure that the model can distinguish a

particular class from the other classes; in other words, a

low precision means that instances of a particular class is

wrongly labeled with another class(es). This is more likely

to be influenced by the distribution among classes, than the

distribution of a class between the training and the test set,

as the balance between classes in the training set has an

influence on the capacity to learn to distinguish between

classes (which is why class imbalance is known to lead to

poor performance). This is supported by the fact that the

semi-random partitioning results are more balanced in

terms of precision and recall, while the random partitioning

with imbalanced class distribution in the training set, as

well as imbalance across the training and test sets, tend to

have one of two combinations: (a) high precision and low

recall, or (b) low recall and high precision.

The results also indicate that the class distribution within

the training set has more influence on the performance than

the class distribution within the test set. On the other hand,

the distribution within the test set still requires considera-

tion to accurately assess the performance of a model. For

example, a small test sample may not sufficiently test the

knowledge learned for a particular class—in an extreme

situation, it may mean that knowledge is not tested at all.

These aspects can be easily controlled with our proposed

partitioning method.

Overall, the experimental results indicate that the

adoption of the strategy of semi-random data partitioning

involved in Level 2 of the multi-granularity framework

proposed in Sect. 3 achieves effective control of the

selection of training/test instances, towards avoiding the

case of class imbalance in both training and test sets,

especially when data sets are originally balanced or slightly

imbalanced.

Our results also showed situations when the random and

semi-random partitioning led to the same distribution, but

different results. We believe that these are likely to be

explained by the sample representativeness issues, which

we will address in future work with experiments on Level 3

of the propose multi-granularity framework.

5 Conclusions

In this paper, we identified two issues resulting from the

operation of random partitioning of data into a training set

and a test. In particular, we argued that a fully random way

of data partitioning could lead to the case of class imbal-

ance and to sample representativeness issues, i.e., the case

that training instances are highly dissimilar to the test

instances. To address these issues, we proposed a multi-

granularity framework for semi-random data partitioning.

The proposed framework involves both granulation and

organization in the setting of granular computing, towards

more effective data partitioning in a semi-random way.

Fig. 8 Class distribution and performance (precision and recall) by NB for random and semi-random partitioning for the ‘sonar’, ‘tae’, ‘vote’,

and ‘wine’ data sets
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Table 13 K-NN performance

on accuracy, precision, and

recall

Data set Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Accuracy

Anneal

R

Precision 0.67 0.95 0.97 0.00 1.00 0.89 0.96

Recall 0.50 1.00 0.98 0.00 1.00 0.62

SR

Precision 1.00 0.90 0.99 0.00 1.00 0.69 0.96

Recall 1.00 0.93 0.96 0.00 1.00 0.92

Autos

R

Precision 0.00 0.00 0.67 0.60 0.65 0.29 1.00 0.52

Recall 0.00 0.00 0.33 0.67 0.69 0.36 0.30

SR

Precision 0.00 0.00 0.71 0.58 0.55 0.50 0.67 0.58

Recall 0.00 0.00 0.71 0.55 0.75 0.40 0.50

Credit-a

R

Precision 0.85 0.88 0.87

Recall 0.82 0.90

SR

Precision 0.91 0.88 0.89

Recall 0.84 0.93

Heart-statlog

R

Precision 0.71 0.70 0.70

Recall 0.77 0.62

SR

Precision 0.84 0.88 0.85

Recall 0.91 0.79

Iris

R

Precision 1.00 0.93 0.87 0.93

Recall 1.00 0.88 0.92

SR

Precision 1.00 0.88 1.00 0.96

Recall 1.00 1.00 0.87

kr-vs-kp

R

Precision 0.93 0.98 0.95

Recall 0.98 0.92

SR

Precision 0.94 0.97 0.96

Recall 0.97 0.94

Labor

R

Precision 1.00 0.92 0.94

Recall 0.80 1.00

SR

Precision 1.00 0.92 0.94

Recall 0.83 1.00
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We conducted several experiments using 12 UCI data

sets and three popular machine learning algorithms (C4.5,

Naive Bayes, and K-nearest neighbour). We focused on

Level 2 of the framework for avoiding class imbalance.

The results show interesting effects of the class distribution

within the training and test sets on overall accuracy, as well

as precision and recall per class. The results have also

shown that the same class distribution for random and

semi-random partitioning can lead to different performance

results—we believe that this is most likely due to the issues

of sample representativeness, which are addressed in Level

3 of the proposed framework.

In particular, for Level 3, we argued the necessity that

each class of instances needs to be specialized into a

number of subclasses, by grouping instances from the same

class based on their similarity. By sampling data for the

training and test sets at the level of these subclasses, the

sample representativeness can be controlled across both the

training and test sets, thus avoiding situations in which

knowledge is learned but not tested, or knowledge that is

tested without having been learned.

In this paper, we focused on the preservation of the

original class distribution within the training and test sets.

While this approach is suitable for balanced and slightly

Table 13 continued
Data set Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Accuracy

Segment

R

Precision 0.98 1.00 0.87 0.94 0.80 0.98 1.00 0.94

Recall 0.97 1.00 0.91 0.88 0.82 1.00 0.99

SR

Precision 0.96 1.00 0.85 0.99 0.87 0.96 1.00 0.95

Recall 0.98 1.00 0.95 0.86 0.83 1.00 1.00

Sonar

R

Precision 0.86 0.74 0.79

Recall 0.73 0.86

SR

Precision 0.84 0.78 0.81

Recall 0.72 0.88

Tae

R

Precision 0.44 0.36 0.50 0.44

Recall 0.50 0.27 0.57

SR

Precision 0.54 0.57 0.63 0.59

Recall 0.47 0.53 0.75

Vote

R

Precision 0.97 0.87 0.93

Recall 0.91 0.96

SR

Precision 0.96 0.90 0.94

Recall 0.94 0.94

Wine

R

Precision 1.00 1.00 0.92 0.98

Recall 1.00 0.93 1.00

SR

Precision 0.95 1.00 0.93 0.96

Recall 1.00 0.90 1.00
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Fig. 9 Class distribution and performance (precision and recall) by K-NN for random and semi-random partitioning for the ‘anneal’, ‘autos’,

‘credit-a’, and ‘heart-statlog’ data sets

Fig. 10 Class distribution and performance (precision and recall) by K-NN for random and semi-random partitioning for the ‘iris’, ‘kr-vs-kp’,

‘labor’, and ‘segment’ data sets
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imbalanced data sets, it may not be the best for highly

imbalanced data sets. In future work, we will investigate

how the principles of Level 2 in our framework can be

adapted for imbalanced data sets, using stratified sampling

(mentioned in Sect. 3.2) to achieve a better balance for the

class distribution, particularly in the training set.
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