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ABSTRACT 

 

An arbitrary Lagrangian-Eulerian (ALE) three-dimensional hydrodynamic 

free-surface numerical model has been developed based on the time-dependent 

Reynolds-averaged Navier-Stokes (RANS) equations and the finite volume method 

(FVM). The model with non-hydrostatic pressure distribution and a structured non-

orthogonal curvilinear staggered mesh is capable of simulating non-homogeneous 

stratified flows and problems involving complex bathymetry. A projection method is 

deployed for solving the set of the equations, and a buoyant k-ε turbulence model is 

included in the numerical model. Six new advection schemes are introduced, and a 

fifth-order-accurate upstream scheme was utilised in the numerical model. Extensive 

numerical tests showed the capability of the model in simulating free surface flows 

and non-linear terms in Navier-Stokes equations. To achieve a better understanding 

of hydrodynamics, mixing, and salt transport and stratification and their interactive 

mechanisms in estuarine harbours and barrages, a laboratory tidal basin was 

designed, set up and employed for velocity, water surface elevation and salinity 

measurements of an idealised vertically distorted model harbour. For despiking and 

denoising the velocity data a linear algorithm was established, which successfully 

lowered the noise level and removed the spikes. The measurements showed a 

horizontal circulation in the harbour and weak vertical circulations. The salinity 

suppressed the circulation across the water depth, resulting in less mixing in vertical 

direction and stronger flushing on the surface. Comparisons of the numerical model 

simulations against the experimental data showed that the velocities and flow 

patterns were in generally good agreement with the measured values. For the fresh 

water the model under-predicted the dominant velocity components for the areas 

with strong circulation and for the saline water the simulated results showed an over-

prediction in lower layers and good agreements with the measured values for the top 

layer. The water elevations exhibited very close predictions compared with the 

measured data. The salinity simulated profiles showed good agreements with the 

measured values for lower layers and an over-prediction for the top layer. The 

investigations showed that the dominant velocities inside the harbour were increased 

for taller barriers, but with the increase of mean water depth the circulations 

weakened. The saline water flushing into the harbour flows underneath the fresh 

ambient water resulting in higher salinity concentration in the harbour over time. 
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"A part of the secret of analysis is the art of using notation well." 

Leibniz on Determinants (Langhaar, 1951) 

 

 

 

All symbols which are used throughout the thesis have been listed herein. The 

symbols which have contributed to a calculation procedure for a particular section 

have been defined in the corresponding section. 

 
A Amplification factor 

a Amplitude of standing wave 

BH Barrier height 

C Scalar quantity; species concentration 

Chézy value 

Constant in velocity logarithmic law 

Wave celerity 

Cʹ Fluctuating concentration 

C̅ Time-average of concentration 

Dc  Empirical constant of ε-equation 

Cr Courant number 

cµ Empirical constant in k-ε turbulence model 

cʹµ Empirical constant of Kolmogorov-Prandtl expression 

c1ε Empirical constant in ε-equation of k-ε turbulence model 

c2ε Empirical constant in ε-equation of k-ε turbulence model 

c3ε Buoyancy parameter in ε-equation of k-ε turbulence model 
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D Water depth 

d Distance from wall in velocity logarithmic law 

dS Surface element vector 

d0 Constant in velocity logarithmic law 

E Roughness parameter 

F Body force per unit volume 

Flux vector 

f Dimensionless resistance coefficient 

Coriolis parameter 

FA Advective flux vector 

FD Diffusive flux vector 

Fr Froude number 

DFr  Densimetric Froude number 

FW Fresh water 

G Buoyancy term of k-equation 

Distortion ratio 

g Gravitational acceleration  

g
ʹ 

Reduced gravity 

H Water depth 

)( fH  Frequency response of the infinite Wiener filter 

HW Wave height 

I Plane number for planes perpendicular to x-direction 

i Cell number in x-direction 

i x-direction unit vector 

J Plane number for planes perpendicular to y-direction 

j Cell number in y-direction 

j y-direction unit vector 

k Cell number in z-direction 

Wave number 

Kinetic energy per unit mass 

k turbulence model 

k z-direction unit vector 

k-kl k-kl turbulence model 

k-l k-l turbulence model 

Kp Pressure response factor 

ks Length parameter characteristic of the surface roughness (roughness 

length scale) 

k-ε k-ε turbulence model  
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k-νt k-νt turbulence model 

k-τ k-τ turbulence model 

k-ω k-ω turbulence model 

L Length scale 

Wave length 

Length 

L Layer of water column 

N Number of grid intervals over one wavelength 

Buoyancy frequency (Brunt-Väisälä frequency) 

n n
th

 time level 

Number of layers in z-direction 

n Unit vector normal to surface 

P Dynamic pressure 

Production term of k-equation 

P Surface force per unit volume 

p Pressure 

pʹ Fluctuating pressure 

p̅ Time-average of pressure 

Pa Atmospheric pressure 

Px x-direction surface force per unit volume 

Py y-direction surface force per unit volume 

Pz z-direction surface force per unit volume 

0p  Reference pressure 

Q Celerity ratio 

Sources 

Q  Volume of Q associated with finite volume   

SQ  Surface sources 

VQ  Volume sources 

Re Reynolds number 

eoR  Vector of correlation between odd and even indexed velocity points 

Rf Flux Richardson number 

Rh Hydraulic radius 

Ri Gradient Richardson number 

nnR  Autocorrelation matrix for Doppler noise 

ooR  Correlation matrix of odd time indexed velocity points 

vvR  Autocorrelation matrix for true velocity 

xxR  Autocorrelation matrix for noisy recorded velocity signal 
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S Slope 

Closed surface 

Sc Volumetric source term 

Se Slope of the energy gradient of flow 

Sr Slope scale 

SW Saline water 

S0/2 Stroke amplitude of wave-maker 

T Tidal period 

Wave period 

t Time 

TP Tidal period 

TR Tidal range 

txr Horizontal motion time scale 

tzr Vertical motion time scale 

u x-direction velocity component 

uʹ Fluctuating velocity of u-component 

u̅ Time-average of u-component of velocity 

ures Resultant velocity in distance d from the wall 

u  Resultant shear velocity in velocity logarithmic law 

V Water velocity 

V Velocity vector 

v y-direction velocity component 

vʹ Fluctuating velocity of v-component 

v̅ Time-average of v-component of velocity 

V̂  Velocity scale 

V
* 

Provisional velocity 

Vg Grid velocity 

Vn Normal component of velocity 

vn Normal component of velocity 

V  Volume of V associated with finite volume   

Vr Velocity scale 

Vs Surface fluid speed 

vt Tangential component of velocity 

V  Tangential component of velocity 

w z-direction velocity component 
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wʹ Fluctuating velocity of w-component 

W  Matrix of Wiener filter coefficients 

w̅ Time-average of w-component of velocity 

wg z-direction grid velocity 

jiw ,
 Wiener filter coefficients 

X x-direction body force per unit volume 

x x-direction 

Xr Horizontal length scale 

Y y-direction body force per unit volume 

y y-direction 

y
+ 

Dimensionless wall distance 

Z z-direction body force per unit volume 

z z-direction 

bz  Bed elevation above datum 

Zr Vertical length scale 

β Rate of change of density due to concentration 

Γ Turbulent diffusivity of mass 

Δt Time step interval 

Δx x-direction grid size 

Δy y-direction grid size 

Δz z-direction grid size 

ε Viscous dissipation 



ij  
Rate-of-strain tensor 

η Surface elevation 

θ Implicit weighting factor 

Angle of latitude 

θD Implicit weighting factor for diffusion 

θP Implicit weighting factor for pressure 

θη Implicit weighting factor for velocity on free surface 

κ von Kármán's constant 

λ Diffusion coefficient 

Molecular diffusivity 

  Diffusivity constant 

µ Coefficient of viscosity 

ν Kinematic viscosity 
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T  Turbulent or eddy viscosity 

n

k
 Fourier coefficient for wave number k at time level n 

ρ Density 

r  Reference density 

k  Empirical diffusion constant 

2

n  Noise variance 

T  Turbulent Schmidt number 

σʹx x-direction deviatoric normal stress 

x Reynolds normal stress 

σʹy 

 

y-direction deviatoric normal stress 

y Reynolds normal stress 

σʹz z-direction deviatoric normal stress 

z Reynolds normal stress 

  Empirical constant in ε-equation of k-ε turbulence model 

τ Unit vector tangential to surface 

b  Solid boundary shear stress 

τʹij i-j Reynolds shearing stress 

τij Shear stress on a plane perpendicular to i/j-direction and in j/i- 

direction 

Φ Scalar quantity per unit volume 

ϕ Quantity Φ per unit mass 

Ω Value of volume 

ω Angular speed of the earth’s rotation 

  Angular frequency 

Ω  Value of volume of finite volume   

 

 



 

 

CHAPTER ONE 

 

 

 

INTRODUCTION 

 

 

 
"Reason only perceives that which it produces after its own design." 

Immanuel Kant, Critique of Pure Reason (Abbott, 1979) 

 

 

1.1   ESTUARINE HYDRO-ENVIRONMENTS 
 

Estuaries are water bodies of global significance where inland fresh water meets 

saline water from the marine environment. The estuarine hydrodynamics is governed 

by tides, fresh water discharges, density driven currents and winds. Freshwater 

discharge variations as a result of freshets and droughts and surges might cause a 

stochastic character in such regions. Complex bathymetry inherently associated with 

estuaries in combination with the complicated hydrodynamics makes them one of the 

attractive and most challenging hydro-environments. Many ports are constructed in 

estuaries providing sheltered basins and access to inland waterways, and many major 

populated cities are located on estuaries. 

 The down-estuary direction experiences a fairly rapid change of water density. 

The vertical variation of density distributions also may range from well mixed, with no 

significant density variations, to highly stratified conditions. The vertical structure 

changes on sub-tidal timescales as a result of variations in neap-spring tidal velocities 
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or variations of the fresh-water discharges (Allen et al., 1980; Jay and Smith, 1990). 

The along-channel baroclinic pressure gradient and stratification are caused by 

buoyancy forces as a result of horizontal and vertical density gradients. The 

gravitational circulation is characterised by seaward flows at the surface and landward 

flows at the bottom. In many estuaries the dominant components in the salt balance are 

export of salinity by the fresh-water discharge and import by the gravitational flow, 

leading to salinity distributions which may take the form of a salt wedge (de Nijs, 

2012). On sub-tidal timescales, the forcing conditions at the boundaries may cause 

excursions of saline water larger than the tidal excursion. Periods of low fresh water 

discharges or meteorological events such as storms or a combination of both, may 

cause saline water to penetrate far into the estuary. In ocean dynamics, due to three-

dimensional circulation, the advection terms take on considerable importance for the 

equations of motion as well as the salinity equations, and are known to play a key 

role in the evolution of stratification. 

The water quality in an estuary may be adversely or beneficially affected by a 

barrage. Potentially the worst water quality effects arise in the case of tidal penetrating 

amenity barrages. In conditions of low fluvial flow, the upstream pool can become 

highly stratified with a stagnant layer of saline water remaining for long periods 

(Reilly, 1993). 

 

1.2   STRATIFIED FLOWS 
 

Horizontal flows driven by buoyancy forces in the presence of a surface or 

interface, known as gravity currents or density currents, are a common occurrence in 

many environmental contexts. Stratified flows occur in the atmosphere, oceans, 

estuaries and lakes. The sea-breeze turbidity currents and saltwater intrusions in 

estuaries are typical examples (Brown, 1999). 

The gravitational flows are often many times larger than the fresh water 

discharge and therefore have a big impact on the rate of flushing of an estuary. The 

gravitational circulation is reduced by vertical mixing, which is usually heavily 

damped in stratified flows, and by energy dissipation at the bed. The latter is 

increased by the occurrence of high tidal velocities in the low layers. The strength of 

a gravitational circulation may vary according to the degree of stratification, but it is 

not dependent on the existence of vertical density stratification. Many deep estuaries 

with weak or negligible vertical stratification have strong gravitational circulations 
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(HR Wallingford, 1999). The gravitational flow is normally strongest in deep 

estuaries with weak tidal currents.  

The net effect of stable stratification is to reduce the internal shear stresses and 

the linkage between overlying layers of water, thereby increasing velocity gradients. 

At the same time, it has an even bigger effect on reducing the vertical mixing of 

saline water, heat, suspended sediments and pollutants in an estuary (HR 

Wallingford, 1999). The presence of stratification can trap a rising plume, if dilution 

is so great that it prevents it bursting through the interface. Stratification also 

prevents dissolved oxygen diffusion downwards into the lower layers and it prevents 

suspended sediment being mixed into upper layers (HR Wallingford, 1999). 

Transient stratification in estuaries reflects competition between the stratifying 

influences of the vertical gravitational circulation and longitudinal density gradient 

by vertical shear, set against the mixing influence of, principally, tidally generated 

turbulence (Liu et al., 2002). The presence of the buoyancy force due to the 

stratification may have a substantial effect on the flow development and mixing 

processes, and hence influence the distribution of scalar substances such as pollutants 

and suspended sediments in the environment. 

 

1.3   TURBULENT TIDAL FLOW MODELLING IN STRATIFIED   
ESTUARIES, HARBOURS AND BARRAGES 

 
Estuaries inherently exhibit unsteady, non-uniform, periodically reversal 

direction, stratified flows with complex vertical salinity and velocity distributions, 

and provide suitable zones for sediment deposition which may comprise fluid-like 

muddy beds. Salinity intrusion in estuaries, harbours and barrages is a potentially 

serious problem. Buoyancy forces, due to salinity intrusion and through their effect 

on mixing, may strongly impact water quality and contaminant transport. They can 

suppress vertical mixing and degrade water quality of stable density stratified flows 

of coastal waters, estuaries, harbours and barrages. 

The turbulent transfer of momentum and salinity are strongly affected by 

buoyancy forces. Consequently, knowledge of turbulent mixing is essential to the 

comprehension of mechanism of stratified flows (de Nijs and Peitrzak, 2011). 

Turbulent Prandtl numbers are found to increase with stratification to values larger 

than one. Consequently, the vertical turbulent mass transport is suppressed by 

buoyancy forces, before the turbulent kinetic energy and vertical turbulent 



Introduction 4 

momentum exchange are inhibited. With increasing stratification, the buoyancy 

fluxes do not cease; instead they become counter-gradient. Buoyancy driven motions 

play an active role in the transfer of mass (de Nijs and Peitrzak, 2012a). Realising the 

competition between turbulent mixing and stratification processes due to barotropic 

and baroclinic forcing is of fundamental importance to studies of estuarine and costal 

dynamics. This competition determines the resulting stratification and the estuarine 

salt balance (de Nijs and Peitrzak, 2012b). 

It may be fair to say that modelling combines science, practice and art. This 

includes both physical and numerical models, each of which holds their advantages, 

drawbacks and inadequacies. Hydraulic models of estuaries are very useful in 

comparing alternative designs or operational strategies. However, the complexity of 

the flow and transport processes in coastal and estuarine regions, make estuarine 

models prone to scale effects (e.g. incorrect scaling of influence of viscosity), and 

laboratory effects due to simplification of input conditions as well as limitations of 

measuring devices and proper implementation of real world phenomena. On the 

other hand, for some situations where the processes are too complex to be replicated 

at model scale, a numerical model may be more appropriate than a hydraulic model. 

Barrage schemes need to embrace the principles of sustainable development, 

integrating economic investment and environmental improvement. They may offer 

solutions to a number of problems. At the same time, estuaries have a high 

conservation, environmental and amenity value and are a limited natural resource 

(Walker et al., 1999). The most immediate impact of a barrage is on the 

hydrodynamics regime of the estuary which is likely to fundamentally modify 

salinity and other water quality parameters in the estuary (HR Wallingford, 1999). 

 

1.4   SCOPE OF THE RESEARCH 
 

The studies reported in the literature do not provide a conclusion on the 

following subjects: 

• A portrait of the precise processes that govern the complex turbulent flow 

pattern and vertical mixing in a harbour mouth and basin; 

• A detailed picture of the processes involved in transport and stratification of 

salt in estuarine harbours and barrages on tidal and sub-tidal timescales; 

• A description of the spatial structure of currents and salinity and their mutual 

relationship in harbours and barrages; 
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• A formulated relation between harbour mixing and stratification.  

The principal aim of this study is to achieve a better understanding of 

hydrodynamics of estuarine harbours, salt transport and stratification and their 

relation to harbour mixing. The scope of the research is aimed to address the 

following questions: 

• What are the dominant processes that determine the transport and distribution 

of salt in harbours? 

• What are the interactive mechanisms of hydrodynamics, stratification and 

mixing in harbours? 

• How do the geometry and hydrodynamic forcing conditions influence the 

above mechanisms and the nature of stratification in harbours? 

• How accurately is a three-dimensional numerical model able to predict the 

hydrodynamics governing the harbour mixing and stratification? 

• What is the influence of stratification on flow and turbulence in harbours and 

barrages? 

The following tasks have been left for further research in the field: 

o The comparison of aforementioned mechanisms and simulations with real 

estuaries, harbours and barrages; 

o The study of the effect of wave-current interaction on hydrodynamics and 

mechanisms of the interest of this research project. 

 

1.5   RESEARCH METHODOLOGY 
 

A hydraulic model has been employed in concert with a numerical model, 

utilising the strengths of both modelling methods. The numerical model with non-

hydrostatic pressure distribution and variable density was developed to predict the 

flow field and salinity stratification in a three-dimensional environment. The 

laboratory-measured values of velocities, water elevations and salinity concentrations 

were used for calibration and verification of the numerical model. 

To account for the non-isotropic behaviour of stratified flow inside the harbour, 

investigations were carried out on different turbulence model closures so as to 

examine the stratification-turbulence interaction on a 2DV module of the numerical 

model. The primary aim was to obtain improved understanding of the effects of 

buoyancy forces caused by salinity on the turbulence structure and their mutual 
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relationship. Laboratory measured data reported in the literature of a number of lock-

release, buoyant jet and intrusive gravity currents were compared against numerical 

predictions to investigate the suitability of the turbulence model closures to 

characterise the hydrodynamics and mixing behaviour of the flow. 

The numerical model also contributed to a distortion study for the model 

harbour to portray and emphasise the potential misinterpretation of measured values 

due to vertical distortion used in laboratory scaled models and the discrepancies of 

simulated values of numerical models compared to the corresponding data. 

The numerical model was further employed for analysing applications of 

different mean water depths and barrier heights to examine the influence of these 

parameters on hydrodynamics and stratification in harbours. 

A laboratory tidal basin was designed, set up and employed for velocity, water 

elevation and salinity measurements of the model harbour for fresh water and salinity 

stratified conditions with various barrier heights and mean water depths. The 

measurements were designed to serve the following goals: 

• To improve the knowledge regarding the dominant mechanisms responsible for 

the evolution of the internal flow structure in the model harbour. 

• To improve the knowledge regarding the dominant mechanisms determining 

the exchange of saline water behind a barrier. 

• To provide data for the calibration and verification of the newly developed 

three-dimensional numerical model. 

An extensive signal procedure was carried out to minimise the noise and spikes 

of the measured velocity and salinity concentration data by establishing suitable 

correlations for the collected digital signals. 

 

1.6   OUTLINE OF THE THESIS 
 

The research questions are addressed in Chapters Two, Five, Eight and Nine. 

Overall conclusions are presented in Chapter Ten. A short description of the chapters 

has been outlined in the next paragraphs. 

Chapter Two brings together the literature on modelling of coastal flow fields 

and the phenomena caused by salt intrusion and the corresponding stratification in 

estuarine harbours and barrages, discussing the requirements for a numerical model 

to accurately prediction of combined turbulent tidal and gravity currents, their 

mixing and nature of their stratification. 
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The chapter provides a review of hydrodynamic and turbulence numerical and 

physical modelling of tidal flows in estuarine waters, harbours and barrages. 

Numerical modelling has received more attention with focusing on the projection 

method. Mechanisms of salinity stratified estuaries, harbours and barrages and their 

three-dimensional numerical modelling have been discussed. Turbulence modelling 

of estuarine harbours and barrages has been investigated and a review of some k-ε 

turbulence models is presented. Non-isotropy of turbulence stresses along with 

turbulence-stratification interaction is discussed. A review on the relevant literature 

of data acquisition and signal processing of laboratory measured values also has been 

included in the survey. 

Chapter Three introduces the governing hydrodynamic equations of motion 

and mixing and outlines some of turbulence models including the models utilised in 

this research project. 

Chapter Four provides a comprehensive description of the three-dimensional 

non-hydrostatic free surface numerical model with density variation developed 

herein and presents the solution method in arbitrary Lagrangian-Eulerian (ALE) 

coordinate system. 

Chapter Five examines the ability of the numerical model in simulating 

advection, diffusion and wave propagation in complex bathymetries and with various 

temporal and spatial boundary conditions. The test cases also include the simulation 

of gravity flows in a number of lock-release, buoyant jet and salinity intrusion 

hydrodynamics. Different turbulence closures have been implemented to examine the 

suitability of each of them for stratified environments of interest. The chapter also 

discusses the changes in the turbulence structure and the effects on vertical transport 

of momentum and buoyant mass of stratified flows with the consideration of either 

isotropic or non-isotropic turbulence closures. 

Chapter Six introduces the governing equations for physical modelling and 

illustrates a comprehensive description of the laboratory tidal basin and the model 

harbour design and set-up. 

Chapter Seven is dedicated to description of test arrangements, 

instrumentation, calibration, data acquisition and signal processing and digital 

filtering of the measured values. A linear method has been introduced for minimising 

the noise and spikes by the establishment of temporal correlations for the flow field. 
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For the salinity concentrations recorded in the model harbour, a moving average 

strategy has been utilised to eliminate the noise from the signals. 

Chapter Eight presents the measurement results and investigates the 

mechanisms that govern the hydrodynamics and dominate the advection of salinity, 

salt exchange, stratification and evolution of the internal flow structure of the model 

harbour in the laboratory tidal basin. This has been covered by analysing the 

measured values of velocities, water elevations and salinity concentrations for 

different laboratory set-ups. The spatial extent of the measurements served to 

determine whether the stratification remained stable during the ebb and flood tidal 

excursions along the entrance and harbour axes. Moreover the effect of salinity on 

hydrodynamics has been discussed and the effect of different barrier heights on the 

hydrodynamics has been investigated. 

Chapter Nine further addresses the concepts developed in the previous chapters 

by the simulated values of the three-dimensional model. The data and analyses in the 

previous chapters provide requisite information to assess the predictive capability of 

the model. The data sets have been used for the calibration and verification of the 

three-dimensional numerical model to examine the accurately prediction of the 

hydrodynamics and stratification pattern of the tidal flow regime at the entrance and 

inside the model harbour. A discussion is provided on the discrepancies between the 

numerical model results and measurements. A distortion study has been conducted to 

emphasise the scale effects of vertically distorted models on the interpretation of the 

measured laboratory values and their comparisons with the numerical model 

predictions. As a part of the numerical investigations, different salinity contents and 

barrier heights for a range of mean water levels are simulated and the predicted 

results are compared. This served to study the relation between the advection of the 

salt and the spatial and temporal variability of the vertical structure of the tidal 

currents along the entrance and centreline axes of the model harbour. 

Chapter Ten discusses and integrates the main concluding remarks of all 

chapters, and offers some recommendations for further research in the area. 



 

 

CHAPTER TWO 

 

 

 

LITERATURE REVIEW 

 

 

 

"Water is the principle, or the element, of things. All things are water." 

Thales of Miletus (Plutarch, Placita Philosophorum) 

(O'Connor and Robertson, 1999) 

 

2.1   INTRODUCTION 

 

This chapter has been aimed to address the relevant literature corresponding to 

the research questions posed in Chapter One, and affords evidence to the pertinent 

subjects of fundamental importance in a limited framework. 

As the central part of this research project is the numerical and physical 

modelling of tidal flows in estuarine harbours, these two, with the dominance of 

numerical modelling, have received most of the attention. Three-dimensional 

numerical models are the focal point followed by two-dimensional laterally-averaged 

models, as the latter is the core of the three-dimensional model developed herein. The 

projection method, which has been deployed in the solution algorithm of the numerical 

model, has been also discussed in some detail. 

 Although the two-dimensional horizontal models are not in the area of interest 

of this research project, they have been reviewed as they still are powerful tools for 

shallow-water simulations, and provide valuable insight about the effects of 
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impoundment geometry, harbour flushing and overall water quality processes. 

However they are not capable of accurately modelling mixing and stratification as the 

vertical density gradients and vertical turbulence play a significant role in the dynamics 

of estuarine water bodies.  

Physical models, on the other hand, have been the focus of many research 

projects, as they provide very useful means for a better comprehension of physical 

phenomena and clarification of the hydrodynamics and mechanisms of interest. They 

also provide invaluable data for calibration and validation of numerical models. 

However, they appear in a smaller number of publications in recent literature. 

The velocity data recorded by acoustic Doppler velocity meters (ADVs) and the 

conductivity data are noticeably noisy. Data acquisition and signal processing 

procedures of the studies in the similar fields have been reviewed to provide the basics 

for the corresponding studies carried out in this thesis. 

Stratified flows are of prime importance in estuarine studies, as salt intrusion is 

almost always present in harbours and barrages located in these areas. Their attractive 

and complicated hydrodynamics has been the reason for many analytical, physical and 

numerical studies. Their principal vertical behaviour makes the two-dimensional 

vertical models of major utilisation for such physical structures. However, it has to be 

emphasised that the hydrodynamics of stratification in a tidally-influenced harbour is 

fully three-dimensional, and therefore the relevant 3D models have been covered even 

if they have not fulfilled the expectations according to simulated results reported in the 

literature. 

Turbulence modelling in conjunction with dynamics of estuaries and harbours 

and in combination and interaction with buoyant stratified flows makes it the most 

challenging subject of the detailed studies of estuarine hydrodynamics. Its inclusion in 

the numerical model as an important part of the predictive means of hydrodynamics of 

estuarine hydro-environments, even in the absence of salinity and stratification, is of 

prime importance. 

The complicated nature of salinity-stratified hydrodynamics and non-isotropic 

behaviour of turbulence and mixing associated with such conditions, leads to the 

review of the relevant turbulence closures in the field. 

A conclusion of the chapter provides the necessary information of an outlook for 

the fields of the interest of this research project. 
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2.2   HYDRODYNAMIC AND TURBULENCE MODELLING OF 

TIDAL FLOWS IN ESTUARINE WATERS, HARBOURS 

AND BARRAGES 
 

"The sciences do not try to explain, they hardly even try to interpret, they 

mainly make models" (von Neumann: O'Connor and Robertson, 1999). 

 Dalrymple (1985) pointed out that field studies provide the best data, but they 

are usually expensive and too many variables of nature are present, making data 

interpretation difficult. In contrast, physical models are smaller, less expensive, 

easily studied, and simpler than nature, yet they include most important aspects of 

the problem. In addition, physical and numerical model input conditions can be 

controlled and systematically varied, whereas field studies have no such control 

(Kamphuis, 1991). Mathematical models point out the most important deficiencies, 

and physical models offer the chance to monitor and measure the physics in a 

controlled environment (Hughes, 1993). 

Tidal motion is sensitive to the length, depth and roughness of an estuary 

(Bowden, 1983). The rate of longitudinal mixing is governed by the strength of the 

tidal velocities, shape of the channel cross-section and by gravitational circulations 

induced by longitudinal salinity gradients (HR Wallingford, 1999). Vertical mixing 

is caused by turbulent eddies which generate internal stresses in the flow by 

interchanging momentum of the fast flowing and slower flowing layers. Turbulence 

also mixes salt, heat, sediment and pollutants through the water column. Stable 

stratification damps the vertical turbulent eddies and reduces vertical mixing 

drastically (Odd and Rodger, 1978). The degree of stratification is quantified by the 

local gradient Richardson number, that usually peaks at a level at which the density 

gradient is largest. In vertically well-mixed estuaries with a tidal range to mean tide 

depth ratio, 0.5-2.0, the pattern of saline intrusion and mud and sand transport is 

governed by the inequality of the flood and ebb tides caused by shallow effects (HR 

Wallingford, 1999). This usually results in a short strong flood current and a long 

period of weaker currents on the ebb tide. The turbulence in estuarine environments 

generally occurs at higher values for shear and stratification than the turbulence in 

the ocean and shelf seas (de Nijs and Pietrzak, 2012a). 

HR Wallingford (1999) defines a barrage as a structure built in an estuary, at a 

point where it is not less than 15 m wide, with the specific intention of preventing, or 

in some way modifying tidal propagation, including barrages designed to retain a 
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minimum upstream water level. Part-tide barrages, which allow the intrusion of 

seawater, give rise to a whole class of problems in the upstream pool. The intruding 

seawater is likely to form a stable two-layer system with little or no vertical turbulent 

exchange, especially during neap tides and low river inflows (HR Wallingford, 

1999). Mud and polluted particulate matter tend to be trapped in the lower layer 

causing major water quality problems. HR Wallingford (1999) comments on the 

hydraulic impacts of barrages in order to assess whether the barrage would change 

the pattern of saline intrusion, stratification and gravitational circulation so as to have 

an adverse effect on flushing of pollutants, cooling water, water quality, 

sedimentation or the ecosystem in the estuary. If the barrage is overtopped by the 

tide, the issue of whether the polluted saline water would be trapped upstream should 

be noticed. 

The tidal barrage in the Tees estuary restricts the upstream movement of the 

salt resulting in the formation of a new freshwater region to landward. The blocking 

of the tidal flow at the barrage has resulted in a marked increase in stratification due 

to reduction in tidal current speed and in the rate of vertical transfer of salt. The time 

of the most intensive mixing has changed from the ebb tide to the flood tide (Riddle 

and Lewis, 1999). The modelling studies have indicated that the changes in the 

stratification on the flood tide for the post barrage situation are principally associated 

with vertical mixing, rather than differential advection of the longitudinal distribution 

of salt. Xia et al. (2010) investigated the impact of constructing a tidal barrage on the 

hydro-environmental aspects of the Severn estuary, using a numerical model. They 

reported that at some cross-sections, the maximum discharges were predicted to 

decrease by 30-50%, as compared with the corresponding discharges predicted 

without the barrage. The model also predicted that with the barrage, the maximum 

water levels upstream of the barrage would decrease by 0.5-1.5 m, with the peak tidal 

currents also being reduced considerably. For different operating modes, complex 

velocity fields were predicted to occur in the vicinity of the barrage. 

 

2.2.1   Numerical Models 
 

A comprehensive classification for a wide range of tidal flow modelling can be 

found in Abbott (1997). Categorising the coastal modelling and its development, 

based on the generations of the models, has been provided by Abbott (1989). Abbott 

(1993) also provides a review on reliability and applicability of the full three-
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dimensional, intermediate models of the two- and three-dimensional and one- and 

two-dimensional nearly-horizontal flow models. Here only a brief review on the 

levels of tidal flow modelling is presented. The hydrodynamic stages are usually 

characterised by the dimensionality of the flows that the models simulate (Abbott, 

1997). The classification presented herein (HR Wallingford, 1999), classifies the 

tidal flow models according to their dimensions: 

 1D: Cross-sectionally averaged; 

o Applications: Adequate for predicting tidal and surge propagation and fluvial 

flooding in narrow estuaries (width <10% length). 

o Limitations: Cannot simulate stratification, gravitational circulation or 

secondary or residual currents. 

 2D Horizontal: Depth-averaged; 

o Applications: Adequate for predicting tidal and surge propagation and fluvial 

flooding in wide, relatively shallow vertically well-mixed estuaries (width 

>10% length). 

o Limitations: Cannot simulate stratification, gravitational circulation or 

secondary currents. 

 2D Vertical: Width-averaged; 

o Applications: Adequate for predicting tidal levels, currents, salinity, water 

quality and suspended sediment in a relatively narrow (width <10% length) 

stratified or deep estuary. 

o Limitations: Cannot simulate variation of currents across an estuary. 

 3D Hydrostatic: Assumes hydrostatic pressure distribution; 

o Applications: Adequate for predicting tidal currents, salinity, water quality and 

suspended sediment in a wide stratified estuary. 

o Limitations: Cannot simulate flows in zones with large vertical acceleration. 

 Full 3D: Complicated unsteady non-hydrostatic pressure distribution; 

o Applications: Adequate for predicting detailed 3D flows. 

 

2.2.2   Physical models 
 

Although hydraulic models may be more expensive than computer models, 

they have a very great advantage for some situations, especially for three-

dimensional density-stratified flows (Fischer et al., 1979). The influence of the 

planform geometry, entrance width and tidal range on the exchange characteristics of 
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a simple rectangular harbour, having a constant depth and planform area, with a 

single asymmetric entrance and vertical sides, was investigated in the studies of Jiang 

and Falconer (1983). The laboratory results confirmed that the optimum gross tidal 

flushing occurs for a rectangular harbour when the length to breadth ratio is between 

0.5 and 2, and for lower tidal ranges ideally the harbour should be square. Tidal 

circulation and flushing for a square harbour with a single asymmetric entrance has 

been investigated extensively in a number of studies conducted by Nece and 

Falconer (1989a, 1989b), Falconer and Yu (1991), and Falconer and Chapman 

(1996). More specifically, mean water level velocity distributions along the 

centreline axes of the model harbour were presented and compared for flood and ebb 

tide conditions. In the studies of Nece and Falconer (1989b) also the influence of 

different distortion ratios was investigated on velocity distributions, with the results 

indicating little variation for both the flood and ebb tide at mean water level. In 

another set of experiments (Falconer and Yu, 1991) emphasis was placed on 

determining the influence of the mean depth, bed slope and vertical scale distortion 

on the tidal current structure at mean water level, and on the tidal exchange 

characteristics. The results showed that the tidal exchange coefficient decreased with 

increasing mean depths and increased for increasing distortion. Transport in these 

types of water bodies is advection dominated, and vertical distortion and low 

Reynolds numbers in the model rule out equivalence of local diffusion characteristics 

in the model and prototype (Nece, 1984). In a study of tidal circulation and flushing 

in five western Washington marinas Nece et al. (1980) used distorted hydraulic 

models with distortion ratios equal to 10 and 12.5. 

Langendoen (1992) studied the influence of the harbour entrance geometry on 

the velocity and density fields in the entrance of a tidal harbour by means of 

laboratory experiments and field measurements. Ohle et al. (2000) used undistorted 

physical models for the extension of Altenwerder harbour, and the reconstruction of 

Hansahafen harbour in Hamburg, for two-dimensional flow simulations and analysis 

of different designs of harbour geometries with respect to flow characteristics and 

sedimentation conditions. Hassan et al. (2012) used a physical scale model to study 

wave propagation during various storm wave conditions into the harbour of Ostend. 

Cuthbertson et al. (2006) modelled the relative influence of tidal and fluvial 

forcing on the density-driven exchange across a submerged barrier, with particular 

emphasis on the relative importance of these agencies in controlling the temporal and 
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spatial development of the brackish layer formed behind the barrier. They reported 

that the intrusion experiments indicated that the formation, growth, and stabilisation 

of the brackish pool during its early stages of development are dependent upon the 

tidal conditions and the geometrical details of the impoundment volume. They 

concluded that as far as the water quality of the impounded volume is concerned, the 

dimensions and structure of the trapped brackish water pool are of fundamental 

importance. 

 

2.2.2.1   Data Acquisition and Signal Processing 

 

The ADV is a remote-sensing, three-dimensional velocity sensor, originally 

developed and tested for use in physical model facilities (Kraus et al., 1994; 

Lohrmann et al., 1994), and its operation is based on the Doppler shift effect. 

High levels of noise and spikes have been reported in measurements with ADV 

velocimeter (Nikora and Goring, 1998; McLelland and Nicholas, 2000). In turbulent 

flows, the ADV velocity fluctuations characterise the combined effects of the 

Doppler noise, signal aliasing, velocity fluctuations, installation vibrations and other 

disturbances (Chanson et al., 2008). Both the spectra and the probability distributions 

indicate that as a first approximation, the Doppler noise is Gaussian white noise 

(Nikora and Goring, 1998). Chanson et al. (2002) discussed the noise of an ADV 

system. The main source of Doppler noise is the random target distribution in the 

sampling volume, which induces an instantaneous Lagrangian deviation of the 

position of the target from the mean position determined by the spatially averaged 

velocity. This creates instantaneous random Doppler-phase noise that is added to the 

spatially averaged Doppler phase (Doroudian et al., 2010). McLelland and Nicholas 

(2000) explained the physical processes causing spikes by aliasing of the Doppler 

signal. For steady flow situations a few techniques to eliminate the spikes have been 

developed (Nikora and Goring, 1998; Goring and Nikora, 2002; Wahl, 2003). Wahl 

(2000) also developed the WinADV program for post-processing and analysis of 

ADV data. Due to the presence of intermittent spikes contaminating time series 

measured by acoustic Doppler velocimetry, statistical properties, and power spectral 

density of such data sets can have unrealistic values (Parsheh et al., 2010). These 

spikes appear when the flow velocity exceeds the preset velocity range of the 

equipment, the turbulence intensities are high, or there are contaminations from 

previous pulses reflected from the flow boundaries. 
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Voulgaris and Trowbridge (1998) evaluated accuracy of the acoustic Doppler 

velocimeter (ADV) by measurements of open channel flow using an ADV and a 

laser Doppler velocimeter. The results were qualitative and showed a good 

agreement between the mean values obtained by the two sensors. They examined the 

degree of accuracy in measuring mean velocity, variance, and covariance of the flow 

field together with the effect of the proximity to the boundary in flow measurements. 

The types and magnitudes of noise involved in flow measurements using an ADV 

sensor were also examined. They concluded that ADV is suitable for accurate 

measurements of mean flow even at positions close to the boundary. However, 

Dombroski and Crimaldi (2007) stated that the accuracy of ADVs is limited when 

making measurements close to the bed or in flows where large spatial gradients are 

present. To validate the use of ADVs for the measurement of turbulent flows, 

Khorsandi et al. (2012) conducted experiments in an axisymmetric turbulent jet and 

in approximately homogenous isotropic turbulence with zero mean flow. The jet 

experiments showed that the horizontal RMS velocities measured by the ADV were 

overestimated compared to both flying hot-film anemometry measurements and the 

accepted values in the literature. However, the vertical component of the RMS 

velocity agreed well with those of other studies. To correct the data, post-processing 

filters and a Doppler noise-reduction method were applied to the jet data. Despite 

decreasing the RMS velocities, they remained erroneously higher than the accepted 

values. Their results showed no clear relationship between the Doppler noise and the 

mean flow. 

Goring and Nikora (2002) assumed that good data can be found within a 

cluster and that points located outside the cluster are spikes. They suggested a 

method based on iterative phase-space thresholding as the most suitable solution for 

spike detection. They reported that the method worked extremely well confirmed by 

successful application of the method to numerous ADV data. Doroudian et al. (2010) 

combined a spike-removal procedure on the beam velocities with a noise-reduction 

method on the flow velocities to improve turbulence measurements with ADVs. It 

was shown that spikes were best removed from ADV beam velocity data before 

calculating flow velocities, thereby correcting all three flow velocity components at 

the source. Yin et al. (2001) developed a method to analyse a time series of velocity 

signals in order to obtain a time series of a moving-averaged velocity. They 

described the turbulent velocity fluctuations with a Gaussian probability distribution, 
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and the method was developed to calculate the local mean velocity of unsteady tidal 

flow from the experimental data using ADV with noisy signals. de Nijs et al. (2009) 

used a 10 minute moving average filter to determine the main flow and turbulence 

statistics. 

Snyder and Castro (1999) assessed the use of ADVs in a stratified tank with 

variable density of saltwater over the transmitting path of the probe. The tests 

showed that the indicated distance to the boundary was directly proportional to the 

specific gravity of the saltwater. A correction scheme was developed for highly 

concentrated saltwater, and its suitability was verified in homogeneous saltwater 

solutions. 

 

2.3   NUMERICAL MODELLING OF COASTAL FLOW FIELDS,   

ESTUARIES AND HARBOURS 

 

If a model is only to be applied for a strongly stratified water body, so that it 

maintains a two-layer system of flow throughout the simulation, a two-layer system, 

which represents the simplest case of a stratified flow (Harleman, 1961), may be 

considered. The flow in a two-layer system is divided into two homogenous layers 

with only a density difference at the interface (Karelse et al., 1974). Multi-layer 

systems have been discussed in Vreugdenhil (1994). However, these models cannot 

simulate problems involving three-dimensionality and vertical eddies or flows with 

continuous-density gradients. In two-layer numerical model simulations of saline 

intrusion and sediment transport in the Rotterdam Waterways, HR Wallingford 

(1979) concluded that tidal processes in the waterways can be simulated 

satisfactorily for engineering purposes by schematising the flow into two layers. The 

main process, which determines the longitudinal and vertical distribution of salt 

within the layered system, is the vertical turbulent exchange of salt across the 

interface. Castro et al. (2007) used a two-layer, finite volume model for simulations 

of stratified flows through channels with irregular geometries. The flow was assumed 

to be composed of two shallow layers of immiscible fluids with constant densities, 

and was presumed to be one dimensional. In a similar study, Castro et al. (2004) 

investigated maximal and tidally induced two-layer exchange flows through the 

Strait of Gibraltar. Chen and Peng (2006) applied a two-dimensional explicit finite 

volume method for solving the two-layer shallow water equations for confluence 

simulation. 
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A successful modelling of strong advection is one of the most challenging 

problems. Although traditional first-order finite difference methods are monotonic 

and stable, they are also strongly dissipative, and suffer from severe inaccuracies due 

to truncation error. On the other hand, traditional high-order difference methods are 

less dissipative but are susceptible to numerical instabilities, which cause non-

physical oscillations in advection-dominated regions and zones of large gradient of 

the variables. Incorporating artificial diffusion into the numerical scheme to dampen 

spurious oscillations in regions of large gradients, results in smearing out the solution 

elsewhere. The ULTIMATE QUICKEST scheme (Leonard, 1991) gives results 

which are probably entirely adequate for most practical situations (Fig. 2.1). In a 

study of comparing a series of numerical schemes for one-dimensional advection-

diffusion problems, Wang and Hutter (2001) concluded that the modified TVD Lax-

Friedrichs method is the most competent method for advectively-dominated 

problems with a steep spatial gradient of the variables. However, they are at most 

first-order accurate at local extrema and highly dependent on the slope limiters used 

in the model in some cases. Bruneau et al. (1997) also proposed TVD schemes from 

a family of second- and third-order Lax-Wendroff-type schemes. 

Figure (2.1) - ULTIMATE QUICKEST results (adapted from Leonard, 1991) 

Finite difference method has been deployed in a number of numerical models 

using structured grids (POM, Blumberg and Mellor, 1987; TRIM, Casulli and Cheng, 

1992; Lin and Falconer, 1996; ECOMSED, HydroQual, Inc., 2004; ROMS, 

Shchepetkin and McWilliams, 2005; NCOM, Barron et al., 2006; Anthonio and Hall, 

2006). Unstructured grids have also been employed in a number of studies deploying 

finite element method (ADCIRC, Luettich et al., 1991; QUODDY, Lynch and 

Werner, 1991; SEOM, Iskandarani et al., 2003), or using hybrid approaches 

involving finite volume method (UnTRIM, Casulli and Walters, 2000; FVCOM, 

Chen et al., 2003; ELCIRC, Zhang et al., 2004). 
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2.3.1   2DH Models 
 

Two-dimensional horizontal (2DH) numerical models are very popular due to 

their acceptable accuracy and high efficiency. There is a wide variety of numerical 

models developed on the basis of depth-averaged Navier-Stokes equations, for 

simulating the tidal circulation and flushing in harbours (Falconer, 1980b), for steady 

shallow water flows (Zhou, 1995), and for modelling water quality processes and 

fate and transport of oil spills (Sarhadi Zadeh and Hejazi, 2010, 2012). Estuaries are 

transitional areas which trap significant quantities of particulate and dissolved matter 

through a wide variety of physical and biogeochemical processes. Harbour planform 

effects and investigation of effective harbour geometry parameters on cohesive 

sediment transport and sedimentation has also been studied by means of 2DH models 

(Mojabi and Hejazi, 2011; Mojabi et al., 2011, 2013). Karimi et al. (2012) presented 

an integrated 2DH numerical model for interactive simulations of oil spills, 

sedimentation and transport of oil in sediment laden marine waters. In some cases 

depth integrated models are preferred as they are computationally economical, easier 

to program and provide sufficiently accurate results. In depth-averaged models, 

however, the vertical distribution of currents is not known and the bed friction is 

expressed in terms of the mean velocity rather than the velocity near the bottom. 

In addition to employing high-order numerical methods to increase the 

accuracy of solution of shallow-water equations, nested grid refinement may be 

implemented in order to improve the solution through resolution of computational 

grids. Peng et al. (2010) developed a nested-block, finite volume based Cartesian 

grid, method for simulating the unsteady viscous incompressible flows with complex 

immersed boundaries using a two-step fractional step procedure. Hadaeghi and 

Hejazi (2013) developed a 2DH finite volume nested model to solve vorticity 

transport in viscous fluid flows. The solution was based on a fractional step method 

and an iterative successive-over-relaxation (SOR) scheme was employed to solve the 

two-way nested grid normalised equations. The discretisation scheme provided 

second-order accuracy in space and time. 

Attempting to obtain higher efficiency and affording accuracy, three-

dimensional Reynolds averaged Navier-Stokes equations may be depth-averaged but 

retain the non-hydrostatic pressure terms (Stelling and Zijlema, 2003; Walters, 2005; 

Bai and Cheung, 2013). Marshall et al. (1997) discussed the use of ocean models 

based on hydrostatic, quasi-hydrostatic, and non-hydrostatic equation sets. 
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Nece and Falconer (1989a) stated that in complex studies where vertical 

density gradients are important and single-fluid models are not appropriate, then the 

three-dimensional equations should be solved directly. Lin and Falconer (1997) 

presented a three-dimensional layer-integrated model with flooding and drying, and 

studied the tidal motion in lower reaches of the Humber estuary.  

 

2.3.2   2DV Models 
 

Perrels and Karelse (1982) introduced a finite difference two-dimensional, 

laterally averaged model with hydrostatic pressure assumption, for salt intrusion 

simulations in estuaries. Daubert et al. (1982) and Daubert and Cahouet (1984) 

developed 2DV models using a three-step fractional method. Haque and Berlamont 

(1998) developed a 2DV finite element model to predict the flow, density, and 

turbulence fields of a stratified tidal medium. Zhou and Stansby (1999) developed a 

2DV numerical model based on arbitrary Lagrangian-Eulerian (ALE) description and 

in the σ-coordinate system, using a semi-implicit time-stepping method for solving 

unsteady Navier-Stokes equations. Yuan and Wu (2004a) developed an implicit 

finite difference model in the σ-coordinate system for non-hydrostatic, two-

dimensional vertical plane free surface flows using the solution method presented in 

Namin et al. (2001). Zijlema and Stelling (2005) introduced a semi-implicit 2DV 

numerical model which solves the incompressible Euler equations with the aid of a 

projection method and splitting the pressure into hydrostatic and non-hydrostatic 

components by the finite volume technique. More 2DV models were developed by 

Stelling and Busnelli (2001), Stansby and Zhou (1998), and Memarzadeh and Hejazi 

(2012). Hejazi et al. (2013) introduced a 2DV numerical model to simulate wave-

mud interaction. The fully non-linear Navier-Stokes equations with complete set of 

kinematic and dynamic boundary conditions at free surface and interface with the 

two-equation k-ε turbulence model with buoyancy terms were solved. A finite 

volume method based on an ALE description was utilised for the simulation of wave 

motion in a combined system of water and viscous mud layer. The propagation of 

irregular waves in a two-layer viscous fluid system and interaction of water waves 

with a muddy bed bounded below by a horizontal rigid plane was also investigated 

by the model and spectral method (Hejazi et al., 2014b). The model was further 

modified to study the interaction between wave, current and mud bed (Hejazi et al., 

2014a). 
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2.3.3   3D Models 

 

Undoubtedly the vast variety of the three-dimensional models developed to 

date and extensive features of their groups and each cannot be distinctly categorised. 

However, to formulate the present review, and to have more useful conclusions, this 

section follows the main parts of the structure of the numerical model developed 

herein which have been identified to be the solution method, the pressure treatment 

approach, and the coordinate system. 

 

2.3.3.1   Solution Method 
 

To optimise stability and economy, Wolf (1983) developed a fully nonlinear 

three-dimensional model, using the Galerkin method in the vertical dimension, in 

which the gravity wave terms were treated by an alternating-direction implicit (ADI) 

scheme, while the friction, viscous and advective terms were treated explicitly. The 

3D hydrodynamic model MOHID (Fossati and Pierdra-Cueva, 2013) encompasses a 

finite-volume approach, using a semi-implicit ADI algorithm for the horizontal 

advection-diffusion schemes. Hydrostatic equilibrium and Boussinesq approximation 

have been assumed in the model. Despite its advantages, ADI scheme encounters 

problems at corner boundaries. Closed boundaries, or the boundaries whereon the 

velocity is specified, also introduce instabilities due to the loss of symmetry in the 

ADI scheme (Wolf, 1983). Weare (1979) showed the effect of corner boundary 

condition on accuracy as it imposes zero tangential and normal flow. He also showed 

how this inaccuracy is diffused throughout the flow by the ADI scheme.  

MIKE 3 (DHI, 2009a) is a fully three-dimensional model which simulates 

unsteady flows with the consideration of density and bathymetry variations and 

external forcing, with the application of Boussinesq approximation. The software 

includes two models of hydrostatic assumption and non-hydrostatic pressure 

distribution. The artificial compressibility method has been adopted in the non-

hydrostatic version of MIKE 3. The governing equations are discretised in an 

implicit, finite difference fashion on a rectangular, staggered grid and are solved non-

iteratively by the use of an alternating direction implicit algorithm, employing a 

fractional-step technique. The equations are solved in one-dimensional sweeps, 

alternating between x, y and z directions providing a time-centred scheme. Time 

centring of the hydrodynamic equations is achieved by defining the pressure at one-
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third time step intervals and the velocity components at one time step intervals 

differing one-third time step for each component, in an arrangement that the 

pressures are located in the mid-way of temporal series of velocity components (Fig. 

2.2). The partial differential equations are then formulated as a system of implicit 

expressions, and the resulting tri-diagonal system of equations is solved by the 

double sweep algorithm. Alternative advection-dispersion schemes, which somehow 

form a QUICKEST (quadratic upstream interpolation for convective kinematics with 

estimated streaming terms; Leonard, 1979) family of schemes, are provided in the 

model. The eddy viscosity may be determined by one of the closure models of a 

constant eddy viscosity, the zero-equation Smagorinsky sub-grid model, the one-

equation k model, the two-equation standard k-ε model, or a combination of the 

Smagorinsky model for the horizontal direction and a k-ε model for the vertical 

direction. 

Figure (2.2) - Time centring of MIKE 3 (adapted from DHI, 2009a) 

Zhang and Gin (2000) developed a three-dimensional multi-level 

hydrodynamic model. The model assumes hydrostatic pressure distribution, applies 

the Boussinesq approximation, and the water density has been considered to be 

constant. A finite difference method in a non-uniform rectangular staggered grid 

system has been utilized. A two-step Euler predictor-corrector algorithm is 

introduced to predict and correct the free surface water elevation. Three time-levels 

are involved in predictor equation. The central and forward differences for the time 

derivative terms and the central differences for the space derivative terms are 

adopted. The momentum equations in the horizontal direction are discretised by 

explicit schemes, and the continuity equation is discretised by an implicit scheme for 

the vertical velocity. Chen (2003) used a two-step predictor-corrector algorithm for 
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solving three-dimensional free surface equations without hydrostatic pressure 

assumption. Yuan and Wu (2004b) presented an implicit method for solving the 

complete three-dimensional Navier-Stokes equations. They introduced a top-layer 

pressure treatment and a partial cell bottom treatment. A domain decomposition 

method was used to segregate the resulting 3D matrix system into a series of two-

dimensional vertical plane problems, for each of which a block tri-diagonal system 

was directly solved for the unknown horizontal velocity. Using an ADI method in the 

horizontal plane, also Hejazi (2005) directly solved the block tri-diagonal matrices of 

the vertical planes of the 3D model to compute pressures of the corresponding 

Poisson equation of each vertical plane. 

TELEMAC-3D  (LNHE, 2013) solves three-dimensional flow equations, with  

or  without  the  hydrostatic  pressure  hypothesis,  and  the  transport diffusion 

equations of intrinsic quantities. The mesh structure is made of prisms and the 

Boussinesq approximation has been applied. The TELEMAC-3D basic algorithm can 

be split up in three fractional steps. The first step consists of solving the advection 

terms in the momentum equations to find the advected velocity components. In the 

second step the new velocity components are updated from the advected velocities 

taking into account the diffusion and source terms in the momentum equations, 

providing an intermediate velocity field. The third step then computes the water 

depth from the vertical integration of the continuity equation and solves the 

momentum equations by only including the pressure terms. The algorithm, for the 

non-hydrostatic pressure, employs the same procedure as in the hydrostatic pressure 

assumption, but for the computation of the dynamic pressure and free surface, in the 

projection step, the pressure gradient changes the velocity field in order to provide 

the required zero divergence of velocity. The turbulent viscosity may be taken 

constant, or determined either from a mixing length, Smagorinsky, or a k-ε model. 

Flow-3D (Flow Science, Inc., 2008) uses finite difference or finite volume 

approximations by the method of volume of fluid (VOF). The flow region is 

subdivided into a mesh of fixed rectangular staggered cells. Pressures and velocities 

are coupled implicitly by using time-advanced pressures in the momentum equations 

and time-advanced velocities in the continuity equation. The semi-implicit 

formulation results in coupled sets of equations that are solved by an iterative 

technique. Successive over relaxation (SOR) or special alternating-direction, line 

implicit methods (SADI) are available for iterations. The SADI technique may be 
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used in one, two, or three directions depending on the characteristics of the problem 

to be solved. The basic numerical method has first-order accuracy with respect to 

time and space increments. Internal viscous shear and the diffusion of fluid fraction, 

fluid density, turbulence energy, and turbulence dissipation are all treated in 

analogous ways. The diffusion coefficient for each process is proportional to the 

dynamic viscosity, which may vary in space and time as a result of the turbulence 

models. All quantities are evaluated explicitly in these calculations. 

SELFE (Zhang and Baptista, 2008) solves the 3D shallow water equations, 

with hydrostatic and Boussinesq approximations, and transport equations for salt and 

heat based on finite element and finite volume methods in a semi-implicit fashion. 

Unstructured triangular grids and hybrid vertical coordinates are used in the 

horizontal and vertical directions respectively. The barotropic equations are solved 

first, and the transport and turbulent closure equations lag one time step behind, 

which treats the baroclinic pressure gradient term in the momentum equation 

explicitly. Kanarska et al. (2007) studied the degeneration of an initially large-scale 

wave into solitons. Their simulated results are shown for hydrostatic and non-

hydrostatic conditions in Fig. (2.3). Their comparisons showed that the non-

hydrostatic pressure distribution exhibits good agreements with the experimental 

data, but the degeneration process is not described correctly in a hydrostatic model. 

The bottom figure shows the regions where non-hydrostatic pressure is large; these 

are zones of waveform transformation into higher frequency solitons. The energy 

dissipation is different in hydrostatic and non-hydrostatic models. In the hydrostatic 

model the energy is dissipated across the overly sharp front, whereas in the non-

hydrostatic model the energy is transferred to higher horizontal wavenumbers due to 

dispersion and nonlinearity. 

 

2.3.3.2   Pressure Treatment Approach 
 

Hydrostatic pressure assumption and Boussinesq approximation have been 

applied in a vast variety of numerical models (Stansby, 1997; Delft3D, Delft 

Hydraulics, 2013; ECOMSED, HydroQual, Inc., 2004; GETM, Burchard and 

Bolding, 2002; Herzfeld, 2009; ROMS, Shchepetkin and McWilliams, 2005; 

Sankaranarayanan and Ward, 2006). However, for applications involving short 

period waves, abruptly changing bed topographies, and stratification due to strong 

density gradients, the hydrostatic assumption is no longer valid.  



Literature Review 25 

 
 

Figure (2.3) - Density distribution for hydrostatic (top) and non-hydrostatic (middle) 

simulations and non-hydrostatic pressure distribution (bottom) 

(adapted from Kanarska et al., 2007) 

For simulating free surface evolution, the marker-and-cell (MAC) method 

(Harlow and Welch, 1965), the volume of fluid (VOF) method (Hirt and Nichols, 

1981), and the arbitrary Lagrangian-Eulerian (ALE) method (Chan, 1975) have been 

broadly used. Depending on the treatment of density gradient in the governing 

equations, numerical models may be classified as barotropic or baroclinic. 2D and 

3D baroclinic models have been widely developed (Casulli and Cheng, 1992; Casulli 

and Stelling, 1998; Casulli, 1999; Stelling and Busnelli, 2001; Namin et al., 2001; 

Kanarska and Maderich, 2002; Pandoe and Edge, 2003; Choi and Wu, 2006; Zhong 

and Li, 2006; Young et al., 2007; Kanarska et al., 2007). Development of non-

hydrostatic free surface flow models, based on explicit projection method (Chorin, 

1968; Li and Fleming, 2001; Lin and Li, 2002), semi-implicit fractional step method 

(Casulli, 1999; Casulli and Zanolli, 2002; Hejazi, 2005; Zijlema and Stelling, 2005; 

Deponti et al., 2006; Hejazi et al. 2013), and fully implicit method (Namin et al., 

2001) is an ongoing research. 

Finite volume formulation has been utilised in SUNTANS (Fringer et al., 

2006) to solve the three-dimensional, non-hydrostatic Navier-Stokes equations with 

the Boussinesq approximation on an unstructured, staggered, z-level grid. The 

method is based on a semi-implicit scheme for the free surface and vertical diffusion. 

The remaining terms in the momentum equations are discretised explicitly with the 

second-order Adams-Bashforth method, while the pressure-correction method is 

employed for the non-hydrostatic pressure in order to achieve overall second-order 
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temporal accuracy. The method of SUNTANS incorporates a pressure-split 

algorithm and this is inherently quasi-hydrostatic from the point of view that the non-

hydrostatic pressure does not directly affect the free-surface at a given time step. 

Fringer et al. (2006) explain that the algorithm is fully non-hydrostatic regarding the 

temporal accuracy of the solution method, as the effect of the non-hydrostatic 

pressure on the free surface at a given time step is negligible since it is the same 

order of magnitude as the error associated with the global second-order temporal 

accuracy of the overall solution procedure. Lee et al. (2006) presented a three-

dimensional, non-hydrostatic model with the inclusion of k-ε turbulence closure 

equations for small amplitude free surface flows. By decomposing the pressure into 

hydrostatic and non-hydrostatic parts, the numerical model uses an integrated time 

step with two fractional steps. The non-hydrostatic numerical model developed by 

Anthonio and Hall (2006) for free surface flows, requires the solution of two Poisson 

equations at each time step. The simulation of a solitary wave travelling in a channel 

was carried out for a water depth of 10 m. Contours of the distribution of dynamic 

pressure, horizontal and vertical velocities are presented in Fig. (2.4). 
 

 

Figure (2.4) - Distribution of kinematic dynamic pressure (m) and velocities (m/s) 

under solitary wave (adapted from Anthonio and Hall, 2006) 
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The FLUENT software (Fluent Inc., 2006) employs finite volume method, 

supports a variety of mesh types and incorporates solution-adaptive refinement of the 

mesh. A fully segregated pressure based solver, a coupled pressure based solver with 

pseudo-transient option, and implicit and explicit density based solvers are included 

in the software. The pressure-based solver employs an algorithm which belongs to a 

general class of the projection methods. In the projection method, the constraint of 

continuity of the velocity field is achieved by solving a pressure, or a pressure 

correction equation. The pressure equation is derived from the continuity and the 

momentum equations, so that the velocity field, corrected by the pressure, satisfies 

continuity. The solution process involves iterations wherein the entire set of 

governing equations is solved repeatedly until the solution converges. Two pressure-

based solver algorithms, segregated algorithm and coupled algorithm, are available. 

In the pressure-based segregated algorithm the governing equations are solved 

sequentially. Because the governing equations are non-linear and coupled, the 

solution loop must be carried out iteratively in order to obtain a converged numerical 

solution. The segregated algorithm is memory-efficient, but the solution convergence 

is relatively slow. The pressure-based coupled algorithm solves a coupled system of 

equations comprising the momentum equations and the continuity equation. 

Pressure-velocity coupling algorithms, SIMPLE (Semi-Implicit Method for Pressure-

Linked Equations), SIMPLEC (SIMPLE-Consistent), PISO (Pressure Implicit with 

Splitting of Operators), Coupled, and fractional step method for unsteady flows using 

the non-iterative time advancement scheme (NITA) are included in the model. All 

schemes, except the coupled, use the pressure-based segregated algorithm and are 

based on the predictor-corrector approach. Several upwind schemes, first-order, 

second-order, power law and QUICK, are available. The diffusion terms are central-

differenced and are second-order accurate. The adaptive central bounded numeric 

scheme locally adjusts the discretisation to be as close to second order as possible 

while ensuring stable simulation. FLUENT provides a large variety of turbulence 

models, including k-ε family and k-ω family models, alternative Reynolds stress 

(RSM) and large eddy simulation (LES) models. 

 

2.3.3.3   Coordinate System 
 

Within different approaches used for the construction of three-dimensional 

models, the most popular ones are the multi-layer, the multi-level and the fully 3D 
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systems. The multi-layer and multi-level approaches are generally used for flows in 

coastal waters where vertical acceleration is often negligible. A number of three-

dimensional hydrodynamic multi-layer and multi-level models have been developed 

(Kawahara et al., 1983; Tomoya and Pun, 1992; Kim and Lee, 1994). The multi-

layer and the multi-level models differ in the construction of the interfacial layer. In a 

multi-layer model, the interfacial layers, without mass transport across the layers, can 

freely displace vertically to maintain continuity. The application of a multi-layer 

model to tidal currents, therefore, requires the strict specification of open boundary 

conditions at the layer interfaces, which encounters some difficulty in practice. In the 

multi-level models, on the other hand, it is assumed that the interfacial layers are 

fixed in space and continuity is maintained through the vertical transport between 

layers. 

The terrain-following σ-coordinate system is widely used for modelling free 

surface flows over irregular bottoms (Blumberg and Mellor, 1987; Mahadevan et al., 

1996; Stansby, 1997; Zhou and Stansby, 1999; Li and Fleming, 2001; Lin and Li, 

2002; Li and Zhu, 2002). Two-dimensional and three-dimensional σ-coordinate non-

hydrostatic models with the semi-implicit fractional step method were developed by 

Zhou and Stansby (1999) and Kocyigit et al. (2002) respectively. The explicit 

projection method was also incorporated into the σ-coordinate non-hydrostatic model 

for water wave simulations (Chorin, 1968; Lin and Li, 2002). In the case of flows 

over a steep topography, however, the σ-coordinate transformation could introduce 

numerical errors in calculating the horizontal pressure gradient and the horizontal 

diffusion (Haney, 1991; Stelling and Kester, 1994; Song, 1998). 

Drago and Iovenitti (2000) developed a three-dimensional finite difference 

model using σ-coordinate system for the vertical direction. An explicit scheme for 

temporal integration and a staggered grid for spatial discretisation were adopted. 

They explain that the use of the σ-coordinate transformation in multi-level models 

has the advantage of transforming a physical uneven domain into a flat domain so 

that the difficulties of common multi-level approach for sharp depth variations are 

overcome. In σ-coordinate, the transport across layers is allowed, but it is due only to 

upwelling or downwelling, and not to bathymetry and free surface variations as in 

common multi-level models. Compared to fully three-dimensional models, multi-

level modelling does not afford convenience in areas where high vertical gradients of 

density are present. ECOM (Blumberg and Mellor, 1980, 1987) also uses σ-
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coordinate in vertical plane and orthogonal curvilinear system in horizontal plane, 

and applies hydrostatic approximation. The model recognises fast, barotropic 

external waves and slow, baroclinic internal waves, and solves corresponding 

equations with different time steps. Herzfeld (2009) introduced a three-dimensional 

finite difference free surface hydrodynamic model, based on the primitive equations. 

The model uses a curvilinear orthogonal grid in the horizontal and a choice of fixed 

z-coordinates or terrain following σ-coordinates in the vertical. A one-way nesting 

strategy was used to propagate the large-scale circulation into the regional domain. 

The version of MIKE 3 with the hydrostatic pressure assumption (DHI, 2009b) 

deploys the finite volume method. The spatial domain is discretised into non-

overlapping cells. An unstructured mesh is used in the horizontal domain while the 

vertical domain consists of a structured mesh. The vertical mesh is based on either 

sigma or combined sigma and z-level coordinates. Sigma coordinates have the 

advantage of accurately representing the bathymetry and providing consistent 

resolution near the bed. However, they can suffer from significant errors in the 

horizontal pressure gradients, advection and mixing terms in areas with sharp 

bathymetry changes. The use of z-level coordinates facilitates the calculation of the 

horizontal pressure gradients, advection and mixing terms at the expense of 

inaccurately representing the bathymetry and resulting in unrealistic predictions of 

flow velocities near the bottom due to the stair-step representation of the bathymetry. 

Cancino and Neves (1999) described a fully three-dimensional finite difference 

baroclinic model for hydrodynamics and fine suspended sediment transport, based on 

the hydrostatic and Boussinesq approximations. The model uses a vertical double 

sigma coordinate system with a staggered grid and a semi-implicit two-time level 

scheme. The horizontal transport and the Coriolis terms are solved explicitly, while 

an implicit algorithm for the pressure terms and for the vertical transport is used. The 

horizontal and vertical viscosity calculations are based on Kolmogorov and mixing 

length approaches respectively. For the bottom friction shear stress, a logarithmic 

velocity profile has been assumed. They state that despite the advantage of the sigma 

coordinate in regions with complex bathymetry, this convenience is not maintained 

where density is a major forcing. A double sigma coordinate uses a horizontal plane 

to split the water column into two vertical domains and considers a sigma 

transformation in each of them. They also emphasise the advantage of double sigma 
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coordinate system in stratified flows. In these flows, pycnoclines, in general, are 

quasi-horizontal and do not follow the bottom topography. 

Ushijima (1998) predicted the profile of a liquid surface by means of three-

dimensional curvilinear coordinates which were regenerated in each computational 

step on the basis of the arbitrary Lagrangian-Eulerian (ALE) formulation. The 

calculation of pressure and velocity correction substantially followed the SMAC 

method (Amsden, 1970). Three-dimensional numerical simulation of a splashing 

drop (Fig. 2.5) using a SMAC method is presented by McKee et al. (2008). Mayer et 

al. (1998) developed a fractional step method for solving the time dependent two-

dimensional Euler equations in a system of time-varying curvilinear grid by finite 

volume method. The geometry of the free surface was described by a height function, 

and its evolution was tracked by integrating in time the kinematic boundary 

conditions based on the free surface volume flux. Ai et al. (2011) employed a 

pressure correction technique to solve the incompressible Euler equations for 

simulating three-dimensional free surface flows with a non-hydrostatic pressure 

distribution on a vertical boundary-fitted coordinate system. 

 
 

Figure (2.5) - Three-dimensional numerical simulation of a splashing drop at 

different times (adapted from McKee et al., 2008) 

 

2.4   NUMERICAL SCHEMES FOR FREE SURFACE FLOWS 
 

Numerical methods for simulating unsteady flows involving free surfaces may 

be classified into two general categories of fixed and moving-grid methods. Fixed-
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grid methods include two categories of surface-tracking and surface-capturing 

methods. In the surface-tracking method the free surface is explicitly identified and 

tracked by means of pre-defined markers or interface-fitted grid cells. In the surface-

capturing method the free surface is implicitly captured by a contour of a certain 

scalar function. In most surface-tracking methods the governing equations are solved 

only for the liquid and the free surface grid cells, while in the surface-capturing 

method the equations are solved on both the liquid and gas regions. The surface-

tracking method has many variants including front-tracking methods and marker 

methods. The front-tracking methods represent the interface by a connected set of 

points. The marker methods include the marker-and-cell (MAC) method by Harlow 

and Welch (1965) and the volume of fluid (VOF) family of methods, and track the 

free surface with volume markers. There are a large class of numerical methods 

based on the surface-capturing approach. Among them are artificial compressibility 

method, phase field methods and level set method (Yue et al., 2003). 

The free surface remains sharp and is computed precisely in the moving-grid 

method, which is basically a Lagrange-type method that treats the free surface as the 

boundary of a moving surface-fitted grid. The moving-grid method consists of either 

structured or unstructured grids, and includes strictly Lagrangian methods, free 

Lagrangian methods, and Lagrangian-Eulerian methods (Floryan and Rasmussen, 

1989). In arbitrary Lagrangian-Eulerian (ALE) methods introduced by Hirt (1970) 

and Hirt et al. (1974), the distortion of grids due to free surface deformation requires 

reconstruction of mesh in each time step, which may induce numerical diffusion. 

For development of non-hydrostatic free surface flow models, in general, two 

approaches, the projection method, proposed by Chorin (1968), Temam (1969) and 

Yanenko (1971) and the implicit method have been employed. The solution of the 

coupled set of governing equations in the implicit method benefits from the 

exclusion of decoupling errors (Namin et al., 2001). Nevertheless, the implicit 

discretisation results in the solution of large nonlinear algebraic systems which 

requires extensive computational effort. The projection method, on the other hand, 

decouples the computation of the velocity and pressure fields. 

Yue et al. (2003) presented a numerical method that couples the incompressible 

Navier-Stokes equations with the level set method in a curvilinear coordinate system. 

The finite volume method was used to discretise the governing equations on a non-

staggered grid with a four-step fractional step method. The free surface flow problem 
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was converted into a two-phase flow system on a fixed grid in which the free surface 

was implicitly captured by the zero level set. Puckett et al. (1997) presented a 

numerical model based on a second-order projection method for variable density 

flows using approximate projection formulation. The boundary between the fluids 

was tracked with a second-order, volume-of-fluid interface tracking algorithm. 

Memarzadeh and Hejazi (2012) utilised an incompressible smoothed particle 

hydrodynamics (ISPH) method for 2DV modelling of nonlinear wave run-up on 

steep slopes. SPH method is capable of high accurate modelling of free surface flows 

with large deformations. The equations were solved in a Lagrangian form using a 

two-step fractional method. 

 

2.4.1   Projection Method 
 

The projection method is based on the philosophy that in incompressible flows, 

pressure does not carry any thermodynamic meaning and is present only as a 

Lagrange multiplier for the incompressibility constraint (Chorin, 1968). This 

motivated a time-splitting discretisation scheme which decouples the computation of 

velocity and pressure, the core of the projection method (E and Liu, 1995). The 

projection method, which numerically may resemble a fractional step method, has 

been widely deployed for simulation of free surface flows with non-hydrostatic 

pressure distribution. The algorithm consists of two major steps. In the first step, 

ignoring the incompressibility constraint, the pressure terms in the momentum 

equations are excluded and the resultant transport equations are solved to compute an 

intermediate velocity field. Second step consists of calculating the pressure field by 

solving a Poisson equation and accounting for the continuity equation, so that the 

correction is applied by projecting the computed velocity field onto the space of 

divergence-free vector fields. The free surface is also calculated in the second step by 

coupling the kinematic free surface boundary equation to the Navier-Stokes 

equations. 

The efficiency of the scheme is at the price of introducing a numerical 

boundary layer on the pressure approximations and the intermediate velocity fields. 

This also signifies the main difficulty in the design and implementation of more 

efficient projection methods, which is the treatment of the boundary conditions (E 

and Liu, 1995). A detailed review of different projection methods based on the time 

accuracy of the procedures is given by Armfield and Street (2002). Armfield and 
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Street (2003) also carried out an analysis of the pressure accuracy of different 

fractional step methods. An overview of boundary condition choices that give 

second-order convergence for all solution variables is presented in Brown (2001). 

Gresho and Sani (1987) discussed different pressure boundary conditions for the 

incompressible Navier-Stokes equations. Brown et al. (2001) studied accurate 

projection methods for the incompressible Navier-Stokes equations. Kim and Moin 

(1985) showed that the use of velocity boundary conditions for the intermediate 

velocity field can lead to inconsistent numerical solutions. Perot (1993) stated that 

the poor temporal accuracy of fractional step method is not due to boundary 

conditions, but due to the method itself.  

Guermond et al. (2006) reviewed stability and convergence results for a broad 

range of projection schemes which were classified into three classes, namely the 

pressure-correction methods, the velocity-correction methods, and the consistent 

splitting methods. Van Kan (1986) presented an ADI scheme with pressure 

correction method which was second order accurate in space and time. Bell et al. 

(1989) presented a second-order projection method. 

 

2.5   STRATIFIED FLOWS 
 

Gravity currents, which result whenever fluid of one density flows horizontally 

into fluid of a different density, are frequent occurrences in both natural and man-

made situations (Huppert and Simpson, 1980). Many oceanic fronts, especially those 

created by tidal processes, appear to be governed by simple gravity current frontal 

dynamics (D'Alessio et al., 1996). Benjamin (1968) presented a broad investigation 

into the properties of steady gravity currents. In most practical situations, gravity 

current flows are not steady. Consequently, the propagation velocity of the front, the 

height and length of the head, and the density difference all vary as the flow evolves 

(Alahyari and Longmire, 1996). 

Natural and artificial gravity currents have been extensively investigated by 

Simpson (1997). More recently Huppert (2006) and Ungarish (2009) provided 

inclusive reviews of gravity currents. D'Alessio et al. (1996) provided a review on 

the numerical work on density currents. Laboratory experiments have been widely 

conducted to investigate the mixing characteristics and propagation rates of gravity 

currents (Simpson and Britter, 1979; Huppert and Simpson, 1980; Hallworth et al. 

1993; Kneller et al., 1997, 1999). 



Literature Review 34 

From the experimental results of the release of a fixed volume of one 

homogeneous fluid into another of slightly different density, Huppert and Simpson 

(1980) argue that the resulting gravity current can pass through three states. There is 

first a slumping phase, during which the current is retarded by the counter flow in the 

fluid into which it is issuing. At this phase the head of the current travels at constant 

speed and maintains nearly constant depth (Hacker et al., 1996). The current remains 

in this slumping phase until the depth ratio of current to intruded fluid is reduced to 

less than about 0.075. This may be followed by a purely inertial phase, wherein the 

buoyancy force of the intruding fluid is balanced by the inertial force. Motion in the 

surrounding fluid plays a negligible role in this phase. Hacker et al. (1996) state that 

in the second stage, the similarity phase, the current decelerates, as 31t  and 

decreases in depth. The transition between these two stages has been found to occur 

after the current has propagated approximately ten lock lengths. There then follows a 

viscous phase, wherein the buoyancy force is balanced by viscous forces. It is argued 

and confirmed by experiment that the inertial phase is absent if viscous effects 

become important before the slumping phase has been completed (Huppert and 

Simpson, 1980). 

In the studies of Britter and Simpson (1978), mixing was observed to be a 

result of instability similar to the Kelvin Helmholtz instability at the interface 

between the two fluids. Alahyari and Longmire (1996) used axisymmetric laboratory 

gravity currents to study the structure and dynamics of gravity current heads during 

the inertia-buoyancy phase of the flow. They reported that during the early stages of 

the inertial phase, vertical velocity fields revealed a cyclic process of vortex 

formation. One cycle consists of three parts. There is first formation of a vortex due 

to baroclinic vorticity at the leading edge of the head, then formation of a vortex of 

opposite circulation along the bottom surface takes place, and the last part consists of 

the convection of heavy fluid forward by the vortex pair. The new heavy fluid at the 

leading edge then initiates a new cycle. Navier-Stokes simulations of a lock-release 

initial value problem show that long internal waves may be generated and propagate 

ahead of the gravity current (White and Helfrich, 2008). Lee and Kim (2012) 

compared the Boussinesq approximation and variable density models for the two-

dimensional Rayleigh-Taylor instability with a phase-field method. Numerical 

experiments indicated that for an initially symmetric perturbation of the interface, the 

symmetry of the heavy and light fronts for the Boussinesq model can be seen for a 
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long time. However, for the variable density model, the symmetry is lost although 

the flow starts symmetrically. 

The dynamics of inertial gravity currents that are initially stratified in density 

have been examined through systematic laboratory experiments by Gladstone et al. 

(2004). These experiments have identified that the initial vertical stratification may 

lead to significant stream-wise stratification of the flow if the density ratio between 

the layers is sufficiently large. Moreover, the experiments have identified that the 

layer containing the greatest buoyancy will propagate to the nose of the flow and 

drive the current. This may, in some circumstances, be the upper, less dense layer. 

The experiments also show that the layers propagate forward by intruding along a 

density interface between the body and wake regions of the current. The degree of 

mixing between the two layers during this process depends on the initial density 

ratio, the strength of the stratification, between the layers. The intrusion of fluid in 

such stratified flows leads to a more complicated vertical profile than that initially 

imposed on the flow. The competition is described between the early separation of 

the layers owing to their velocity differences and the vertical mixing at the interface 

between the layers. Interpretation from the experiments suggests that the buoyancy 

contrast controls separation while the density contrast controls mixing. From the 

experimental observations Gladstone et al. (2004) summarised the flow behaviours 

of two-layer density-stratified inertial currents. Figure (2.6) shows the schematic 

cartoons of the flow behaviour. 

When a turbulent gravity current propagates over a rigid surface, there are two 

main processes which contribute to the mixing. Wave breaking behind the head due 

to shear instability leads to the formation of Kelvin-Helmholtz billows and a mixed 

layer above the flowing current. Additionally, the front of the current is broken up 

into a complex structure of lobes and clefts (Brown, 1999). The excitation of internal 

gravity waves by fluid intrusions that propagate along the interface of a two-layer 

fluid also has been investigated by way of laboratory experiments (Flynn and 

Sutherland, 2004). 

On the experimental observations of gravity currents, Garcla and Parsons 

(1996) concluded that the magnitude of the current Reynolds number has a strong 

influence on mixing rates. Low mixing rates are associated with fronts in relatively 

shallow fresh water depths and low Reynolds numbers. Mixing rates increase more 

rapidly as the ratio of current thickness to fresh water depth increases. The pattern of 
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fluid motion within turbulent density currents has been described and discussed by 

several authors (Middleton, 1966a, 1966b; Allen, 1982; Simpson, 1987). 

Figure (2.6) - Schematic cartoons of the flow behaviour of two-layer density 

stratified inertial currents (adapted from Gladstone et al., 2004) 

Entrainment is one of the most important features of gravity currents, 

increasing the total volume of dense fluid and simultaneously decreasing its density 

(Cheong and Han, 1997). It is known that the gravity current made by sudden release 

of dense fluid on a horizontal surface entrains nearly twice of initial volume before 

losing its identity as a gravity current (Hallworth et al., 1993). De Nijs et al. (2009) 

concluded that salinity-induced density currents govern the exchange of suspended 

particulate matter between the Rotterdam Waterway and the Botlek Harbour and 

cause high siltation rates in Botlek Harbour. Their analysis revealed the dominant 

role played by the lock-exchange mechanism. In a study for a contamination event in 

the Flix reservoir in Spain, La Rocca and Bateman Pinzon (2010) claim that density 

and turbidity currents can be responsible for contamination of water bodies. 

Relatively few investigations of gravity currents have accounted for non-

Boussinesq effects (Birman et al., 2005; Lowe et al., 2005; Birman and Meiburg, 

2006). Birman et al. (2005) investigated the unsteady dynamics of large density 

contrast non-Boussinesq lock-exchange flows by means of high-resolution two-

dimensional simulations of the incompressible variable-density Navier-Stokes 

equations, employing a combination of spectral and compact finite difference 

(2) Buoyancy of upper layer > lower layer, 

density ratio small. Upper layer overtakes lower 

layer, mixing occurs rapidly after release. 

 

(3) Buoyancy of upper layer < lower layer, 

density ratio large. Lower layer runs ahead, 

minor mixing occurs. 

 

(4) Buoyancy of upper layer > lower layer, 

density ratio large. Upper layer overtakes lower 

layer, minor mixing occurs. 

 

(1) Buoyancy of upper layer < lower layer, 

density ratio small. Mixing of both layers 

occurs after release. 
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methods. They concluded that for both slip and no-slip boundary conditions, and for 

all Reynolds values, for larger density contrasts, the dense front dissipates an 

increasing amount of energy. In contrast, the energy dissipated by the light front 

remains near its Boussinesq level for all values of the density ratio. In addition, the 

height of the light front is very close to half the channel height, and it propagates 

with a non-dimensional velocity very close to a half. 

Boñgolan-Walsh et al. (2007) studied the impact of boundary conditions on 

gravity currents using direct numerical simulations. The effect of the Neumann and 

Dirichlet boundary conditions for the bottom continental shelf on the entrainment 

and transport of gravity currents was investigated. The finding was that gravity 

currents under these two different boundary conditions differ most in the way they 

transport heat from the top towards the bottom. 

 

2.5.1   Salt Intrusion in Estuaries, Harbours and Tidal Barrages 

 

Measurements in the Rotterdam Waterway (de Nijs, 2012) show that the along-

channel pressure gradient causes lock-exchange type flows near slack water at the 

limit of saltwater intrusion. During the ebb, the baroclinic pressure gradient causes 

relatively more shear higher in the water column than during the flood, while during 

the flood the combined effect of the baroclinic pressure gradient and damping of 

turbulence cause maximal velocities at the pycnocline at mid depth. 

All barrages for various reasons are designed to modify or totally prevent the 

progression of the tide up an estuary or inlet. Many urban waterfront developments 

such as the Cardiff Bay and Tees barrages in the United Kingdom have incorporated 

full tidal barriers to exclude completely any tidal incursions and to create freshwater 

impoundments in which the water elevation is maintained permanently at a 

controlled level. Partially or fully submerged tidal weirs, permit a degree of 

exchange and mixing to occur between the tidally forced, saline, coastal waters and 

the freshwater river inflow (Cuthbertson et al., 2006). The degree of mixing and 

entrainment to a large extent depends on the size and depth of the impoundments. In 

small impoundments, with rapid mixing, the effects of stratifications and 

concentration gradients of various parts of the impoundment can be ignored 

(Wearing, 2000). The implementation of an estuarine tidal barrier scheme results in 

the inhibition of the natural tidal intrusion, mixing, and flushing processes 

(Cuthbertson et al., 2006). These changes have important repercussions (Burt and 
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Rees, 2001) for the water quality of the impounded volume (Coates et al., 2001). In 

most tidal barrages, saltwater flows over the barriers during high tide creating 

heavily stratified saline layer under the fresh water. The conditions of slight mixing 

of the lower layers leads to low levels of dissolved oxygen (Whyte and Ali, 2003). 

 

2.5.2   3D Numerical Modelling of Stratified Flows 

 

In comparison with 2D and axisymmetric gravity currents, fully 3D gravity 

currents have been investigated more rarely in the literature. Shen et al. (1995) 

developed a three-dimensional hydrodynamic and pollutant transport quality model 

by using the shallow water assumption and the Boussinesq approximation to simulate 

wind-induced circulation under isothermal and stratified conditions in Lake Ontario 

and its nearshore areas. A nested model approach was used to study the currents and 

pollutant transport. For the barotropic pressure, the semi-implicit difference scheme 

SIMPLER (Semi-Implicit Method for Pressure-Linked Equations Revised) method 

(Patankar, 1980) was used. The Poisson equation of the water elevation was solved 

by the SOR method (Roache, 1972). The Adams-Bashforth scheme was used for the 

temporal terms and the weight averaged donor-cell scheme for the advective terms 

(Shen, 1991). The central difference scheme of second order accuracy in space was 

used for the diffusive term. They concluded that the vertical temperature distribution 

had a strong influence on pollutant transport and a three-dimensional stratified model 

was necessary for the simulation of currents and pollutant transport in that nearshore 

area during the summer period. 

Huang and Spaulding (1995) developed a three-dimensional finite difference 

model to predict circulation and water quality induced by surface discharges in 

estuarine and coastal waters. The model employed a vertical γ-coordinate, using an 

algebraic transformation within the σ-coordinate transformation system. The model 

was tested against laboratory experiments of a surface freshwater discharge into 

saline quiescent receiving water in a constant depth basin. They reported that the 

predictions realistically reproduced the strong currents and freshwater transport near 

the surface. Simulations of the Rotterdam Waterway by Delft3D (Delft Hydraulics, 

2006) three-dimensional hydrostatic numerical model conducted by de Nijs (2012), 

showed underprediction of the saline water intrusion, stratification and the height of 

the pycnocline above the bed. de Nijs (2012) concluded that the model is not capable 

of adequately predicting the distribution of salinity, and therefore the effect of 
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salinity stratification on turbulent mixing should be further investigated and 

implemented in further model developments. 

Patterson et al. (2005b) compared the experimental results of three-dimensional 

releases of fixed volumes of saline fluids into fresh water and their radial spread to 

2D and 3D numerical simulations. They concluded that shallow water modelling is 

not suitable for axisymmetric lock-releases. La Rocca et al. (2008) investigated the 

dynamics of a three-dimensional gravity current by both laboratory experiments and 

numerical simulations with either smooth or rough flat bottoms. The gravity current 

was generated by lock-exchange mechanism and the mathematical model was a finite 

volume single layer model based on shallow water equations. They reported a 

systematic discrepancy between the numerical and experimental results, mainly 

during the first phase of the gravity current evolution, and concluded that this 

discrepancy was attributed to the limits of the mathematical formulation, in 

particular, the neglect of entrainment in the numerical model. La Rocca and Bateman 

Pinzon (2010) compared the experimental results and numerical simulations 

conducted by their proposed model for 3D gravity currents. They concluded that in 

the case of constant density, the two-layer mathematical formulation reproduces 

correctly the key features of the dynamics of the three-dimensional lock-exchange-

release phenomenon. Numerical results obtained for the variable density case make 

sense and are in qualitative agreement with the experimental observations found in 

literature. Hydrostatic pressure assumption and Boussinesq approximation were 

applied in the numerical formulations. Cuthberston et al. (2006) reported that 

numerical models (e.g. Maskell and Ng, 1999) replicate qualitatively the formation 

of the stratified water behind the barrage but significant quantitative discrepancies 

remain between the model predictions and field measurements. 

 

2.6   TURBULENCE MODELLING 
 

Rodi (1984) provides a comprehensive review of turbulence modelling. A 

general review of turbulence models is presented by ASCE Task Committee on 

Turbulence Models in Hydraulic Computations (1988). Turbulence models may 

range from the simple eddy viscosity models to the more detailed large eddy 

simulations (LES) and direct numerical simulations (DNS). However, DNS and LES 

can be computationally expensive and often idealised for most geophysical and 

engineering applications. These limitations have led to the use of RANS approaches 
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commonly based on turbulent kinetic energy (TKE) closure schemes. The most 

widely used RANS models are two equation models, like the well-known k-ε model 

which requires the solutions of the turbulent kinetic energy equation and the 

dissipation of it (Venayagamoorthy et al., 2003). 

Schmitt (2007) states that, the DNS or LES results or experimental data are 

very consistent in indicating the non-validity of the hypothesis of Boussinesq, which 

is at the heart of many turbulent viscosity models. However, eddy-viscosity 

turbulence models such as the k-ε model are widely used for many applications, and 

seem to provide satisfactory predictions which may be seen as a contradiction. 

Schmitt (2007) further explains that these models predict rather closely only simple 

flows, and only as far as mean fields are concerned. The inaccuracies come from the 

transport equations and the linear constitutive equation. The main limitation of this 

linear closure is that it rests on an analogy with kinetic theory, an analogy that can be 

criticised on theoretical grounds. 

Tsanis (1989) compared different turbulence models and concluded that the 

mixing length model (Reid, 1957), the k-ε model (Svensson, 1978), and the eddy 

viscosity model (Pearce and Cooper, 1981) had very similar vertical current 

structures. Due to its simplicity, the eddy viscosity model proposed by Pearce and 

Cooper (1981) was used in the study of Shen et al. (1995). The vertical eddy 

viscosity coefficient was taken as zero at the water surface, increasing linearly to a 

depth of 1 meter, and set constant for the remainder of the depth. The horizontal eddy 

viscosity was calculated by a grid-size-dependent equation. 

A major part of industrial CFD is carried out with eddy-viscosity-based two-

equation models. Standard eddy-viscosity models tend to under-predict separation 

tendency. The modelling of the production resulting from the Boussinesq hypothesis 

is rather crude (Johansson, 2000). Algebraic approximations of the Reynolds stress 

transport equations are typically used to replace the eddy-viscosity based relation to 

determine the energy distribution among the components. In algebraic Reynolds 

stress models the aim is to replace that hypothesis with a more general, still local and 

algebraic, anisotropy relation. Hybrid methods that combine RANS and LES 

methods in different regions of the same flow form a possibility that still needs 

development (Johansson, 2000). 

The algebraic Reynolds stress model (ARSM) more accurately represents the 

anisotropy of the Reynolds stresses than the linear gradient model commonly used in 
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the k-ε model (Taulbee, 1992). Some of the algebraic Reynolds stress models are 

implicit (Pope, 1975; Rodi, 1976; Gatski and Speziale, 1993), while others are 

explicit (Taulbee, 1992; Girimaji, 1996; Jongen and Gatski, 1998; Wallin and 

Johansson, 2000; So et al., 2002, 2004a, 2004b; Violeau, 2009; Pham and Nguyen, 

2012). 

 

2.6.1   Turbulence Modelling of Tidal Flow Fields and Estuarine 

Harbours 
 

An ideal model should introduce the minimum amount of complexity while 

capturing the essence of the relevant physics (Wilcox, 2006). Turbulent schemes in a 

range of simple flow-dependent eddy viscosity models (Aldridge and Davies, 1993), 

one equation turbulent kinetic energy models (Davies and Jones, 1990; Muin and 

Spaulding, 1997), and two equation turbulence closure models using an equation 

each for turbulent kinetic energy and mixing length (Blumberg and Mellor, 1987; 

Blumberg et al., 1992) are used in three-dimensional hydrodynamic models. Xing 

and Davies (1996) showed that there are no significant differences between the 

predictions of tidal currents and mixing intensities obtained using a simple eddy 

viscosity model and various turbulence closure models. 

de Nijs et al. (2010) argued that asymmetric turbulent mixing processes can be 

induced by straining of the salinity field causing stronger stratification on the ebb 

tide than on the flood tide, or unstable stratification on flood tide and stable 

stratification on ebb tide. Regarding work of Geyer et al. (2000), de Nijs et al. (2010) 

also concluded that in the case of strong stratification it may be anticipated that the 

characteristic advection timescales are smaller than the turbulent diffusion 

timescales. Then, on a tidal timescale, advection driven processes may govern the 

rate of change of the vertical density structure. They proposed that the growth of the 

pycnocline height along the estuary be analysed to help to determine the processes 

influencing the evolution of the salt wedge structure. 

Falconer and Li (1994) used a k-ε turbulence model for modelling tidal eddies 

in coastal basins. de Nijs and Pietrzak )2012b) concluded that the choice of 

turbulence model has a larger effect on predictions of saltwater intrusion compared 

to the variation of the grid resolution, background viscosities and bed friction. They 

obtained best results with the k-ε turbulence model. 
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2.6.2   Turbulence Modelling of Stratified Flows 

 

Rodi (1987) provides a general review of turbulence modelling in stratified 

fluids. Stably stratified flows in large water bodies such as the ocean and estuaries 

are prevalent in the natural environment. Mixing at the front of a gravity current such 

as a saline flow depends on two main processes: Kelvin-Helmholtz billows which 

roll up in the region of velocity shear above the front of the dense current, and a 

complex shifting pattern of lobes and clefts which form near the bottom at the lower 

part of the leading edge (Simpson, 1987). It has been suggested that mixing at the 

front of turbidity currents plays an important role in the dynamics of such flows 

(Allen, 1971). 

If the density gradient peaks near the mid-depth of the flow it may control the 

level of turbulence throughout the flow to a level similar to that at the interface. The 

damping effect of stratification is very sensitive to even small values of Richardson 

number (HR Wallingford, 1999). The turbulent structure of tidal bottom boundary 

layers may be strongly influenced by horizontal density gradients. Due to tidal 

straining, turbulence is enhanced when the flow is towards water of lower density, 

and vice versa. In sufficiently deep shelf seas, well-mixed surface and bottom 

boundary layers may be separated by stable vertical density stratification (Burchard 

et al., 2008). A laboratory study by Kranenburg and Pietrzak (1989) of a turbulent 

two layer fluid, found that near the pycnocline there was a significant reduction in 

turbulence. They also demonstrated that while internal waves can contribute to 

turbulence production in the lower layer, negligible mixing was observed between 

the layers. de Nijs and Pietrzak (2012a) state that in conventional Reynolds averaged 

Navier Stokes (RANS) models, it is assumed that the turbulence is down-gradient 

and the influence of buoyancy forces, in the case of stable stratification, is typically 

taken into account as a sink of turbulent kinetic energy, which reduces the value of 

the eddy viscosity compared to neutral conditions. Their work includes turbulence 

closures with counter-gradient transport for RANS models. 

The dynamics of gravity currents are believed to be strongly influenced by 

dissipation due to turbulence and mixing between the current and the surrounding 

ambient fluid. Shin et al. (2004) presented a new theory suggesting that dissipation is 

unimportant when the Reynolds number is sufficiently high. However, Benjamin 

(1968) suggests that dissipation is an essential ingredient in gravity current 
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dynamics. They predicted that in a deep ambient water the front Froude number is 1, 

rather than the previously accepted value of 2 . 

Venayagamoorthy et al. (2003) investigated proposed changes to RANS 

turbulence models for the regimes of weak to moderate stratification. Modifications 

were made to the k-ε model to account for stratification. Simulations of the stratified 

open channel flow highlighted the importance of correctly modelling the turbulent 

Prandtl number as well as the buoyancy parameter c3ε. The results suggested that the 

turbulent Prandtl number should be close to unity for the neutrally stable flows. 

Further, it appeared that the buoyancy parameter c3ε has to be prescribed as a value of 

the order of c1ε in order to correctly model the effects of the buoyancy force in the 

dissipation equation. 

Non-hydrostatic, high-resolution, two-dimensional simulations of bottom 

gravity currents were conducted in the studies of Özgökmen et al. (2004). They 

concluded that an explicit representation of mixing in overflows in numerical models 

requires not only a small vertical grid scale, but also a horizontal grid scale that is 

small enough to capture the billows forming near the density interface. Oceanic 

observations indicate that the typical height-to-length ratio of Kelvin-Helmholtz 

billows is about 0.1. Bombardelli et al. (2004) presented numerical simulations of 

saline, discontinuous density currents, in two and three dimensions. They reported 

that the currents presented characteristic flow instabilities at the interface which were 

constituted by small spatial scales. They concluded that a very fine resolution of 

these scales is needed to adequately capture the instabilities. 

Wall-jet flow, lock-exchange and intrusive gravity currents were simulated to 

investigate the effects of using two different turbulence closures, a two-equation 

standard k-ε model with buoyancy terms and an explicit algebraic Reynolds stress 

model (EARSM) along with an explicit algebraic scalar flux model (EASFM) 

developed by Sharifian and Hejazi (2014). Results showed that the EARSM provides 

better predictions for velocity profiles especially in the far zone from the bed, and 

also for the front head position. However, using appropriate wall functions for 

Reynolds stresses could augment accuracy of model in boundary layers. They also 

concluded that a distinct turbulence model cannot satisfactorily predict all turbulent 

flow cases, and especial calibration for constants and consideration for source terms 

are needed. 



Literature Review 44 

Özgökmen et al. (2009) evaluated LES in a 3D lock-exchange problem, which 

contained shear-driven mixing, internal waves, interactions with boundaries and 

convective motions while having a simple domain, initial and boundary conditions, 

and forcing. Jacobitz (2000) studied the evolution of the velocity field and scalar 

concentration fields in stably stratified shear flow using direct numerical simulations. 

Two cases with vertical and horizontal mean shear were compared. In both cases, the 

growth of the turbulent kinetic energy weakened as the Richardson number was 

increased. However, the horizontal shear case showed a stronger growth of the 

turbulent kinetic energy than the vertical shear case for a given Richardson number. 

The ordering of the velocity components were found to change from stream-wise > 

horizontal > vertical in the vertical shear case to stream-wise > vertical > horizontal 

in the horizontal shear case. Two-dimensional results of numerical simulations of 

Patterson et al. (2005a) showed that the large eddy model was successful in 

modelling the large scale structure of gravity currents. Examination of the three-

dimensional results showed that macroscopic features of the flow observed at the 

interface between the light and dense fluid were also modelled well. 

 

2.6.3   Effects of Stratification on Turbulence and Mixing 
 

Many problems in mixing in the estuaries are often complicated by density 

stratifications due to salinity profiles. This internal structure has a very great effect 

on both mean flow fields and the turbulent mixing and dispersion. But since often 

stratification results from transport processes, mixing depends on the flow field and 

the density stratification, while on the other hand, the flow and stratification depend 

on the mixing (Fischer et al., 1979). Stable stratification affects the flow in several 

ways. Vertical mixing of the stratification provides an additional sink of energy. The 

stratification also influences the structure of the turbulence, since vertical motions 

are directly affected by buoyancy forces (Holford and Linden, 1999). Turbulence in a 

stratified fluid is typically anisotropic, with reduced vertical velocities and vertical 

length-scales, and a reduced correlation between the density perturbation and the 

vertical velocity component. Propagating internal gravity waves owe their existence 

to the presence of a restoring buoyancy force, and turbulence, especially in its later 

stages of decay, can be dominated by the presence of a stabilising stratification 

(Riley and Lelon, 2000). In the oceans, flows on intermediate scales are usually 

strongly influenced by stable stratification. 
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de Nijs and Pietrzak (2011) have listed a number of studies on the effects of 

buoyancy forces on the turbulent transfer of momentum, heat and mass, which have 

been conducted using algebraic and numerical models, laboratory facilities and field 

surveys. de Nijs (2012) describes transport and sedimentation processes of suspended 

particulate matter in a stratified tidally energetic estuary, which has been investigated 

using field data and simulated values of a 3D hydrostatic numerical model. The 

strong salinity stratification of the basin largely suppresses turbulence. Regarding the 

field measurements that show the salt wedge remains stable during tidal excursions, 

he concludes that advection in combination with tidal phase differences must play an 

important role in transport and change of the salinity structure. de Nijs (2012) has 

applied the concept of total turbulent kinetic energy to analyse the effects of 

stratification on damping of vertical turbulent transports of mass and momentum. 

This concept distinguishes between vertical and horizontal turbulent kinetic energy 

and turbulent conversions of energy between the vertical turbulent kinetic energy 

balance and the turbulent potential energy balance. 

For down-gradient transports the turbulent Prandtl-Schmidt number increases 

with stratification. This behaviour implies that the vertical turbulent mass transports 

are damped before the turbulent kinetic energy and vertical turbulent transport of 

momentum are suppressed by the effects of stratification. However, counter-gradient 

buoyancy fluxes are observed when the available turbulent potential energy is larger 

than the vertical kinetic energy. Turbulence remains active far beyond critical 

stratification numbers reported in the literature, which means stratification plays an 

important role in the decay of the turbulence (de Nijs and Pietrzak, 2012a). In 

turbulent flows, the signs of the ensemble mean vertical turbulent transports of 

salinity are usually opposite to those of the mean gradients of salinity (de Nijs and 

Pietrzak, 2011). These fluxes are referred to as down-gradient fluxes and modelled as 

diffusion. However, in stratified flows gravity oscillations can develop, which cause 

oscillating fluxes at a buoyancy frequency of about   N
1

2


  where N is the Brunt-

Väisälä frequency. These oscillations become counter-gradient when potential 

energy is transferred to kinetic energy. 

 

2.6.4   k-ε Turbulence Models 
 

The most frequent employed turbulence models are the eddy-viscosity models 

(EVMs). Despite the rapidly increasing computer power, the simplistic EVMs still 
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dominate the CFD community. Bredberg (2001) makes a thorough analysis of the 

EVMs. Following the k-ε model of Jones and Launder (1972), numerous EVMs, 

most of them based on the k-equation and an additional transport equation, such as 

the k-kl (Mellor and Yamada, 1982), the k-ω (Wilcox, 1988), the k-τ (Speziale et al., 

1992), and the k-νt (Peng and Davidson, 2000) models have been presented. Speziale 

(1987) developed nonlinear k-l and k-ε models. de Nijs (2012) recommends 

developing turbulence closure schemes within the total turbulent energy concept, as 

the k-ε turbulence models do not account for energy transfers between the turbulent 

potential and kinetic energy balances and assume a constant Prandtl number. 

Moreover, they do not account for other sources of turbulence than shear such as pro-

duction of turbulence by unstable stratification and unstable internal waves.  

Bahari and Hejazi (2009a) utilised different variants for buoyancy-affected 

terms in k-ε turbulence model to predict the flow parameters more accurately, and to 

investigate applicability of alternative k-ε turbulence buoyant closures in numerical 

simulation of horizontal gravity currents. The additional non-isotropic turbulent 

stress due to buoyancy was considered in production term, based on an algebraic 

stress model. In order to account for the turbulent scalar fluxes, general gradient 

diffusion hypothesis was used along with Boussinesq gradient diffusion hypothesis 

with a variable turbulent Schmidt number and the suggestion of Henkes and LeQuere 

(1996) for controversial empirical constant, c3ε, in ε equation. Shams Nia and Hejazi 

(2012) implemented a nonlinear k-ε turbulence model firstly presented by Speziale 

(1987) in a 2DV numerical model (Hejazi, 2005). The simulations of lock-release 

type gravity currents and heated impinging jets into horizontal cross flows were 

compared with measured values and results of the buoyant standard k-ε turbulence 

model. They concluded that both models provided acceptable predictions for the 

front head position. However, in stratified saline water of lock-release types, the 

nonlinear model provided better results for velocity profiles especially near the bed. 

Davidson (1990) combined ASM and k-ε formulae for Reynolds stress, and proposed 

a second closure correction method to account for Reynolds stress components. This  

model  takes  from  an  ASM  that  part  of  the  non-isotropic  Reynolds  stress which  

is due  to  buoyancy,  and  the  remaining  part  from  the  k-ε  model.  Verdier-

Bonnet et al. (1999) and Kun et al. (2000) used this hybrid model in their studies of 

coastal circulation modelling and vertical planar buoyant jets respectively, and came 

to more realistic results.  
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2.6.5   Turbulence-stratification Interaction 
 

Monismith and Fong (1996) used a simple model of vertical mixing in a 

stratified tidal flow, which incorporated two means for accomplishing vertical 

mixing; shear instability and bottom mixed-layer deepening by turbulence produced 

at the estuary bottom and in the shear layer at the top of the mixed layer. Rotation 

and longitudinal salinity gradients were not included in the model. They reported that 

when the Richardson number was less than critical, periodic stratification developed, 

whereas when it was greater than the critical value, nearly constant stratification 

consisted of a fresh layer overlying an ocean layer. The model showed that shear 

arising from bottom friction can significantly enhance the rate of mixing in stratified 

tidal flows. 

Studies on counter-gradient transport in the coastal and estuarine context are 

scarce. While it has been indicated that buoyancy fluxes can become counter-

gradient, little direct observational evidence in the estuarine and coastal context can 

be found in the literature. de Nijs and Pietrzak (2011) reported that measurements of 

turbulent fluctuations of velocity and salinity show persistent counter-gradient 

buoyancy fluxes. These counter-gradient fluxes are controlled by the ratio of vertical 

turbulent kinetic energy and available potential energy. The onset of counter-gradient 

fluxes is found to approximately coincide with larger available potential energy than 

vertical turbulent kinetic energy. The near-bed stratification and pycnocline confine 

the bed-generated turbulence to the lower part of the water column (de Nijs and 

Pietrzak, 2012a).  

From a phenomenological view point, de Nijs and Pietrzak (2011) explain 

counter-gradient flux as incompletely mixed or dissipated parcels of rising water of 

lower density and descending water of higher density, which have retained a certain 

memory of their mixing history or turbulent properties. This memory lasts longer for 

salinity-induced density fluctuations than for velocity fluctuations, because 

momentum can be transferred more quickly with the surrounding fluid through 

pressure fluctuation forces than mass, which requires mixing. It is anticipated that the 

memory effects induced by the density fluctuations, increase with increasing 

stratification. While turbulence remains active at strong stratification, mass transports 

are strongly damped and counter-gradient mass transports indicate restratification. 
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2.7   CONCLUSIONS 
 

The complicated hydrodynamics associated with complex bathymetry of 

estuarine environments in combination with salinity stratified flows present in most 

estuaries requires a three-dimensional model with flexible coordinate system for 

capturing the elevation changes near the boundaries of sharp gradients, including bed 

topography, interfaces of stratified layers, and the free surface. The hydrostatic 

pressure assumption is not capable of accurate prediction of free surface and density 

profiles, especially in the presence of stratification and considerable baroclinic 

pressures; hence a non-hydrostatic model is required. Advection is the dominant 

forcing in such environments and for the flows of the interest of this research project. 

Therefore, special treatment is needed for implementation of high-accurate advection 

schemes in the numerical model. 

The projection method optimises accuracy, ease of implementation of different 

schemes for the Navier-Stokes equations components, appropriate for the importance 

of their role and the desirable degree of accuracy for each term, as well as the 

computational time. The accuracy of the projection method places this technique far 

above the explicit approaches and almost as accurate as the methods using fully 

coupled algorithms which require much more computational effort. The turbulence 

model choice for predicting the detailed vertical mixing, especially when the 

stratified advective flows govern the flow field, becomes an important issue in line 

with preserving the functionality of the projection method. The combination of these 

features is not present in the existing numerical models. 

The physical model of this study, which may be classified as a validation 

model and, to some extent, a process model, should determine the three-dimensional 

velocity field as well as three-dimensional stratification features. However, the 

modelling cannot include the proper consideration of all elements of real problems of 

the hydro-environments of the interest of the current research project, due to the 

limitations of experimental procedures. A conclusion on the stratification processes 

in harbours has not been provided in the literature, and the influence of different 

heights of the entrance-barriers for simplified model harbours and barrages on the 

hydrodynamics and stratification has yet to be determined. A signal procedure is 

necessary for the measured data to provide trustable means for the validation of the 

numerical model as well as interpretation of the hydrodynamic phenomena. 



 

 

CHAPTER THREE 

 

 

GOVERNING HYDRODYNAMIC EQUATIONS 

AND 

TURBULENCE MODELLING 

 

 

 

"Turbulent motion, it remains to call attention to 

the chief outstanding difficulty of our subject." 

Horace Lamb, Hydrodynamics, 1932 (Reynolds, 1974) 

 

3.1   INTRODUCTION 

 

This chapter has been devoted to set out the fundamental concepts, definitions, 

and assumptions, and to establish the governing equations of fluid flow with 

particular reference to the flow associated with tidal, or long-period wave 

propagation. It also provides the background material for the research carried out in 

this study and presented in the thesis. The main topics which are covered in this 

chapter are outlined in the following paragraphs. 

Firstly, although there is a wide acceptance and use of the basic concepts and 

definitions, they have been clarified, together with the assumptions made for the 

establishment of the equations of fluid flow. Then, since fluid dynamics provides the 

relationships between the fluid motion and the forces acting in the fluid, the subjects 

discussed are the kinematics of fluid motion, the origin of forces in fluid, and 

ultimately the dynamical equations of motion. In addition to the latter, the principles 

of mass conservation (continuity equation), and momentum (Newton's second law of 
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motion), are introduced as governing relationships, which the fluid must also obey. 

Attention has been given to the effect of variable density due to salinity as the salt 

intrusion is part of the numerical and hydraulic model studies. This adds the species 

concentration conservation equation to the set of the equations to be solved. 

 A turbulence modelling discussion follows the derivation of the turbulent 

Navier-Stokes equations. The task of turbulence models is to determine the turbulent 

transport terms, which appear in the mean-flow equations. Therefore the equations 

can be solved and the velocity, and concentration fields be obtained. A wide-

spectrum of turbulence models is available, ranging from the simple mixing length 

hypothesis to rather complex models employing differential transport equations for 

the turbulent stresses and heat or concentration fluxes. The discussion about 

turbulence modelling is concentrated on the buoyant k-ε turbulent model. 

The chapter is organised in three main parts: 

 Basic concepts, definitions, and assumptions together with the laws of fluid 

dynamics, which lead to the establishment of the general form of the 

Navier-Stokes equations; 

 Introducing turbulence, the mean-flow equations, and the Navier-Stokes 

equations for incompressible turbulent flow, which are used in this study; 

 Following introductory remarks about turbulence modelling and basic 

concepts, buoyant k-ε turbulence model, which has been included in the 

numerical model developed herein, has been discussed. 

In each part boundary conditions are presented and discussed in some detail. The 

division of the chapter into three parts is for convenience of covering the relevant 

topics and the substantial consistency of the nature of the subjects itself cannot be 

altered. 

 

3.2   BASIC CONCEPTS, DEFINITIONS AND ASSUMPTIONS 

 

Having a minimum compressibility at about 50˚C (Daugherty, 1961), water is 

considered as an incompressible fluid for most practical purposes and in the present 

study. It is assumed that water is a Newtonian fluid in character, for which the 

viscosity does not change with the rate of deformation. It is also treated as an 

isotropic substance, which considers that the relation between the components of 

stress and those of the rate-of-strain is the same in all directions. In a Newtonian 

fluid this relation is linear, which means the fluid obeys Stoke’s law of friction. It is 
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also assumed that the dimensions of the problem are large enough compared with 

molecular distances so that the fluid may be treated as a continuous medium without 

loss of essential detail. So the fluid particle, which is the infinitesimal used for 

deriving the equations, is the smallest lump of material having sufficient molecules 

to allow a continuum interpretation. For incompressible fluids, the continuum 

properties necessary to describe the kinematical and dynamical behaviour are the 

density, the velocity, the internal stresses, and the viscosity. 

 

3.3   EQUATIONS OF CONTINUITY AND MOTION OF FLOW 

 

The equations of motion for an incompressible, viscous, Newtonian fluid have 

been concisely presented in this section. In the general case of three-dimensional 

motion, the flow field is specified by the velocity vector V, which according to the 

definition given for the fluid particle, is the appropriate mean quantity in the 

dynamical sense required by Newton's laws of motion; 

wvu kjiV   (3.1) 

where u, v, and w are the three orthogonal instantaneous components. The velocity 

components, the pressure, p, and the density, , all are functions of the coordinates x, 

y, z, and time t. For the determination of these five quantities there exist five 

equations: the continuity equation (conservation of mass), the three components of 

the equation of motion (conservation of momentum) and the conservation equation 

of species concentration. 

 In this study, the variation of density is not due to compressibility. It is only 

attributed to density stratification and therefore the change in the concentration of 

species, with the particular interest in salinity due to salt intrusion. Hence, the 

assumption of incompressibility for water remains as valid. 

 The equation of continuity expresses the fact that for a unit volume there is a 

balance between the masses entering and leaving per unit time. In the case of non-

steady flow of an incompressible fluid, this condition leads to the equation: 

0div V  (3.2) 

 The equations of motion are derived from Newton’s second law, which states 

that the product of mass and acceleration is equal to the sum of external forces acting 

on the body. In fluid motion two classes of forces are considered; gravitational forces 
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acting through the mass of the body, and pressure and friction acting on the 

boundary. The equation of motion is written in the following form: 

PF
V


tD

D
  (3.3) 

In this equation F =  g is the body force and denotes the gravitational force per unit 

volume and P is the surface force and denotes the force on the boundary per unit 

volume. 

ZYX kjiF   (3.4) 

zyx PPP kjiP   (3.5) 

tD

DV
 in equation (3.3) denotes the substantive acceleration, which consists of the 

local acceleration tV , and the advective acceleration tddV . The body forces 

are considered as given external forces. The surface forces depend on the rate of 

strain caused by the velocity in fluid. The system of forces determines a state of 

stress, whose relation with the rate of strain can only be given empirically. For 

isotropic, Newtonian fluids it may be assumed that this relation is a linear one. 

 

3.3.1   Stress Tensor 

 

For an infinitesimal parallelepiped control volume, zyxV dddd  , the stress 

tensor of an inhomogeneous stress system, in the absence of a volumetric distribution 

of local moments, requires nine scalar quantities for its description. The stress tensor 

and the corresponding matrix are symmetric with respect to the principal diagonal 

(Chou and Pagano, 1967). The stress tensor is represented by ij , where the first 

subscript indicates the axis to which the surface containing the stress is 

perpendicular, and the second subscript indicates the direction to which the stress is 

parallel. The surface force per unit volume is then given by derivatives of the stresses 

as has been presented in equation (3.6): 
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 When a state of hydrostatic stress prevails, the surface force per unit volume 

becomes simply the negative of the pressure gradient: 

pgradP  (3.7) 
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in which p is the uniform hydrostatic pressure. In a fluid at rest, or in the absence of 

deformation of fluid particles, all the shearing stresses vanish. Introducing the 

expression (3.6) into the equation of motion (3.3), and resolving into components 

leads to equation (3.8). 
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 (3.8) 

  

3.3.2   Rate-of-strain Tensor 

 

Since the motion of the fluid is completely determined when the velocity 

vector V is given as a function of time and position,  tzyx ,,,VV  , there exist 

kinematic relations between the components of the rate of strain and this function. 

The rate-of-strain tensor,


ij , is symmetric, thus six, rather nine, quantities suffice to 

determine the state of strain at a point. The mathematical properties of this tensor are 

analogous to those of the equally symmetric stress tensor. 

 When the fluid is at rest, it develops a uniform field of hydrostatic stress, which 

is identical with the thermodynamic pressure. When the fluid is in motion, the 

equation of state still determines a pressure at every point (principal of local state), 

and it is convenient to consider the deviatoric normal stresses together with the 

unchanged shearing stresses (Schlichting, 1979): 
 

pjj    (3.9) 

 

where j s are the normal stresses. The six quantities so obtained constitute a 

symmetric stress tensor the existence of which is due to the motion because at rest all 

its components vanish identically. 

 With the aid of equation (3.9) the non-viscous pressure terms can be separated 

in the equation of motion (3.8) so that they become as follows: 
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3.3.3   The Stress-strain Law of a Newton-Stokes Fluid 

 

The stress tensor is connected with the rate-of-strain tensor through the 

coefficient of viscosity, μ. Newton hypothesised that the viscous force resisting the 

shearing strain of a fluid is linearly proportional to the rate of shear. The present 

generalisation of Newton's formulation is due to Stokes. Four premises underline the 

Stokesian formulation (Shapiro, 1961): 

i. The fluid is isotropic. Hence the principal axes of stress and strain must 

coincide. 

ii. Mere translation and rotation do not induce resisting stresses, but any 

deformation is resisted by viscous stresses. Each of the six components of 

viscous stress is assumed to be linearly proportional to a linear sum of the 

six deformation rates (three ε's and three γ's). 

iii. The linear stress-strain law must have the same form for any orientation of 

the coordinate system. 

iv. In the absence of deformation, the stress tensor must reduce to the 

hydrostatic pressure. 

 

3.3.4   Navier-Stokes Equations 

 

By satisfying premises (i) to (iv) and introducing the resultant constitutive 

stress-strain relations, the resultant surface force in terms of velocity components is 

obtained (Shapiro, 1961; Schlichting, 1979). By introducing the surface-force 

expressions into the fundamental equation (3.8), for incompressible flows with 

constant viscosity, the Navier-Stokes equations assume the following vectorial form: 

VF
V 2grad

D

D
  p

t
 (3.11) 

These equations differ from Euler's equations by the viscous terms V
2 . The 

equation of continuity reads: 
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The conservation equation of species concentration is added to the above set of 

the equations, which with the known body forces form a closed set of five equations 

for the five unknowns, u, v, w, p, and ρ. The species concentration conservation 

equation reads as follows: 
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where C is a scalar quantity which may stand for species concentration (salt in this 

study), cS  is a volumetric source term, and λ is the molecular diffusivity of C. 

 

3.3.5   Boundary and Initial Conditions 

 

 The solutions of the equations of motion of flow become fully determined 

physically when the boundary and initial conditions are specified. In the case of 

viscous fluids the condition of no slip on solid boundaries must be satisfied, i.e., on a 

wall both the normal and tangential components of the velocity must vanish: 

vn = 0 (3.14) 

vt  = 0 (3.15) 

In the equations (3.14) and (3.15) vn and vt represent normal and tangential 

components of the velocity respectively. For the no-slip condition to apply to any 

boundary this requires the velocity immediately adjacent to the boundary to be zero, 

with the velocity having to increase with distance from the boundary until the free 

stream velocity is achieved. The distance between the boundary and the elevation 

where the free stream temporal mean velocity occurs (or nearly occurs) defines the 

boundary layer thickness. Part of the boundary layer is laminar; termed the laminar 

sub-layer for turbulent flow (Falconer, 1993). 

 More details on boundary conditions are given in the following sections of this 

chapter. The boundary and initial conditions for solving the set of the equations have 

been thoroughly discussed in Chapter Four.  

 

3.4   TURBULENCE 
 

 In estuaries and coastal areas the flows of practical relevance are almost always 

turbulent; this means that the fluid motion is highly random, unsteady and three-

dimensional. Turbulent motions contribute significantly to the transport of 

momentum and mass and therefore have a determining influence on the distribution 

of velocity and species concentration over the flow field. 

The largest eddies, which are associated with the low frequency fluctuations, 

are determined by the boundary conditions of the flow and their size is of the same 

order of magnitude as the flow domain. The smallest eddies, associated with the high 
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frequency fluctuations, are determined by viscous forces. The width of the spectrum, 

and thus the difference between the largest and the smallest eddies, increases with 

the Reynolds number. 

 In spite of all the recent advances in computer technology, turbulent flows 

cannot at present be calculated with an exact method. In the succeeding section 

problems involving fully developed turbulent motion are discussed, and a restriction 

of considering the time-averages of turbulent motion due to the complexity of 

turbulence fluctuations is imposed. 

Therefore by a statistical approach, which was first suggested by Osborne 

Reynolds, the equations are averaged over a time scale which is long compared with 

that of the turbulent motion. The resulting equations describe the distribution of 

mean velocity, pressure, and species concentration in the flow. The system can be 

closed only with the aid of empirical input, whence the calculation methods based on 

the averaged flow equations are semi-empirical. 

In describing a turbulent flow in mathematical terms the instantaneous values 

of the velocity, the pressure, and the scalar quantity of concentration are separated 

into mean and fluctuating quantities. Denoting the time-average of the u-component 

of velocity by u , and its velocity of fluctuation by u : 

uuu   (3.16a) 

This also may be applied for the other components of velocity. The following 

relations result in the same manner for pressure, and concentration: 

ppp   (3.16b) 

CCC   (3.16c) 

The mean quantities are formed at a fixed point in space and are given, e.g. by: 
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Thus, by definition, the time-averages of all quantities describing the fluctuations are 

equal to zero. The fluctuations influence the mean motion in such a way that the 

latter exhibits an apparent increase in the resistance to deformation in the form of an 

apparent increase in the viscosity of the flow. This increased apparent viscosity of 

the mean stream forms the central concept of all theoretical considerations of 

turbulent motion. 
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3.4.1   Turbulent Navier-Stokes Equations 

 

 The Navier-Stokes equations for incompressible flow with the notion of 

Boussinesq approximation can be rewritten as follows: 
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where p is the instantaneous pressure minus the hydrostatic pressure at reference 

density r . Due to the Boussinesq approximation the influence of variable density 

appears only in the buoyancy term (the last term on the right hand-side of equation 

3.18) involving the reference density and the gravitational acceleration. A detailed 

implementation of Boussinesq approximation is presented in Chapter Six. The 

equations of continuity and species concentration conservation may be written as 

follows: 
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Together with an equation relating the local density ρ to the local values of 

concentration (C), equations (3.18-3.20) form a closed set and are the exact 

equations, which describe all the details of the turbulent motion. 

Introducing the hypotheses regarding the decompositions of velocity 

components and pressure into their time-averages and fluctuation terms from 

equations (3.16) into the equation of continuity (Eq. 3.12) and using the rules of 

operating on mean time-averages (see Schlichting, 1979) results in the following 

equations: 
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The time-averaged velocity components and the fluctuating components each satisfy 

the incompressible equation of continuity. Dropping the over-bars, indicating 

averaged values, for brevity, the continuity equation then reads: 
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 Applying the same process into the equations of motion and species 

concentration results in the following system of equations: 
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Equations (3.23) to (3.25) determine the problem under consideration. Comparison 

of these equations with the original set of the Navier-Stokes equations (Eqs. 3.18-

3.20), shows that the instantaneous values of velocity and pressure have been 

replaced by the corresponding temporal average values, and the new set of the 

equations in addition contains terms which depend on the turbulent fluctuations of 

the stream. These equations govern the mean-flow quantities. The equations are also 

exact since no assumptions has been introduced in deriving them, but they no longer 

form a closed set due to the non-linearity of equations (3.18) and (3.20), as the 

averaging process has introduced unknown correlations between fluctuating 

velocities (e.g. vu  ), and between velocity and scalar fluctuations (e.g. uC  ). The 

additional terms can be interpreted as components of a stress tensor due to the 

turbulent velocity components of the flow as follows: 

jiji uu    (3.26) 

These additional stresses are known as apparent or virtual stresses of turbulent flow 

or Reynolds stresses. Physically, these correlations, or according to Hinze (1975) 

double correlations between turbulence velocity components, multiplied by the 

density, represent the transport of momentum and mass due to the fluctuating 

motion. -ρ vu   is the transport of x momentum in the direction of y (or vice versa); it 

acts as a stress on the fluid and is therefore called turbulent or Reynolds stress. -ρ 

uC   is the transport of the scalar quantity C in the direction of x and is therefore a 

turbulent mass flux (for more on double-velocity correlation tensor see Reynolds, 

1974). Since these stresses are added to the ordinary viscous terms in laminar flow 

and have a similar influence on the course of the flow, it is often said that they are 

caused by eddy viscosity. In most flow regions, the turbulent stresses and fluxes far 

outweigh their laminar counterparts and consequently, the latter may be omitted with 

a good degree of approximation. 
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 Equations (3.23-3.25) can be solved for the mean values of velocity, pressure, 

and concentration only when the turbulence correlations can be determined. Exact 

transport equations can be derived for turbulent correlations (see Rodi, 1984), but the 

closure of the equations cannot be obtained due to correlations of higher order, so a 

turbulence model must be introduced to relate the correlations to mean flow 

quantities. The quality of the turbulence simulation necessary to obtain accurate 

predictions of the mean-flow quantities depends on the relative importance of the 

turbulent transport terms in equations (3.24) and (3.25). In certain flows or flow 

regions, the inertial terms on the left-hand side of the momentum equation (3.24) are 

balanced mainly by the pressure gradient or by the pressure gradient and buoyancy 

terms, even if the flow is turbulent. In such cases, the turbulence simulation may be 

relaxed and potential-flow solutions are sufficient. On the other hand, equation (3.25) 

for species concentration does not contain pressure-gradient and buoyancy terms, so 

that the turbulence terms are always important, except possibly in cases with large 

source terms. This equation shows that the transport of the species due to turbulence 

diffusion is independent of the transport due to the mean current (Harleman, 1961). 

Therefore, realistic modelling of the turbulent concentration-flux term is always 

necessary in order to obtain realistic concentration distribution by solving the 

equation of species concentration conservation (Rodi, 1984). 

 

3.4.2   Coriolis Effect 
 

 In equation (3.24), iX s, as were introduced in section 3.3, represent 

components of body force per unit volume, and therefore riX  s are in terms of 

acceleration, which if the effect of earth's acceleration is neglected, in the absence of 

any other body force and only the presence of earth's gravitational force, then the 

body force accelerations are simply expressed by the following: 

iri gX   (3.27) 

However, in modelling large water bodies like estuarine and coastal flows the effects 

of the earth's rotation should be considered. Although this force may be included in 

the total body force, its effect, for convenience, is shown separately in the equations. 

 If the x-direction is assumed to be a straight line parallel to the equator, the y-

direction to lie from south to north, and the z-direction to be upwards and normal to 

the earth's surface, then the earth's rotation gives rise to an acceleration due to the 
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relative motion, namely Coriolis acceleration, and therefore the body force 

accelerations are represented by: 
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f is the Coriolis parameter and is equal to  sin2 , in which ω is the angular speed of 

the earth's rotation ( srad1027.7 5 ), and θ is the angle of latitude of the domain. 

The Coriolis terms may be simplified with two assumptions;  

 The horizontal velocity scale is significantly larger than the vertical scale in the 

oceanic large water bodies, and with the hydrostatic approximation 

assumption, results in neglecting the second part of the X component. 

  cos2  is at least 4 orders of magnitude smaller than the acceleration due to 

gravity and is usually neglected. 

Thus for practical purposes, these accelerations read (Falconer and Chen, 1996): 
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Further details of the Coriolis acceleration have been given in Dronkers (1964). 

 

3.4.3   Boundary Conditions 

 

 The boundary conditions to be satisfied by the mean velocity components are 

the same as in ordinary laminar flow, namely they all vanish at solid walls (no-slip 

condition). Moreover, all turbulent components must vanish at the walls and they are 

very small in their immediate neighbourhood. Therefore, all components of the 

tensor of apparent stresses vanish at the solid walls and the only stresses which act 

near them are the viscous stresses of laminar flow. As, in immediate neighbourhood 

of a wall the apparent stresses are small compared with the viscous stresses, in every 

turbulent flow there exists a very thin layer next to the wall which, in essence, 

behaves like one in laminar motion. It is known as the laminar sub-layer, and its 

velocities are so small that the viscous forces dominate over the inertia forces. The 

laminar sub-layer joins a transitional layer in which the velocity fluctuations are so 

large that they give rise to turbulent shearing stresses, which are comparable with the 

viscous stresses. The actual turbulent boundary layer occurs at larger distances from 

the wall, where the turbulent stresses eventually completely outweigh the viscous 

stresses (Schlichting, 1979). The data necessary for analysis of the fluid flow 
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problem must include sufficient information concerning all of the boundaries. The 

analysis consists of the application of the principles of fluid mechanics so as to 

predict the behaviour of the fluid when subjected to these boundary conditions. The 

possible conditions specified for a boundary may include its nature whether solid, 

fluid, or free surface, its geometrical form, the pressure distribution on it or the 

velocity distribution along or across it (Vallentine, 1969). A full discussion on 

boundary conditions is given in Chapter Four.  

 

3.4.3.1   Solid Boundary Shear Stress 

 

 At solid boundaries the shear stress causing the resistance, may be 

approximated by steady uniform flow consideration (see Henderson, 1966). This is 

represented in the form of a quadratic friction law as follows: 

sijij Vu
C

g
b 2

   (3.30) 

b  is the solid boundary shear stress. The notation for the shear stress at the solid 

boundary is the same provided for the stress tensor; the first subscript indicates the 

axis to which the face is perpendicular (the solid boundary plane), and the second 

indicates the direction to which the shearing stress is parallel. In this equation there is 

no relevance between the shear stresses which have the same subscripts in different 

order. sV  is the surface fluid speed, and the second subscript indicates the axis to 

which the plane, that the surface velocity lies in, is perpendicular. To determine the 

Chézy value, C, either a constant value may be specified, or it can be evaluated from 

the Manning equation, or alternatively the Colebrook-White equation may be used 

(Henderson, 1966; Falconer and Chen, 1996). 

 

3.4.3.2   Water Surface Elevation 

 

 The pressure at the surface is assumed to be atmospheric and the surface 

elevation η is then calculated with the aid of the kinematic boundary condition at the 

surface, which assumes that a fluid particle remains on the surface (Vallentine, 

1969). Water surface elevation is given by (ASCE, 1988; Falconer and Chen, 1996; 

Verdier-Bonnet et al., 1999): 

     


 














 zzz w

y
v

x
u

ttd

d
 (3.31) 



Governing Hydrodynamic Equations and Turbulence Modelling 62 

3.5   TURBULENCE MODELLING 

 

Because the turbulent transport processes cannot be calculated with an exact 

method, they must be approximated by a turbulence model which, with the aid of 

empirical information, allows the turbulent transport quantities to be related to the 

mean flow field. According to Dwoyer et al. (1985) theoretical approaches to model 

turbulence can be broadly divided into four overlapping categories: 

1. Analytical modelling 

2. Physical modelling 

3. Phenomenological modelling 

4. Numerical modelling 

A turbulence model is defined as a set of equations which determine the 

turbulent transport terms in the mean-flow equations and thus close the system of 

equations. Turbulence models are based on hypotheses about turbulence processes 

and require empirical input in the form of constants or functions. They do not 

simulate the details of the turbulent motion but only the effect of turbulence on the 

mean-flow behaviour (Rodi, 1984). 

 Geometrical conditions, viscous effects, and buoyancy influence the turbulent 

transport processes. Turbulence models can only give an approximate description, 

and a particular set of empirical constants may only be valid for a certain flow or a 

particular range of flows. Therefore, it is important to find out how well the various 

models can cope with the manifold complications present in hydraulics problems, 

such as irregular geometries, buoyancy, and free surface effects. The k-ε model is 

shown to predict reasonably well a fairly large range of hydraulics problems with the 

same empirical input (Rodi, 1984). 

 

3.5.1   Introductory Remarks 

 

It is mainly the large-scale turbulent motion that transports momentum and 

concentration and contributes to the turbulence correlations. Therefore it is the large-

scale motion that has to be simulated in a turbulence model for the determination of 

turbulence correlations and the velocity and length scales introduced in turbulence 

models are parameters which characterise this motion. The rate of energy dissipated 

is also determined by the large-scale motion although dissipation is a viscous process 

and takes place at the smallest eddies. Larger Reynolds numbers result in smaller 
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dissipative eddies relative to the large-scale eddies. When buoyancy forces are 

present, there is also an exchange between potential energy of the mean flow and 

turbulent kinetic energy, which can go in both directions but is also affected by the 

large-scale motion. 

 Because of its interaction with the mean flow, the large-scale turbulent motion 

depends strongly on the buoyancy conditions of a problem. The mean flow often has 

preferred directions which are imposed also on the large-scale turbulent motion. This 

motion can therefore be strongly anisotropic so that both the intensity of the 

fluctuations and their length scales are direction dependent. During the cascade 

process the direction sensitivity is diminished and when the Reynolds number is high 

enough, the direction sensitivity is entirely lost resulting in isotropy (Rodi, 1984). 

 

3.5.2   Basic Concepts 

 

 Eddy-viscosity and eddy-diffusivity are the basis of most turbulence models. 

These two are introduced in the following part. 

 

3.5.2.1   Eddy-viscosity Concept 

 

The Boussinesq concept of eddy-viscosity assumes that the turbulent stresses 

are proportional to the mean-velocity gradients. For general flow situations, this 

concept may be expressed as: 
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where k is the kinetic energy of the fluctuating motion per unit mass. T , the 

turbulent or eddy viscosity, is not a fluid property but depends on the state of 

turbulence and may vary significantly over the flow field and also in different flow 

regimes. By introducing eddy-viscosity concept a turbulence model may now be 

constructed if the distribution of T  is determined. The sum of normal stresses (
2

iu s) 

is equal to zero due to the continuity equation. However, all normal stresses are by 

definition positive quantities, and their sum is twice the kinetic energy k of the 

fluctuating motion per unit mass: 

 222'
2

1
wvuk   (3.33) 
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 According to this equation, k is a direct measure of the intensity of the 

turbulence fluctuations in the three directions. Inclusion of the second part of the 

eddy viscosity expression (3.32) assures that the sum of the normal stresses is equal 

to 2k. Because the normal stresses are like pressure, and because the energy k is a 

scalar quantity, the second part of equation (3.32) constitutes a pressure. Therefore, 

this second part can be absorbed by the pressure-gradient term so that in effect the 

static pressure is replaced by the pressure kp 32 . For dimensional reasons, the 

velocity scale and the length scale of the turbulent motion play an important role 

(ASCE, 1988). The eddy viscosity is considered proportional to a velocity scale V̂  

characterising the fluctuating motion and to a typical length scale L characterising 

the large-scale turbulent motion which is called the Prandtl mixing length. 

LVT
ˆ  (3.34) 

Despite some conceptual objections*, the eddy viscosity concept has often 

been found to work well in practice, simply because T  can be determined to a good 

approximation in many flow situations (Rodi, 1984). This is because the distribution 

of the velocity and length scales can be approximated reasonably well in many flows. 

Although the assumption of an isotropic eddy viscosity is a simplification which is of 

limited realism in complex flows, in spite of all shortcomings of the eddy viscosity 

concept, it is still the basis of most turbulence models. 

 

3.5.2.2   Eddy-diffusivity Concept 

 

 In analogy to the turbulent momentum transport, the turbulent mass transport is 

often assumed to be related to the gradient of the transported quantity; 

i

i
x

C
ΓCu



  (3.35) 

Like the eddy viscosity, Γ, turbulent diffusivity of mass, is not a fluid property but 

depends on the state of the turbulence. The Reynolds analogy between mass transport 

and momentum transport suggests that Γ is closely related to T : 
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   (3.36) 

* The fallacy lies in expecting the eddy viscosity to be a scalar, simply related in general to the mean-

flow scales, or even the turbulent scales, near the point considered; it is a hybrid quantity, 

depending on both the turbulence and the mean flow (Bradshaw, 1978). 
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T  is called the turbulent Schmidt number. Experiments have shown that, unlike the 

turbulent diffusivities for momentum and mass, their ratio T  varies only little over 

the flow field and also little in different flow regimes. Therefore many models make 

use of equation (3.36) with the turbulent Schmidt number as a constant. It should be 

mentioned, however, that buoyancy and streamline curvature affect the value of T . 

Knowledge of T  is always used as a means of finding Γ from an already computed 

value of T  (Launder, 1978). 

Generally the equations discussed here for the species concentration are 

equally valid for temperature. Heat transport can be expressed in the same way as 

mass transport, noting that T  is known as Prandtl number for heat in most of the 

literature. This also implies that the equations used and implemented in the numerical 

model can be used for stratification due to thermal changes by introducing the 

appropriate function relating density to temperature. 

 

3.5.3   Turbulence Model Classification 
 

 Reynolds (1976) classified the turbulence models on the level of partial 

differential equations used in the models: 

1. Zero-equation models use only the partial differential equations for the mean 

velocity field, and no turbulence partial differential equations are introduced. 

2. One-equation models involve one partial differential equation relating to a 

turbulence velocity scale, in addition to the mean-flow partial differential 

equations. 

3. Two-equation models use an additional partial differential equation related to a 

turbulence length scale. 

4. Stress-equation models involve partial differential equations for all components 

of the Reynolds stress tensor and in general for a length scale as well. 

5. Large-eddy simulations involve the three-dimensional time-dependent large 

eddy structure and a low-level model for the small-scale turbulence. 

 Class 1 is also called the class of mean-field closures, classes 2 to 4 being 

transport-equation closures. An alternative, open-ended classification is based on the 

highest order of velocity product for which a transport equation is used. Zero-

equation models use partial differential equations for iu  only and are therefore first-
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order models, classes 2 to 4 use partial differential equations for ji uu   and are 

second-order closures, while some class 4 models approach the stage of using 

transport equations for third-order products lji uuu  . In this chapter only some of the 

models, which belong to the classes 1 to 3, have been reviewed and the buoyant k-ε 

model has been discussed. 

 

3.5.3.1   Zero-equation Models 

 

 In this part without going through the details of zero-equation models, only a 

general overview has been presented. 

 

3.5.3.1.1   Constant Eddy Viscosity/Diffusivity 

 

 For the calculation of hydrodynamic properties, the constant-eddy-viscosity 

model has little significance, as in many calculations, especially for flows in large 

water bodies, the turbulence terms in the momentum equations are unimportant and 

consequently the turbulence model does not play a major role, and when the 

turbulence terms are important for the flow behaviour, the model is mostly too coarse 

to describe this behaviour correctly. In stratified flows the vertical turbulent transport 

of both momentum and scalar quantities is strongly influenced by buoyancy effects, 

and in particular the eddy viscosity and diffusivity are reduced by stable 

stratification. 

 

3.5.3.1.2   Mixing-length Models 

 

 The mixing-length model is not suitable when processes of advective or 

diffusive transport of turbulence are important. More generally, the model is of little 

use in complex flows because of the great difficulties in specifying the mixing 

length. The mixing-length model is suitable only for flows where the turbulence is in 

local equilibrium. 

 

3.5.3.1.3   Prandtl's Free-shear-layer Model 

 

 Because of its simplicity, Prandtl's free-shear-layer model is quite popular for 

the prediction of mixing layers, jets and wakes. With an appropriate constant it works 

well when these flows are in a developed state, but transitions from one type of free 
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flow to another are not well predicted because of the non-universality of the 

empirical constant. 

 

3.5.3.2   One-equation Models 

 

 In order to overcome the limitations of the mixing length hypothesis, 

turbulence models were developed which account for the transport of turbulence 

quantities by solving differential transport equations for them. In the models using 

eddy-viscosity concept, the velocity fluctuations are characterised by k . As the 

energy k is contained mainly in the large-scale fluctuations, k  is a velocity scale 

for the large-scale turbulent motion. When this scale is used in the eddy viscosity 

relation (Eq. 3.34), there results: 

LkcT    (3.37) 

where c  is an empirical constant. This formula is known as the Kolmogorov-

Prandtl expression. They suggested determining the distribution of k by solving a 

transport equation for this quantity. Such an equation can be derived in exact form 

from the Navier-Stokes equations (See Rodi, 1984). For high Reynolds numbers, this 

equation in tensor notation reads: 
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 The rate of change of k is balanced by: 

 The advective transport due to the mean motion; 

 The diffusive transport due to velocity and pressure fluctuations; 

 The production of k by interaction of Reynolds stresses and mean-velocity 

gradients; 

 The dissipation of k by viscous action into heat; 

 The production or destruction of k due to buoyancy forces. 

The production term P represents the transfer of kinetic energy from the mean to the 

turbulent motion; it appears with opposite sign as a sink term in the equation for the 

kinetic energy of the mean motion. The buoyancy term G represents an exchange 

between the turbulent kinetic energy k and potential energy. In stable stratification, 

this term is negative so that k is reduced and the turbulence is damped while the 
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potential energy of the system increases. In unstable stratification, turbulent energy is 

produced at the expense of potential energy. The viscous dissipation ε transfers 

kinetic energy into internal energy of the fluid and is always a sink term. 

 The exact k-equation cannot be used in a turbulence model because new 

unknown correlations appear in the diffusion and dissipation terms. To obtain a 

closed set of equations, model assumptions need to be introduced for these terms. In 

analogy to the diffusion expression (3.35) for the scalar quantity C, the diffusion flux 

of k is often assumed proportional to the gradient of k: 
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where k  is an empirical diffusion constant. The dissipation ε is usually modelled by 

the expression (3.40). 
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where Dc  is an empirical constant. 

 With the above model assumptions and the eddy-viscosity and diffusivity 

expressions the k-equation reads: 
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 This is the high Reynolds number form of the transport equation used in most 

one-equation models. 080.
Dcc  and 1k  appear to be reasonable values of the 

empirical constants (Rodi, 1984). The model introduced is restricted to high 

Reynolds number flows and is not applicable to the viscous sub-layer near walls. For 

other one-equation models see Rodi (1984). 

In conclusion, one-equation models account for advective and diffusive 

transport, and the history in unsteady flows of the turbulent velocity scale and are 

therefore superior to the mixing-length hypothesis when this transport is important. 

The application of one-equation models is restricted mainly to shear layers since it is 

difficult to specify empirically the length-scale distribution in more complex flows 

and yet for most shear layers the simpler mixing-length model works equally well. 

Two-equation models determine the length scale from a transport equation. 
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3.5.3.3   Two-equation Models 

 

The length scale characterising the size of the large, energy-containing eddies 

is subject to transport processes in a similar manner to the energy k. Other processes 

influencing the length scale are dissipation, which destroys the small eddies and thus 

effectively increases the eddy size, and vortex stretching connected with the energy 

cascade, which reduces the eddy size. The balance of all these processes can be 

expressed in a model transport equation for L, which can then be used to calculate 

the distribution of L. The difficulties in finding widely valid formulae for prescribing 

or calculating L, have stimulated the use of such a length scale equation. 

 

3.5.3.3.1   ε-equation 

 

 At high Reynolds numbers where local isotropy prevails, the rate of 

dissipation, ε, is equal to the molecular kinematic viscosity times the fluctuating 

vorticity  2
ji xu  . An exact transport equation can be derived from the Navier-

Stokes equations for the fluctuating vorticity, and thus for the rate of dissipation 

(Tennekes and Lumley, 1972). This equation contains complex correlations whose 

behaviour is little known and for which fairly drastic model assumptions must be 

introduced in order to make the equation tractable. When the turbulence is 

considered to be locally isotropic the equation contains terms representing the rate of 

change, advection, diffusion, generation of vorticity due to vortex stretching 

connected with the energy cascade, and viscous destruction of vorticity. The 

diffusion, generation and destruction terms require model assumptions. Usually, the 

diffusion is modelled with the gradient assumption. The generation and destruction 

terms cannot be modelled separately; it is their difference that has to be modelled. 

The outcome of the modelling is the ε-equation presented in the following section. 

Together with the k-equation and the Kolmogorov-Prandtl expression it forms the so-

called k-ε turbulence model. 

 

3.5.3.3.2   The k-ε Turbulence Model 

 

 The k-ε model has been included into the numerical model presented herein. 

The equations which comprise the complete model are as follows (Rodi, 1984): 


 

2k
cT   (3.42) 
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T

T




   (3.43) 









































































  
G

iT

T
i

P

j

i

i

j

j

i

T

ik

T

ii

i
x

C
g

x

u

x

u

x

u

x

k

xx

k
u

t

k
 (3.44) 


   

  
ndestructiogeneration

2

231

diffusionadvectionchange
ofrate

1
































k
cRcGP

k
c

xxx
u

t
f

i

T

ii

i










 (3.45) 

 The ε-equation contains the empirical constants  , 1c , and 2c , and in 

buoyant situations also 3c . The empirical constants recommended by Launder and 

Spalding are given in Table (3.1) as follows: 

Table (3.1) - Values of the constants in the k-ε model (adapted from Rodi, 1984) 

c  
1c  2c  k    

0.09 1.44 1.92 1.0 1.3 

 

 These values are based on extensive examination of free turbulent flows, but 

they can also be used for wall flows. A sensitivity study has shown that the 

calculations are most sensitive to the values of 1c  and 2c . Complete universality of 

the constants given in Table (3.1) should not be expected. Experience has shown that 

even in certain fairly simple flows some of the constants require different values. The 

range of applicability of the k-ε model can be extended when some of the constants 

are replaced by functions of suitable flow parameters. 

 The standard k-ε model is based on the assumption that the eddy viscosity is 

the same for all Reynolds stresses (isotropic eddy viscosity). To allow for the non-

isotropic nature of the eddy viscosity in such cases, the k-ε model is refined by 

introducing an algebraic stress model to replace the eddy-viscosity relation (Eq. 3.32) 

and the Kolmogorov-Prandtl expression (3.37). This model relates the individual 

stresses ji uu   to mean-velocity gradients, k and ε by way of algebraic expressions by 

simplifying the transport equations for ji uu  . 

 Mass transfer is calculated in the same way as in zero- and one-equation 

models via the turbulent Prandtl/Schmidt number. Buoyancy effects can be 

accounted for in the k-ε model at two levels. The first level is to simply include the 

buoyancy terms in the k- and ε-equations as shown in equations (3.44) and (3.45) and 
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to leave constants unaffected by buoyancy. However, there is an additional buoyancy 

constant, 3c , in the ε-equation, and its value is somewhat controversial, and this is 

due to the definition of the flux Richardson number of fR  to which 3c is a 

multiplier. If a positive fR  becomes large enough, it leads to complete suppression 

of all turbulence. Observations have shown that turbulence cannot be maintained if 

2.0fR  approximately (Tennekes and Lumley, 1972). Usually fR  is defined as 

minus the ratio of buoyancy production of k to stress production, -G/P. With this 

definition, various researchers found that 3c should be close to zero and unity for 

vertical and horizontal buoyant shear layers respectively (Rodi, 1984). 13 c  

implies that there is no buoyancy term in the ε- equation while 03 c  implies that 

the buoyancy-production term is multiplied with the same constant as the stress 

production. In order to resolve this difficulty Rodi suggested to replace in the fR  

definition, the buoyancy production G of the total turbulent energy k by the 

buoyancy production 
2

vG   of only the lateral energy component 2v  and to write 

)/(
2

1 2
GPGR vf   . In horizontal shear layers then )/( GPGR f   and in 

vertical layers 0fR . With this definition, a single value can be used for 3c  in 

both vertical and horizontal layers, 8.03 c . 

 The second level of accounting for buoyancy in the k-ε model makes use of the 

algebraic stress model approach. Modelled transport equations for the stress ji uu   

and the mass flux Cui
  are simplified to yield algebraic relations. The transport 

equations contain buoyancy terms, which appear also in the algebraic relations, 

leading effectively to non-isotropic eddy viscosities and diffusivities as functions of 

some local Richardson number. This modelling automatically yields a buoyancy 

influence on c  and the turbulent Prandtl/Schmidt number T . 

Rodi (1987) employed the following ε- equation: 
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On discussion for determining 3c , according to test calculations, he stated that in 

situations where G is a positive term, as in unstably stratified flows, 3c  should take 
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a value of 1, while in stably stratified shear layers, where G is a negative term, 3c  

should be chosen near zero. Successful calculations for the latter flows have been 

obtained with 3c  in the range 0-0.2. Further, the turbulent Prandtl/Schmidt number 

T  as well as c  have also been observed to depend on buoyancy effects and are not 

really a constant under stratification conditions. An extended version of the k-ε 

model has been introduced by Rodi (1987), in which the constants c  and T  are 

replaced by functions of suitable stratification parameters. These functions have been 

derived by simplifying a complex stress/flux-equation model. Yu and Li (1998) 

adapted the modifications suggested by Viollet (1990) on the standard k-ε model and 

used 3c = 1c  when 0G , and 3c = 0, when 0G . In a study conducted by 

Verdier-Bonnet et al. (1999), 3c  was given the value 0, as was suggested by Rodi 

(1987) for stable flows. Launder and Spalding (1972) stated that it is likely that a 

two-equation model provides the best starting point, and perhaps the best finishing 

point as well. In spite of all significant advances in computer technology, their 

statement still might be valid at least for turbulence modelling of large water bodies. 

 

3.5.4   Boundary Conditions 

 

 In this part only physical boundaries are discussed. Turbulent water flow may 

be bounded by a solid wall, a free surface or by non-turbulent flow. The location of 

wall and free surface boundaries is well defined, that of a free boundary is not 

because the interface between turbulent and non-turbulent fluid is highly indented 

and unsteady. For practical purposes, a free boundary is defined as the location 

where the velocity (or sometimes a scalar quantity) is nearly equal to its free-stream 

value (Rodi, 1984). The implementation of boundary conditions in the numerical 

model has been discussed in Chapter Four. 

 

3.5.4.1   Wall Boundaries 

 

 At a solid boundary the no-slip condition applies so that both mean and 

fluctuating velocities are zero, but the dissipation rate ε is finite and requires special 

attention. When the boundary conditions are specified right at the wall, the equations 

must be integrated through the viscous sub-layer, which is undesirable for two 

reasons: 
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 Firstly, very steep gradients prevail in the viscous sub-layer and for a proper 

resolution, many grid points have to be placed in this layer and the computation 

becomes expensive. 

 Secondly, viscous effects are important in this layer so that the high-Reynolds 

number turbulence models introduced above are not applicable. However, integration 

through the sub-layer is normally not necessary because empirical laws of sufficient 

generality are available that connect the wall conditions to the dependent variables 

just outside the viscous sub-layer. Within a turbulent boundary layer, Prandtl 

demonstrated that the velocity profile normal to the boundary is approximately 

logarithmic (Schlichting, 1979). This logarithmic law may be expressed as: 

C
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in which, resu  is the resultant velocity parallel and in distance d from the wall, u  is 

the resultant shear velocity, κ is von Kármán's constant
*
, which is taken equal to 0.4 

(Schlichting, 1979), and C is an absolute constant for a Newtonian flow over a 

smooth surface and is found experimentally to be in the range of 5.0-5.2 (Bradshaw, 

1978). If the roughness length scale, sk , is made dimensionless by  u , then for 

fully developed roughness ( uks70 ), the velocity distribution in the log-law 

region is now independent of viscosity because the Reynolds number characteristic 

of the flow over the rough wall is large (Fernholz, 1978). Then the logarithmic rule 

takes the following form: 
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in which, 0d  is a constant, which also now absorbs C in equation (3.47). Equation 

(3.48) is known as the Prandtl-von Kármán velocity law (French, 1986). 0d  is a 

function of whether the boundary is hydraulically smooth or rough
**

. 

* This constant varies over a small range of values as a function of the Reynolds number (French, 

1986). 

** Schlichting (1979) determined the following criteria for classifying surfaces: 

 Hydraulically smooth boundary; 50 


uk s
 

 Transition boundary 705 


uks  

 Hydraulically rough boundary 


uks70  
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 If the boundary is hydraulically smooth, then 0d  depends solely on the 

kinematic viscosity and shear velocity: 





u

m
d 0

 (3.49) 

where m is a coefficient and equal to approximately 1/9 for smooth surfaces (Chow, 

1959). This leads to the following: 
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Rodi (1984) used the same equation, which is discussed later in this section. 

 When the boundary surface is hydraulically rough, 0d  depends only on the 

roughness height: 

skmd 0  

where in this case m is a coefficient approximately equal to 1/30 (French, 1986) for 

sand grain roughness and sk  is the roughness height. Equation (3.48) then becomes: 
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This equation represents the velocity profile for unstratified flow. In density stratified 

flows, the density stratification causes the velocity profile to be modified. For these 

modifications see French (1986). 

Rodi (1984) gave the boundary values for k and ε, which were derived from the 

universal law of the wall expressed as*: 
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 (3.52) 

where resu  is the resultant velocity parallel to the wall, u  is the resultant friction 

velocity, 


yu
y 

 is a dimensionless wall distance, κ is the von Kármán constant, 

and E is a roughness parameter (E = 9, for hydraulically smooth walls). 

 

* The logarithmic law has been challenged by Barenblatt and Chorin (1997). They have proposed that 

the relation between resu and d depends on Reynolds number, whilst according to the logarithmic 

law, this relation is independent of Re. Their suggested law is as follows: 
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Governing Hydrodynamic Equations and Turbulence Modelling 75 

This law should be applied to a point whose y  value is in the range of 30 < y <100. 

It is then sufficiently accurate for most situations. 

 In the y  region specified above, the Reynolds stresses are nearly constant. In 

this region the advection and diffusion of ji uu   are negligible so that local 

equilibrium prevails. 

When buoyancy effects are absent, this implies P  which, together with 

considering the fact that the shear stress is approximately equal to the wall shear 

stress, leads to: 
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This relation is normally used as boundary condition for k in one- and two-equation 

model calculations.  
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 from (3.52), there results the following boundary 

condition for ε: 
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The conditions for k and ε, kw and εw in equations (3.53) and (3.54), are to be applied 

to a near-wall point in the y  range. 

 Relations (3.52-3.54) are valid for smooth and rough walls. The roughness 

enters through the friction velocity, u , whose relation to the velocity outside the 

sub-layer is governed by the roughness parameter E. 

 

3.5.4.2   Free Boundaries 

 

By the definition provided for a free boundary, velocities and scalar quantities 

are equal to their free-stream, or ambient, values at such boundaries. Often, the 

ambient stream is assumed to be entirely free of turbulence so that all turbulent 

stresses and fluxes and the dissipation ε are zero at the free boundary. 

 

3.5.4.3   Free Surface 

 

 In the absence of wind-induced shear stresses and of heat exchange with the 

atmosphere, a free surface may be considered to a first approximation as a symmetry 
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plane*. When a shear layer is created by forces near the surface, then the boundary 

conditions expressed in equations (3.52-3.54) for wall boundaries seem appropriate, 

that is, the surface can be considered as a moving wall, which is certainly only an 

approximation. For further discussions on free surface boundary condition see Rodi 

(1984). 

 

3.6   SUMMARY 

 

Basic concepts and assumptions have been provided. The governing equations 

of fluid motion with particular interest of coastal and estuarine flows have been 

reviewed. Due to the salt intrusion studies in the current research project the species 

concentration conservation equation has been presented and discussed. Boundary 

conditions have been discussed in some detail. 

 The turbulent Navier-Stokes equations are presented, and the fundamental 

concepts of turbulence modelling have been reviewed. Although no attempt has been 

made to discuss details of different turbulence models, a brief review of the most 

commonly used models has been given, following a summary on the classification of 

the turbulence models. The buoyant k-ε turbulence model has been discussed in some 

detail as it has been the choice of the turbulence model in the present study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

* At symmetry planes and lines, the normal gradients are zero for all quantities with symmetrical 

behaviour such as scalar quantities, velocity components parallel to the symmetry plane or line, and 

normal stresses. On the other hand, velocity components normal to symmetry planes or lines and 

shear stresses as well as scalar fluxes are themselves zero (Rodi, 1984). 



 

 

CHAPTER FOUR 

 

 

NUMERICAL MODELLING 

SCHEME, STRUCTURE AND 

THE SOLUTION METHOD 

 

 

 

"The perfection of this art consists in knowledge of the scientific 

 method by which one determines numerical and geometric unknowns" 

Omar Khayyam, Treatise on Demonstration of Problems of Algebra, 1070 

(O'Connor and Robertson, 1999) 

 

4.1   INTRODUCTION 

 

An arbitrary Lagrangian-Eulerian (ALE) hydrodynamic free-surface numerical 

model has been developed, based on the time-dependent Reynolds-averaged Navier-

Stokes equations. The model with non-hydrostatic pressure distribution is capable of 

handling problems involving three-dimensionality and complex bathymetry. It also 

may be switched to a laterally-averaged model for the problems in which the cross-

flow is very weak and therefore negligible. In addition to the free-surface problems, 

where the water elevation variations are negligible and in conjunction with concerns 

over the computational time, especially in three-dimensional problems, the model 

may be deployed with a rigid-lid condition. 

A structured non-orthogonal curvilinear staggered mesh for computational 

domain, based on an arbitrary Lagrangian-Eulerian description, has been deployed. 

The discretisation of the flow and transport equations has been based on the finite 
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volume method, providing flexibility to define control volumes in a staggered grid 

system in three-dimensional environments, especially near the bed and water surface, 

where rapid changes of bathymetry and free surface have significant effect on the 

prediction of the flow field. The finite volume method also provides, if correctly 

implemented, the assurance of global conservation. 

For modelling turbulence, and to optimise accuracy and economy, the two-

equation k-ε turbulence model with buoyancy terms has been deployed and included 

in the numerical model. 

Salt intrusion is almost always present in estuaries and coastal zones. This may 

be caused by gravity currents or may be due to the stratification attributable to a non-

uniform salinity concentration profile and hence a variable density in harbours or 

estuarine barrages. The model is also capable of simulating non-homogeneous (i.e. 

with variable density) stratified flow fields. 

The provision of this chapter is aimed to outline the concepts, describe the 

scheme and discuss the structure of the numerical model. Following a brief 

explanation of the necessity for a three-dimensional numerical model for simulating 

stratified turbulent flows for large water bodies, estuaries and harbours, the 

importance of using the conservative form of the conservation equations of mass, 

momentum and species concentration in simulating the flow and transport of species 

is illustrated. The description of the referential domain follows a brief review of the 

arbitrary Lagrangian-Eulerian (ALE) system. 

The solution method was based on a fractional-step scheme whereby the 

problem was solved by time-splitting the set of the governing conservation 

equations, which resembles a projection method. The overall accuracy of the set of 

the equations is first order in time and second order in space. However, as advection 

plays a major role in the flow characteristics (Falconer, 1980a), as far as the type of 

water bodies in the present study is concerned, for this part of the transport a new 

fifth-order-accurate upstream scheme has been deployed. The structure of the 

numerical model and discretisation of the equations is described and provided in 

detail. The solution method is thoroughly discussed and a brief flowchart of the 

program is provided. Initial and boundary conditions for flow and transport, as well 

as the turbulence model, are discussed. Stability, consistency, convergence and 

accuracy of the numerical model are briefly discussed. 
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4.2   STRATIFIED ESTUARIES, HARBOURS AND BARRAGES 
 

In the present study, the numerical model was basically developed to predict 

the flow field and salinity distribution and profile in large water bodies, estuaries and 

harbours. 

In estuaries with the existence of a barrage or in the harbours with a barrier in 

the entrance, the vertical eddies may be strong and therefore the need for an accurate 

simulation of vertical acceleration prescribes the implementation of non-hydrostatic 

pressure distribution. With the limitations of the 2DH models, simulating the 

stratification requires a 2DV model, where the currents across the domain are 

negligible. However, considering the need for simulating vertical eddies for large 

water bodies with considerable vertical accelerations and variation of currents across 

the domain, a fully 3D model is required. A fully 3D non-hydrostatic model 

overcomes the limitations and fulfils the objectives of the numerical modelling of 

this project. 

 

4.3   CONSERVATIVE FORM OF THE EQUATIONS OF FLOW 

 

 The governing equations of flow and transport are presented in Chapter Three. 

In this section the importance of the conservative form of the equations is illustrated. 

From the mathematical point of view both conservative and non-conservative forms 

of the equations are identical. However from the numerical point of view and the 

discretisation method, the non-conservative form of the equations may give rise to 

internal sources and reduce the accuracy of the scheme. 

 

4.3.1   General Form of a Conservation Law 

 

 As the conservative and non-conservative form of the conservation equations 

are mathematically identical, in Chapter Three attention is given to the physical sense 

of the problem especially the stress and the rate-of-strain tensors and their relation. 

The equations, however, are presented in the conservative form and the numerical 

issues due to non-conservative form of the equations are addressed in this chapter. 

Here, only the general form of scalar and vectorial conservation laws, required for 

discretising the governing equations, is presented. 
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4.3.1.1   Scalar Conservation Law 

 

A scalar quantity per unit volume, Φ, acting in an arbitrary volume, Ω, fixed in 

space and bounded by a closed surface, S, is considered (Fig. 4.1). The local intensity 

of Φ varies upon the effect of fluxes through the surrounding points and upon 

sources, Q. The flux vector F consists of two components, an advective contribution 

AF , and a diffusive part DF . 

 
Figure (4.1) - General form of a conservation law for a scalar quantity 

The general form of a conservation law expresses the fact that the variation of 

Φ per unit time within the volume Ω is equal to the net contribution from the 

incoming fluxes through the surface S, with the surface element vector Sd  pointing 

outward, plus contribution from the sources of the quantity Φ. These sources are 

divided into volume and surface sources, VQ  and SQ  respectively. The general form 

of the conservation equation for the quantity Φ is expressed by (Hirsch, 1988): 

   




S S
SVQ

t 
 SQSF dddd  (4.1) 

By applying Gauss's theorem, and the assumption of a continuous flow for fluxes and 

surface sources, equation (4.1) can be written as follows: 

  




 



dddd SVQ

t
QF  (4.2) 

Since equation (4.2) is written for an arbitrary volume Ω, and all terms appear in the 

form of volume integral, it leads to the differential form of the conservation law as 

follows: 

SQ  F 

Sd  

VQ  

ΩΦd  

Ω 

S 
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SVQ
t

QF 



   (4.3)            or              VS Q

t

Φ





QF     (4.4) 

 It can be seen from the equation (4.1) that, in the absence of volume sources, 

the internal variation of Φ depends only on the flux contribution through the surface 

S, and not on the flux values inside the volume Ω. The advective part of the flux 

vector, AF , is the amount of Φ transported with the flow and is given by the equation 

(4.5): 

VF A  (4.5) 

The diffusive flux can be expressed by the generalised gradient law of Fick as 

follows: 

  DF  (4.6) 

in which   is the quantity Φ per unit mass (i.e.   ), ρ is the density of the fluid 

and   is a diffusivity. Equation (4.3) can now be rewritten to give the general form 

of a transport equation for the quantity Φ as follows: 

    SVQ
t

QV 






  (4.7) 

 

4.3.1.2   Vector Conservation Law 

 

If Φ represents a vector quantity, then the flux and surface source terms become 

tensors and the volume source term becomes a vector, giving: 

   




S S
SV

t 
 SQQSFΦ dddd  (4.8) 

Applying Gauss's theorem, with the assumption of the fluxes and surface sources 

being continuous, results: 

 





 dd

t
SV QQFΦ dd  (4.9) 

The differential form of the equation (4.9) is given by: 

 
VS

t
QQF

Φ





 (4.10) 

and the advection component of the flux tensor is given by: 

ΦVF A  (4.11) 

 The general forms of conservation laws (Eq. 4.1 and Eq. 4.8) are the most 

generally valid expressions, since they remain valid in the presence of discontinuous 
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variations of the flow properties such as inviscid shock waves or constant 

discontinuities (Hirsch, 1988). 

 In equation (4.1) if Φ is considered to be the density, ρ, and with noting that no 

diffusive flux exists for the mass transport and in the absence of source terms, the 

mass conservation equation can be obtained. The equation of the conservation of 

momentum can be obtained from equation (4.8). The results for the equations of 

conservation of mass, momentum and species concentration for an incompressible 

flow are presented in Chapter Three (Eqs. 3.23-3.25). These are the conservative 

form of the equations and from a numerical point of view are different from the non-

conservative equations. Although both sets of the equations are fully equivalent from 

a mathematical point of view, they may not necessarily remain so when a numerical 

discretisation is performed. Equations (3.23-3.25) correspond to the general form of 

a conservation law and are said to be formally written in conservative or in 

divergence form (Hirsch, 1988). The importance of the conservative form in a 

numerical scheme lies in the fact that a discretisation of the set of the non-

conservative equations may lead to a numerical scheme in which all the mass fluxes 

through the cell boundaries may not cancel, and hence the numerical scheme will not 

maintain global conservation. This is discussed further in the following section. 

 

4.3.1.3   Conservative Discretisation 

 

 The presence of sharp slopes in the bed topography, sharp roughnesses of solid 

boundaries or dramatic changes in the planform geometry may lead to numerical 

errors. The efficiency of the proposed new high-order scheme to increase the 

accuracy of the advection part of the transport term, in order to improve on the 

prediction of the flow characteristics, especially for problems of interest in this study 

which are advection dominated, may not be fulfilled if the importance of the correct 

discretisation at such boundaries and situations is not recognised. 

 To demonstrate the numerical internal volume sources, which may appear in a 

non-conservative discretisation, a one-dimensional form of the conservation law is 

written as: 

x

xx q
x

f

t










 (4.12) 

where xf  is the x-component of the flux vector. Dropping the x-subscript for 

convenience leads to: 
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q
x

f

t










 (4.13) 

 

Figure (4.2) - Discretisation of the one-dimensional form of a conservation law 

Applying a central difference formulation at point i to the mesh of figure (4.2), then 

the following discretised equation is obtained: 

i

ii
i q

x

ff

t







 

Δ

2
1

2
1

 (4.14) 

Applying the same discretisation to the points (i-1) and (i +1) and summing the three 

equations results in a consistent discretisation of the same conservation law for cell 

AB ( 23i , 23i ) as follows: 

 
 11

2
3

2
3

11

3

1

Δ33



 









iii

ii
iii qqq

x

ff

t


 (4.15) 

It can be seen from the equation (4.15) that the fluxes at internal points have 

cancelled out. This conservative scheme has produced a good approximation of 

equation (4.13). García-Navarro et al. (2002) state that this good approximation lies 

in cancelling the contributions of the flux at the grid interfaces and therefore global 

variation of the conserved variable being due to only the source terms and to the flux 

at the boundaries. This is called the telescoping property for the flux terms (Roache, 

1972). 

The non-conservative form of the equation can be written as: 

q
x

f

t













 




 (4.16) 

Both equations (4.13) and (4.16) are mathematically equivalent for arbitrary, non-

linear fluxes, but their numerical implementation is different. In equation (4.16) if 

uf  , for instance, applying a second-order central difference at mesh point i 

gives: 

     i-3              i-2               i-1                i                i+1             i+2              i+3 

 A  B 

xΔ  xΔ  xΔ  

             i-5/2            i-3/2           i-1/2           i+1/2           i+3/2          i+5/2 x 
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i
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
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
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where term 

i

f














 can be estimated as: 























































2

1
2

12

1

iii
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 (4.18) 

Applying the same discretisation for the mesh points (i-1) and (i +1) and summing 

the equations and rearranging the resultant equation, a discretised equation for the 

cell AB results in: 
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 (4.19) 

From equation (4.19) it can be seen that the discretisation of the non-conservative 

form of the equation gives rise to internal sources, which in this example are equal to 

the right-hand side of the equation (4.19). These numerical source terms are of the 

same order as the truncation error in continuous fluids and can be neglected. 

However, numerical experiments, especially in the presence of sharp gradients, show 

that non-conservative forms are generally less accurate than the conservative form of 

the equations and for discontinuous flows these numerical source terms can become 

important across the discontinuity and cause sizeable errors (Hirsch, 1988). For 

rough, shallow estuaries the tidal currents are strongly dependent upon the 

instantaneous water surface slope and hence the rate of rise and fall of the tide (Burt 

and Rees, 2001). 

 The conservativity requirement for equation (4.12) is satisfied if the scheme 

can be written as: 

 
i

iii

x

xxx
q

x

ff

t








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Δ

11




 (4.20) 

in which f


 is called the numerical flux and is a function of the values of x  at (2k-

1) neighbouring points. In order to generalise to multi-dimensions, this must be 
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satisfied separately for all the components of the flux vector (Hirsch, 1988). This is 

demonstrated where the fractional-step method is introduced for solving the flow 

equations and therefore the transport terms are solved in a locally one-dimensional 

approach. 

 

4.4   ARBITRARY LAGRANGIAN-EULERIAN DESCRIPTION 

 

 For the numerical solution of multi-dimensional problems in fluid dynamics, 

an important consideration is the relationship between the fluid motion and the 

computational domain. Nomura and Hughes (1992) stated that the fundamental 

kinematical relations in the general kinematical theory supporting the ALE 

description was derived by defining three domains in space, namely the spatial 

domain, the material domain and the referential domain. Mapping between these 

domains converts the kinematical and dynamical relations in fluid; in space, in fluid, 

and in computational domain. 

The spatial domain is the domain on which the problem is posed. The material 

domain is considered the domain occupied at time 0t  by the material particles 

which occupy the spatial domain at t (the time of interest). The image of the 

referential domain at time t under a prescribed mapping is the spatial domain. With 

this description, in the numerical analysis of the problem, the spatial domain 

becomes a moving mesh and the referential domain a reference state of the moving 

mesh. 

The Eulerian description is regarded as a special case of this description, in 

which the spatial domain is fixed throughout. This means that the spatial domain 

always coincides with the referential domain. Another special case where the 

material domain coincides with the spatial domain is the Lagrangian description, 

where grids move with material particles. Advantages and disadvantages of each of 

these descriptions are studied and discussed in the literature (e.g. Hirt and Nichols, 

1981). 

 Zhou and Stansby (1999) further clarified this by stating that the Lagrangian 

method and the Eulerian method can be seen as two special cases of mesh motion. 

The ALE becomes the Lagrangian description when the mesh moves with the local 

fluid velocity and becomes the Eulerian description when the mesh is fixed, which is 

very desirable for simulating interface and free surface flows. 
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4.4.1   Arbitrary Lagrangian-Eulerian (ALE) Concept 
 

The numerical methods used for calculating the flow with free surface can be 

classified into three categories, the Eulerian, the Lagrangian and the arbitrary 

Lagrangian-Eulerian (ALE) methods (Sung et al., 1999). In the Lagrangian 

framework the mesh moves with the local fluid velocity, while in the Eulerian 

framework the fluid flows through a fixed grid. Each approach has its own 

advantages and difficulties. The ALE description combines the advantages of the 

pure Lagrangian method and the pure Eulerian method but without their 

disadvantages. The essence of the ALE methodology is that the mesh motion can be 

chosen arbitrarily, giving flexibility to combine the individual strengths of the two 

approaches. The Eulerian method gives a rather rough estimate of the free surface 

especially in the presence of a complex water surface geometry. In the Lagrangian 

method, the free surface is computed by a coordinate system which moves with the 

fluid particle and gives an accurate free surface shape with the ease of free surface 

boundary condition implementation. However, at large deformations of fluid 

elements, fluid particle trajectories may cross each other. In the ALE method, the 

newly updated free surface is determined purely by the Lagrangian method, by the 

velocities of the fluid particles at the free surface, while the nodes in the interior of 

the domain are displaced in an arbitrary prescribed way to be redistributed to avoid 

mesh crossing. Because of this feature the ALE provides additional flexibility and 

potential accuracy for describing a flow, which is very desirable in a numerical 

analogue for interface and free surface flows or general problems involving moving 

boundaries. In the oceanic tidal flow problems and for the interests of the numerical 

model developed herein, the grid movement is considered only in the vertical 

direction. The grid generation and redistribution was accomplished by a subroutine 

which updated the mesh geometry after the completion of each and every half-time-

step (Figure 4.9). The inclusion of the vertical grid velocity had negligible effect on 

computational efficiency. 

 

4.4.2   Flow and Transport Equations in ALE 

 

 For the flows with moving boundaries the locus of the moving boundary is 

unknown a priori and is fully coupled with the velocity through the kinematic 

condition. Sung et al. (2000) stated that for flow problems with moving boundaries 
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and deformable meshes, the geometric conservation law (GCL) has to be satisfied 

which states that the change in volume must be equal to the volume swept by the cell 

boundary during one time step. In an approach to the solution of unsteady free 

surface flows, taken by Thé et al. (1994), the control volume corners were moved by 

applying a natural closure of the mass and momentum equations along the surface. 

Lesoinne and Farhat (1996) presented a unified theory for deriving geometric 

conservation laws (GCLs) and considered the arbitrary Lagrangian-Eulerian (ALE) 

finite volume method. 

 Here, the universal flow and transport equations in the ALE form are derived 

by a simple approach presented by Zhou and Stansby (1999). The observation point, 

P (x, y, z), of the moving coordinate at time t in Cartesian coordinates (Fig. 4.3) is 

considered. The gird velocity at point P is kjiV gggg wvu   and 

),,,( tzyx denotes a scalar or vector quantity (e.g. V ) at this point. In a small time 

tΔ , the fluid particle moves to point )Δ,Δ,Δ( twztvytuxP  , where    at 

point P  can be expressed by use of a Taylor series expansion, after ignoring terms 

of second order or higher, as: 
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 (4.21) 

 

Figure (4.3) - Definition for moving grid in Cartesian coordinates 

Because the coordinate moves at the same time, the observation point therefore has 

moved to the point )Δ,Δ,Δ( twztvytuxP gggm   at time tt Δ . So m  at point 

mP  and time t can also be expressed by use of the Taylor series: 
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The change in quantity   with reference to the point mP  in the time interval tΔ  can 

be obtained by subtracting equation (4.22) from equation (4.21). The following 

equation is then obtained: 
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The time derivative in the ALE description is then expressed as: 
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which in vectorial form can be written as follows: 
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If the observation point does not move, (i.e. mesh velocity is zero, 0gV ), equation 

(4.25) becomes the time derivative in an Eulerian frame as follows: 
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On the other hand if the observation point moves with local fluid particle (i.e., if the 

mesh velocity is the same as particle velocity, VV g ), the advection term 

disappears in the governing equations and the fluid particles are always located at the 

same mesh points. In this case equation (4.25) becomes the time derivative in a 

Lagrangian frame as follows: 
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By substitution of the expression (4.25) into equations (3.24) and (3.25), the Navier-

Stokes and species concentration conservation equations in the ALE form are 

obtained. Usually, the grid does not move in the horizontal direction, in which case 

the horizontal components of gV  (i.e. gg vu and ) are equal to zero, however if a 

movable boundary is considered, they can readily be re-included in the equations and 

the general form of the equation (Eq. 4.24) is then solved. With this consideration for 

the Navier-Stokes and species concentration conservation equations, the set of the 

equations for flow and transport (Eqs. 3.23-3.25) can be rewritten in the conservative 

ALE form as follows: 
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The transport equation for the species concentration is used together with an equation 

of state for the density of water which is presented in Chapter Seven. 

 

4.4.3   Turbulence Closure in ALE 

 

 The approaches based on mixing length or one-equation (turbulence energy) 

modelling are not predictive because the empirical coefficients applied are not shown 

to be universally applicable (Alfrink and van Rijn, 1983). Falconer and Li (1994) 

concluded that the k-ε turbulence model solutions for the tidal eddies in the 

rectangular harbours gave markedly different eddy viscosity distributions from those 

predicted using a simple mixing-length model. To optimise accuracy and economy 

the two-equation k-ε turbulence model with buoyancy terms has been deployed and 

included in the numerical model. The model and its terms are discussed in Chapter 

Three. The empirical constants are taken equal to those proposed by Rodi (1987). 

The conservative form of the k-ε equations in ALE form in tensor notation is as 

follows: 
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P and G are shear and buoyancy productions respectively and are given by: 
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4.5   REFERENTIAL DOMAIN DESCRIPTION 

 

A non-orthogonal curvilinear grid system in the ALE description has been 

deployed. A backward staggered grid has been used which eliminates the need for 

interpolation to calculate velocities at the scalar cell faces, as they are generated at 

exactly the locations where they are required for the scalar transport computations. 

The problems associated with decoupling of velocity and pressure on even and odd 

points are also cured by a staggered grid. Advantages of using a staggered grid is 

discussed and demonstrated in Patankar (1980), Fletcher (1991) and Versteeg and 

Malalasekera (1995). The accuracy and convergence of a finite volume calculation 

depends on the quality of grids, which can be characterised as: 

o Non-orthogonality: deviation of grid line intersections from 90 degrees; 

o Aspect ratio: the ratio of length of the cell to its width in a quadrilateral 

shaped grid cell; 

o Expansion ratio: the ratio of grid size to its neighbouring cells (the ratio of 

the longer grid to shorter grid) in the same grid direction. 

Olsen (1997) gave guidelines for the acceptable range of these characteristics, which 

are summarised below and taken into account in the present study. 

If the line intersection is more than 45 degrees different from orthogonal, the 

grid is considered as very non-orthogonal, a situation which should be avoided. 

However low non-orthogonality of the grid leads to more rapid convergence, and in 

some cases better accuracy. Aspect ratios of 2-3 should not be a problem if the flow 

direction is parallel to the longest side of the cell. Experience shows that aspect ratios 

of 10-50 give extremely slow convergence for water flow calculations. Expansion 

ratios under 1.2 do not pose problems for the solution. Experience shows that 

expansion ratios of around 10 can give very unphysical results for the water flow 

calculation. 

In the present study, due to direct solution of the equations, no concern over the 

speed of convergence was encountered. The non-orthogonality for simulating the 

physical model was almost negligible, and for the test cases provided in Chapter Five 

the recommended range for maintaining accuracy has been observed. The aspect 

ratio varies over a small range depending on the water elevation, but remains in the 

range of 1-3, provided that the flow direction is parallel to the longest side of the cell. 

As the grid size is constant in each direction, the expansion ratio is equal to one. 
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4.5.1   Grid Configuration and Control Volume Definitions 

 

 The bathymetry is considered to be known and water elevations are to be 

calculated at the same local z-axis as the pressure nodes are located. Therefore a 

control volume containing, for example, the scalar quantities, consists of twelve 

faces which from, four are the lateral vertical planes, and eight are the curvilinear top 

and bottom surfaces. Four of the latter form the top and the other four the bottom of 

the control volume. Due to the complexity of such a configuration and difficulties 

associated with the graphical presentation of the referential domain, the projection of 

the grid configuration and geometry on the xoy, yoz and xoz reference planes is 

demonstrated herein. 

 Figure (4.4) shows the projection of the geometry and configuration of the 

grids, the locations of the scalar and vector quantities and their control volumes on 

xoy reference plane. It can be seen that the scalar variables including pressure, 

species concentration, density, k, ε and viscosity are calculated at the nodal points, 

and the velocity components are calculated for points or locations on the faces of a 

control volume that is drawn around the pressure points. The velocity components 

are located midway between pressure points, which are centred on the cell faces of 

the staggered grids. 

The scalar variables are stored at the nodes marked (●). The velocities are 

defined at the cell faces in between the nodes and are indicated by arrows. The 

arrows in x-, y- and z-directions indicate the location for u-, v- and w-velocity 

components respectively. 

For computer storage kjiu ,,  physically considered to be located at kjiu ,,2/1 , 

kjiv ,,  at kjiv ,2/1,  , and kjiw ,,  at 2/1,, kjiw . The projection of the geometry and grid 

configuration, and the locations of the scalar and vector quantities and their control 

volumes on xoz reference plane is illustrated in figure (4.5). The projection on yoz 

plane is schematically exactly the same if x, i, u and Δx are replaced by y, j, v and Δy 

respectively. 

The arrangement illustrated in figure (4.5) shows that the control volumes for 

the scalar quantities and the w-velocity component consist of twelve faces and the u- 

and v-velocity component control volumes consist of six faces. For demonstration of 

a possible distortion, a control volume with pressure (or any scalar quantity) on all its 

corners is shown in figure (4.6). 
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Figure (4.4) - Projection of the geometry of grids, location of the scalar and vector 

quantities and their control volumes on xoy reference plane 

In the numerical scheme, the eight surfaces on the top and bottom of the scalar 

and z-velocity-component control volumes were approximated by two surfaces, one 
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calculated according to the general configuration presented in figure (4.5). Regarding 

the cell-centred finite volume geometry, the boundaries of the computational domain 

are located on scalar-quantity cell faces. 

 

 

 

 

 

 

Figure (4.5) - Projection of the geometry of grids, location of the scalar and vector 

quantities and their control volumes on xoz reference plane 

 

4.5.2   General Characteristics of Discretisation of the Quantities by 

Finite Volume Method 
 

 The method takes full advantage of an arbitrary mesh. The integral 

conservation laws are written for a discrete volume as follows: 
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This law can be applied to the control volume kji ,, , illustrated in figure (4.7). In 

this figure the approximation mentioned in the proceeding section has been 

implemented and the four surfaces on the top and on the bottom of the control 

volume have been approximated by one surface, for each end. The discretised 

equation associated with kji ,, , the quantity that the control volume of which is 

drawn in figure (4.7), is to be defined. It can be seen from figure (4.7) that the 

geometrical domain consists of hexahedral control volumes, where the four points 

forming the top as well as the four points forming the bottom of the control volume 

are not necessarily coplanar. 

 

Figure (4.6) - Typical volumetric shape of a control volume with scalar quantities at 

its corners 

 Equation (4.36) assumes the discrete form as follows: 
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where the sum of the flux terms refers to all the external sides of the control cell 

kji ,, , which referring to figure (4.7) and to cell (i, j, k) the flux terms of the control 

volume kji ,,  are summed over the six sides. 
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Figure (4.7) - Typical control volume ( kji ,, ) for discretisation of quantities 
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domain. Also since the integral equations are solved directly in the physical domain, 

no coordinate transformation is required (Tannehill et al., 1997). 

 The distinctive characteristic of the finite volume method is that a balance of 

some physical quantity is made on the region of the control volume drawn around a 

grid point. For example the coordinate of point (i, j, k), which is the precise location 

of the variable Φ inside the control volume kji ,, , do not appear explicitly. Only the 

coordinates of the corner nodal points are needed to determine the cell volume and 

side areas. Consequently, kji ,,  is not necessarily attached to a fixed point inside the 

control volume and can be considered as an average value of the flow variable Φ 

over the control cell and can be considered as representative of some point inside the 

cell, for instance, the central point of the cell. The first term of equation (4.37) 

therefore represents the time rate of change of the averaged flow variable over the 

selected finite volume. The resulting solution also implies that the integral 

conservation of quantities such as mass and momentum is exactly satisfied over any 

group of control volumes and over the whole calculation domain. This characteristic 

exists for any number of grid points and even the coarse-grid solution exhibits 

integral balance (Patankar, 1980). In the absence of source terms, the finite volume 

formulation expresses that the variation of the average value Φ over a time interval 

tΔ  is equal to the sum of the fluxes exchanged between neighbouring cells. The 

algorithm used for the transport terms, advection and diffusion, has taken full 

advantage of this feature and has been programmed by sweeping through the cell 

faces and, when calculating the flux through sides, to add the contribution to the flux 

balance of one cell and subtract it from the flux balance of the adjacent cell. This 

automatically guarantees global conservation. 

 

4.6   THE SOLUTION METHOD 

 

In this section the numerical approximation for the solution of the continuity 

and Navier-Stokes equations is presented. These equations are a mixed set of elliptic-

parabolic equations that contain the unknowns V, p and ρ. ν and ρ, which appear in 

the Navier-Stokes equations, are calculated by turbulence and species concentration 

transport equations respectively. These equations can be uncoupled from the 

continuity and momentum equations as they maintain a set of parabolic partial 

differential equations, so long as velocity is considered to be previously calculated. It 
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must be noted that the variation of density is independent of pressure (Vreugdenhil, 

1994) and is due to variations of salinity. So the main task of the numerical 

approximation to the solution of the set of the equations remains in determining the 

appropriate method by which the continuity and momentum equations are solved. 

 The approaches based on derived variables such as the vorticity-stream 

function and dual-potential methods lose some of their attractiveness when applied to 

three-dimensional problems (Hirsch, 1990; Tannehill et al., 1997). Consequently, the 

incompressible Navier-Stokes equations are most often solved in their primitive-

variable form (u, v, w and p). The method of artificial compressibility is a coupled 

approach of this type, while the pressure correction methods are the uncoupled 

approach. The distinguishing feature of the latter approach is the use of a derived 

equation to determine the pressure. 

 In pressure-correction methods, typically, the momentum equations are solved 

for the velocity components in an uncoupled manner and the equations are linearised 

by using values lagged in iteration level for the other unknowns, including pressure. 

The velocity components are thus computed without using the continuity equation as 

a constraint. Usually, a Poisson equation is developed for the pressure, or changes in 

the pressure, that alters the velocity field in a direction such as to satisfy the 

continuity equation. Such an equation for pressure can be derived from the 

conservation equations in a rigorous manner. 

 Due to the points made about the vorticity-stream function approach and the 

limitations associated with the original method of the artificial pressure (Tannehill et 

al., 1997), the uncoupled method and then the fractional-step method, which 

basically belongs to the pressure-correction family methods, has been chosen for 

solving the set of the equations in this study. 

 

4.6.1   Pressure-correction Methods 

 

 The general pressure-correction method is characterised by a formulation in 

which the momentum equations are solved sequentially for the velocity components 

using the best available estimate for the pressure distribution. Such a procedure does 

not yield a velocity field that satisfies the continuity equation unless the correct 

pressure distribution is employed. The variety of the methods differ primarily in the 

algorithms used to solve the component equations and the strategies employed to 

develop an equation to be solved for an improved pressure, which most often is a 



Numerical Modelling - Scheme, Structure and the Solution Method 98 

Poisson equation. Some of the most commonly used variations of the pressure-

correction methods are the SIMPLE family methods and the fractional-step methods. 

In the SIMPLE family of methods the procedure is based on a cyclic series of 

guess-and-correct operations to solve the governing equations. The velocity 

components are first calculated from the momentum equations using an initiail 

pressure field. The pressure and velocities are then corrected, so as to satisfy the 

continuity equation. This procedure continues until the solution converges. The main 

distinction between this method and the projection methods is in the way in which 

the pressure and velocity corrections are achieved. 

 The SIMPLE algorithm is a semi-implicit scheme based on the general 

pressure correction idea to satisfy the momentum and continuity conservation 

equations as well as the equations containing the quantities which influence the flow 

field (e.g. turbulence quantities and species concentration) at the end of each time 

step when a converged solution is obtained. A comprehensive discussion on the 

pressure-correction equation has been presented in Patankar (1980). One major point 

of this discussion is that the omission of the term representing an implicit influence 

of the pressure correction on velocity from the equation leading to the velocity-

correction equation does not ultimately affect the results. The omission of this term is 

in favour of avoiding the involvement of the pressure correction at all grid points in 

the calculation domain in the velocity-correction equation. This involvement would 

lead to direct solution of the set of the momentum and continuity equations, which 

does not follow the original idea of the SIMPLE algorithm. The omission of the 

implicit influence term of the pressure correction on velocity explains the name 

which has been given to the SIMPLE algorithm. A great many number of studies for 

two- and three-dimensional problems have been based on SIMPLE family methods. 

For instance, Zhou (1995) used a modified SIMPLE-like algorithm to treat the 

velocity-depth coupling in a depth-averaged model and Sung et al. (1999) used a 

Chorin-type SIMPLE algorithm. Ouillon and Dartus (1997) and Stansby and Zhou 

(1998) also used SIMPLE family algorithms. 

 A revised algorithm to improve the rate of convergence for a faster solution has 

been proposed by Patankar (1981). The motive behind the revised algorithm lies in 

overcoming the problems associated with the approximation made in the derivation 

of the pressure-correction equation, which were introduced by the omission of the 

term representing the implicit influence of the pressure correction on velocity. This 
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omission leads to exaggerated pressure corrections, which the latter in turn lead to 

obtaining an early and correct velocity field, but also result in many iterations before 

a converged pressure field is established. The revised algorithm, SIMPLER, consists 

of solving the pressure equation to obtain the pressure field and solving the pressure-

correction equation only to correct the velocities. One iteration of the SIMPLER 

algorithm involves about 30% more computational effort (Patankar, 1981), but it 

requires fewer iterations for convergence. On the whole the computational time 

required for convergence by the SIMPLER algorithm is noticeably less than SIMPLE 

algorithm. Other pressure-correction methods (e.g. SIMPLEC) can be found in 

Versteeg and Malalasekera (1995). 

 

4.6.1.1   Projection (Fractional-step) Methods 

 

Many variations to this type of splitting the solution procedure have been 

suggested, among them are the time-splitting approach used for solving the 

compressible Navier-Stokes equations (Batten et al., 1996), split operator approach 

(Komatsu et al. ,1997; Yu and Li, 1998; Lin and Li, 2002), semi-implicit time-

splitting (Zhou and Stansby, 1999), and the method proposed by Chorin (1968) and 

Temam (1969) which is known as the projection method, or the method of fractional 

steps. The method may generally be accomplished in two steps. The pressure 

gradient terms are omitted from the momentum equations in the first step, and the 

unsteady equations are advanced in time to obtain a provisional velocity *
V . In the 

second step, the provisional velocity is corrected by accounting for the pressure 

gradient and the continuity equation as follows: 
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subject to the continuity constraint: 

0div 1 n
V  (4.39) 

By taking the divergence of equation (4.38), subject to the continuity constraint (Eq. 

4.39), a Poisson equation is obtained: 

t
p n

Δ

div *
12 V
   (4.40) 

The solution procedure consists of first computing *
V  from the momentum 

equations while neglecting the pressure gradient terms. The pressure Poisson 
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equation is then solved for the pressure field, after which the velocities are computed 

from equation (4.38). E and Liu (1995) provided a comprehensive discussion on 

projection methods. 

 Fractional-step (projection) methods have been widely studied for solving the 

incompressible Navier-Stokes equations. Casulli and Stelling (1998) considered the 

hydrostatic and the dynamic components of the pressure separately in a two-step 

method. Daubert et al. (1982) and Daubert and Cahouet (1984) used a three-step 

fractional method. Four-step fractional methods were used in the studies of Choi et 

al. (1997) and Sung et al. (2000). Blasco et al. (1998) studied a first-order-accurate 

method in time and Brown et al. (2001) studied accurate projection methods. A 

variety of projection methods were studied by Vincent and Caltagirone (1999), 

Minev (2001) and Chang et al. (2002). Armfield and Street (2003) studied the 

pressure accuracy of fractional-step methods. The method of algebraic splitting was 

used by Henriksen and Holmen (2002), which can be seen as the matrix equivalent of 

the fractional-step or projection method. 

 A fractional-step method has been used in the present study. However the 

scheme that has been deployed for three-dimensional problems and in conjunction 

with the provisional velocity fields, obtained from the computation of the advection 

and the diffusion terms, together with the variable density and eddy viscosity, is a 

novel approach for solving the three-dimensional stratified flow problems in ALE by 

the projection (fractional-step) method. 

 

4.6.2   Numerical Approximation 

 

 The solution method is described. For discretising the equations a temporal 

discretisation is presented first, followed by a spatial discretisation in the favour of 

generality and conciseness. 

 The computational procedure of the solution of continuity and Navier-Stokes 

equations consists of a total number of twenty four fractional-steps for the three-

dimensional problem. The fractional-step method combined with alternating 

direction implicit (ADI) method resulted in a locally one-dimensional (LOD) or 

fractional splitting approximation for the transport terms and two-dimensional 

solution to the Poisson equation. The validity and accuracy of the split formulae is 

demonstrated in Lapidus and Pinder (1982). 
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4.6.2.1   In the Domain 

 

 Firstly the entire procedure is split into two main fractional-steps, which 

constitute an alternating direction implicit (ADI) form algorithm. This idea has been 

used in a number of numerical models (e.g. DIVAST, originally developed by 

Falconer, 1980b, 1984). In the following parts each of these two main fractional-

steps is referred as one half-time-step. The ADI algorithm provides a three-

dimensional implicit scheme, but considering one vertical plane implicitly for each 

half-time-step which requires the solution of a two-dimensional block tri-diagonal 

matrix for each direction for each half-time-step. The planes in alternate directions, 

which are swept in one complete time-step, form the columns and rows of the 

projection of the whole domain on the xoy reference plane as has been demonstrated 

in figure (4.4). In other words the three-dimensional procedure is accomplished by 

sweeping all the vertical planes in, for instance, x-direction for the first half-time-step 

and sweeping all the vertical planes in, therefore, y-direction for the second half-

time-step. The numerical procedure for each of the two half-time-steps has been 

described in the following paragraphs. 

 

Figure (4.8) - Temporal levels of calculation of the unknowns  
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 In the first half-time-step, for instance, the u- and w-momentum equations are 

solved together with continuity equation. In the second half-time-step, therefore, the 

v-momentum equation and again w-momentum and continuity equations are solved. 

In each half-time-step the alternate horizontal velocity component has an explicit 

contribution to the solution. w and pressure are calculated in both half-time-steps. 

This has been illustrated in figure (4.8) in which the z-direction spatial coordinate has 

been replaced by time to demonstrate the temporal procedure of the solution and 

therefore the z-component of the velocity (w), originally located at points half-way 

between the pressure points (or in general; scalar quantity locations) in the z-

direction, has been demonstrated at the same location as the pressure. Recalling 

figures (4.4) and (4.5), the vertical planes do not necessarily have same dimensions 

in either direction. In general the vertical planes can be characterised by: 

 The xoz planes with an arbitrary length and an independent longitudinal location 

with respect to the neighbouring planes in x-direction. 

 The yoz planes with an arbitrary width and an independent transverse location 

with respect to the neighbouring planes in y-direction. 

This provides better and more accurate boundary-fitting in the horizontal plane, 

especially in irregular geometries, and facilitates consideration of islands, or 

permanently dry zones in the domain without any discontinuity. Therefore any 

vertical plane in either direction contains only wet cells. 

 Secondly the time advancement of each half-time-step is decomposed into two 

fractional-time-steps and instead of simultaneously satisfying two of the momentum 

equations and the continuity equation, the method proceeds, for example for the first 

half-time-step, as follows: 

o The first fractional-step, which includes advective and diffusive terms, consists of 

finding , providing that n
V  is known, an intermediate or provisional velocity, *

V : 
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   in which tδ  is the time increment and the superscript n denotes the time level; 

tntn Δ . Double superscripts of n (i.e. n-1/2, n) denote that the components of 

velocity which were last updated at (n-1/2) and n time levels, have contributed to 
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the V velocity. So for the solution of the first half-time-step in the x-direction, for 

example, u which was last updated at time level (n-1/2) and v and w which were 

last updated at time level n are used. D  is the implicit weighting factor for the 

diffusion, where θ = 1 implies a fully implicit diffusion solution and θ = 0, denotes 

a fully explicit diffusion solution. The first step of the method can be thought of as 

a Burgers' equation. 

o The second fractional-step makes use of the Hodge decomposition theorem, which 

states that any vector function can be decomposed into a divergence-free part plus 

the gradient of a scalar potential (Brown, 2001). So the second step proceeds by 

solving the Poisson equation as follows: 

t
p

n

δ

div *

2
1

2 V
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 (4.42) 

and then computing 2
1n

V  as: 
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Thirdly, the first fractional-step of each half-time-step is further split into two 

sub-fractional-steps, so that allowing for separately computing of advective and 

diffusive terms. This approach allows the use of suitable approximation for each 

term. Therefore equation (4.41) is split into two equations which are computed 

sequentially as follows: 
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In the first equation symbol ( 21 nn ) denotes that the computation is taking 

place to update the V value in the time interval ( ttt δ21,  ). "A" stands for 

advection and its appearance denotes that the value corresponds to the time level 

after the advection process is completed in the time interval 21 nn . In the 

second equation, the same definition applies. 

Fourthly the advective contribution of the transport term in equation (4.44) is 

further split into three sub-sub-fractional-steps. For the first half-time-step (i.e. 
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considering u- and w-momentum equations to be solved) and for the x-component of 

velocity (u) this sub-fractional-time-step comprises of: 
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xA  denotes the time level after the advection process in x-direction is completed, 

zxA ,  denotes the time level of completion of the advection in both x and z directions, 

and A denotes the time level of completion of the whole advection process including 

the grid velocity. The treatment for the z-velocity component (w), however, is 

somehow different. w is computed in both half-time-steps, therefore its time 

advancement should be halved. This also applies for the advection of all scalar 

quantities. There exist two strategies: 

o The advection of w in all directions is only advanced one half-time-step. This 

scheme involves the newly updated u-velocity for the first half-time-step but 

employs the v-velocity from the previous half-time-step and vice versa for the 

second half-time-step. 

o The advection of w in the x- and y-directions, terms xwu   and ywv   

respectively, is advanced for a full-time-step at their own share of each half-time-

step and only its advection in the z-direction, term zw  2
, is advanced a half-

time-step. This scheme involves the newly updated u and v velocities and therefore 

uses the more implicit values than the previous scheme. 

The diffusive contribution is split into two sub-sub-fractional steps. For the first half-

time-step, considering u- and w-momentum equations to be solved, and for the x-

component of velocity (u) the diffusion sub-fractional-step comprises of equation 

(4.46) in which "D" stands for diffusion. xD denotes the time level of completion of 

diffusion process in x-direction and D denotes the time level of the completion of the 

whole diffusion process (i.e. xD  and zD ). For the treatment of z-velocity component 

same discussion which was provided for the advection of w applies. 
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4.6.2.2   On the Free Surface 

 

 On the free surface a special treatment is applied. The pressure within the top 

layer has been defined with a hydrostatic pressure assumption as follows: 
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where aP  is the atmospheric pressure acting on the free surface. By defining (Namin 

et al., 2001): 
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then the pressure within the top layer becomes: 
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The free surface equation is obtained by integrating the continuity equation over the 

depth with the kinematic conditions at the bed and free surface as follows: 
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in which bz  is bed elevation above datum. For a fixed bed, the second term in 

equation (4.50) is equal to zero. 

Equations (4.51) and (4.52) show the integrated temporal procedure of the 

solution in the domain and on the free surface for the first half-time-step 

respectively. θ scheme is used for the pressure in the domain ( P ) and for the 
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velocity on the free surface (  ), which are the implicit weighting factors, where θ = 

1 implies a fully implicit solution and θ = 0, denotes a fully explicit solution. Casulli 

and Cattani (1994) used a θ scheme without the dynamic contribution of the pressure 

term and demonstrated that the semi-implicit form (θ = 1/2) was non-dissipative for a 

linearised one-dimensional problem without viscosity or diffusion, while the implicit 

form (θ = 1) showed undesirable dissipation. In these equations two time levels at the 

left-hand side of arrows denote that the values from the corresponding time levels 

have contributed in the computation. For the second half-time-step similar equations 

apply. A brief flowchart which is presented in figure (4.9) summarises the main parts 

and the structure of the model. 
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4.6.2.3   Temporal Discretisation 

 

 Temporal discretisation of the complete set of the equations is provided in 

equations (4.53-4.62) for the first half-time-step. For the second half-time-step 

similar equations apply. The equations consist of continuity and momentum 

equations, free surface water elevation, species concentration conservation and 

turbulence model transport equations. 
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t=t + Δ t 
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Geometry and bathymetry data and Δ x, Δ y and water body layers across the depth; 

Boundary condition codes, boundary and initial condition values and rigid boundary roughness parameter; 
Flags for free surface/rigid lid and fresh/saline water solvers; 

Implicit/explicit weighting factor for computation of diffusion, pressure and surface horizontal velocities; 

Simulation time, Δ t and time intervals for recording the results on disk 

Computing the species concentration transport equation and updating the concentration and density 

Solving the pressure block three-diagonal matrix, computing the dynamic pressure and updating 

 u- and w-velocities and water elevation at the end of the first half-time-step (n + 1/2) 

Setting the boundary codes, boundary and initial values for the "J" plane for processing 

advection, diffusion, hydrodynamic and the transport of the k-ε and species concentration 

Computing eddy viscosity for the half-time-step (n + 1/2) by solving the k-ε turbulence 

model equations with buoyancy terms 
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Figure (4.9) - Flowchart of the program 
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x-momentum equation at half-time-step (n + 1/2): 
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z-momentum equation at half-time-step (n + 1/2): 
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Continuity equation at half-time-step (n + 1/2): 
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Water elevation and z-velocity at water surface at half-time-step (n + 1/2): 
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Species concentration equation at half-time-step (n + 1/2): 
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The equation of state gives the density at half-time-step (n + 1/2): 
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The temporal discretisation of the transport equations of turbulence model for 

half-time-step (n + 1/2) is same as the species concentration equation for which the 

temporal discretisation of the variables P, G and β are as follows: 
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where β is the rate of change of density due to concentration at time level (n), and 

therefore the viscosity at half-time-step (n + 1/2) is obtained: 
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These equations involve the velocities from previously updated half-time-step. 

 



Numerical Modelling - Scheme, Structure and the Solution Method 110 

4.6.2.4   Spatial Discretisation 

 

 The complete presentation of the spatially discretised three-dimensional set of 

the equations would be very tedious and lengthy. Therefore the strategy involves 

presenting one example of each term and also demonstrating the mechanism that has 

been used in the numerical model to optimise the programming and minimise the 

computational time for processing each term, hence resulting in a more efficient 

algorithm. Moreover the spatial discretisation is presented for the first half-time-step, 

therefore following the same pattern used in the previous section, the x- and z-

momentum and continuity equations were involved. For the second half-time-step 

the relevant equations were accordingly discretised in the exactly same manner. 

 Recalling equation (4.10), Φ is now the velocity, V, and F  is the flux tensor, 

which comprises of advection and diffusion components, AF  and DF  respectively. 

Pressure in the equation (4.10) is included in the source term, without restriction to 

its exact implication. This equation can be written for its three Cartesian components, 

which then results in all the equations discussed for the flow in Chapter Three and 

this chapter. Considering the conservative form, the momentum equation in three 

dimensions that should be discretised, in the absence of source terms, is as follows: 
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where V, xF , yF , zF  and Q are vectors as follows: 
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where pressures are now included in xF , yF  and zF . The discretisation for the first 

line of the equations (4.64-4.66) of the vectorial equation (4.63) is presented here 

together with the continuity equation. It can be seen from these equations that in all 

terms either the derivative of a quantity or derivative of a flux is required to be 

computed and hence needs to be discretised. 

Equation (4.63) and its components (Eqs. 4.64-4.66) assume the form of 

equation (4.36) if they are expressed in integral form and if Φ is replaced by V, F by 

F  and Q by Q  as follows: 
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 ddd QSFV  (4.67) 

Equation (4.67) can be written in discrete form for a finite volume   as follows: 
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sidest

 (4.68) 

where V  and Q  are the values of V and Q associated with the finite volume  , 

and the summation is applied to all exterior sides of the finite volume.   is the 

value of the volume of the finite volume  . Recalling figure (4.5) and the 

approximation which was made for the top and the bottom faces of a control volume, 

it is further assumed that the cell-face surface-area vectors, Sd , at the top and 

bottom faces lie in a vertical plane. This assumption simplifies the calculation of the 

volume of control volume  . It further eliminates the need for computation of the 

lateral component of cell-face surface-area vectors for the top and bottom faces. This 

assumption was thought to have very little influence on the accuracy of the scheme. 

It may be considered as a finite laterally-averaged geometry. Therefore for the 

discretisation in x- and y- directions, the control volumes lying in the reference 

planes xoz and yoz were considered. For z-direction, depending on which alternating 

direction was considered, control volumes lay in the corresponding vertical 

referential planes. Due to the approximation which was made, the control volume for 

z-velocity component (w), which in figure (4.5) is located at (i +1, k-1/2) grid point, 

is bound by the straight lines connecting the points (i +3/2, k-1) and (i +3/2, k), (i 

+3/2, k) and (i +1/2, k), (i +1/2, k) and (i +1/2, k-1) and (i +1/2, k-1) and (i +3/2, k-1). 

The control volume for scalar quantities including pressure, which in figure (4.5) is 

located at (i, k) grid point, is bound by straight lines connecting points (i +1/2, k-1/2) 

and (i +1/2, k +1/2), (i +1/2, k +1/2) and (i-1/2, k +1/2), (i-1/2, k +1/2) and (i-1/2, k-
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1/2) and (i-1/2, k-1/2) and (i +1/2, k-1/2) and leaving the control volume for x-

velocity component (u) unchanged. It is noted, however, that this approximation 

leaves the z-coordinate of the nodal points unchanged. A typical control volume is 

illustrated in figure (4.10). 

 

Figure (4.10) - A typical control volume in xoz reference plane 

 With this approximation the discretisation of the equations for each alternating 

direction only involves the finite volumes lying in the corresponding vertical 

reference planes, and hence reduces to a geometrically two-dimensional 

discretisation for each term. This also only requires the computation of the area of a 

control cell, the area ABCD of figure (4.10) for example, instead of the volume of the 

finite volume  . Therefore for a quantity of value Φ , equation (4.63), in the 

absence of source terms, takes the form as follows: 
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where xf  and zf  are the Cartesian components of the flux vector F. 

 Applying the same procedure carried out for the three-dimensional problem 

and considering the control cell ABCD of figure (4.10), gives: 
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The surface vector has been considered for an integration path around the boundary 

in a counter-clockwise direction. For side AB it is defined as: 
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    kikiS ABABABABAB xxzzxz  ΔΔ  (4.71) 

and then the finite volume equation for cell ik  is obtained: 
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The sum ABCD
extends over the four sides of the quadrilateral ABCD. The term on 

the left containing the time derivative was evaluated by assuming that the quantity Φ 

at point (i, k) is the mean value for the volume and then using a forward time 

difference, the expression (4.72) was further approximated as: 
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and 

     422Δ /EADFBCABCD zzzzzzxS   (4.74) 

is the area of the quadrilateral ABCD, which is assumed to be constant, but has been 

calculated according to figure (4.5) to account for the area of the hexagonal control 

cells, and ki,  is the average value of Φ in the cell. 

 The time level at which the fluxes were evaluated, which determines whether 

the scheme is explicit or implicit, is completely presented for all terms of all 

equations in temporal discretisation of the equations in previous section. 

 The evaluation of the flux components along the sides of the control cell 

depends on the scheme as well as on the location of the flow variables with respect to 

the mesh. Essentially central and upwind discretisation schemes are distinguished. 

Central schemes are based on local flux estimations, while upwind schemes 

determine the cell face fluxes according to the propagation. 

 As was mentioned, in the discretisation of the equations the numerical cell 

averages of derivatives of mesh variables are required. A general procedure, valid for 

an arbitrary control volume, can be derived by application of the divergence theorem. 

This theorem can be considered as defining the average of the gradient of a scalar Φ 

as a function of its values at the boundaries of the volume under consideration. For 

an arbitrary volume Ω there exists: 
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where S is the closed boundary surface. The averaged gradients are defined as: 
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For two-dimensional control cells after partial integration this leads to the averaged 

x- and z-direction gradients as follows: 
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 Therefore for the control cell ABCD (Fig. 4.10) the approximation for the 

gradients of Φ in the x- and z-directions are obtained: 
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With the equations (4.73), (4.74), (4.80) and (4.81) all terms can now be 

approximated. For the problem under consideration, the main fractional-steps for 

each half-time-step comprise the advection, the diffusion and the propagation 

procedure. The fractional-step method made it possible to deploy suitable spatial 

approximation for each part. 

 

4.6.2.4.1   Advection 

 

 The derivative approximation needed to represent the advection was obtained 

by assuming that the solution to the problem was locally approximated by a 

polynomial as the shape function of the quantity to be advected. The polynomial was 

then fitted to the points surrounding the point (i, k), utilising values of the function at 

the grid points. In the large Reynolds numbers the flow is effectively advection 
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dominated (E and Liu, 1995). Hence, to achieve more realistic prediction of the flow 

characteristics a new fifth-order-accurate scheme has been deployed. It was assumed 

that both x- and z-dependency of quantity Φ were expressed by a quadric 

polynomial. Therefore holding z fixed, for example, it was assumed that the quantity 

Φ varied over five adjacent cells in the x-direction. Therefore the quantity Φ at 

various x locations was determined by: 

  exdxcxbxazx  234

0,  (4.82) 

Five points were used to determine the coefficients of the polynomial. For 

convenience it was considered that at point (i, k), x = 0. The coefficients a, b, c, d and 

e were then evaluated by using five neighbouring points, (i-2, k), (i-1, k), (i, k), (i +1, 

k) and (i +2, k). Concentrating the attention to the one-dimensional solution as each 

direction is solved in one sub-sub-fractional-step, the coefficients were obtained 

using the integration of equation (4.83) for the points involved in the scheme, and 

solving the resulting set of the linear equations. 
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                for     l = i - 2, i - 1, i, i + 1, i + 2 (4.83) 

The flux passing through face AB in figure (4.10) was then evaluated by: 
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If 0u  then  x  was defined on cells (i - 2) - (i + 2) and if 0u  then  x  was 

defined on cells (i - 1) - (i + 3), constituting a fifth-order-accurate upstream centred 

scheme. Since the scheme accounts for the direction of the flow, the transportiveness 

property (Versteeg and Malalasekera, 1995) required for a numerical scheme is built 

into the formulation. The comparisons made for this scheme and some most 

commonly used schemes for advection and few more new schemes are demonstrated 

in Chapter Five. 

The flux for the case 0u  was calculated as follows: 
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in which 
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where 
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x
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i Δ
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  (4.87) 

and m’s are constant coefficients. The influence of a limiter for avoiding the 

oscillations is demonstrated in Chapter Five. A linear stability analysis for the new 

scheme is also carried out in Chapter Five. Discretisation of the advection terms of 

the first line of the equations (4.63-4.66), for example, for the control cell of figure 

(4.10) to be considered the x-velocity (u) control cell, proceeded by using equation 

(4.73) as follows: 
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in which the second and third terms constitute the x- and z-component of the fluxes 

respectively, passing through the sides of the control volume. Discretisation of xABf  

is demonstrated by the equations (4.85-4.87) for 0u . For 0u  same discretisation 

was used with the appropriate shape function definition for  x . As the strategy 

involved sweeping each line and computing the fluxes at each face of the control 

volumes in the corresponding direction, computation of xCDf  automatically took 

place when the computation of the flux passing through the right-hand-side of the 

cell (i-1, k) was performed. This was achieved by adding 
2

1i
xf  to the control volume 

(i, k) and deducing it from control volume (i-1, k) for 0u , which assures the global 

conservation and therefore the conservativeness property essential for a discretisation 

scheme (Versteeg and Malalasekera, 1995) is fulfilled. xBCf  and xDAf  were advected 

in the z-direction together with z-direction flux components. zBCf  and zDAf  comprise 

the term  uw
x


 whose discretised equations were obtained in the exactly same 

manner which was explained for xABf . It must be emphasised that the discretisation 

presented herein is for a typical control volume (Fig. 4.10) and for each case the 
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appropriate control volume for u, v, w and the scalar quantity was used. The values 

of u used for the computation of the fluxes in the x- and z-directions (the values 

which advect the u-velocity value of the control volume ABCD and are located at the 

cell faces) were computed by averaging the u-velocity-component values of adjacent 

cells in x- and z-directions respectively. The value of w for computing the flux in z-

direction was taken the average of its adjacent w-velocity-cells in x-direction. 

Term  uv
y


 was advected as source term and was handled together with the 

diffusion process giving more implicit solution to the v velocity contribution of the 

advective flux of the previous half-time-step. This term was approximated as: 
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The v velocities at corresponding faces were approximated as follows: 
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and S was approximated as follows: 
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 The term 
z

u
wg




 was advected in the same manner as the z-direction 

component of advective flux and after the completion of x- and z-direction advection 

procedures. gw  for the first half-time-step was discretised as follows: 
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4.6.2.4.2   Diffusion 

 

 Due to the dissipative nature of the viscous terms, they are almost always 

discretised using central differences (Tannehill et al., 1997). For the diffusive 

contribution of transport, the Crank-Nicolson method was employed. However, a 

variable-weighted implicit approximation has been implemented in the program. 

Equation (4.73) was used for the evaluation of the diffusion contribution of the 

transport. The time discretisation of the diffusive term follows the rules set for the 

diffusion fractional-step as is demonstrated under the temporal discretisation in the 

previous section. Here the attention is given to the spatial discretisation, and the 

temporal discretisation of the equation (4.73) has symbolically performed to imply 

the time advancement. The diffusive fluxes were approximated as follows: 
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The expression for the net flow of the quantity Φ out of the volume is exact if the 

derivatives represent suitable average values for the boundaries concerned. The 

derivative of the quantity Φ, for face (i +1/2, k) for example, is approximated as: 






















 





 






 





 




















2
1

2
11

2
1

2
1

2
1

2
1

2
11

2
1

2
1

2
1

2
11

2
111

2
1

2
1

1

kikikikikiki

kikikikikiki

kiki zzΦzzΦ

zzΦzzΦ

Sx

Φ

,,,,,,

,,,,,,

,,

 (4.97) 

in which the average quantities for top and bottom faces were used as follows: 
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and S was calculated in the same manner as demonstrated before. 
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 was 

discretised for the other faces of the control cell in the same manner. The derivative 

in the z-direction was approximated, for example for face (i, k + 1/2) as: 
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The other z-derivative was computed similarly. Like advection, diffusion was also 

computed locally one-dimensional in sub-sub-fractional-steps as was discussed. 

Diffusion was computed by the Crank-Nicolson method, therefore the quantities 

were computed implicitly and more precisely for the Crank-Nicolson method with a 

diffusion weighting-factor set to 0.5. This needed the solution of a set of equations 

for each row and column of a vertical plane. As it can be seen from the example 

given for computing the x-derivatives of the scalar quantity, the resultant equation 

contains values of the quantity ( kikiki ,1,,1 and,   ) from the k
th

 row, and values of 

the quantity from the upper and lower rows. In the z-direction, however, the 

derivatives only contain the values of the i
th

 column ( 1,,1, and,  kikiki  ). 

Therefore in the solution to the diffusion term in the x-direction the values of upper 

and lower rows were regarded as source terms and had an explicit contribution of the 

fluxes from time step n. For the values of the same row as the control cell, a 

weighting-factor equal to 0.5 was used resulting in the Crank-Nicolson method. For 

the k
th

 row the matrix of coefficients of unknowns form a tri-diagonal matrix and the 

set of the equations take the form as equation (4.100). The set of the equations for 

each row or column were solved by forward elimination and back substitution 

(double sweep) algorithm (Greenspan and Casulli, 1988) which has excellent round-

off characteristics (Lapidus and Pinder, 1982) and requires only   415 minmax  ii  

multiplications or divisions and   313 minmax  ii  additions or subtractions and 

has a considerable advantage in CPU time over other methods (Twizell ,1984; Stoer 

and Bulirsch, 1993). 
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 Therefore the term 
















x

u

x
T , corresponding to the x-direction derivative of 

the diffusion term (Eqs. 4.94 and 4.95) and the term 

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z
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T , corresponding to 

the z-direction derivative of the diffusion term (Eq. 4.96) were discretised in the 

same way by replacing the Φ quantity by u. Term 
















y

u

y
T  was approximated 

in the same manner which was discussed for the lateral contribution of the advective 

term of the transport. This term was halved and each half was considered as a source 

term while computing the diffusion in the alternate directions. For the v values which 

were required at the cell faces where the v values were not originally stored, 

appropriate approximation was made. A numerical test is presented in Chapter Five 

for the assessment of the diffusion contribution of the transport equation. 

 

4.6.2.4.3   Solution to the Poisson Equation 

 

 For propagation the approach consists in solving the momentum equations in 

connection with a Poisson equation for the pressure obtained by taking the 

divergence of the momentum equations and expressing the condition of the 

divergence-free velocity field. A central discretising of the propagation part of the 

momentum equation in the same manner which was described for the diffusion, leads 

to a set of the equations in the form: 

iiii QPEPDPC   11  (4.101) 

This comprises a block tri-diagonal matrix in the form of equation (4.102), which is 

an    11 minmaxminmax  iiii  matrix, where mini  is the reference number of the 

first column and maxi  is the reference number of the last column of the corresponding 
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vertical plane which the pressures are under computation in the positive direction of 

x-axis. Each block of the block tri-diagonal matrix takes the form as equation 

(4.103). 
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which is a    11 minmaxminmax  kkkk  matrix where mink  is the reference 

number of the bottom layer and maxk  is the reference number of the top layer. The 

subscript of each element refers to the layer which the element belongs and the sub-

subscript refers to the layer which has a contribution to the value of the pressure 

coefficient of the layer which the value belongs. As it can be seen each of the 

elements of the block tri-diagonal matrix constitutes a penta-diagonal matrix except 

at the last row which is the solution to the free surface and has been integrated over 

all the layers and hence containing all the pressure unknowns of the corresponding 

column. The penta-diagonal matrix shows that the pressure coefficient for each cell 

is a function of the two upper layers and two lower layers of the cell together with 

the layer that the cell belongs. For the first and second layers next to the top and 

bottom boundaries (i.e. free surface and bed) this general rule of the contribution of 

the neighbouring cells to the coefficient of the unknown pressures in the block tri-
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diagonal matrix has the restriction of being stretched only as far as the cell next to 

the boundary. A typical iP  and a typical iQ  are in the form of vectors (4.104) and 

(4.105) respectively as follows: 
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The block tri-diagonal matrix was solved by block forward and back substitution 

(Twizell, 1984; Golub and Van Loan, 1989). The matrices were diagonally dominant 

and hence no pivoting was required (Kincaid and Cheney, 1991). The diagonal 

dominance property also satisfies the boundedness requirement (Versteeg and 

Malalasekera, 1995) of the numerical scheme. The scheme is non-iterative and the 

momentum and Poisson equations were only solved once at each half-time-step. The 

elements of Q  are the components of the vector Q in the equation (4.63) which were 

considered as source terms. These include the elements attributable to Coriolis force 

and buoyancy terms. Appropriate approximation was used for each term and the 

resultant value was included in the right-hand side of the equations. The 

approximation followed exactly the general rules which were described and was 

demonstrated for other terms. For the evaluation of capability of the numerical model 

in simulating wave propagation, the simulations of a small amplitude standing wave 

sloshing in a confined container, a small amplitude progressive wave in deep water, 

and propagation of solitary wave in constant water depth have been presented in 

Chapter Five. 

 

4.6.2.4.4   Species Concentration Equation 

 

 The species concentration equation was discretised in the same manner which 

was demonstrated for quantity Φ by replacing Φ with the concentration of species. 

The numerical simulation of internal seiche waves and lock-release turbulent gravity 

currents are demonstrated in Chapter Five, which show the capability of the 
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numerical model in simulating internal waves and variable density stratified flows 

where an accurate scheme for computation of species concentration distribution is 

highly important. 

 

4.6.2.4.5   k-ε Turbulence Model Equations 

 

 The transport equations for the turbulence model were discretised as it was 

demonstrated for the transport of a scalar quantity. For the contribution of the 

production term (P) of the equations the following mechanism was used. Equation 

(4.34) can be fully rewritten as follows: 
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Term (1), half of term (2), term (4) and half of term (6) contributed to the first half-

time-step. Half of term (2), term (3), term (5) and half of term (6) contributed to the 

second half-time-step. The discretisation of each term followed the general rules 

demonstrated, and appropriate approximations were made. The development of 

turbulent flow over a steep-sided trench has been simulated and compared against the 

laboratory measurements in Chapter Five. 

 

4.6.2.4.6   Mechanism of the Algorithms for Computing the Derivatives and 

Coefficients of Unknown Pressures by Using Geometry Matrices 

 

For computing the pressure coefficients for forming the block tri-diagonal 

matrix and to solve the Poisson equation, it is necessary to compute the pressure 

derivatives on u velocity locations. For ease of handling this on all grid points with 

different geometries, an algorithm which is described herein has been used. Recalling 

equation (4.80) for the control volume of a scalar quantity, its derivative, for instance 

for the first half-time-step and therefore in the x-direction at point (i, k), is required 

(Figure 4.11). This derivative at point (i, k) can be rewritten as follows: 
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If this equation is written out fully with the approximations made for Φs, the 

following equation results: 
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Figure (4.11) - Control volume for computing the derivative of a scalar quantity at 

the location of x-velocity component in xoz reference plane 

A quantity matrix was defined as follows: 
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and a geometry matrix was defined as follows: 
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in which  
HP

zd  refers to the z-coordinate difference of the ending nodes of the 

upper face,  
HM

zd  refers to the z-coordinate difference of the ending nodes of the 

lower face,  
VM

zd  refers to the z-coordinate difference of the ending nodes of the 

vertical face on the left-hand, and  
VP

zd  refers to the z-coordinate difference of the 

ending nodes of the vertical face on the right-hand. For all cells these values for each 

half-time-step were computed and then used to compute the elements of the matrix 

(4.110). Equation (4.108) was then computed simply by an equation as follows: 
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in which mn  denotes the value of the quantity located at row m and column n of the 

quantity matrix and mnG  denotes the corresponding geometry values of the geometry 

matrix. Other possible forms of the matrices for other variables and at other locations 

take the form of   3)(3and32   matrices. 

 

4.7   BOUNDARY CONDITIONS 

 

 In general the boundary conditions at closed boundaries, or solid walls, are 

assumed to reflect the physical condition that there can be no mass flow, momentum, 

or solute transport through such a wall. At an open boundary (i.e. not at a solid 

boundary) the time varying water elevation, velocity and solute concentrations are 

prescribed (Nece and Falconer, 1989a). The spatial and temporal boundary 

conditions of the problems of interest of this study are discussed. Spatial boundary 

conditions have been determined for free surface, rigid lid, rigid surfaces including 

bed and walls, inlet and outlet boundaries for flow, transport of species and 

turbulence parameters. Temporal boundary conditions, which are termed initial 

conditions, are also discussed for flow, transport of species and turbulence 

parameters. 

The boundary layer structure is strongly influenced by the boundary condition 

for pressure at the projection step. The numerical approximation of velocity has the 

maximum accuracy. The Dirichlet numerical boundary condition for the pressure 

leads to first-order numerical boundary layers in the pressure, and deteriorates the 

accuracy in the interior (E and Liu, 1995). The analysis of E and Liu (1995) favours 

strongly the choice of Neumann boundary conditions. 
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4.7.1   Kinematic Boundary Conditions 

 

 At any boundary which is free to deform under the influence of forces, 

kinematic boundary conditions must be satisfied. These boundaries include the fixed 

boundaries (e.g. bed and wall boundaries) and free surface. If the surface is 

expressed by   0,,,  tzyxf , equating the total derivative of the surface with 

respect to time to zero, results as follows (Chiang, 1989; Dingemans, 1997): 
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The unit vector normal to the surface reads as follows: 
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Rearranging equation (4.112) gives (Dean and Dalrymple, 1991): 
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4.7.2   Flow Boundary Condition on Free Surface 

 

 The free surface can be expressed as     0 tyxztzyxf ,,,,,  . Applying 

equation (4.116) gives the kinematic boundary condition at the free surface as 

follows: 
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In the absence of wind, the free surface is considered to be a free slip boundary. 

Neglecting the cross influence in a vertical plane, xoz reference plane for example, 

this condition leads to (Daubert and Cahouet, 1984): 

   nστnTτ   (4.117) 

in which n and τ are the normal and tangential unit vectors of the free surface (in xoz 

plane). σ  is a two-dimensional stress tensor in xoz reference plane and T  is a two-

dimensional stress tensor with only shear stress terms. Calculating the normal unit 
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vector by equation (4.114) for surface equation  txz ,  and tangential unit vector 

and carrying out the dot product the tangential constraint is obtained as follows: 
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4.7.3   Flow Boundary Condition on Bed 

 

 If the bed is assumed to be impermeable and fixed, applying the no-flow 

boundary condition for the normal direction to bed prescribes: 

0nV  (4.119) 

where n is the unit vector normal to the bed surface. 

The surface equation for the bottom is     0,,,,  yxzztzyxf b . Applying the 

same procedure as was applied to the free surface gives: 
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For a non-slip horizontal bottom, w = 0 on  yxzz b , . It is clear that the kinematic 

condition states that the flow at bottom is tangent to the bottom. In fact, bottom can 

be considered as a streamline that the flow is everywhere tangential to it. 

 Theoretically the tangential flow component holds the value zero on bed and 

this satisfies the no-slip boundary on bed. However to express conditions in the range 

of no-slip to free-slip , and with neglecting the cross flow influence, the tangential 

component of velocity in a vertical two-dimensional plane, xoz reference plane for 

instance, is written as follows: 
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in which VVn and  are the normal and tangential components of the velocity 

respectively and   is a parameter which describes the boundary condition;  = 0 

corresponds to a no-slip boundary and   describes a free-slip boundary. 

Equation (4.121) by the same treatment applied for the free surface leads to: 
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In the present study   has been calculated by the logarithmic law of the velocity (Eq. 

3.51). This law is valid for the near bottom region which is approximately 0.1 - 0.2 

times the water depth (Alfrink and van Rijn, 1983). The equation reads: 

sk

d
d

30
ln  (4.123) 

with the same definition of the variables as equation (3.51). Discretisation problems 

will arise when the no-slip boundary condition is applied, due to the large velocity 

gradients that occur close to the bottom. Therefore, the computations have been 

made at some distance from the bottom where the velocity gradients are relatively 

smaller. Then the velocity component normal to the bottom was set zero, while the 

tangential shear was computed from the logarithmic profile. 

 

4.7.4   Flow Boundary Conditions at Inlet and Outlet 
 

 At inlet and outlet boundaries the horizontal components of velocity (u and v) 

or pressure or water elevation may be known. In the case of the known velocity or 

pressure, the corresponding distribution is applied at the boundary. If the water 

elevation is known,  tyf ,  for a boundary for the x-direction computations or 

 txf ,  for a boundary for the y-direction computations, then a pressure at the free 

surface, which corresponds to the relevant water elevation (Eq. 4.49) is imposed at 

the boundary. For the vertical velocity (w) the following is applied for inlet and 

outlet boundaries: 
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For the outlet boundary if the exact details of the flow distributions were not known 

but the boundary values of pressure were known a constant pressure distribution at 

the boundary was used. It was further assumed that the flow was fully developed at 

the outlet (Armfield and Street, 2002) and the normal derivative of the velocity 

components was set to zero. 

 

4.7.5   Flow Boundary Condition on Walls 

 

 On walls equation (4.122) with the assumption of flat surface and considering 

the equation (4.124) reduces to equation (4.125) in which dd vu and  are the normal 

velocity components at distance d from the corresponding boundary. 
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4.7.6   k and ε Boundary Conditions 

 

 Turbulence model boundary conditions on bed and walls were considered as 

discussed in Chapter Three. On the free surface, Neumann boundary for k and 

Dirichlet boundary for ε were used and set to zero. At the outlet, Neumann boundary 

for k and ε was set to zero. At the inlet boundary it was assumed that the flow is low-

turbulent and k and ε were set to a small value different from zero. 

 

4.7.7   Species Concentration Boundary Conditions 

 

 On the free surface, bed and outlet, Neumann condition was set to zero. At the 

inlet boundary, the corresponding inlet values of species for the Dirichlet boundary 

condition were imposed. 

 

4.7.8   Initial Conditions 

 

 In addition to the open and closed boundary conditions, initial values are 

required for the water elevations, velocity components and solute concentration 

within the computational domain (Nece and Falconer, 1989a). Velocity and pressure 

were set equal to zero. Species concentration and density were set to their specific 

values for each case. k and ε were set to appropriate values that a kinematic value for 

viscosity was obtained. 

 

4.8   CONSISTENCY, STABILITY, CONVERGENCE AND 

ACCURACY OF THE SCHEME 
 

 Versteeg and Malalasekera (1995) state that conservativeness, boundedness 

and transportiveness are commonly accepted as alternatives for the more 

mathematically rigorous concepts of convergence, consistency and stability. These 

properties were addressed and satisfied in the discretisation procedure. They also 

state that because making the mesh spacing very close to zero is not feasible due to 

finite representation of numbers on computers, the conclusive approval of 

convergence for a numerical scheme may be relaxed. Consequently the convergence 

study is bound to the equivalent theorem of Lax which states that for linear problems 
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a necessary and sufficient condition for convergence is that the method is both 

consistent and stable. 

Falconer (1976) demonstrated a comprehensive analysis of stability of the 

shallow water wave equations and studied the influence of a number of factors on the 

stability of the numerical scheme. The stability of the numerical scheme may be seen 

in three major fractional-steps namely, advection, diffusion and propagation. For the 

advection part a von Neumann stability analysis was carried out and the results are 

demonstrated in Chapter Five. 

 Another stability restriction is related to the diffusion process. The 

amplification factor for the Crank-Nicolson method has modulus unity, and so the 

method is unconditionally stable (Mitchell, 1969). The Crank-Nicolson scheme is 

usually described as unconditionally stable but this does not mean, however, that a 

physically realistic solution will result no matter how large the time step is. The 

stability in a mathematical sense simply ensures that the oscillations caused by large 

time steps will eventually die out, but it does not guarantee physically plausible 

solutions. Some examples of unrealistic solutions given by the Crank-Nicolson 

scheme can be found in Patankar and Baliga (1978). They concluded that the fully 

implicit method produces a physically realistic as well as a stable solution even for 

arbitrary large time steps. For small time steps, however, the accuracy of the fully 

implicit method is not as good as that of the Crank-Nicolson method. The truncation 

error for the Crank-Nicolson scheme is      22
ΔΔ xOtO   when evaluated about 

either point (n, i) or point (n + 1/2, i) (Smith, 1985; Tannehill et al., 1997).  

Gresho (1990) carried out a detailed analysis of projection methods in a finite 

element context, labelling the method in which the pressure gradient is dropped from 

the momentum equations, P1, and the pressure correction method, P2. It was 

demonstrated analytically that P1 was first-order accurate in time whereas P2 was 

second-order accurate in time for the pressure term. Both the P1 and P2 methods 

provide second-order in time accuracy for the velocity field provided the momentum 

equation is integrated using a second-order-accurate scheme. The present scheme 

therefore may be considered second-order-accurate in time and space, however a 

number of investigations have shown the pressure to be only first-order-accurate in 

time, irrespective of the accuracy of the velocity (Gresho, 1990;  Armfield and 

Street, 2002, 2003). 
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The species concentration equation was solved at each half-time-step prior to 

the solution of the Poisson equation. This allowed the species concentration in the 

buoyancy term to be located at the centred time location for each half-time-step. As 

the species concentration depends only on the n and (n + 1/2) level velocities, for the 

second half-time-step for example, their solution was uncoupled from the solution of 

the momentum Poisson equation for the (n + 1) level velocities and the pressure. 

 

4.9   SUMMARY 

 

 Details are given of a novel arbitrary Lagrangian-Eulerian (ALE) three-

dimensional numerical model for simulating time-dependent free-surface flows, 

using a non-hydrostatic pressure distribution with the capability of simulating 

stratified flows. The finite volume method (FVM) was deployed for discretisation of 

the set of the equations which combines the advantages of finite element method, for 

geometric flexibility, and finite difference method, for ease of calculation of fluxes 

through faces. 

A fractional-step (projection) method has been deployed for solving the set of 

the equations by which the pressure gradient term was decoupled from the advection 

and diffusion. This introduced an intermediate velocity which did not necessarily 

satisfy the continuity equation. At the next fractional-time-step, the pressure was 

obtained from the continuity constraint by solving the Poisson equation and the 

velocity was corrected by the pressure. 

The equations were discretised using a fifth-order-accurate upstream scheme to 

obtain the face values for use in the advection terms. For the diffusion term the 

Crank-Nicolson method was deployed and for the propagation, the Poisson equation 

was solved using a central difference scheme. 

The solution of the species concentration equation was uncoupled from the 

solution of the momentum Poisson equation. It was discretised using the same 

approach as was used for the momentum equations, and was solved at each half-

time-step prior to the solution of the Poisson equation. 

 The k-ε turbulence model with buoyancy terms was deployed and included in 

the numerical model. The solution of the turbulence transport equations advanced at 

the beginning of each half-time-step and the computed eddy viscosities were used in 

the flow equations of the same half-time-step. 



 

 

CHAPTER FIVE 

 

 

NUMERICAL MODELLING 

TEST CASES, ACCURACY ASSESSMENT AND 

PERFORMANCE OF THE SCHEME 

 

 

 

"All things are numbers" 

Pythagoras (Langhaar, 1951) 

 

5.1   INTRODUCTION 

 

This chapter is dedicated to the presentation of the performance of the model 

and to the accuracy assessment of different aspects of the numerical scheme. The 

simulated results of the two-dimensional laterally-averaged module are compared 

with the corresponding analytical and experimental values. Three-dimensional 

validations are presented in Chapter Nine. The tests which have been carried out are 

outlined in the following paragraphs. 

For advection six new schemes are presented. Three of these handle advection 

by the locally-one-dimensional (LOD) method which is discussed in Chapter Four 

and is deployed in the numerical model. The other three process advection by a two-

dimensional approach. The performance of the new schemes has been demonstrated 

and compared with the conventional methods. A von Neumann stability analysis has 

been carried out for the proposed scheme and the amplitude and the phase portrait of 

the new scheme are presented. The influence of a limiter on the scheme is 
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demonstrated. For diffusion the performance of the Crank-Nicolson scheme by the 

LOD method is illustrated. 

For the free surface, three tests are simulated: a small amplitude standing wave 

sloshing in a confined container, a small amplitude progressive wave simulating a 

flap-type wave-maker, and a solitary wave propagating in a constant water depth. 

The simulation of a nonlinear regime of soliton formation in a rectangular closed 

basin filled with two water layers with different densities is presented to evaluate the 

performance of the model for internal waves. A mesh convergence study has been 

carried out and the results are compared with a reference grid, whereby the 

influences of different characteristics for the grid generation are demonstrated. 

Flow over a trapezoidal trench has been simulated to examine the performance 

of the model over a steep bed. The flow characteristics are illustrated and compared 

with experimental results. Computed turbulence parameters of the buoyant k-ε model 

are presented and compared with experimental results. 

Three tests have been carried out to show the performance of the model in non-

homogenous flows. In this part the gravity currents due to the salinity distribution 

variation have been studied. 

 

5.2   ADVECTION 

  

As the flows of estuarine water bodies and tidal circulation in harbours are 

mostly advection dominated (Falconer, 1980a), more attention has been given to the 

advective contribution of the transport term in the Navier-Stokes equations and the 

transport of the species concentration and turbulence parameters. For the advection 

of a quantity such as salinity or any species concentration, the following properties 

are required to properly reproduce dynamics of such quantities and particles: 

 Local mass conservation; 

 Positivity; 

 Low numerical diffusion; 

 Low numerical dispersion. 

 Six new schemes have been studied, three of which handle advection in a 

locally-one-dimensional fashion as described in Chapter Four. The other three 

process the advection by a two-dimensional approach. The accuracy of the new 

schemes has been studied and compared with the conventional schemes by a one-
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dimensional approach. In two dimensions comparisons have been made for the 

locally-one-dimensional and two-dimensional approaches for the new schemes. All 

the schemes studied and discussed herein are explicit. Further test cases have been 

applied to the new proposed scheme to demonstrate its performance in the domains 

with steep bed and variable water surface and extremely irregular geometry. The 

effect of a limiter, which has been implemented in the numerical model, is shown. 

 

5.2.1   Accuracy of the New Locally-one-dimensional (LOD) Schemes 

and Comparison with the Conventional Methods 
 

 Three new schemes, which process advection by an LOD approach, are 

presented. The approximations were obtained by assuming that the solution to the 

problem was approximated by considering a polynomial as the shape function of the 

quantity to be advected. The polynomial was then fitted to the points surrounding 

point (i), utilising values of the function at the grid points. Two shape functions were 

considered, a cubic and a quadric polynomial. The three schemes are summarised as: 

i. A fourth-order-accurate scheme approximated by a cubic polynomial as a 

shape function whereby the quantity i  varies over the four adjacent cells 

(i-2), (i-1), (i) and (i +1) for 0u . 

ii. A fourth-order-accurate scheme approximated by a cubic polynomial as a 

shape function whereby the quantity i  varies over the four adjacent cells 

(i-1), (i), (i +1) and (i +2) for 0u . 

iii. A fifth-order-accurate scheme approximated by a quadric polynomial as a 

shape function whereby the quantity i  varies over the five adjacent cells 

(i-2), (i-1), (i), (i +1) and (i +2) for 0u . 

The third scheme is discussed in Chapter Four. For the first and second schemes the 

quantity Φ at various x locations was determined by the equation as follows: 

  dxcxbxax  23  (5.1) 

Four points were used to determine the coefficients for each polynomial. The 

coefficients a, b, c and d were evaluated by using four neighbouring points (i-2), (i-

1), (i) and (i +1) for the first scheme, and four neighbouring points (i-1), (i), (i +1) 

and (i +2) for the second scheme. The coefficients were obtained using the 

integration of equation (5.2) for the points involved in the scheme, and solving the 

resulting set of the linear equations. 
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The flux passing through the right-hand face of cell i for 0u  was evaluated by: 
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For comparing the accuracy of these schemes with the conventional schemes a 

Gaussian initial condition was considered as follows: 
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A base width of fourteen cells was considered. The mean value, 0x , was set zero and 

the standard deviation σ was chosen so that the Gaussian function was equal to 0.01 

at x = half of the base width, and to one at x = 0. The computational domain was 

considered of 500 cells where xΔ 0.03 m. A constant velocity was applied and the 

simulation was completed after one minute, advancing 600 time steps, with a 

Courant number of 0.7. Four conventional schemes were chosen for comparisons: 

 First-order backward; 

 Second-order central Lax (Lax, 1954); 

 Second-order upwind Fromm (Fromm, 1968); 

 Third-order QUICKEST: quadratic upstream interpolation for convective 

kinematics with estimated streaming terms (Leonard, 1979). 

 The results of the tests are shown in figure (5.1). In comparison with 

conventional schemes, the schemes (i) and (ii) have a considerably closer peak to the 

analytical solution, but they suffer from larger negative errors and oscillations. The 

proposed scheme peaks at 0.922 while the QUICKEST stands at 0.722. The negative 

error for the proposed scheme is -0.024 compared with -0.041 of the QUICKEST. It 

is seen that the solution by the proposed scheme, except for the difference in the peak 

and negative error, very nearly lies on the exact solution. 

 

5.2.2   Accuracy Assessment of the New Two-dimensional Schemes 
  

 Three new schemes, which process the advection in a two-dimensional fashion, 

have been developed. The performance of these schemes is compared with the 

Fromm, QUICKEST and new proposed scheme, which process the two-dimensional 

advection in a locally-one-dimensional (LOD) fashion. 



Numerical Modelling - Test Cases, Accuracy Assessment and Performance of the Scheme 136 Figure (7.1) - Comparison of the well-known and new schemes

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

400 425 450 475 500

C
o

n
ce

n
tr

at
io

n

First-order

Lax-Wendroff

Fromm

QUICKEST

Exact solution

 

     (a) - Comparison of the conventional schemes 
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     (b) - Comparison of the fourth-order schemes and conventional schemes 
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(c) - Performance of the proposed fifth-order scheme 

    Figure (5.1) - Conventional and new schemes for one-dimensional advection 
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The main difference in these schemes is the shape function over which the 

variation of the concentration of each cell is defined. For the first scheme a plane, 

and for the other two, membranes of 2
nd

 and 4
th

 degree are utilised to define the 

shape function. This was inspired by the linear, 2
nd

 and 4
th

 degree polynomials 

defined for one-dimensional schemes of Fromm, QUICKEST and the new proposed 

scheme respectively. It is assumed that the advection of quantities can only stretch as 

far as the neighbouring grids surrounding the grid (i, j) in one time-step. For 

comparisons a Gaussian cone was considered as the initial condition and a constant 

rotational velocity was applied in the domain. 

 

5.2.2.1   Two-dimensional Scheme No. 1 

 

 For this scheme it is assumed that the concentration of grid point (i, j) varies 

according to a shape function defined by a plane. The plane is then defined such that 

it passes through point ji,  and is parallel with two lines which connect the pairs of 

points ( ji ,1  and ji ,1 ) and ( 1, ji  and 1, ji ). Therefore five grid points including 

the point (i, j) are involved in the definition of the concentration of grid point (i, j). 

The concentration of each control volume in a pure advection process can move in an 

arbitrary direction as is shown in figure (5.2). It is assumed that this movement can 

only stretch as far as the neighbouring grids surrounding the grid (i, j) in one time 

step. The concentration of each grid is representative of the average concentration of 

its control volume. After one time step the cell containing the concentration at point 

(i, j) has slid to its new position, which in an arbitrary displacement consists of four 

parts as shown in figure (5.2).  

The slopes of the lines connecting the two pairs of the neighbouring points are 

calculated as: 
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Therefore the two straight lines passing the two pairs of points are described as: 
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The equation of the plane passing through point (0, 0, ji, ) and parallel with the 

lines of equation (5.6) is then obtained as: 
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The total value of the quantity Ф for each of the four parts, shown in figure (5.2), is 

then expressed by: 
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dcba yyxx and,,  are then the boundaries of the corresponding areas shown in figure 

(5.2). The upwind scheme is also deployed and therefore for 0and0  vu  and for 

area iS , for example, these values read: 
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1nnΦ , the change of Φ during the time interval ( 1 nn ), for all grids involved 

in the translation of the quantity ji,  is then computed as follows: 
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The same procedure is repeated for each cell and conservation is satisfied at the end 

of each time step. A Gaussian initial condition was considered as follows: 
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Figure (5.2) - Illustration of scheme No. 1 
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 The computational domain was considered of 101101  cells where 

yx ΔandΔ  were set 0.03 m. A base-diameter of fourteen cells for the Gaussian 

initial condition was considered and the centre of the cone was placed at 0x  and 0y  

corresponding to the coordinates of the point (50, 25). The standard deviation σ was 

chosen so that the Gaussian cone was equal to 0.01 for d = half of the base width, 

and to one for d = 0, where d is the distance from the centre of the cone. A constant 

rotational velocity was applied in the domain where the axis of rotation was at the 

central point (51, 51) of the computational domain. The simulation was completed 

after one full rotation in 300 seconds, advancing 600 time steps. The simulated result 

after one full rotation is demonstrated in figure (5.3b).  

 

5.2.2.2   Two-dimensional Scheme No. 2 

 

 For scheme No. 2 it was assumed that the concentration of grid point (i, j) 

varied according to a shape function defined by a second degree surface passing over 

five adjacent cells forming a cross. Therefore five grid points, including point (i, j), 

were involved in the definition of the shape function of the concentration of the grid 

point (i, j), similar to that, which was considered for scheme No. 1 as is shown in 

figure (5.2). The translation of the cell containing the concentration ji,  follows the 

same assumptions and considerations made for scheme No. 1. The surface equation 

was defined as: 

  EyDxCyBxAyx  22,  (5.12) 

The coefficients were obtained using the integration of equation (5.13) for the five 

points involved and solving the resulting set of linear equations. 
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The total value of Ф for each part, shown in figure (5.2), was calculated by: 
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The computation of fluxes and updating values of Ф follows the same definitions and 

procedure as scheme No. 1. The result of application of the same initial and flow 

field conditions considered for scheme No. 1 is shown in figure (5.3c). 
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Figure (5.3) - Comparison of the two-dimensional schemes. x and y values refer to 

the cell numbers in the corresponding direction 

(5.3b) - Scheme No. 1 

(5.3c) - Scheme No. 2 

(5.3d) - Scheme No. 3 

(5.3e) - 2D solution 

of Fromm 

scheme 

(5.3f) - 2D solution of    

QUICKEST 

scheme 

(5.3g) - 2D solution 

of proposed 

scheme 

(5.3a) - Exact solution 
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5.2.2.3   Two-dimensional Scheme No. 3 

 

 The shape function for scheme No. 3 was assumed such that the concentration 

of grid point (i, j) varied upon a fourth degree surface over the grid point (i, j) and its 

neighbouring cells forming a cross involving nine grid points for definition of the 

concentration function of point (i, j). The translation of the cell containing the 

concentration ji,  follows the same assumptions and considerations as was made for 

scheme No. 1. The shape function equation was defined as follows: 

  QyHxGyFxEyDxCyBxAyx  223344,  (5.15) 

The coefficients were obtained using the integration of equation (5.16) for the nine 

points involved and solving the resulting set of linear equations. 
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The total value of the quantity Ф for each of the four parts, shown in figure (5.2), 

was then expressed by: 

  
d

c

b

a

y

y

x

x
yx yx dd,  (5.17) 

The computation of the fluxes and updating the values of Ф for each control cell took 

place with the same definitions and procedure as was made for the scheme No. 1. 

The result of the application of the same initial and flow field conditions as was 

considered for scheme No. 1 is illustrated in figure (5.3d). 

 The two-dimensional schemes No. 1, No. 2, and No. 3 were compared with the 

two-dimensional solution of the Fromm, QUICKEST and the new proposed schemes 

respectively, where the latter schemes were performed by a locally-one-dimensional 

procedure. In the LOD approach to the two-dimensional solution of these schemes, it 

was assumed that both x and y dependencies of quantity Φ were expressed by the 

one-dimensional expression of each scheme in the corresponding direction. 

Therefore holding y fixed, for example, it was assumed that the quantity Φ varied 

over the adjacent relevant cells of each scheme in the x-direction. 

The same initial and flow field conditions described for scheme No. 1 are 

applied to the Fromm, QUICKEST and the new proposed schemes, the results of 

which and the comparisons with the new two-dimensional schemes are illustrated in 

figure (5.3). The peak and negative error of each scheme is tabulated in Table (5.1). 

From this table it can be seen that the scheme No.3 and the proposed scheme have 
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considerably higher accuracy. It also shows that the two-dimensional solution of the 

proposed scheme drops the peak by only 4.01% compared to the one-dimensional 

solution, whereas the negative error is halved. 

Table (5.1) - Peak values and negative errors of the two-dimensional schemes 

Scheme No. 1 No. 2 No.3 Fromm QUICKEST Proposed 

Peak 0.532 0.557 0.799 0.568 0.596 0.885 

Negative 

error 
0.032 0.018 0.012 0.035 0.018 0.012 

The similar performance of the schemes No. 1 and 2D solution of the Fromm 

scheme, lies in the fact that the surface shape function of the scheme No.1 is a plane, 

parallel to two lines connecting the concentration of the neighbouring cells adjacent 

to the cell under consideration in each direction, and passing through the 

concentration of the cell which for, the shape function is defined. In the Fromm 

scheme the shape function is a straight line, parallel to the line connecting the 

concentration of the two neighbouring cells adjacent to the cell under consideration, 

and passing through the concentration of the cell which for, the shape function is 

defined. 

Rather similar argument applies to the similarity of the performance of the 

scheme No. 2 and 2D solution of the QUICKEST scheme. The discussion can be 

made in the same way, which was made for the schemes No.1 and Fromm, and with 

considering the shape function defined in the previous section for the scheme No. 2 

and that of QUICKEST (Leonard, 1979). 

 The high performance of the scheme No. 3 and the proposed scheme, however, 

does not only follow the geometrical considerations made for definition of their 

shape functions. Their rather similar performance also lies in the fact of their high 

accuracy. However it can be seen from Table (5.1) that the peak of the concentration 

for the proposed scheme is favourably closer to the exact solution compared to the 

two-dimensional scheme No.3. 

 The closest results to the analytical solution obtained for the fifth-order-

accurate scheme in both one- and two-dimensional advection processes, led to the 

inclusion of this scheme in the numerical model for computing the advection terms in 

Navier-Stokes equations, the transport equation of species concentration and the 

turbulence model transport equations. 
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5.2.3   Performance of the Proposed Scheme 
 

 Zalesak's problem (1979) is applied to the QUICK and the proposed schemes. 

The performance of the proposed scheme is also shown in the domains with steep 

bed and variable water surface and irregular geometry. 

Zalesak’s problem, in which a slotted disk is rotated through one revolution, is 

widely used as a test for scalar advection methods. The accuracy of the advection 

algorithm is assessed by comparing the initial and final conditions of the disk. This 

problem is used to measure the diffusive error of the advection scheme. The diffusive 

errors can be evaluated by checking the degree of distortion of the disk boundary. 

This test is considered a difficult simulation for a scalar advection method, as near 

the sharp corners there are not enough cells to resolve the advection equation 

correctly. In fact advecting the discontinuities present at the corners poses the 

greatest difficulty for the scheme.  

For the Zalesak's test, the geometry of the domain and the velocity field were 

considered the same as that used for the two-dimensional test cases in the previous 

section. The diameter of the slotted cylinder was set to 28, and the slot width to 7 

mesh cells. The performance of the scheme in comparison with the QUICK scheme 

is shown in figure (5.4). The figure shows that the QUICK scheme is diffusive 

because the slot is smeared out. The sections of the interface which are located in 

areas around the corners of the slot have deformed and curved, to smooth out the 

discontinuities that are present at these points. Although the QUICK is a third-order 

upwind scheme, the slot boundary deviates from its original position, whilst the 

proposed scheme has maintained its original shape to a good degree. 

 For examining the performance of the scheme in the domains with steep bed 

and high gradients of water elevation, three tests have been considered. The 

geometries of the domains for these three, in a xoz reference plane, are illustrated in 

figure (5.5). For the first two cases the same initial and flow field conditions 

described for the scheme No. 1 in previous section, were considered. The centre of 

the Gaussian cone was placed at the grid point (50, 25) while the computational 

domain consisted of 9999  cells. The results after one full rotation are 

demonstrated in figure (5.6).  In figure (5.6b), which corresponds to the case of steep 

bed and variable water surface, the peak drops to 0.875, from 0.885 for a regular 

mesh, and the negative error increases by 0.004 to 0.016. In figure (5.6d), 

corresponding to extremely irregular geometry, the peak drops to 0.785 and the
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Figure (5.4) - Comparison of the results of the QUICK and new proposed schemes for Zalesak's 

problem. x and y values refer to the cell numbers in the corresponding direction 
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  (a) - Steep bed and variable water surface                               (b) - Extremely irregular geometry 

Figure (5.5) - Geometry of the domains with steep bed and variable water surface. x and z values refer 

to the same direction length scales 
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(5.6a) - Initial condition and exact solution for steep bed and variable water surface 

X

Z

75 150 225
100

150

200

250

 
75

150

225

100
150

200
250

XY

Z

 

(5.6b) - Concentration after one full rotation in the domain for steep bed and variable water surface 
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(5.6c) - Initial condition and exact solution for extremely irregular geometry 
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(5.6d) - Concentration after one full rotation in the domain for extremely irregular geometry 

Figure (5.6) - Concentration after one full rotation in mild and extremely irregular geometries. x and z 

values refer to the same direction length scales 
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negative error rises to 0.035. The very narrow difference in the peak and negative 

error, for the case of steep bed and variable water surface, compared with the results 

for a regular mesh, is encouraging and the concerns over the accuracy of the scheme 

due to non-orthogonality and curvilinear grids can be relaxed. For the case of 

extremely irregular geometry the peak falls by 0.10 compared with the regular mesh, 

but is still higher than the results of other schemes for regular geometry, bearing in 

mind that this test case is not practically representing the usual geometries for the 

problems of interest of the present study and tidal currents, and basically is 

demonstrated to examine the performance of the scheme in very sharp gradients. 
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(a) - A prism after advancing 15 time steps entering the domain from the right-hand side border 
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(b) - The prism after advancing 195 time steps entering the domain from the right-hand side border 
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Figure (5.7) - Translation of a prism of concentration in a horizontal line in an extremely irregular 

geometry. x and z values refer to the same direction length scales 

 In a highly non-orthogonal mesh structure, the approximation for the 

derivatives of the quantities, which contribute to the advection for instance, may not 

satisfy global conservation. Therefore in an extremely irregular geometry where the 

curvilinear mesh exceeds the acceptable limits set for non-orthogonal grids and the 

mesh structure is highly distorted, it is crucial to ensure that global conservation is 
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maintained. To demonstrate the performance of the numerical model in highly 

irregular geometries and to examine the performance of the proposed scheme for 

advection, the domain with the geometry illustrated in figure (5.5b) has been used. A 

prism of uniform concentration enters the domain form the right-hand boundary 

travelling in a straight horizontal line. Remaining in the same y-coordinates, same as 

the initial position of the prism when entering the domain, and after the translation, 

shows that the numerical scheme has ensured global conservation after solving the 

advection in an irregular and non-orthogonal mesh structure. The performance of the 

Dirichlet boundary type is also tested. The computational domain consisted of 

9999  cells. A uniform horizontal velocity field in the x-direction was applied and 

the initial uniform concentration was set equal to one. The results are shown in figure 

(5.7). In the y-direction, the strip of the grids in the region of cell numbers 38-63 is 

illustrated. After entering the domain and the advancement of 195 time steps, the 

horizontal alignment of the concentration prism and its location in the y-direction 

was in complete agreement with the analytical solution. The peak of the 

concentration was 0.998 and the negative error 510 . 

 

5.2.4   Influence of a Limiter 
 

 Godunov (1959) showed that monotone behaviour of a solution cannot be 

assured for finite difference methods with more than first-order accuracy. This 

monotone property is very desirable when discontinuities are computed as part of the 

solution. The desirability of monotone behaviour must be reconciled with the highly 

dissipative character of the results (Tannehill et al., 1997). In regions where 

discontinuities develop, measures must be taken in order to avoid oscillations. One 

major approach to achieve this is to use a limiter to avoid the shape function 

exceeding the local extreme values. In the present study using the general idea of the 

ULTIMATE scheme (Leonard, 1991) an algorithm which is described in the 

following paragraphs has been used. The following parameters have been defined: 
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 (5.18) 

where 
iri Cf and  are the flux and Courant number of cell (i) respectively. 

The algorithm was then established as follows: 
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 (5.19) 

 For examining the influence of the limiter, same initial and flow field 

conditions as two-dimensional schemes were set. The computational domain was 

considered of 199199  cells where yx ΔandΔ  were set 0.015 m and the centre of 

the Gaussian cone was placed at the grid point (100, 50). A constant rotational 

velocity was applied in the domain with the axis of rotation at the centre of the 

computational domain (100, 100). The simulation was completed after one full 

rotation in 300 seconds, advancing 600 time steps. The results are demonstrated in 

figure (5.8). The peak dropped to 0.710 from 0.888 without the limiter, and the 

negative error vanished as was expected. 
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Figure (5.8) - Effect of the limiter on the solution for the proposed scheme. I and J 

values correspond to cell numbers in x and y directions respectively 

(7.8a) - Exact solution 

(7.8b) - Without limiter 

(7.8c) - With limiter 
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5.2.5   Linear Stability Analysis 
 

 The stability of a linear problem with constant coefficients can be analysed 

when the influence of boundaries is neglected or removed. In periodic conditions on 

a finite domain, it is considered that the computational domain is repeated 

periodically and therefore all quantities, the solution and the errors, can be developed 

in a finite Fourier series over the domain. This development in the frequency domain 

forms the basis of the von Neumann (Fourier) method for stability analysis. Despite 

its lack of rigour, the von Neumann method is more commonly used and generally 

gives valid answers and is less cumbersome mathematically and much easier to apply 

than more careful methods (Press et al., 1986; Hoffmann and Chiang, 1993). It is 

supposed that the solution of any discretised scheme can be written as a Fourier 

series in complex, exponential form for any time level, n, as follows (Mitchell, 1969; 

Abbott and Basco, 1989): 
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j e   (5.20) 

where k = 1, 2, 3, …, maxk , is a finite length index and n

k  is the Fourier coefficient 

for wave number k at time level n. N 2  is the dimensionless wave number 

where N is the number of grid intervals over one wavelength. For linear stability 

analysis the resulting equation is arranged into the form of: 

nn A 1  (5.21) 

At each time step for any wave number the right-hand side Fourier coefficient 

of equation (5.21) is multiplied by the factor A, the amplification factor. For stable 

schemes, the Fourier coefficients cannot grow without bound. Therefore to maintain 

stability it is required 1A , which means the magnitude of the Fourier coefficient 

of each and every wave number component should not increase in time. This is the 

Courant-Friedrichs-Lewy criterion, often called Courant condition. The celerity ratio, 

Q, is defined as (Abbott and Basco, 1989): 
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The numerical phase is too fast if 1Q , too slow if 1Q  and  exact if Q = 1. 
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(a) - Amplitude portrait for QUICKEST scheme 
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(b) - Amplitude portrait for the proposed scheme 
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(c) - Phase portrait for QUICKEST scheme 
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(d) - Phase portrait for the proposed scheme 

 

Figure (5.9) - Amplitude and phase portraits for QUICKEST and the proposed schemes 
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A von Neumann (Fourier) stability analysis for the proposed scheme has been 

carried out and the amplitude and phase portraits of this scheme are compared with 

the QUICKEST scheme. Figure (5.9) shows the amplitude and phase portraits for 

different Courant numbers over a range of number of grids per wave length for the 

QUICKEST and proposed schemes. 

 At first glance it may appear that the proposed scheme has a Courant number 

bound about two, as the amplification factor is far below the unstable zone for 

Courant numbers equal to 1.5 and 1.75, but through closer inspection of values of the 

amplification factor it was seen that at Courant number equal to 1.25, the 

amplification factor actually rises to 1.003. Therefore the Courant number limit for 

the proposed scheme is equal to one, as for explicit schemes. It is assumed that the 

proof of weak stability by Fourier analysis or von Neumann method implies strong 

stability (Tannehill et al., 1997). 

 

5.3   DIFFUSION 
 

 For testing the performance of the diffusion contribution of the Navier-Stokes 

equations and the transport of species concentration and turbulence parameters, the 

domain with the geometry described in figure (5.5a) has been utilised. The numerical 

discretisation for diffusion, which is based on the Crank-Nicolson scheme, is 

presented in Chapter Four. 

The concentration, by the use of a Gaussian cone, was defined as follows: 

 
    

T

zzxx

e
Tλ

tzxfΦ 4

2
0

2
0

250




 ,,  (5.23) 

in which λ is the diffusion coefficient and T reads as follows: 

tTT  0  (5.24) 

where 0T  is the time when the concentration is assumed to be the initial value for the 

commencement of the diffusion process, and t is the simulation time. In this test 0T  

was set to 500 seconds, resulting in a peak for initial concentration equal to five 

units. The simulation was carried out for 1000 time steps corresponding to 1000 s. 

The computational domain was considered of 9999  cells where zx ΔandΔ  were 

set 0.03 m and the centre of the cone was placed at the centre of the domain where 

0x  and 0z  were corresponding to the coordinates of the grid point (50, 50). The 
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results are demonstrated in figure (5.10), which shows very good agreement with the 

analytical solution. The analytical solution indicates the peak of the Gaussian cone to 

be 1.667, whereas in the numerical simulation this value decreases to 1.648. 
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(a) - Initial condition of the concentration 
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(b) - Analytical solution after 1000 seconds 

X

Z

75 150 225

225

300

0 0.25 0.5 1 1.5 2 3 4 5

  

(c) - Predicted concentration distribution after 1000 seconds equal to 1000 time steps 
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Figure (5.10) - Diffusion process in a two-dimensional domain with steep bed and variable water 

surface. x and z values correspond to the length scales in the same directions 
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5.4   WAVE PROPAGATION 

 

 Numerical simulation of wave propagation has been compared with the 

analytical solutions for the following tests: 

 A small amplitude standing wave sloshing in a confined container; 

 A small amplitude progressive wave in deep water; 

 Solitary wave propagation in a constant water depth. 

 

5.4.1   Water Sloshing in a Confined Container 
 

 This test involved studying the oscillations of a uni-nodal standing wave in a 

confined container with infinite length in the y-direction. The width of the container 

in the x-direction (W) and the still water depth (H) are both equal to one metre. If the 

viscous and nonlinear effects are neglected, the motion of the fluid can be 

approximated by the linear wave theory. Gravity waves are defined as short waves 

when 201LH  (Yalin, 1971). For a sufficiently deep tank, the shape of the free 

surface of a periodic standing wave is given analytically by (Eagleson and Dean, 

1966; Dean and Dalrymple, 1991): 

     txkatx  coscos,   (5.25) 

where k  is the wave number,   the angular frequency and a  the amplitude of the 

standing wave. k  and   are expressed as follows: 

L
k

π2
  (5.26) 

   2
1

tanh Hkkg  (5.27) 

where g is the acceleration of the gravity. For a uni-nodal standing wave, L = 2 W. 

 The initial shape of the free surface was considered the solution of equation 

(5.25) at t = 0 with an amplitude of 0.01 m. With the lapse of time, the potential 

energy of the fluid is changed into the kinetic energy, and vice versa. The sloshing 

amplitude is very small, so that it will decay rapidly if a numerical code is not 

conservative. In the numerical solution, the domain is discretised by 100 grid cells in 

the x-direction and 25 layers in the z-direction. The time step was set to 0.001 s and 

the simulation advanced for three periods. The viscosity was set to zero and the 

boundary condition without wall function was used such that the Dirichlet boundary 

condition for u and w was set zero at side walls and bottom, and the Neumann 

boundary condition for u and w was set zero in the z- and x-directions as follows: 
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0and0 00   zWxx wuu        (5.28)        
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u
 (5.29) 

For a uni-nodal standing wave where L = 2W = 2 m, the wave number is equal 

to k = π m
-1

 and the period of wave for a basin with the depth of 1.0 m, is calculated 

1341.1T s. For a standing wave the analytical solution for the velocity components 

(u and w), dynamic pressure ( pP  ), speed of wave propagation (wave celerity, 

C) and wave length (L), are given as follows (Dean and Dalrymple, 1991): 

 
txk

Hk

zHk
au  sinsin

sinh

cosh 
  (5.30) 

 
txk

Hk

zHk
aw  sincos

sinh

sinh 
  (5.31) 
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π2
tanh

π2

2  (5.34) 

 zK p  is the pressure response function. Under the nodes, the pressure is solely 

hydrostatic. The dynamic pressure is in phase with the water surface elevation, and is 

a combined result of the local water surface displacement and the vertical 

accelerations of the overlying water particles. 

Figure (5.11) shows the numerical results for velocity field and dynamic 

pressure in the basin at six time phases of the simulation. In figure (5.12), 

comparisons between the numerical results and analytical solution are presented at 

times very nearly, equal to 0.1,2/1,4/1,8/1,0.0/ Tt  for water elevation. 

These comparisons show that the numerical results agree satisfactorily well 

with the analytical solution during the first period. Figure (5.13) shows the time 

histories of the oscillating wave heights at left and right walls and the middle of the 

basin for three wave periods. Small discrepancy appears in the comparisons, but the 

overall comparisons with the notion of the neglect of nonlinear effect in analytical 

solution indicate that the model can predict the free surface location accurately. 

Numerical simulation results for velocity and dynamic pressure distribution 

compared against analytical solution in figure (5.14) are encouraging. 



Numerical Modelling - Test Cases, Accuracy Assessment and Performance of the Scheme 155 

                             Dynamic pressure, P310
 (Pa) 

 
 (a) – t = T/8   (b) – t = T/4 

 
 (c) – t = T/2   (d) – t = 5T/8 

 
 (e) – t = 3T/4   (f) – t = T 

 
 

Figure (5.11) - Circulation in oscillating basin with dynamic pressure 
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                                            (c) - t = T/4                                                                      (d) - t = 3/8T 
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Figure (5.12) - Comparisons of numerical prediction and analytical solution of water surface for a 

small amplitude wave sloshing in a confined container 
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Figure (5.13) - Time histories of the oscillating wave heights 
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Figure (5.14) - Dynamic pressure distribution and velocity field at t = 5T/6. Left: Numerical 

prediction, Right: Analytical solution. The dynamic pressure values are in kPa 

 

5.4.2   Small Amplitude Progressive Wave Train 
 

 For this test a wave train produced by a flap-type wave-maker is simulated. 

The boundary value problem for the wave-maker in a wave tank follows directly 

from the boundary value problem for two-dimensional waves propagating in an 

incompressible, irrotational fluid. For a progressive wave the water elevation, 

velocity components and dynamic pressure are as (Dean and Dalrymple, 1991): 

   txkatx   cos,  (5.35) 
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The pressure response factor  zK p  is always less than unity below the mean water 

surface. By assuming that the wave board is driven in a sinusoidal motion, if 0S  is 

the stroke of the wave-maker at still water surface (i.e. mean water level), its 

horizontal displacement is described as follows: 

   t
S

X z  sin
2

0

0   (5.39) 

where 20S  is the stroke amplitude and   is the wave-maker frequency. The 

motion of the wave-maker can then be expressed as follows: 
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   tS
t

X z  cos
2d

d
00   (5.40) 

To first order, the water surface will be represented as the progressive wave 

solution and the first order flap-type wave-maker solution, giving the ratio of wave 

height (HW) to stroke ( 0S ) at water surface as follows (Dean and Dalrymple, 1991; 

Hughes, 1993): 

 
 
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sinh4
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 (5.41) 

The wave period has been taken equal to 5 seconds and the wave height 0.50 

m. The water depth is 15 m giving a wave number equal to 16344.0k  according to 

the equation (5.27). The stroke at water surface was then calculated by the equation 

of ratio of wave height to stroke (Eq. 5.41) to obtain the velocity of the wave-maker 

at water surface (Eq. 5.40) which was set 0.2604 m/s. The velocity for different 

layers of water simply followed the flap-type wave-maker performance which was a 

linear function being zero at bed and equal to the maximum velocity at the still water 

surface. This constituted the left hand-side boundary condition of the domain with 

the Neumann boundary condition set to zero for w in the x-direction. For the right 

hand-side a free-exit for water was maintained by setting a zero dynamic pressure at 

the far end of the domain. The Dirichlet boundary condition was set zero for w 

velocities at bed (flatbed) and a Neumann boundary condition equal to zero was 

prescribed for u in the z-direction. The length of domain was considered 1000 m 

which was discretised by grids equal to one metre in the x-direction. The depth of the 

domain was divided into 15 layers. The time step was set 0.025 s and the simulation 

was performed for 120 seconds where the celerity of wave was calculated 7.689 m/s. 

The comparisons of the numerical simulation and the analytical solution after 

24 periods, corresponding to time t = 120 s, for the dynamic pressure and velocity 

field, shown in figures (5.15) and (5.16) respectively, confirm the capability of the 

numerical model in prediction of the progressive waves. The difference present in 

figure (5.15) for the first few waves is expected until the wave train is established. 

The plot of the water elevation predicted by the numerical simulation is 

compared against the analytical solution in more detail in figure (5.17). A small 

discrepancy, which partly may be due to linear assumption for the analytical 

solution, can be seen but wave does not dissipate or decay over the time and the 

difference does not grow. 
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(a) – Dynamic pressure distribution under the wave train and in domain (analytical solution) 
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(b) – Dynamic pressure distribution under the wave train and in domain (model prediction) 

Figure (5.15) – Dynamic pressure distribution under the Stokes wave train 
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(a) – Velocity field under the wave crest and in the domain (analytical solution) 
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(b) – Velocity field under the wave crest and in the domain (model prediction) 

Figure (5.16) – Hydrodynamic velocity field under the Stokes wave train 
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Figure (5.17) - Model prediction of the water surface compared with the analytical 

solution simulating the flap-type wave-maker for small amplitude 

Stokes wave at time 120 s 
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Figure (5.18) - Water surface computation compared with the analytical solution for 

small amplitude wave train with θ = 1.0 

In all tests for the free surface simulation presented herein the value of θ was 

set equal to 0.5 (Eqs. 4.53-4.56). To show the influence of the value θ in the 

numerical scheme, the same test was carried out with θ =1. The result is plotted 

against the analytical solution in figure (5.18). From this figure and figure (5.17) it is 

clear that the numerical scheme is almost non-dissipative when θ = 0.5, while it is 

highly dissipative when θ = 1. The numerical results thus indicate that the numerical 

scheme is stable and accurate when θ = 0.5 and stable but dissipative when θ = 1. It 

should be noted, however, that the numerical scheme for tidal waves, which are very 

long waves, is also stable and accurate for θ = 1. 
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5.4.3   Solitary Wave Propagation in a Constant Water Depth 
 

Propagation of solitary wave in constant water depth is simulated to evaluate 

the capability of the model in tackling nonlinear terms. According to the potential 

flow theory, a small-amplitude solitary wave propagates at a constant speed without 

changes in the form, amplitude, and velocities in a constant depth (Mei, 1983).  

A solitary wave with amplitude of 1 m in a constant water depth of 10 m has 

been considered. At the inlet, the time series of horizontal velocities based on the 

analytical solution of Sorensen (1997) was applied, where the initial position of the 

wave crest was specified at x = −150 m. For the outlet, a free-exit for water was 

maintained by setting the dynamic pressure equal to zero at the end of the domain. 

The Dirichlet boundary condition was set zero for w velocities at the flat bed and a 

Neumann boundary condition equal to zero was prescribed for u in the z-direction. 

The domain was considered to be 2,000 m in length, which was discretised by grids 

equal to Δx = 2 m. The depth of the domain was divided into ten layers. The time 

step was set to Δt = 0.1 s and the wave celerity and Courant number were calculated 

c = 10.388 m/s and Cr = 0.519, respectively. Comparisons of the numerical 

prediction and analytical solution for free surface elevation at t = 45, 90, 135, and 

180 s are shown in figure (5.19). Dynamic pressure and velocity fields at t = 180 s 

are shown in figure (5.20). Horizontal and vertical velocities at the free surface are 

also shown and compared with analytical results in figure (5.21). Overall, numerical 

predictions are almost identical with the analytical solutions, suggesting the 

capability of the model in simulating non-linear terms in Navier-Stokes equations. 

 

5.5   INTERNAL SEICHE WAVES 

 

Internal waves play an important role in driving mixing in stratified basins. The 

simulation of the dynamics of a nonlinear regime of soliton formation for basin-scale 

waves in a rectangular closed basin filled with two water layers with different 

densities is presented. The results are compared with the experiments of Horn et al. 

(2001). The motion in the experimental basin is caused by an initial tilt of the 

interface between two fluids with amplitude η0. The depth of the lower layer is h1 

and of the upper layer is h2. The seiche problem is studied by Horn et al. (2001) in a 

fully enclosed clear acrylic tank, L = 600 cm long, H = 29 cm deep and W = 30 cm 

wide. The tank could rotate about a horizontal axis approximately through its centre 
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so that the interface could be initially tilted. A schematic diagram of the tank is 

shown in figure (5.22). To establish the stratification, the tank was tilted through its 

maximum angle and partly filled with the volume of fresh water necessary for the 

upper layer. Salt water at the correct density was then allowed to slowly flow into the 

bottom of the tilted tank, underneath the previous lighter layer. When the tank was 

completely filled, it was slowly rotated to a horizontal position. The tank was then 

very slowly rotated to the required initial angle of tilt. To commence the experiment, 

the tank was quickly returned to a horizontal position so that the interface was then 

inclined at the original angle of tilt of the tank. The overall density difference 

between the upper and lower layers was kept approximately constant at 20 kgm
−3

 

±2kgm
−3

 making a buoyancy difference of gʹ = 0.2 m/s
2
. When the initially tilted 

tank was returned to the horizontal, the fluid immediately responded to the baroclinic 

pressure gradient, the lower layer flowing towards the downwelled end and the upper 

layer flowing in the opposite direction towards the upwelled end. 

The experiments are distinguished by dimensionless amplitude γ = η0/h1, and 

the ratio of depths, δ = h1/H. The regime is characterised by propagating soliton 

waves where nonlinear steepening is balanced by dispersive effects for small initial 

disturbance with parameters δ = 0.3 and γ = 0.3 (Experiment No. 1) or large 

amplitude with parameters δ = 0.3 and γ = 0.9 (Experiment No. 2). For Experiment 

No. 1 the flow develops solitons after only 5 periods for the interface displacement at 

the centre of the basin, which is shown in figure (5.23a) for both experimental results 

and numerical predictions. For larger amplitude of initial tilt (Experiment No. 2), the 

fluid in the thinner layer is piled up in the left corner of the basin and then reflects 

from the vertical wall and propagates away from the wall as an internal bore (Fig. 

5.23b). This bore develops a tail of solitons after reflection. The degeneration of an 

initially large-scale wave into solitons is shown in Fig. (5.24) for both numerical 

simulations and experiments, which shows good agreements. 

 

5.6   MESH CONVERGENCE STUDY 

 

 A numerical study has been carried out to assess the mesh convergence of the 

model, which can provide useful information about the optimal mesh generation for a 

general 2D problem. Water sloshing in a confined container presented in Section 

(5.4.1) has been simulated. Ten additional computations have been performed using 

the numerical domain discretisation as follows: 
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Fig. (5.19) - Comparison of analytical solution and numerical simulations for surface elevation of 

solitary wave propagation in a constant water depth at t = 45, 90, 135, and 180 s 

 

 

 

 

 

 

 

Fig. (5.20) - Comparison of dynamic pressure and velocity field for solitary wave propagation in a 

constant water depth at t = 180 s. (a) Model prediction, (b) Analytical solution, the 

dynamic pressure contour values are in Pa. 
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Fig. (5.21) - Predicted horizontal and vertical velocity components compared with analytical solution 

for solitary wave propagation in a constant water depth at t = 45, 90, 135, and 180 s. (a) 

Horizontal velocity components, (b) Vertical velocity components 
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(c) Initial condition with the tank horizontal and the interface inclined 

 

Figure (5.22) - Schematic diagram of the experimental set-up. (a) Geometry detail of the flume, 

(b, c) The tank and the density structure immediately before and after the 

commencement of the experiment 

 

 

 

   

   

 

 
     

 

 

    

 
 

 

 

    

 

   

Fig. (5.23) - Interface displacement in the centre of the tank in (a) Exp. No.1, (b) Exp. No. 2 

 

 

 

 

 

 

   

 

 

 

     

    
    

     
    

    
     

     

Fig. (5.24) - Density evolution in Experiment No. 2 at successive times: (left) computational 

and (right) experimental (Horn et al., 2001). (a) t = 0, (b) t = 50, (c) t = 75, (d) t = 

140 s 
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I. Keeping the number of the grids in the x-direction fixed and equal to the 

standard test (100 grid cells: 01.0Δ x m) and the number of layers as: 

a. 50 layers in z-direction 

b. 20 layers in z-direction 

c. 15 layers in z-direction 

d. 10 layers in z-direction 

e. 5 layers in z-direction 

II. Keeping the number of layers in the z-direction constant and equal to the 

standard test (25 layers) and the x-direction grid size according to: 

f. 200 grid cells with 005.0Δ x m 

g. 50 grid cells with 02.0Δ x m 

h. 25 grid cells with 04.0Δ x m 

i. 20 grid cells with 05.0Δ x m 

j. 10 grid cells with 100Δ .x m 

The free surface displacement at t = T for the cases (I) including the standard case are 

plotted in figure (5.25). Figure (5.26) shows the results for the cases (II) and the 

standard case for the same time.  
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Figure (5.25) - Mesh convergence test in terms of free surface elevation at t = T (grid 

numbers in the x-direction are fixed) 

For case (I) the difference for four numerical results are very small, especially 

between the reference and the finest mesh, implying that the solution is already 
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convergent in terms of free surface computation when the reference mesh system is 

used. The other two tests (i.e. n = 20 and n = 15) also show very little difference 

compared with the reference test results implying that the number of the layers can 

be chosen as few as 15. For the case with 10 layers the results show noticeable 

differences and for the case with 5 layers the results are not acceptable. For the 

simulation of tidal currents, however, the results are much less sensitive to the 

number of layers in the z-direction and consideration of 10 layers gives satisfactory 

accurate results. For case (II) the differences for the variation of grid numbers in the 

range of 10 and 200 in the x-direction are not detectable, implying that the solution in 

the specified range is independent of the number of grid cells in the x-direction. 
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Figure (5.26) - Mesh convergence test in terms of free surface elevation at t = T 

(number of layers are fixed) 

 

5.7   STEEP-SIDED TRAPEZOIDAL TRENCH 
 

 Turbulent flows may develop over steep-sided trapezoidal trenches, for 

instance in a trench dug along the approach channel to a harbour to facilitate the 

movement of large carriers. In this test the flow is considered to be steady and the 

model is applied to a steep-sided trapezoidal trench, which is placed perpendicular to 

the main flow direction. The numerical predictions have been compared against 

experimental data, reported by Alfrink and von Rijn (1983). The measurements were 

carried out in the centre line of a flume in Delft Hydraulics Laboratory. The 
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geometrical description of the trench and the location of the measurement stations 

are given in figure (5.27). The bottom of the flume was lined with gravel and the 

corresponding roughness height, sk , was taken equal to 0.02 m (Alfrink and von 

Rijn, 1983). 

 

Figure (5.27) - Trapezoidal trench dimensions and location of measuring stations 

 

5.7.1   Flow Characteristics 
 

 At the inlet, velocity components were prescribed using the standard formulas 

for open channel flow (Prandtl-von Kármán universal velocity law, equation 3.48) 

giving: 
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in which nu  is the flow velocity normal and sv  the flow velocity parallel to the inlet 

boundary.  The flow velocity profile at the inlet boundary was described by equation 

(5.42), using the values given by Alfrink and von Rijn (1983) for bed-shear velocity, 

the constant of von Kármán and the equivalent roughness of Nikuradse as follows: 
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The computational domain was considered of 10 layers in z-direction and grids of 

0.05 m in x-direction. The time step was set 0.05 s, which maintained the bound limit 

for Courant number, and the simulation time was 120 s, but the steady state was 

reached after about 30 s. Figure (5.28) shows the velocity field and the separation 

and re-attachment points in the trench for the free-surface simulation. 
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(a) - Velocity field in the first part of the trench showing the separation point happening near the 

leading edge of the trapezoidal section 
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(b) - Velocity field in the middle part of the trench 
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(c) - Velocity field in the last part of the trench showing the re-attachment point happening near the far 

end of the flat part of the trapezoidal section 

Figure (5.28) - Velocity field in the trapezoidal trench 

Rigid-lid assumption had generally little effect on the results, which can be 

added to the attractiveness of this solution and for this case if concerns over 
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computational time are present. Figure (5.29) shows the general flow field 

predictions for free-surface and rigid-lid solutions. 

Figure (5.30) shows the comparison of the u velocity values between the 

numerical model predictions for the free-surface solution and the experimental 

measurements (Alfrink and von Rijn, 1983). Flow deceleration with passage over the 

trench in the numerical simulation results, reported by Basara and Younis (1995), 

using the same experimental data, is not present in the numerical predictions 

demonstrated herein. Numerical predictions show a good agreement with the 

experimental data, but the discrepancy near the bed is apparent, which was thought to 

be due to the coarse grid size near the bed. The predictions may improve by the use 

of a coordinate stretching system towards the bed. 
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(a) - Free-surface solution 
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(b) - Rigid-lid solution 
 

Figure (5.29) - Predicted flow field patterns in the steep-sided trapezoidal trench for 

free-surface and rigid-lid solutions 
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Figure (5.30) - Predicted and measured flow velocity (u) values (m/s) 
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5.7.2   Turbulence Parameters 
 

 For the numerical simulation the values of the constants in the k-ε model, were 

taken as the values presented in Table (3.1), except for 1c  which was taken equal to 

1.60. The plots of turbulent kinetic energy (Fig. 5.31) show this quantity to be finite 

at the free surface, which is expected with the use of the zero Neumann boundary 

condition at that boundary. One reason for the large discrepancies between 

predictions and the experimental data, for upper part of the profiles and at upstream 

of the trench, was thought to be due to the absence of fully-developed turbulent flow, 

which suggests that the flume may not have been long enough for fully-developed 

profiles to be attained. Downstream of the trench, predictions and measured values 

show much better agreement where the turbulent flow is thought to be developed.  

To further investigate the reason for the unsatisfactory predicted results of 

turbulent kinetic energy, a mesh refinement study was carried out and the inlet 

boundary conditions for the k and ε were set to the recommended values of Alfrink 

and von Rijn (1983). The inlet boundary conditions for k and ε were prescribed using 

the standard formulae for open channel flow as follows: 
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in which H is the local flow depth. The implementation of the inlet boundary 

conditions according to the equations (5.44) had a substantial effect on the results 

and the general trend of the simulated graphs was similar to the measured values 

reported by Alfrink and von Rijn (1983). To attain better agreements a mesh 

refinement study was carried out where three tests with the new inlet boundary 

conditions were conducted; (a): 10 layers in z-direction and dx = 0.04 m, (b): 20 

layers in z-direction and dx = 0.02 m, and (c): 40 layers in z-direction and dx = 0.01 

m. Figure (5.32) shows the comparison of the simulated turbulent kinetic energy 

values for different mesh configurations against the measured values and the 

predicted results of Alfrink and von Rijn (1983). It is concluded that the grid 

configuration (b) with 20 layers in z-direction and dx = 0.02 m, exhibits the closest 

agreement of the predictions with the measured values and is very close to the 

numerical predictions of Alfrink and von Rijn (1983). 



Numerical Modelling - Test Cases, Accuracy Assessment and Performance of the Scheme 172 

Figure (5.33) confirms the logic presented for better agreement of the 

turbulence parameters in the downstream; due to fully-developed turbulent flow. The 

turbulence eddy viscosity attains a profile which is very similar to the profile 

expected theoretically, in a fully-developed turbulent flow. 
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Figure (5.31) – Predicted and measured turbulence energy values ( 223 sm10 k ) 

 

 

 

 

 

 

 

Figure (5.32) – Predicted and measured turbulence energy values ( 223 sm10 k ), 

using the inlet boundary conditions for k and ε by standard formulae 

for open channel flow, and for different mesh configurations 
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Figure (5.33) – Developed turbulence eddy viscosity in the trench 
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5.8   NUMERICAL SIMULATION OF TURBULENT GRAVITY 

CURRENTS OF LOCK-RELEASE TYPE 
 

The time evolution of turbulent gravity current of lock-release type, formed by 

a finite volume of saline water released instantaneously into water of density r  is 

studied numerically and compared with the data reported in literature. The k-ε 

turbulence model with buoyancy terms has been used to predict the turbulent eddy 

viscosity. Many experimental observations based on shadowgraph were consistently 

successful in determining the general picture and the front location as a function of 

time after release for the lock-release gravity currents (Simpson, 1997). The 

observations show that the gravity current passes through two distinct phases, an 

initial slumping adjustment phase during which the current head advances steadily, 

and a second phase during which the front velocity decreases with the negative third 

power of the time after release (Chen and Lee, 1998). 

In this study the numerical predictions have been compared against the 

experimental results reported by Huppert and Simpson (1980). The experiments were 

carried out in a Plexiglas channel 9.6 m long, 0.27 m wide and 0.50 m high. From 

their set of the experiments, tests No. 1 and 7 have been chosen to be simulated by 

the numerical model. The experiment No. 1 is a typical lock-release gravity current 

case, for which the initial depth 0h  of the saline water is the same as 0H , that of 

fresh water. In this experiment the channel was filled with tap water to a depth of 0h  

= 0.149 m and then a wooden gate was placed in the channel at a distance 0l  = 0.390 

m from the left end. Household salt was added to the water behind the gate until 

density corresponding to 2m/s091.0g , was obtained. The gate was then quickly 

removed and the position of the front of the gravity current was recorded at pre-set 

time intervals. In experiment No. 7, 0h , 0l  and g   were 0.15m, 0.391 m and 

2m/s094.0  respectively. Further tap water was then added to both sides of the gate, 

until the total depth of both sides was 0H  = 0.44 m. The numerical domain was 

considered of 10 and 15 layers in z-direction for experiments No. 1 and 7 

respectively, and was discretised by 0.065 m grids in x-direction. The time step was 

set to 0.05s and 0.025 s for experiments No.1 and 7 respectively and in both cases the 

numerical simulation was carried out for 180 s where the experimental observations 

were reported for 160 s with time intervals of 10 s. The free-surface model with wall 
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boundaries at two ends was used and the appropriate boundary conditions for wall 

and bed were subscribed. The k-ε turbulence model with buoyancy terms was used 

and the values of constants were set according to Table (3.1). 

Figure (5.34) shows the numerical prediction of the location of the gravity 

current for the lock-release type, experiment No. 1. In figure (5.35) the numerical 

prediction of the location of the gravity current for the experiment No. 7 is 

illustrated. Both cases show very good agreements with experimental results, which 

is thought is partly due to using the high-accurate scheme for advection. 

In figure (5.36) the numerical solution of mixing in a pool due to gravity 

currents of lock-release type is presented. A pool of the length of 8.00 m is 

considered, where half of the pool is assumed to be filled with saline water of salt 

concentration of 100 g/l and the other half with the water of density 3m/kg1000 . 

Both sides are assumed to be 2.5 m deep and to be separated by an impermeable 

divider at t = 0. The divider was then assumed to be suddenly pulled out and the 

simulation was carried out for 16 minutes with 0.025 s time steps. The numerical 

domain was considered of 10 layers in z-direction and 0.20 m grids in x-direction. 

 

5.9   SUMMARY 

 

 Six new explicit schemes are introduced for advection. All schemes make use 

of the upwind quantities, which ensures the fulfilment of the transportiveness 

requirement. Two high accurate schemes, one in a LOD fashion and the other by the 

two-dimensional approach, showed considerably higher performance and accuracy. 

The fifth-order-accurate (on a uniform mesh) upstream LOD scheme is then 

deployed in the numerical model, which involves six neighbouring points and 

reduces the discretisation errors by bringing in a wider influence, hence minimising 

the numerical diffusion errors. The proposed scheme also showed satisfactory results 

in steep bed, variable water surface and irregular geometries. For diffusion, the 

performance of the Crank-Nicolson scheme in a domain with non-orthogonal 

curvilinear mesh shows encouraging results. 

A von Neumann stability analysis for the proposed scheme of advection, 

showed stable solutions for a Courant number below or equal to one for the scheme. 

For monotone behaviour of the solution, a limiter was used and its influence on the 

scheme was demonstrated. 
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Figure (5.34) – Numerical prediction of time evolution of the gravity current for experiment No.1. The 

solid line in figure (a) is the location of the wooden gate and in the other frames is the 

experimentally reported location of the nose of the gravity current 



Numerical Modelling - Test Cases, Accuracy Assessment and Performance of the Scheme 176 

X (m)

Z
(m

)

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0 0.001 0.01 0.1 1 1.5 2 2.5 3 4 5 6 7 8 9 10 11 12 13

(a) - t = 0 s

Salinity concentration (g/l)

 

X (m)

Z
(m

)

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4
(b) - t = 10 s

 

X (m)

Z
(m

)

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4
(c) - t = 20 s

 

X (m)

Z
(m

)

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4
(d) - t = 60 s

 

X (m)

Z
(m

)

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4
(e) - t = 120 s

 

X (m)

Z
(m

)

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4
(f) - t = 160 s

 

Figure (5.35) – Numerical prediction of time evolution of the gravity current for experiment No.7. The 

solid white line in figure (a) is the location of the wooden gate and in the other frames 

is the experimentally reported location of the nose of the gravity current 
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Figure (5.36) – Numerical prediction of salinity distribution and flow field in a pool 

at different time levels. Left-half is filled with saline water (100 g/l) 

and right-half with water of zero salinity at time t = 0 
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The prediction of the free surface was demonstrated by the application of a 

small amplitude standing wave oscillating in a confined basin. The results of the 

water elevation, velocity field and dynamic pressure distribution compared with the 

analytical solution were encouraging and confirmed the conservativeness of the 

numerical scheme. The results of the simulation of a flap-type wave-maker for 

prediction of water elevation of a small amplitude progressive wave compared with 

the analytical solution also confirmed the capability of the numerical scheme for 

satisfactory prediction of free surface. The simulated results of a solitary wave 

propagating in a constant water depth suggest the capability of the model in 

simulating non-linear terms in Navier-Stokes equations. The degeneration of an 

initially large-scale wave into solitons shows the capability of the model in 

simulating internal waves. To optimise the accuracy and computational time a grid 

sensitivity study has been carried out. 

 Turbulent flow characteristics over a steep-sided trapezoidal trench have been 

compared with the experimental results reported in literature. The flow and turbulent 

parameters were predicted reasonably well by the numerical model. 

 The propagation of gravity currents has been studied by prediction of the rate 

of advance of the front. The numerical results compared against experimental data 

reported in literature confirmed the capability of the model, using the k-ε turbulence 

model with buoyancy terms, for predicting gravity currents. 



 

 

CHAPTER SIX 

 

 

PHYSICAL MODEL STUDIES 

DESIGN AND OPERATION OF THE LABORATORY 
TIDAL BASIN AND MODEL HARBOUR 

 

 

 
"When dealing with water, first experiment then use judgement" 

Leonardo da Vinci (Price 1978) 

 

6.1   INTRODUCTION 
 

The hydraulic model was used to verify the mathematical model. The method 

of numerical modelling the physical model enables distinctions to be made between 

inadequacies and limitations of the mathematical model and inadequacies and 

deficiencies of knowledge about the phenomena in real life. The synergistic 

combination of numerical and hydraulic modelling is especially valuable in complex 

hydrodynamic situations. It has been particularly used for estuaries, which are 

inherently complex systems. In addition to the main purpose of using the physical 

model, which was obtaining appropriate data to develop and verify the numerical 

model, similitude criteria were deployed to make the physical model, as closely as 

possible, similar to an idealised prototype in order to achieve a better understanding 

of the phenomena in the real world. 

An idealised, vertically-distorted hydraulic model harbour was utilised to 

conduct experimental tests for varying distortion ratios, mean water depths, tidal 

ranges and periods, as well as entrance barrier heights, for both homogeneous and 
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density stratified flows. Design of the laboratory tidal basin and model harbour has 

been explained, following a concise review of similitude and scaling criteria, and 

preceding the demonstration of operation and set-up procedure of the tidal basin and 

model harbour. The main topics, which are covered in this chapter, will be addressed 

in the next paragraphs. 

Geometric, kinematic (time and velocity), and dynamic (force) similarity 

should be maintained between model and prototype. Strict satisfaction of the three 

criteria dictates use of a model scale of 1:1, however, practical considerations often 

make this ideal difficult to achieve. As a consequence, it is a matter of necessity to 

identify the processes of primary importance and determine the dominant forces. 

Subsequently, it is essential to scale the model and model-material properties so as to 

maintain, as closely as practicable, the same ratios between the primary forces in the 

model as in the prototype. The forces associated with coastal and estuarine flows are 

ascribable to fluid inertia, gravity, the physical properties of the fluid, and boundary 

drag or friction. In almost all situations involving fluid movement, fluid inertia is an 

important force as well as gravity, which is of prime importance for free surface 

flows. For many estuaries, bays, and marinas, it is necessary to employ a vertically 

distorted model; otherwise flows would be laminar and dominated by viscous and 

surface-tension effects. To counteract this, vertical scales are typically 5 to 20 times 

larger than the horizontal scales (ASCE, 2000). 

Estuaries and harbours located in coastal zones typically are density-stratified, 

which requires implementation of additional similitude criteria. Density differences 

can cause buoyancy forces that may have profound effects on flow dynamics. 

Because the flows in coastal engineering are usually turbulent, they are difficult to 

model mathematically and physical models can play a significant role in 

understanding them. Laboratory experimental investigations will always remain one 

of the most useful tools in coastal engineering because of the inherent limits of 

deterministic fluid mechanics attributed to turbulence (Le Méhauté, 1990). 

 
6.2   GOALS IN CONDUCTING THE PHYSICAL MODEL 
 

The combination of classifications provided by Dalrymple (1989) and 

Kamphuis (1991) categorises the physical model used in this study as a validation 

model and, to some degree, a process model. 
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Validation models, as their name suggests, are those physical models used to 

verify numerical models. Because these models are often idealised and simplified to 

minimise scale effects and originally have been designed to provide a test case that 

more closely fits the assumptions inherent in the numerical model, they may not 

resemble anything in the real world. Hughes (1993) has considered an idealised, 

rectangular harbour constructed with reflecting vertical sidewalls as an example of a 

validation model. A process model is a physical model designed to study a physical 

process in order to achieve a better understanding about the phenomena. To complete 

this classification, the third type of physical model has the goal of attempting to 

predict prototype behaviour by reproducing to the extent possible all the features and 

forces of an actual prototype situation and has been termed a design model 

(Kamphuis, 1991). 

 As a validation model, the results of the experiments were used for verifying 

the three-dimensional numerical model, and as a process model, the data obtained 

from flow-velocity and water elevation measurements in homogeneous tests, and 

velocity and conductivity measurements in density-stratified tests have been 

compared, analysed and investigated. Presentation, interpretation, and discussion of 

the results are demonstrated in Chapter Eight. 

 
6.3   SIMILITUDE AND SCALING CRITERIA 
 

Similitude criteria have been commonly discussed in literature; among them are 

Langhaar (1951), Yalin (1971), Hughes (1993) and ASCE (2000). Full model-

prototype similitude requires satisfaction of the following conditions: 

1. Geometric similitude, whereby the ratios of all corresponding linear 

dimensions are equal and where only similarity in form is involved. 

2. Kinematic similitude, whereby at geometrically equivalent points in model 

and prototype, components of all vectorial motions are in a constant ratio at 

all times. 

3. Dynamic similitude, whereby in addition to kinematic similitude, the force 

polygons are similar at geometrically equivalent points for model and 

prototype. 

Once the criteria for geometric and dynamic similitude are satisfied, the criteria for 

kinematic similitude automatically follow. 
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6.3.1   Hydrodynamic Similitude 
 
 Tidally induced circulations in estuaries, bays, and harbours are dominated by 

gravity, and for flows driven by gravity, notably flows with a free surface, a central 

similitude requirement is equality of Froude number (Fr) characterising free surface 

flow in model and prototype at geometrically similar locations;  

Dg

V
Fr                                                                                                           (6.1) 

where V is the water velocity, g the gravity acceleration, and D is the water depth. 

This essentially requires that the ratio of inertia to gravity forces be the same in 

model and prototype. It also may be viewed as a ratio of water velocity (V) to 

shallow-water wave velocity (i.e. Dg ), in a channel of depth D. The Froude-

number similarity criterion, with the notion of 1rg  where subscript r is the scale 

ratio, prescribes as follows: 

1
r

r
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p
r

D

V

Fr

Fr
Fr                                                                                          (6.2) 

Modelling difficulties may arise for models of gravity-driven flows, designed 

primarily on the basis of Froude-number similitude, when the reduced value of the 

Reynolds number at model scale shifts the flow from the fully rough zone, which 

prevails at full scale, into a transition-flow or possibly even a laminar-flow zone. The 

shift in flow region signifies a change in local flow pattern near boundaries, 

exaggerated emphasis in the model of viscous resistance relative to form resistance, 

and overall increase in resistance coefficient (ASCE, 2000). As it is not practically 

possible to select a smaller scale reduction for the estuarine models, an alternate 

means to remain in the same flow region is to distort flow depths.  

 Geometrically similar models may prescribe model depths of the order of a few 

millimetres. Flows that shallow would be laminar and dominated by viscous and 

surface-tension effects, which do not prevail at full scale. To ensure that the model 

flow is fully turbulent and gravity dominates, vertical scales may have to be adjusted 

to typically 5 to 20 times the horizontal scales (ASCE, 2000). Falconer (1980a) used 

a distorted physical model with vertical distortion of 20:1 in studying the planform 

influence on circulation in harbours. Falconer and Li (1994) used distortion ratios of 

12:1-6.25:1. This vertical exaggeration distorts wide and shallow cross-sections. The 

distortion increases the model Reynolds number based on depth and makes the flow 
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turbulent. Table (6.1) demonstrates the relationship between variables of distorted 

models based on Froude-number similitude. The same notation for variables has 

been used throughout the thesis. 

Table (6.1) - Scale relationships based on Froude-number similitude for vertically 

distorted models, with 1r  
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6.3.2   Distorted Models 
 

Attaining adequate dynamic similitude or facilitating sufficiently accurate 

measurements of flow properties may require violating the criterion for geometric 

similitude. In that instance a geometrically distorted model is needed, which if 

employed, might accordingly give rise to scale effects. Practical issues may result in 

larger distortion of bigger models, encompassing larger areas of shallow flow. For 

instance, models of estuaries typically have distortion giving G = 5 to 10, and 

sometimes more. In a study of tidal circulation and flushing in five western 

Washington marinas, Nece et al. (1980) used distorted hydraulic models with G = 10 

and 12.5. The main advantages of vertical distortion are: 
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1. Reducing expenses incurred in constructing and operating a model;  

2. Increasing model values of Re by reduction of scale ratio from 5.1
rX  to 

  51.
r G/X  or Re in terms of flow depth (Table 6.1); 

3. Providing the possibility of performing flow-velocity and depth 

measurements with increased accuracy in the model. 

Nece (1992) mentioned that the vertical scale must be large enough to permit 

accurate measurement of water surface elevations, to allow measurements of 

velocities at various elevations and to produce turbulent flows for most of the tidal 

cycle. 

The main drawbacks of vertical distortion are that three-dimensional and 

vertically two-dimensional flow patterns and pressure distributions are distorted in 

response to the altered aspect ratio of the flow. Vertical distortion produces flow 

cross-sections that have larger flow depths and greater vertical gradients and that 

should ensure that model flow is turbulent and maintains kinematic similitude, 

however, this results in reduction of accuracy of geometric and dynamic similitude. 

In ASCE (2000), the following factors have been addressed to be considered when 

using vertical distortion: 

1. Exaggeration of secondary currents; 

2. Distortion of eddies; 

3. Occurrence of flow separation on inclined boundaries, whose slope is 

increased, where separation would not occur at full scale; 

4. In consequence to, and interactive with, (1) through (3), lateral distributions 

of flow in the model may differ from lateral flow distributions at full scale; 

5. The ratios between vertical and horizontal forces at full scale will not be 

preserved at model scale. 

When considering the models of large areas, distortion of the models often 

becomes necessary due to the effect of the viscous boundary layers at the rigid 

boundaries. This follows from the limitation imposed by viscosity, which establishes 

an upper bound for the vertical scale, giving (Keulegan, 1966): 

  2
1
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53 p

p
r

T.

D
Z


  (6.3) 

where pD  and pT  are the water depth and tidal period in the prototype respectively. 
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Complete dynamic and mass-transfer similitude is not possible in distorted 

models. Introducing dimensionless dispersion Reynolds number as 000 D/LV  from 

one-dimensional conservation of mass equation (Harleman, 1966b), where L0 is a 

characteristic horizontal length (such as the tidal excursion), V0 is a characteristic 

velocity (such as the maximum tidal velocity at the injection point), and D0 is the 

longitudinal dispersion coefficient at the injection point, mass-transfer similitude 

prescribes: 

1
r

rr

D

LV  (6.4) 

Using the longitudinal dispersion coefficient for homogeneous uniform free surface 

flow (Harleman, 1966a), and applying the similitude criteria gives: 

2
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In a distorted model, by approximating 
rhR  with rZ , and considering rre L/ZS

r
 , 

equation (6.5) becomes as follows: 
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from which it can be seen that the similitude condition given by equation (6.4) is not 

satisfied; 
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Therefore a reduction in the distortion of the model results in a significant 

improvement in similitude of the diffusion process. Equation (6.7) also shows that 

diffusive transport in the model is greater than it would be in the prototype. Although 

physically correct, the equations (6.4-6.7) are based on open channel flow 

relationships, for instance flows in estuaries and narrow passages. In marinas and 

small harbours the transport and exchange processes are advection dominated. 

Flushing behaviour into the harbour can be regarded like jets and the expansion of 

these jets is similar over a range of scales. It follows that the large scale eddies, 

which are responsible for much of this mixing, should also scale well. Novak and 

Cabelka (1981) noted that a correct reproduction of the dispersion coefficients in 

three-dimensional flow requires an undistorted model. ASCE (2000) also 

demonstrates the effects of vertical distortion on flow patterns in a figure adapted 
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from Kobus (1980). It shows that in a distorted model, vertical eddies are larger than 

in a geometrically similar model and they retain the same shape, instead of the 

expected stretching in the vertical direction due to distortion. Fischer (1976) 

concludes that while there is no total agreement on how well physical hydraulic 

models simulate mixing, such models constitute a useful engineering tool for 

problems involving three-dimensionality and complex boundaries (in a study 

conducted by Nece et al., 1979). 

 
6.3.2.1   Flow Resistance 
 
 The Froude-number criterion prescribes similitude for forces attributable to 

fluid inertia and gravity. However, it may be insufficient for prescribing similitude of 

flow resistance. Flow resistance can be described by relationships such as the Darcy-

Weisbach, Manning, Maning-Strickler, and Chézy equations. The Darcy-Weisbach 

equation states: 

f

SRg
V eh8
                                                                                                   (6.8) 

where eS  is the slope of the energy gradient of the flow, and f is the dimensionless 

resistance coefficient. As demonstrated in Henderson (1966),  
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where sk  is a length parameter characteristic of the surface roughness (i.e. a 

characterising surface particle diameter). From equation (6.9), the resistance 

coefficient scale can be written as follows: 
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Ideally, when the flow is fully rough, exact geometric similitude is needed to attain 

1rf . The Darcy-Weisbach resistance equation (Eq. 6.8), reduced to the similitude 

criterion; 
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and taken together with equation (6.10), indicates that the scale of the roughness 

elements (i.e. 
rsk ), varies with the third power of vertical distortion, G. The 
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important conclusion here is that the greater the distortion of vertical and horizontal 

scales, the greater is the required exaggeration of the model roughness. Because it 

usually is not practical to select the roughness elements in exact accordance with 

equation (6.10), considerable trial-and-error adjustment of boundary conditions may 

be needed to calibrate the model. However in a study of flushing characteristics of 

small-boat marinas, Nece and Richey (1972) have mentioned that tides are the 

dominant mechanism for producing water motions in such marinas and bottom 

frictional effects are not significant in the gross current patterns of the relatively short 

and deep water bodies; consequently model construction and operation can be 

simplified. 

 
6.3.3   Dynamic Similitude for Buoyancy Modified Flows 
 

Fluid motions in a gravitational field which are originated or influenced by 

variations in density within the fluid are characterised by the term stratified flow 

(Harleman, 1961). Density differences lead to dynamic effects through their 

production of buoyancy forces in a gravitational field. This may be explained by 

considering the force acting in a stationary fluid. A homogeneous fluid is in a state of 

neutral equilibrium. The weight of a fluid element is balanced by the pressure 

exerted on it by the surrounding fluid. This condition holds if elements are displaced 

to other positions of rest, and no work is required to move them. The commensurate 

pressure distribution in the fluid is simply the hydrostatic pressure distribution; 

zgpp  0                                                                                                   (6.12) 

where p and 0p  are local and a reference pressure respectively, g is the acceleration 

due to gravity,   fluid density, and z  is the elevation. 

 

 

 

 

 

 

 

Figure (6.1) - Density profile in a density stratified flow 
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But in a stratified fluid, the density difference produces a restoring force when a fluid 

element moves to a less or more dense position in density-stratified surrounding 

fluid. This can be explained by considering the density profile shown in Figure (6.1). 

A fluid element moved from a lower to a higher elevation finds itself heavier than its 

surrounding fluid. Therefore, it is subject to a gravity, or buoyancy force, which tries 

to restore to its original position. Work is required to move the element of fluid 

against this force. The same holds for moving the element from a higher to a lower 

elevation. In this case, the fluid finds itself surrounded by more dense fluid and is 

again subject to buoyancy restoring force that will try to bring it back to its original 

position. Again work is required to move the element against this force. A 

consequence of these forces is that vertical motion, and therefore vertical mixing, is 

suppressed (ASCE, 2000). The particle, if moved to either lower or higher elevation 

will return to its original position. It will overshoot and oscillate around its 

equilibrium position with a frequency of oscillation that is deduced in Section 

6.3.3.1. The physical cause of the oscillatory nature of all waves is the restoring force 

acting on a material particle as the particle is displaced from its mean position. This 

situation can be clarified by consideration of static stability. Considering a fluid 

consisting of two layers of different density, as shown in Figure (6.2), the hydrostatic 

pressure equation (Eq. 6.12) may be presented as follows: 
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dzgpp
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Figure (6.2) - Behaviour of an interface between two stratified fluids of different 

density (adapted from ASCE, 2000) 
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so that the pressure at point A is higher than at point B on the same horizontal plane 

(Fig. 6.2a). A horizontal pressure gradient therefore exists that will cause a restoring 

force attempting to move the interface back to its horizontal position. The resulting 

motion can overshoot the equilibrium position and oscillate about it, giving rise to 

internal waves. The fluid can therefore only be in static equilibrium when density is 

constant in every horizontal plane. When light fluid is below the heavier fluid (Fig. 

6.2b), the equilibrium is unstable and small displacements from the horizontal will 

grow and lead to advective motions. Oscillation, which characterises wave motion, is 

therefore possible only if density decreases upward that provides a statically stable 

state of stratification (Yih, 1980). 

 
6.3.3.1   Similitude Criteria from Equations of Motion 
 

To show the relationship between certain dynamic similitude criteria, the 

equations of motion for a fluid subject to density differences are considered. 

Normalisation of the equations for buoyancy modified flows reveals the dominant 

dimensionless parameters that prescribe dynamic similitude. 

 The equations of flow can be written for vertically two-dimensional flow (in 

the x-z plane) as: 
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where, u and w are velocity components in the x- and z-directions respectively, t is 

time, and   is the dynamic viscosity of the fluid. Pressure and density, p and  , can 

be expanded about the values 0p  and 0 , which comprise a reference state of 

hydrostatic equilibrium for which,  
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so that ppp  0  and   0 . Then, if viscosity effects are neglected, 

equation (6.14b) becomes: 
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From equation 6.16, it can be seen that the ratio  0 /  appears both in the inertial 

and buoyancy terms. When  0 /  is much less than one, which is the case in 

most estuarine situations, it produces only a small correction to the inertia force 

compared to a fluid of uniform density 0 , but it is of great importance in the 

buoyancy term. For this case, equation (6.16) approximates as follows:  
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which essentially neglects variations in density insofar as they affect inertia, but 

retains them in the buoyancy terms. This important approximation was first 

introduced by Boussinesq and is usually true for flows of hydraulic importance. Thus 

the effects of density variations are embodied only in the combination  0 /g  . 

This combination occurs so frequently that it is given its own symbol, g  , which is 

known as the modified acceleration due to gravity (ASCE, 2000). 

A fluid element in a linearly stratified flow, with a density profile as shown in 

figure (6.1), which is displaced a small distance from its equilibrium position and 

released, is considered. The linearised form of equation (6.17) gives for this case: 
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where   is the displacement from the equilibrium position. The element therefore 

oscillates in simple harmonic motion with a frequency:  
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where N is known as the buoyancy frequency. 

 
6.3.3.2   Dynamic Similitude Parameters 
 
 In a shear flow, the vertical gradient of the horizontal velocity ( z/u  ), also 

has the dimensions of frequency. A useful non-dimensional parameter results when 

N is combined with z/u   as follows (ASCE, 2000): 
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which is called the gradient Richardson number, Ri. It is the ratio of stabilising 

gradient to disturbing (shear) gradient. An overall Richardson number is a parameter 

describing the whole flow where the scales of velocity V and length L are imposed by 

the boundary conditions as follows: 

 
2

0
0 V

L/g
Ri


                                                                                            (6.21) 

 A stable density gradient decreases the rate of vertical transport of mass and 

momentum in turbulent flows, and the most important parameter to describe this 

effect that follows both from theory and experiment, is the Richardson number 

(Karelse et al, 1974). This effect arises because vertical mixing involves an increase 

in potential energy which has to be derived from the turbulent kinetic energy in the 

water, and such energy is usually generated by shearing action in the mean flow 

(Bowden, 1983). The Richardson number is a measure of the stability of a stratified 

flow; the higher Ri the more stable is the stratification (Novak and Cabelka 1981). In 

hydraulic engineering, the square root of the inverse of equation (6.21) is more 

commonly used; namely densimetric or internal Froude number: 

 L/g

V
FrD

0
                                                                                        (6.22) 

where L can be substituted by D, for convenience, to  retain the same notation as was 

used for Froude number. The ratio of Richardson number is (Fischer et al, 1979): 
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Ri                                                                                      (6.23) 

The equivalence of Richardson numbers ensures that internal stratified flow 

phenomena such as generation and breaking of interfacial waves are correctly 

modelled dynamically. Dynamic similitude of flows in which buoyancy effects are 

important usually requires the densimetric Froude number to be equal in model and 

prototype (i.e.   1rDFr ). It should be noted that equality of Froude number (Eq. 

6.22), does not require the density differences to be the same in model and prototype. 

However, equivalence of the free-surface Froude number ( rF ), and the densimetric 

Froude number ( DFr ), requires that the same density ratios be used in the model and 

prototype. Viscous effects are described by the Reynolds number,  


 LV

Re                                                                                                         (6.24) 
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In general, if the same fluid is used in model and prototype, it is not possible to 

satisfy equality of Reynolds number simultaneously with equality of Froude number 

(Sharp, 1981). The Reynolds number in the model usually is much smaller than in 

the prototype. In a laboratory study investigating the effectiveness of using a small-

scale laboratory model to predict tidal flushing patterns in small-boat marinas, Nece 

and Richey (1972) reported that despite the presence of jets and wakes formed by the 

tidal flows past the vertical breakwater at the entrance and past other sharp corners in 

the boundary planform, much of the model basin flow was in the laminar regime and 

had Reynolds number ( /dVRe  , where V is the local depth-averaged velocity 

and d is the corresponding water depth) considerably below the 1,000 value 

commonly associated with the lower limit of turbulent free surface flow. The 

Reynolds number should, however, be in the same range of flow behaviour. So if 

prototype flows are turbulent, which happens in most situations in coastal 

engineering problems, then model flows must also be turbulent. Ensuring that the 

model flow is turbulent will generally suffice (ASCE, 2000).   

Vertical distortion, and also low Reynolds numbers in the model, rules out 

equivalence of local diffusion characteristics in the model and prototype (Nece, 

1984). ASCE (2000) has given an example of ratios of the vertical and transverse 

diffusion coefficients for distorted models and has concluded that the implication of 

the result is that mixing in the model would be too slow vertically and too fast 

transversely. Nevertheless, it is apparent that diffusion coefficients in physical 

models may differ significantly from the correct values. Despite all shortcomings and 

limitations for physical models, which have been addressed in this chapter, Fischer et 

al. (1979) mentioned that although hydraulic models may be more expensive than 

computer models, they have a very great advantage for some situations, especially 

for three-dimensional density-stratified flows. 

 
6.4   DESIGN OF THE LABORATORY TIDAL BASIN 
 

Although provision of wave protection is the primary objective in the design 

layout of a harbour, knowledge about nature of internal hydraulics governing the 

tidal flushing and circulation in the harbour is of major importance (Nece and 

Falconer, 1989a). In order to study the tidal circulation in small harbours and marinas 

and in particular the model harbour of this study, a tidal basin was designed and 

constructed to carry out distorted-scale hydraulic model studies for varying mean 
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depths, tidal ranges and periods, tidal forms, and commonly used distortion ratios in 

estuarine and coastal studies. Of prime importance for such a laboratory facility is 

the tide generator component, which needs to be able to produce irregular tides to 

simulate complex prototype conditions and spring-neap cycles, as well as the regular 

sinusoidal tides which were used in the current study. 

 
6.4.1   Hydraulic Design of the Laboratory Tidal Basin 
 
 The tidal basin was constructed by bolting 1.00 m  1.00 m pressed fibre glass 

panels together, with the overall tank dimensions being 7.02 m by 4.01 m and with a 

maximum depth of 0.76 m. All joints were water proofed with silicone sealant. 10 

mm thick fibre board laid on the concrete floor of the laboratory, acting as a cushion, 

provided a smooth surface for appropriate transfer of the weight of the tidal basin to 

the floor. Tides were generated by a variable elevation waste weir which was fed by 

a constant-rate water supply diffuser entering the tank through a 6 inch PVC-U pipe. 

Water then was discharged to the tank through a multiport manifold, surrounded by a 

perforated stainless steel cylinder containing two 8 mm thick layers of synthetic fibre 

matting wrapped around the pipe, which acted as a turbulence damping filter 

material. 

 The inlet pipe was full of water throughout the experiments as it was fed by 

another pipe. The discharge through the latter pipe was controlled by a butterfly 

valve. This allowed the water to fill the inlet pipe and maintain a constant hydrostatic 

pressure on the pipe in order to provide a uniform delivery of water through the 

manifold. The inflow was just sufficient to provide a small overflow over the weir 

for the largest tidal range and shortest tidal period of this study. The whole system 

was then fed by a tank, which was situated on the roof and water was pumped by a 

Sulzer experimental pump with maximum speed of 1450 rev/min, total head of 73 ft, 

and maximum power of 70 hp, from a reservoir, which was located in the basement, 

back to the tank. The level of water in this tank, which had a capacity of 

approximately 5 m3, was controlled by an overflow weir and the capacity of the 

reservoir was about 50 m3. A 50 mm thick honeycomb baffle further separated the 

main working area of the basin from the manifold system to produce a uniform 

inflow to the 5.28 m by 4.01 m working plan area of the tank. Another 50 mm thick 

honeycomb baffle was placed near the other end of the basin and at 0.44 m distance 

from it. The space between this honeycomb baffle and the end wall, which
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accommodated another pipe, was designed for future extension of the laboratory in 

order to generate currents. Despite the fact it did not play a role in original design of 

the basin for current study, it was assumed that it partly absorbed the tidal motions 

before they were reflected by the end wall and again on the way back to the basin. 

Although using honeycomb baffles improved the flow state and reduced the 

turbulence, further modifications were needed to provide a uniform flow in the basin. 

These modifications have been demonstrated in Section 6.6. The schematic 

illustration of the experimental layout has been given in figure (6.3). 

Picture (6.1) - General view of the tidal basin and model harbour 

 A bridge across the tank facilitated the accessibility of every location of the 

tidal tank for positioning the measurement instruments and providing the possibility 

of closer observations without disturbance and interruption during the experiments. 

Another bridge across the basin provided supports for accurate positioning and 

holding the velocity meters, wave meters and conductivity probe. Both bridges were 

movable along the basin and the supports on the second bridge were movable across 

the basin which facilitated positioning the probes in every point in the basin. Picture 

(6.1) shows the general view of the tidal basin and model harbour. 

 
6.4.2   Weir Drive Mechanism 
 
 Constant amplitude and constant period model tides were reproduced in the 

tidal tank by means of a vertically oscillating weir, located just inside the tidal tank, 

adjacent and parallel to the inlet pipe. Although the weir gate drive and control 
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system demonstrated herein are different from what has previously been used and 

described in the literature, an overflow weir for tide generation has been used in a 

number of studies: Falconer (1982), Jiang and Falconer (1983), Nece (1984) and 

Nece and Falconer (1989a). Falconer and Chapman (1996) have described the design 

of a similar type of tide generator. 

 A computerised position control servo loop system was used for driving and 

controlling the tide generator, which was designed to have a maximum range of 200 

mm. The system involved using a variable speed DC motor driving jactuators 

equipped with a reduction gear drive, a KBRG-240D four-quadrant motor speed 

controller, position control comparator board, and a Solatron type ACR 100 

displacement transducer with maximum range of 200 mm providing the feedback. 

 The motor was a Baldor 0.75 hp DC type with maximum speed of 1750 

rev/min. Each of the two Duff Norton metric jactuators (CE 2500-275), had a 

capacity of one tonne, 20 mm diameter, 5 mm pitch, standard gear worm ratio of 5:1, 

and 0.5 maximum hp. The drive from the motor was transferred by a shaft to the 

jactuators through universal joints, which gave flexibility to any possible 

misalignment of the drive shaft. Picture (6.2) shows the weir gate and its 

components. The KBRG is a full-wave regenerative-type control, capable of 

operating the DC motor in a bi-directional mode. It provides four-quadrant operation 

which allows forward and reverse torque in both speed directions. 

 The position control board consisted of a comparator circuit with opto-isolator, 

AC signal conditioner for displacement transducer, and an emergency stop relay. A 

digital to analogue output card and an analogue to digital card converted the data to 

be sent and received by the computer. 

The control principle used with the equipment is that a DC voltage was 

produced by the PC, which was proportional to the movement required by the weir. 

The position of the weir at any instant was given by )(tfy  , where y is the weir 

position and t is time, and the velocity of the weir was given by the differential of 

this expression with respect to time. The command signal was updated in the step 

increments of 0.2 sec. This proceeded by receiving the command signal form the 

system controller software. The voltage from the PC was used as the command 

signal for input for comparator circuit. A second voltage for input to the comparator 

circuit was derived from the displacement transducer and its signal conditioner.
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(a) Weir gate and manifold area 

(b) Weir gate in operation 

(c) Weir gate drive mechanism 

(d) Universal joint (e) Safety switches 

Picture (6.2) - Weir gate, drive and components 
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This signal was proportional to the position of the weir gate and served as the 

feedback input to the comparator circuit. The comparator circuit then produced an 

output, which was proportional to difference between the command signal and 

feedback signal. This signal after suitable amplification was fed to the input of the 

KBRG velocity controller, which controlled the speed and direction of rotation of the 

DC motor and hence the position of the actuators. The output voltage from the 

comparator circuit must be in the range -10<V<10, where the absolute value of 10 

volts gives the maximum motor speed in either directions. 

 The Rossi Motoriduttori reduction gear drive had a scaling factor equal to 12.7. 

So the drive from the motor was scaled by 12.7 and transferred to the jactuators 

through the shaft, which in turn drove the weir gate. One turn of worm gear actuators 

gave one millimetre rise of lifting screw. Thus the harmonic motion of the weir 

produced an oscillatory water surface within the tank which gave rise to very nearly 

sinusoidal model tides. Full details of measurement procedures and determination of 

time relationships between weir crest elevation and tidal curve phase angles have 

been demonstrated in Chapter Seven. 

 
6.4.2.1   Weir Gate Servo Loop Control Mechanism 
 
 The comparator circuit, which is a servo loop controller, compares the 

command signal received from the computer with the feedback signal from the 

transducer, and provides the appropriate voltage. This voltage is the required voltage 

to compensate the difference between the command signal (i.e. expected weir gate 

position), and the feedback signal (i.e. actual weir gate position), in each interval of 

updating the command signal. The output voltage from comparator circuit further is 

amplified by a gain amplifier, which is tuned to provide the right proportional gain 

and then it is further passed through an opto-isolator circuit, before it is received by 

the full-wave four-quadrant motor drive. The KBRG motor drive then controls the 

speed of the motor dependent upon the received voltage. The Tacho generator has a 

velocity feed back to the speed controller to ensure the accuracy and efficiency of the 

motor drive controller. Safety switches override the control system and shut down 

the KBRG controller and consequently stop the weir gate if the weir gate exceeds 

and overshoots the designed maximum range of movements either side of the mean 

level position. The command signal is generated digitally in the computer. A digital 

to analogue card converts the command signal before it is sent to the comparator



Physical Model Studies - Design and Operation of the Laboratory Tidal Basin and Model … 199

 

Computer

A to D
Convertor

D to A
Convertor

Hand-Held
Controller

AC Signal
Conditioner

Comparator
Circuit

Opto-Isolator
Circuit

Emergency
Stop Relay

Full-Wave
Four Quadrant
Motor Drive
KBRG-240D

DC
Motor

Tacho

 Generator
Gearbox

Worm
Gear

ACtuator

Emergency Stop
Limit Switches

Weir Gate

D
isp

la
ce

m
en

t T
ra

ns
du

ce
r

Mechanical Connection

Electrical Connection

Position Control
Board

Figure 6.4 - Schematic diagram of weir gate control system



Physical Model Studies - Design and Operation of the Laboratory Tidal Basin and Model … 200

circuit. The feedback from transducer received by the AC signal conditioner is also 

passed for monitoring purposes to the PC through an analogue to digital card. This 

feedback signal provides the information of actual weir gate elevation and, together 

with the command signal, is displayed on the monitor and is recorded through a data-

logging software. During the experiments the water elevation and conductivity data 

were also transferred to the PC through the analogue to digital card, where they were 

displayed and recorded together with the weir gate elevation data. Data-logging 

systems are described in Chapter Seven. Figure (6.4) illustrates the schematic 

diagram of weir gate control system. 

 The tidal characteristics are fed into the PC by specifying low and high weir 

gate level, corresponding to the low and high water level, and period. A cyclic 

variation on the weir movement to simulate the effect of a spring-neap cycle can 

easily be imposed and more complex tidal situations can be modelled by establishing 

a suitable function or by specifying a table of discrete values corresponding to the 

step intervals over the tidal cycle. 

 
6.5   DESIGN OF THE MODEL HARBOUR 
 

The model tidal ranges, mean water depths and planform area had scaled 

dimensions typical of many existing small harbours in Puget Sound, Washington, 

USA, with the idealised prototype harbour having dimensions and experiencing tidal 

conditions similar to many of those harbours sited in the region. Basins considered 

are essentially enclosed, relatively shallow, typically protected on the seaward side 

by breakwaters and have relatively small navigation entrances and have no 

significant fresh water inflow, so that tidal currents are dictated primarily by entrance 

configuration and basin planform geometry.  

The prototype harbour was therefore assumed to have a planform dimension of 

432 m  432 m, a single asymmetric entrance of 48 m width, horizontal bottom and 

vertical walls, varying mean water depth of 6-10 m, and was assumed to experience 

repetitive sinusoidal, semi-diurnal tides of period 12.4 hr and range of 4.0 m. The 

laboratory tests outlined herein utilised vertically distorted models with a 10:1 and 

20:1 distortion ratio and both homogenous and density stratified fluids. As it was 

mentioned in previous sections of this chapter such models do not scale diffusion-

dispersion processes, however, the assumption inherently made in this study is that 

the dominant mode of water exchange is through advective transport. This 
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assumption has been made in a number of specific model studies of the tidal 

exchange characteristics in various harbour investigations, particularly where tidal 

currents have been known to govern the flow field features (Nece and Richey, 1972). 

Numerical model simulations of similar prototype conditions have indicated that 

diffusion-dispersion processes are small in comparison with advective transport for 

such harbour dimensions and tidal conditions (Falconer, 1980b).  

Nece (1992) has mentioned that roughness-scaling requirements for these types 

of harbours can be relaxed. As marina basins are small and internal flows depend 

almost entirely on the planform geometry and bathymetry of the harbour, bottom 

roughness scaling essential to larger estuary models is not needed. Because the tidal 

currents are indeed quite strong in the basins modelled, it is safe to ignore Coriolis as 

well as wind and wave effects, and because the basins are relatively short and deep, 

the absence of a friction calibration is not viewed as a major concern (Nece et al, 

1976), so the effects of wind action, short period surface waves and the earth's 

rotation have also been neglected in the laboratory studies. Similar laboratory models 

had been used in a number of studies conducted by Falconer and Mardapitta-

Hadjipandeli (1987), Nece and Falconer (1989b), Falconer and Yu (1991) and 

Falconer and Li (1994).  

 The idealised rectangular model harbour was constructed on a level platform 

covering the full working area of the basin. The harbour platform was constructed of 

1/2 inch thick plywood. The harbour constructed of 1/2 inch thick plywood, had a 

horizontal base, four vertical 330 mm high sidewalls and a single asymmetric 

entrance. The entrance barriers were made of PVC plastic, which were in varying 

heights ranging from 60 to 200 mm. In each set of the experiments, barriers were 

placed and sealed at the entrance. The model harbour was positioned at one side of 

the tidal tank and received long-shore currents, with the harbour bed being raised 

above the floor of the tidal tank to give the correct depth in the model at the mean 

water level. The harbour platform was screwed to aluminium channel support beams 

which were placed along the basin. The beams were raised to the elevation needed 

for providing correct mean depth in model by using height adjustment screws, which 

were bolted to them, and rectangular box levelling supports. The breakwater was 

extended along the whole length of the basin and to the honeycomb baffles. Picture 

(6.3) shows the location of the harbour in the tidal basin. 
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As has been discussed in this chapter, in modelling most free surface flows, the 

flow Reynolds number (representing proper viscosity scaling) and the Froude 

number (representing gravity scaling) cannot be satisfied simultaneously for coastal 

and estuarine models. The usual practice to overcome this dilemma is to ensure that 

the model-scale flow, like the full-scale flow, is fully turbulent. This requirement 

implies that viscosity does not influence the results, and it thereby relaxes strict 

adherence to Reynolds number similitude and therefore a central similitude 

requirement is equality of Froude number in model and prototype, because waves 

and tidally induced circulations in coastal regions, harbours, and estuaries are 

dominated by gravity and inertia forces. 

 Using horizontal and vertical length scales of 400 and 40 respectively, for the 

distortion ratio of 10 and, 400 and 20 for the distortion ratio of 20, the scaled 

laboratory model harbour had a planform dimension of 1080 mm   1080 mm, mean 

depths of 150, 200 and 250 mm for various test arrangements, and an entrance width 

of 120 mm. Idealised model harbour dimensions are summarised in Table (6.2). 

 

Picture (6.3) - Model harbour location in the tidal basin 
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Table (6.2) - Model harbour dimensions 

Model 

Type 

Horizontal 

Scale  

rX  

Vertical 

Scale  

rZ  

Model 

Length 

(mm) 

Model 

Width 

(mm) 

Entrance 

Width 

(mm) 

Mean 

Depth 

(mm) 

1 
400 

40 
1080 1080 120 

150, 250 

2 20 200 

 

Likewise, using a Froude law scaling relationship for dynamic similarity, the 

corresponding velocity and time scales for the distortion ratio of 10 were 6.325 and 

63.25 respectively, and 4.472 and 89.44 for the distortion ratio of 20 in the same 

order, resulting in a model tidal period of 708 sec and 500 sec and ranges of 100 mm 

and 200 mm for the distortion ratios of 10 and 20 respectively. These figures have 

been tabulated in Table (6.3) for convenience and further reference. 

 Dimensions and geometric features of the laboratory model harbour also had 

been previously observed by numerical modelling considerations and by the 

objective of fitting several different grid sizes perfectly into square harbour shape 

and across the asymmetric entrance. Numerical model studies of the laboratory basin 

were undertaken using three different grid sizes, including 12, 6 and 4 cm (Falconer 

and Yu, 1991). 

Table (6.3) - Summary of the scale ratios employed for the laboratory tests 

Model 

Type 

 

Horizontal 

scale 

rX  

Vertical 

scale 

rZ  

Distortion 

ratio 

G  

Tidal 

Range 

(mm) 

Velocity 

Scale 

rV  

Time Scale 

 

rt  

Model 

period (sec) 

T 

1 400 40 10 100 6.325 63.25 708 

2 400 20 20 200 4.472 89.44 500 
 

 
6.6   OPERATION AND SET-UP OF THE TIDAL BASIN 
 
 To obtain an indication of the path-lines in the basin, a simple visual method 

was used. Initially the tidal generator was run for two complete tidal cycles so that a 

tidally averaged steady circulation developed. Plastic fishing floats, weighted at the 

bottom to maintain a vertical orientation, were used and individual floats could be 

inserted at any location and at any time of a tidal cycle. Plastic fishing floats inserted 
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at the same time at three points which divided the width of the basin into four equal 

parts. Floats were tracked visually and remaining in the same pathline and moving 

along with the same speed as other floats was a confirmation of uniform flow, and a 

verification that flows were only in the longitudinal direction of the basin and no 

cross flows were influencing the direction and speed of the movements of floats. It 

should be mentioned that here the less restricted definition of uniform flow applies, 

according to which flow is said to be uniform if it does not change in the direction of 

the flow (Henderson, 1966). 

 To obtain the best uniform delivery of water through the original manifold (i.e. 

the unwrapped pipe with equally distributed holes along the pipe in three rows; top, 

bottom, and the side facing the working area of the basin), different sets of 

configuration adjustment of open and plugged holes were examined by using plastic 

plugs. The measure was obtaining the best possible uniform flow in the basin using 

the visual method described herein. By using the visual method and dye injection 

two major circulations were observed, one in the working area of the basin 

circulating the basin in anti-clockwise direction and the other one in the manifold 

area also with an anti-clockwise circulation pattern. Figure (6.5) illustrates these 

circulations and relatively still zones. The original non-uniform delivery of water 

through manifold was assumed to be attributed to few reasons such as different 

discharge coefficients of each hole which could also accordingly affect the unequal 

head loss rate through the pipe. The other reason was assumed to be the possible very 

little mis-alignment of the pipe due to displacements caused during fitting and gluing 

the pipe to the inlet pipe and the end wall of the manifold area. However, because the 

main goal of these tests were to ensure a uniform delivery of flow in the basin, it did 

not seem necessary to confirm and measure the degree of influence of the reasons 

mentioned, as long as the modifications applied, provided the undisturbed uniform 

flow in the basin. The best set of the configuration for the plugs was confirmed by 

the visual method and by measuring the flow velocity at 9 points which divided the 

basin area into 16 equal squares (Fig. 6.5). This configuration was maintained and 

the pipe was wrapped with 2 layers of 8 mm thick synthetic fibre, which as a filter 

material damped the disturbance of water. The whole pipe was then wrapped by 

stainless steel perforated sheet forming a cylinder around the pipe. This modification 

together with using the honeycomb baffles provided a reasonable flow in the basin. 

Nevertheless the circulations in the working and manifold area, with weaker
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(a) Circulation pattern in the tidal basin and manifold area in flood tide

Figure 6.5 - Flow patterns in the tidal basin before modifications

Honeycomb
baffle

Weir gate
Manifold

Honeycomb baffle

(b) Circulation pattern in the tidal basin and manifold area in ebb tide

Dimensions are in millimetres

7,020

4,
01

0

1,250 2,640 490
7,020

4,
01

0

2,640

4901,250 2,640

1080 mm x 1080 mm
model harbour with
330 mm side walls

2,
88

0
2,

88
0

=
=

=
=

=
=

=
=

= = =

2,640

200 mm x 600 mm
drain opening 9 points of velocity 

measurement

=

= = = =



Physical Model Studies - Design and Operation of the Laboratory Tidal Basin and Model … 206

circulation however, were observable. The circulation in the manifold area was also 

assumed to be partly due to a vertical disturbance acting across the depth and also the 

interaction of flow with the expected nearly still water below the platform of the 

harbour. 

 The solution to improve the flow in the basin involved using two 1 mm thick 

stainless steel plates (Fig. 6.3), which were placed at the beginning and end side of 

the working area, adjacent to the honeycomb baffles, across the basin and just below 

the elevation of main platform of the basin (i.e. harbour platform which was raised to 

provide the correct depth of mean water). This stopped the inflow to interact with the 

nearly still water under the platform and reduced the vertical disturbances caused by 

this interaction.  

 The other modification was using a baffle plate across the manifold area 

between the honeycomb baffle and inlet pipe, which was movable along this distance 

with the closest possible distance from honeycomb baffle equal to 175 mm and the 

farthest equal to 350 mm. In this study the nearest position to the honeycomb baffle 

was found to be the most efficient. The purpose of using the baffle plate was to stop 

the interaction of water circumnavigating the manifold with the flow in the working 

area of the basin. The baffle plate kept the possible disturbance of the water in the 

manifold area behind the plate, and water flowed underneath the plate, to push the 

ambient water between the plate and honeycomb baffle to the working area of the 

basin. This provided an undisturbed uniform flow in the working area of the basin, 

which formed the designed oscillatory water surface within the tank. The use of the 

baffle plate improved the flow state significantly. After the modifications were made, 

in the visual test, fishing floats moved with the flow in their original path-line in 

flood and ebb tides and no misalignment was observed. Picture (6.4) shows the baffle 

plate. 

 Furthermore to obtain an indication of the depth mean velocity fields in the 

basin and use a more accurate measure to examine the flow pattern, velocity was 

measured at 9 points in the basin (Fig. 6.5). The results showed that the velocities 

had the same magnitude for similarly located points along the basin and flow 

direction (i.e. the points with equal distance from the boundaries; upstream and 

downstream). The velocities had very low magnitudes in the range of absolute 

maximum value of 1-1.5 cm/s in the direction of flow, and the cross-flow velocity 

magnitudes were very nearly equal to zero. The entrance of the harbour was closed 
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and sealed during these tests, so that no disturbance was caused by the existence of 

the harbour and water flowed along the sidewalls and the breakwater. 

Picture (6.4) - Baffle plate 

 
6.7   SUMMARY 
 
 Aimed primarily at obtaining laboratory data to verify and enhance the 

predictive capability of the numerical model, the hydraulic model harbour was sized 

so that it also was considered, to some extent and with limitations, as a process 

physical model using conventional Froude law scaling with length ratios within 

ranges commonly used in practice in typically distorted models. The design of the 

laboratory tidal basin and model harbour was explained, and the modifications made 

to the original design to improve the flow in the basin were demonstrated. The results 

from visual method and velocity measurements confirmed the existence of a uniform 

flow in the basin, and provided a good level of confidence to conduct the tests in the 

model harbour. 
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PHYSICAL MODEL STUDIES 

INSTRUMENTATION, TEST ARRANGEMENTS, 

DATA ACQUISITION AND SIGNAL PROCESSING 

 

 

 

"The success of any physical investigation depends on the judicious selection of what 

is to be observed as of primary importance, combined with a voluntary abstraction of 

the mind from those features which, however attractive they may appear, we are not 

yet sufficiently advanced in science to investigate with profit." 

J. Clerk Maxwell (Langhaar, 1951) 

 

7.1   INTRODUCTION 

 

Velocity components in three directions, water surface elevation and salinity 

have been the elements of the data acquisition for the laboratory tests in the present 

study.  

Instantaneous values of velocity components in three directions at pre-set 

locations and depths have been measured by Nortek acoustic Doppler velocimeters 

(ADVs; ADVLab). HR Wallingford wave probe monitors were used for the 

measurement of instantaneous water levels at the water surface of the same locations 

as velocity measurements were undertaken. For the data of the salinity, the 

instantaneous conductivity was measured by a Jenway conductivity meter, model 

4320, at preset locations and depths. 
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The ADV velocity meters, wave probe monitors and conductivity meter have 

been described and the accuracy of the ADVs is discussed in some detail followed by 

a review on the sources of the noise and spikes in ADVs. The calibration procedure 

includes the instrument calibration and the calibration of the recorded readings which 

has been presented for each instrument. 

Tests have been conducted for fresh and saline water conditions to investigate 

the hydrodynamics of the harbour under tidal circulations and the influence of 

salinity and stratification on the flow characteristics. It was thought that the 

hydrodynamics of the harbour would also be affected by the presence of a barrier in 

the entrance resembling a barrage. Therefore a variety of barrier heights were applied 

and the experiments were undertaken for each set. The influence of the distortion 

ratio on the hydrodynamics, circulation and the stratification in the model harbour 

was investigated by the simulation of two tidal ranges corresponding to different 

distortion ratios. 

The software for ADVs provided by Nortek was used for measuring the 

velocity components. For measuring the water surface elevation and conductivity, 

GENIE data acquisition and control software was adapted and used. 

The data collected by the ADVs and the conductivity meter were significantly 

noisy. Therefore, a signal-processing procedure was carried out to minimise the noise 

in the data. The literature for denoising and despiking the ADV data has been 

reviewed in some detail. For despiking and denoising the velocity data a linear 

correlation algorithm was established, whereby a Wiener filter was designed and 

adapted for the temporal correlation of the signals. For the conductivity a moving 

average procedure was carried out as the data did not suffer from spikes and 

exhibited almost a constant band of noisy fluctuations. The water elevation time 

series showed reasonably clean signal and no filtering procedure was carried out. 

As in many experimental programmes, the number of points to be measured 

and the duration of the experiments are chosen with the economic considerations, an 

interpolation method for producing the missing data has been provided. This method 

may be deployed for increasing the sampling frequency and can also be extended to 

produce data for the spatial domain (for the locations which are not included in the 

measurements). Moreover, it may be incorporated for smoothing the numerical 

simulation outputs as a post-processing tool. 
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7.2   INSTRUMENTATION 
 

The instruments used for the current research work are described in the 

following sections. Picture (7.1) shows the instruments in operation. 

 

7.2.1   ADV Velocity-meter 
 

The ADV is a remote-sensing, three-dimensional velocity sensor, originally 

developed and tested for use in physical model facilities (Kraus et al., 1994). Its 

operation is based on the Doppler shift effect. Velocimeters use acoustic sensing 

techniques to measure flow in a remote sampling volume. The measured flow is 

practically undisturbed by the presence of the probe.  

A Velocimeter consists of three modules: the measuring probe, the 

conditioning module with cable (Pic. 7.2a), and the processing module. Picture (7.2) 

shows the three types of the ADV velocimeters used in the present study. The down-

looking probe is suitable for most situations with the exception of locations near the 

surface, the side-looking probe is capable of measuring the velocities near the walls, 

and the up-looking probe facilitates measuring the velocity of the locations near the 

water surface.  

The acoustic sensor consists of one transmit-transducer and three receive-

transducers (Pic. 7.2e). The three 10-MHz receive-transducers are mounted on short 

arms on a circle around the 10-MHz transmit-transducer at 120° azimuth intervals. 

The sampling volume is located away from the sensor to provide undisturbed 

measurements. The acoustic beams are slanted at 30° from the axis of the transmit-

transducer so that the receive-beams intercept the transmit beam at a point located at 

5-6 cm below the sensor, which ensures nonintrusive flow measurements. The exact 

position is encoded in a probe-specific configuration file that is read by the data 

acquisition software. The software automatically uses this data in reporting the 

distance from the sampling volume to the nearest boundary (Nortek AS, 1997a). The 

interception of these four beams, together with the width of the transmit pulse, define 

the sampling volume. This volume is 3-9 mm long and approximately 6 mm in 

diameter. All three receivers must be submerged to ensure correct three-dimensional 

velocity measurements. The high-frequency cable is connected to the ADV 

processor, which consists of a PC-card. 
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    (a) - Three ADVs, wave probe monitor and conductivity meter in operation 

                              

(b) - Saline water flooding out in the ebb tide 

                              

(c) - From the left: 3D down-looking, side-looking and up-looking ADVs 

                                               

               (d) - Wave probe                 (e) - Conductivity meter probe                       (f) - ADV probes 

 

Picture (7.1) - 3D ADV velocimeters, wave probe monitor and conductivity-meter 
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(a) - Parts of a velocimeter probe. From left to right: cable, conditioning module, measuring probe 

   

    (b) - Down-looking probe      (c) - Side-looking probe                 (d) - Up-looking probe 

                                                                       

                                         (e) - Details of a standard down-looking probe 

Picture (7.2) - 3D ADV probes: (a) - Parts of a probe, (b) - Down-looking probe,    

(c) - Side-looking probe, (d) - Up-looking probe, (e) - Details of a 

down-looking probe 

The performance characteristics of ADVs according to Nortek AS (1997a) are as 

follows: 

1. Acoustic frequency: 10 MHz; 

2. Velocity range: ±3, 10, 30, 100, or ±250 cm/s, which is a nominal value as the 

exact maximum velocity is different along the axis normal to the transmitting 

transducer and the plane parallel to its face. 

3. Velocity resolution: 0.1 mm/s; 

Transmit 

transducer Receive 

transducer 

Sampling 

volume 
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4. Velocity bias: ±0.5%, with no measurable zero-offset in the horizontal 

direction; 

5. Random noise: approximately 1% of velocity range at 25 Hz; 

6. Sample reporting rate: programmable from 0.1 to 25 Hz; 

7. Sampling volume: less than 0.25 cm
3
; 

8. Minimum distance from sampling volume to boundary: 5 mm. Positioning the 

probe in the vicinity of the surface or a solid boundary is within an accuracy of 

2-3 mm. 

The nominal velocity was set to ±3 cm/s. The maximum vertical velocity, Vz, 

for a down-looking probe for example, was ±10 cm/s towards the transmit-transducer 

and ±30 cm/s in the plane perpendicular to the axis of the transducer (horizontal 

velocity components for a down-looking probe; Vx and Vy). 

According to the Nortek AS (1997a) ADV specifications, the statistical 

uncertainty of the velocity measurements due to the Doppler noise is approximately 

proportional to the maximum velocity range that the ADV can measure. It is 

recommended that the velocity range of the ADV be set to the minimum value that 

covers the range of velocities expected in a given flow.  

A velocimeter transmits acoustic pings into the water along the transmit-beam, 

at a high rate, typically many hundreds per second. The ping rate is fixed within each 

velocimeter according to its acoustic frequency and velocity range. The sampling 

rate, or the rate at which the velocimeter reports data, is much smaller than the ping 

rate to allow each measurement to average multiple pings. As the pulses propagate 

through the water column, a fraction of the acoustic energy is scattered back by small 

particles suspended in the water. The phase data from successive coherent acoustic 

returns are converted into velocity estimates using a pulse-pair processing technique 

(Miller and Rochwarger, 1972). The phase data are then converted into speed using 

the Doppler relation. The scattering strength is determined by the concentration and 

size of the particles suspended in the water. In natural bodies of water the natural 

occurrence of particles is sufficient for proper operation. In model tanks with running 

water microscopic bubbles in the water column tend to act as natural seeding. In 

clean, quiescent water, seeding materials must be added to ensure sufficient 

scattering strength. Recommended seeding level is 10-50 grams per cubic metre 

(Nortek AS, 1997a). Non-soluble seeding material from Nortek was used for the 

present experiments. 
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7.2.1.1   Accuracy of the ADV Velocimeters 

 

Because positive phase angles greater than 180° cannot be distinguished from 

negative phase angles between –180° and 0°, if the phase angle is greater than 180° it 

will be seen as a negative phase angle between –180° and 0°, and will be incorrectly 

interpreted as a negative velocity. Similarly, phase angles less than –180° are 

interpreted as positive phase angles and positive velocities. As a result, when the 

flow velocity approaches the limits of the measurement range, it is possible for the 

probe to report velocities that alternate from large positive to large negative values 

and vice-versa. This behaviour is known as aliasing, and erroneous velocities 

reported by the probe when operating in this range are called velocity ambiguities 

(Wahl, 2000). 

Velocity ambiguities sometimes occur in two situations where they are not 

expected. Firstly, large velocity components directed towards or away from the 

transmitting transducer of an ADV can cause over-ranging even when the total 

velocity magnitude is well below the nominal range setting of the probe. This is due 

to the geometric arrangement of the transmitting and receiving acoustic transducers, 

which causes the velocity range normal to the transmitting transducer face to be 

about one third of the range in the plane parallel to the transducer face. The stated 

nominal range setting is most closely associated with flow in the plane parallel to the 

transmitting transducer face. Secondly, the range setting of an ADV probe can 

sometimes change during the boundary-adjustment phase of configuring the probe at 

the start of each measurement. This occurs when the probe detects nearby acoustic 

boundaries that might cause interference with operation of the probe. To overcome 

this interference, the lag-times of the acoustic signals transmitted by the ADV are 

reduced, causing a reduction of the velocity range that may lead to over-ranging of 

the probe (Wahl, 2000). 

Voulgaris and Trowbridge (1998) evaluated the accuracy of the acoustic 

Doppler velocimeter. Simultaneous measurements of open-channel flow were 

undertaken in a 17-metre flume using an ADV and a laser Doppler velocimeter. Flow 

velocity records obtained by both instruments were used for estimating the true flow 

characteristics and the noise variances encountered during the experiments. They 

concluded that the ADV is suitable for accurate measurements of mean flow even at 

positions close to the boundary. 
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To validate the use of acoustic Doppler velocimeters (ADVs) for the 

measurement of turbulent flows, Khorsandi et al. (2012) conducted experiments in an 

axisymmetric turbulent jet and in approximately homogenous isotropic turbulence 

with zero mean flow. The experiments showed that the horizontal RMS velocities 

measured by the ADV were overestimated compared to flying hot-film anemometry 

measurements and the accepted values in the literature. However, the vertical 

component of the RMS velocity agreed well with those of other studies. The results 

also showed no clear relationship between the Doppler noise and the mean flow. In 

addition, subtracting the Doppler noise, measured for a given mean velocity, from 

the measured RMS velocities, at the same mean velocity, did not significantly 

decrease the RMS velocities. Snyder and Castro (1999) verified the usability of the 

ADV in a stratified tank. 

The errors encountered may be combinations of bias and short-term 

uncertainty, which have different ramifications for the results of data collection: 

 Bias is the error that remains after taking long-term averages. 

 Short-term uncertainty is the random error of individual measurements, which 

can be removed by averaging. 

Velocimeter’s long-term accuracy depends on the geometry of its probes and the 

stability of its internal oscillators. A factory-calibrated ADV velocimeter should have 

a scale-factor bias that is less than 1% of the measured velocity. The analysis 

conducted by Voulgaris and Trowbridge (1998) showed that the ADV sensor can 

measure mean velocity within 1% of the estimated true value. Mean velocities can be 

measured at distances less than 1 cm from the boundary. A velocimeter will retain 

this accuracy as long as its probe remains unbent. Bias increases near the extremes of 

velocity range because velocities that would be measured beyond the extremes wrap 

around to the opposite end of the range. This bias can be avoided by keeping the 

maximum observed speed towards the middle of the maximum range. 

Small short-term uncertainty comes from collecting acoustic echoes with 

exceedingly high correlation. However, because sources of decorrelation can be both 

internal and external, noise level of a probe is not entirely intrinsic to the probe itself, 

but it depends also on the environment in which it is measuring. Primary external 

sources of decorrelation include mean speed, turbulence and non-uniformity in the 

scatterers. 
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7.2.1.2   Sources of the Noise and Spikes 
 

Voulgaris and Trowbridge (1998) divided the source of the noise in ADV velocity 

records into three categories: 

1. Sampling errors related to the electronic circuitry of the sensor and the 

accuracy of the ADV’s analogue to digital board in resolving the changes in 

phase. This error is independent of the flow and depends on the pulse length, 

which is set by the velocity range of the ADV. The error in flow measurements 

due to this noise term depends on sensor velocity range setting and ranges from 

mm/s.0.3to95.0   

2. Doppler noise, which is an intrinsic feature of all Doppler backscatter systems 

and is flow-related. This noise dominates at rapid flows and is caused by 

turbulence and particle scattering, beam divergence, and the finite residence 

time of the particles in the sampling volume. 

3. The error attributable to mean velocity gradients in the sampling volume. This 

error becomes important in flows with sharp velocity gradients, such as 

boundary layers. 

The most significant source of noise in ADV measurements is the Doppler 

noise, which is inherent to the technique (Garbini et al., 1982; Lohrmann et al., 

1994). Doppler noise is white noise, which does not influence the mean velocity. 

Hurther and Lemmin (2001) characterised the Doppler noise as having a flat 

spectrum over the frequency domain, unbiased and therefore not affecting the mean 

velocity, statistically independent of the true velocity fluctuations and true Doppler 

frequency, and having statistically independent noise from one receiver to the next. 

The main source of Doppler noise is the random target distribution in the 

sampling volume, which induces an instantaneous Lagrangian deviation of the 

target’s position from the mean position determined by the spatially averaged 

velocity. This creates instantaneous random Doppler-phase noise that is added to the 

spatially averaged Doppler phase (Doroudian et al., 2010). 

Nikora and Goring (1998) concluded that: 

1. Both the spectra and the probability distributions indicate that as a first 

approximation, the Doppler noise is Gaussian white noise; 

2. The horizontal noise components are both approximately of the same energy 

level and have significantly more energy than the vertical component; 
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3. The velocity range has a significant effect on the noise; 

4. The cross-correlation functions between noise components indicate that the 

cross-correlations are absolute maximum at zero time-lag. If the orthogonal 

noise components were independent, one would expect the cross-correlations 

to be zero. In fact, they are not independent but are linear functions of the three 

direct, along-beam, noise components. 

Assuming the correlation between the velocity and the noise to be zero, Nikora 

and Goring (1998) subtracted the measured noise from the measured velocity to 

estimate the true velocity. Lemmin and Lhermitte (1999) challenged this method, 

remarking that the Doppler noise should be an increasing function of the mean 

velocity of the flow. In contrast to Doppler noise, random spikes are not inherent to 

the measurement technique and occur mostly in poor measurement environments 

(Doroudian et al., 2010). 

To study the effect of the sampling frequency of the ADV on the turbulence 

statistics, McLelland and Nicholas (2000) estimated the contribution of noise to the 

velocity variance at various sampling frequencies at different mean velocities and 

depths in a channel flow. They showed that although higher sampling frequencies 

can characterise a larger range of turbulence frequencies, the total noise in the 

velocity variance increases at higher sampling rates. 

In many velocimeter measurements, velocity spikes are the dominant source of 

error. Spikes can be disproportionate sources of error because they can have large 

values compared with the mean velocity. Large spikes can be removed from the data, 

but it appears that even despiked data have higher noise levels than comparable data 

without spikes. The source for spikes is not well understood. Spikes may occur as a 

result of the environment itself, but it is clear that the velocimeter hardware and 

algorithms are a primary source of spikes. 

Wahl (2003) considered that spikes in ADV time series may be caused by 

many factors, including high turbulence intensities, aerated flows that have 

undesirable acoustic properties, and phase difference ambiguities that occur when 

velocities exceed the upper limits of ADV probe velocity ranges. Spikes may also be 

introduced into the data when obstacles such as solid particles or air bubbles block 

the sound path between the emitter and the receiver (Doroudian et al., 2010). 

Parsheh et al. (2010) showed that power spectral density is significantly 

susceptible to the presence of spikes, and an improvement in the quality of the 
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contaminated time series is directly reflected in the spectra. By removing the spikes 

they recovered the low-frequency region of the spectra which is the region with the 

highest energy content. The high-frequency region cannot be accurately recovered 

due to the steps introduced in the time series by the application of the last valid data 

point for signal reconstruction. Yin et al. (2001) considered turbulent velocity 

fluctuations as a random process, described with a Gaussian probability distribution. 

 

7.2.2   Wave Probe Monitors 
 

The water surface elevation was measured in the model harbour using HR 

Wallingford wave probe monitors. The instrument works on the principle of 

measuring the current flowing in an immersed probe, which consists of a pair of 

parallel stainless steel wires, 1.5 mm in diameter and spaced 12.5 mm apart. The 

maximum measurable wave height for the standard shallow water probe of 300 mm 

long is 280 mm (HR Wallingford, 1994). The probe is energised with a high 

frequency square wave voltage to avoid polarisation effects at the wire surfaces. The 

wires dip into the water and the current that flows between them is sensed by an 

electronic circuit providing an output voltage proportional to the instantaneous depth 

of immersion, i.e. wave height, and can be used to drive a high speed chart recorder 

and/or a data logger. The voltage output range is ±10 volts. However, the measured 

voltage is alternating and so the signal is fed to a precision rectifier and envelope 

detection circuit to produce a D.C. voltage which is proportional to the wave height. 

The associated wave monitor module carries the energisation and sensing circuits 

and means for compensating for the resistance of the probe connecting cable. It is 

powered from a separate power supply module, A.C. mains operated. 

 

7.2.3   Conductivity Meter 
 

A model 4320 conductivity meter from Jenway was used to measure the 

conductivity of saline water in the model harbour. The instrument is a laboratory unit 

available with the graphics mode liquid crystal display which enables a menu-based 

approach to each analysis and the selection of the relevant operating mode. The 

conductivity meter incorporates analogue and digital interfacing capability. A 

conductivity electrode enables the measurements.  
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The specifications of the conductivity meter are as follows (Jenway Ltd., 

1996): 

Conductivity: 

 Ranges: 0 to 19.99 S, 0 to 1.999 S, 

    0 to 199.9 mS, 0 to 19.99 mS, 0 to 1.999 mS, 

    0 to 199.9 µS, 0 to 19.99 µS, 0 to 1.999 µS;  

 Resolution: 0.01 S/0.001 S, 

 0.1 mS/0.01 mS/0.001 mS, 

0.1 µS/0.01 µS, 

corresponding to the first, second and third set of ranges; 

 Accuracy: ±0.5% ±2 digits. 

1. Salinity: 

  Range: 0 to 99.9; 

 Resolution: 0.1; 

 Accuracy: ±1 of reading for the range of 0 to 35, and ±3 of reading for the 

range of 35 to 99.9. 

2. Temperature: 

  Range: -10 to +105 °C; 

 Resolution: 0.1 °C; 

 Accuracy: ±0.5 °C. 

 

7.3   CALIBRATION 
 

The calibration of the experimental instruments and the data logger readings 

are presented in separate sections for each instrument and according to the 

corresponding data acquisition system utilised. 

 

7.3.1   ADV Velocimeters 
 

Velocimeter calibration factors are determined by the speed of sound and by 

the angles between the transmit- and receive-transducers. To ensure that the correct 

speed of sound is used, the water temperature and salinity concentration values were 

entered in the data acquisition software. The calibration angles are measured at the 

factory and need only be changed when a new probe is installed. Maintenance 

calibration is not required unless the probe is physically damaged. 
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7.3.2   Wave Probe Monitors 
 

The output voltage is calibrated in terms of wave height by varying the depth 

of immersion of the probe in still water by a measured amount, and noting the 

change in output signal. Once the calibration has been set and established, the only 

further adjustment needed may be to trim the set datum. The conductivity of the 

water changes with temperature (2% per 1°C approximately), and it is also dependent 

on the concentration of dissolved salts in the hydraulic model.  The wave probe 

monitors used in the present study were designed for fresh water only. 

For the calibration of the wave probe monitors the aforementioned procedure 

was undertaken. For obtaining the actual water elevation, the calibration was 

performed to adjust the water elevation with the readings from the wave monitor data 

logger. The final values were calculated, programmed and graphed against the 

readings of data logger with a correlation of R
2
 =1. This procedure was repeated for 

each set of the measurements. 

 

7.3.3   Conductivity Meter 
 

The Model 4320 conductivity meter offers three methods of calibration 

determined by the level of accuracy required as follows (Jenway Ltd., 1996): 

 With known cell constant; 

 With standard solution; 

 With standard solutions. 

While the standard solution method provides a higher level of accuracy than the 

known cell constant method, the standard solutions method provides the highest level 

of confidence for the accuracy. For the present studies the calibration has been 

performed using the standard solution method. 0.745 grams of dried A.R. grade 

potassium chloride (KCl), dissolved in 1 litre deionised water was used for the 

calibration, which produces a 0.01N solution with a conductivity of 1413µS at 25°C. 

Firstly by adding specific amounts of salt to the water taken from the basin, the 

increased volume of saline water and the weight of samples were measured. The 

concentration of salt (g/l), with the consideration of the initial salinity of the basin, 

was then calculated and graphed against the amount of the added salt to the water 

samples at 25°C (Fig. 7.1). The density of the saline water against the concentration 

was also calculated and is graphed in figure (7.2). 
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The conductivity and salt content readings for calibration solution were 1.413 

mS and 0.8 g/l respectively. Measurements were performed on the salt from Fisher 

Scientific. After the instrumental calibration, salt was added to the water taken from 

the basin with the steps of 1 gram, and the corresponding conductivity was measured 

and the readings from the conductivity meter for salt content were tabulated 

accordingly. The salinity concentration, obtained from the relevant relationship 

derived in the first step, was calculated and graphed versus conductivity and vice-

versa. Finally the conductivity of the saline water was calculated and graphed with 

respect to the added salt to the water from the basin. By weighing the sample-bottles 

for a specific volume of saline water, the density variation of the saline water was 

also graphed against the conductivity. The relative density of the tap water was 

calculated equal to 0.9984 at 24 °C. 

                   

 

                          Table (7.1) – Test sets 

 

 Experiment Conditions 

Barrier Height 

(mm) 
Fresh Water Saline Water 

200 TR = 100 TR = 200 TR = 100 TR = 200 

100 TR = 100 TR = 200 

 
90 TR = 100 

 60 TR = 100 

0 TR = 100 

Figure (7.2) 

Density of saline water versus the 

concentration of salt 

 

Figure (7.1) 

Concentration of saline water 

versus the added salt to the water 
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For the calibration of the conductivity meter readings during the experiments, 

samples were taken from the model harbour, and the conductivity of the samples was 

measured. A graph was then produced to show the variation of the measured 

conductivities of the samples against the readings. The trend-line equation of the 

graph was used to convert the readings to calibrated conductivity presented as the 

results of measurements. 

 

7.4   TEST ARRANGEMENTS 

 

To investigate the hydrodynamics of the model harbour under long-shore 

currents, tidal conditions were applied to the laboratory model. A barrier was placed 

in the entrance to explore the circulation characteristics due to the presence of a 

barrage. The effect of salinity and stratification on the flow characteristics was 

simulated by filling the model harbour with saline water up to the height of the 

barrier and same tides as the fresh water condition were imposed. Tidal conditions 

were initiated from the low water level in order to minimise the effects of transient 

surface disturbances within the saline water. Water temperatures ranged between 

18C and 20C. The actual measured tides were found to be very nearly sinusoidal in 

form. 

The experimental sets were divided into two conditions of fresh water (FW) 

and saline water (SW). The barrier heights were chosen equal to 0 (BH = 0, i.e. no 

barrier), 60, 90, 100, and 200 mm.  

To account for the influence of distortion ratio on the hydrodynamics, 

circulation and the stratification in the model harbour, two tidal ranges of 100 (TR = 

100) and 200 (TR = 200) mm corresponding to different distortion ratios were 

simulated.  

The experimental sets were therefore categorised as tabulated in Table (7.1). 

The measurements were taken at locations which were chosen in a mesh of 12×12 

cm grids, as illustrated and labelled in figure (7.3). The depth of the measurement 

locations is shown in figure (7.4) for velocity and salinity measurements.  

The water elevation locations are addressed according to the labelling system 

presented in figure (7.3). Figure (7.5) demonstrates the location of measured values 

for each set of the measurements and provides a summary of the location and vertical 

layers for each corresponding set of the measurements. 
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Figure (7.3) – Address label of the experimental cells for measurements of the model 

harbour in plan 

 
Figure (7.4) – Velocity and salinity measured layers: blue lines refer to 

measurements with barrier heights up to 100 mm (BH = 0, 60, 90 

and 100), and red lines refer to measurements with barrier height 

of 200 mm (BH = 200) 
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Figure (7.5) – Cell locations for different experimental sets and the summary of test 

arrangements 
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7.5   DATA ACQUISITION 
 

In the present study only the mean values of the velocity, water elevation and 

salinity due to conductivity have been measured. The measurement of the turbulent, 

fluctuating components or their mean values have not been in the scope of the 

physical model studies. The measurement of mean values is quite sufficient for most 

practical applications (Schlichting, 1979). 

 

7.5.1   ADV Data Acquisition and Processing Software 
 

The processing module of ADVs performs the digital signal processing 

required to measure Doppler shifts. In the laboratory velocimeters, this 

computationally intensive task is implemented on a PC-board that fits any IBM-

compatible computer with full-sized slots. Three velocimeters were controlled by one 

computer. The standard data acquisition software supplied with the velocimeters 

provides real-time display of data in graphical and tabular form. The data were 

recorded to disk in highly compressed binary files which then were converted to 

ASCII format with the data conversion programs supplied with the system. The 

ASCII velocity data generated by the post-processing ADV software from the binary 

files, were further processed to consider the probe direction during the experiments. 

The signal-to-noise ratio, SNR, parameter indicates the relative density of 

acoustic scatterers in the flow and the resulting strength of the signal received 

compared to the noise level of the instrument. The acoustic Doppler velocimeter is 

based on the Doppler principle. First, a short acoustic pulse of known frequency is 

transmitted along the vertical axis. The echo from the water is received in three small 

transducer elements, amplified in the conditioning module and digitised in the 

processing board. The frequency shift between the transmit-pulse and the received 

echo is proportional to the water velocity. To ensure proper operation, the echo must 

be strong enough to allow accurate calculation of the frequency shift. If the echo is 

weak, the calculation will be statistically noisy and the velocity data will show 

significant short-term variability. The strength of the echo is quantified in terms of a 

SNR expressed in dB for each receiving-beam. ADV manufacturers recommend an 

SNR value of at least 5 when measuring mean flow velocities (Nortek AS, 1997a). 

The correlation parameter, COR, is an indicator of the relative consistency of the 

behaviour of the scatterers in the sampling volume during the sampling period. 
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ADVs collect data at a higher sampling rate than the sample reporting rate, and the 

COR parameter indicates the consistency of the multiple measurements that take 

place within each sampling period. The value varies from 0 to 100, and ADV 

manufacturers have recommended filtering to remove any samples with correlation 

values below 70. The values for SNR and correlation refer to the beams of ADV and 

not to x, y and z directions. Wahl (2000) introduced the WinADV program designed 

for post-processing of real time data files recorded by SonTek and Nortek ADVs. 

 

7.5.2   GENIE Data Acquisition and Control Software 
 

GENIE (ADVANTECH, 1995) provides an icon-based system for designing 

real-time automation and control strategies, system monitor displays, and dynamic 

operator displays. It enables graphically creating, simulating, and running real-time 

data acquisition and process control strategies. A strategy is defined as one or more 

tasks, where a task is a collection of blocks and display items that are related to each 

other. The software was used for water elevation and salinity measurements. GENIE 

consists of three modules. These are the strategy editor, display editor, and runtime 

modules. The strategy editor is an icon-based designing environment that provides, 

through the use of a toolbox, the building blocks that allow the control process to be 

designed, arranged, and viewed. Blocks are connected together and used to 

communicate with the I/O hardware to control and monitor the process. Display 

items are connected to the strategy in order to display process events and allow 

supervisory control during GENIE runtime. The display editor is used to create the 

operator display panel for the process, allowing a dynamic interface with the running 

strategy. The runtime module provides a real-time, multitasking environment that 

combines the logical flow of a previously defined strategy with any number of 

display items in the operator panel. Runtime executes the strategy in real-time, based 

upon data received from I/O devices or by manual operator entry. Through the 

runtime module, the process can be monitored and controlled, and the data can be 

logged to a disk, and manipulated by standard or user-defined functions. 

 

7.6   SIGNAL PROCESSING AND DIGITAL FILTERING 
 

When a signal is corrupted by the addition of noise, it is possible, to a certain 

extent, to reconstruct the original signal with an appropriate digital filter. The 
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average strength of the noise is constant and independent of the magnitude of the 

signal. The effect of the noise on the relative error of a series of measurements 

becomes greater as the quantity being measured decreases in magnitude. The noise 

level, also called the noise floor, is its most fundamental measure of measurement 

uncertainty.  

Velocimeter uncertainty is a random white noise. This means that each velocity 

estimate is independent of the next, and it means that the noise has no preferred 

frequency. The noise level varies widely according to the characteristics of the 

velocimeter, its set up, the characteristics of the flow, and the acoustic scattering 

environment. The velocity noise level limits the frequency range, over which useful 

data can be obtained. However, the velocity spikes are the major source of error as 

they can have large values compared with the mean velocity and are more difficult to 

be detected, removed and replaced by clean signal.  

The conductivity data also suffer from very noisy signals. However, the nature 

of the noise for the conductivity data is such that the signal fluctuates around a mean 

value with almost a constant band of fluctuations, therefore the filtering process is 

less complicated. 

 

7.6.1   Denoising and Despiking Techniques for ADV Velocimeters 
 

Yin et al. (2001) introduced a method, which analyses a time series of velocity 

signals in order to obtain a time series of a moving averaged velocity. Moving 

average algorithm is not constructive when the filter passes through peaks that are 

narrow compared to the filter width. A better procedure is to perform a least squares 

fit of a small set of consecutive data points to a polynomial and take the calculated 

central point of the fitted polynomial curve as the new smoothed data point. The 

smoothing effect of the latter algorithm is not as sharp as in the case of the moving 

average and the loss and/or distortion of vital information is comparatively limited. 

However, for both algorithms part of the original information is lost or distorted. 

To reduce the effect of noise resulting from random spikes, several post-

processing techniques have been proposed. The iterative phase-space thresholding 

method of Goring and Nikora (2002) was based on the assumption that good data can 

be found within a cluster and points located outside the cluster are spikes. Spike 

detection was based on the postulate that under normal flow conditions the 

instantaneous acceleration in a stream must be of the same order or less than the 
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acceleration of gravity g. To replace the spikes, a polynomial fitted to good data on 

either side of the spike event, then interpolated across the event, was recommended 

by the authors. They mentioned that if the data sequence were undergoing a 

sustained change in velocity (e.g., over a tidal cycle or during a change in river flow), 

then the phase-space method would not work unless these long-scale fluctuations 

were removed by high-pass filtering. They also pointed out that for some records the 

choice of thresholds is very difficult and subjective. 

These techniques also include the despiking filters of Cea et al. (2007) and 

Parsheh et al. (2010). The latter reasoned that the phase-space thresholding despiking 

method (Goring and Nikora, 2002; Wahl, 2003) erroneously also removes some valid 

data points in the vicinity of the spikes. They modified the phase-space-thresholding 

despiking method so that the data points near the peak of the probability density 

function (PDF) were not affected by the despiking method, as these points are not 

spurious. Furthermore, the modified method replaces the spikes by the last valid data 

point instead of leaving a gap in the time series. It was shown that the modified 

method improved the spectrum over all frequencies compared to the original 

despiking method. Spike-removal, however, depends on the flow conditions and 

caution should be taken when proposing universal guidelines (Doroudian et al., 

2010). Chanson et al. (2008) used an ADV for high-frequency velocity 

measurements in a small estuary. They showed that conventional despiking methods 

such as the phase-space thresholding method (Goring and Nikora, 2002) were not 

sufficient.  

Doroudian et al. (2010) combined a spike-removal procedure on the beam 

velocities with a noise-reduction method on the flow velocities to improve turbulence 

measurements, and compared the results with those obtained from ADVP (acoustic 

Doppler velocity profiler) measurements under the same conditions. They applied the 

despiking method to the bistatic velocities before the orthogonal velocities were 

calculated. It was shown that spikes were best removed from ADV beam velocity 

data before calculating flow velocities, thereby correcting all three flow velocity 

components at the source. The noise reduction method is based on the decorrelation 

of the Doppler noise terms contained in two vertical velocities redundantly sampled 

in the same volume. It has been pointed out by most authors, however, that spike 

detection and spike replacement techniques in three receiver ADV data still remain 
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an arbitrary procedure and that none of the currently available methods gives totally 

satisfactory results (Doroudian et al., 2010). 

Parsheh et al. (2010) proposed a method for reconstructing contaminated time 

series which integrates two previously developed techniques for detecting and 

replacing spurious spikes. The spikes are first detected using a modified version of 

the universal phase-space-thresholding technique and subsequently replaced by the 

last valid data points. The accuracy of the approach is evaluated by applying it to 

identify and remove spikes and reconstruct the spectra of two clean data sets which 

are artificially contaminated with random spikes. The results show that the power 

spectra of the reconstructed time series contain a filtered white noise caused by the 

steps in the reconstruction technique using the last valid data point. 

 

7.6.2   Fourier Transform, Discrete and Fast Fourier Transforms 
 

An integral transform is a transformation in the form of an integral that 

produces from given functions new functions depending on a different variable. If  

 xf is absolutely integrable on the x-axis and piecewise continuous on every finite 

interval, then the Fourier transform  wf̂  of  xf  given by equation (7.1) exists 

(Kreyszig, 2011). 

    xexfwf xi d
2

1 









ˆ  (7.1) 

    wewfxf xi d
2

1 







 ˆ  (7.2) 

Representation (7.2) of  xf is the inverse Fourier transform of  wf̂ and a 

superposition of sinusoidal oscillations of all possible frequencies, called a spectral 

representation. In (7.2), the spectral density,  wf̂ , measures the intensity of  xf  

in the frequency interval between w and ww   ( w  small, fixed). In connection 

with vibrations, the integral   wwf



d

2
ˆ  can be interpreted as the total energy of 

the physical system. Hence an integral of  
2

wf̂  from a to b gives the contribution 

of the frequencies w between a and b to the total energy. 

 When a function  xf  is given in terms of values at finitely equally spaced 

many points, as they occur in time series analysis and simulation problems, the 
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Fourier analysis deals with sampled values rather than with functions, and the 

Fourier transform can be replaced by the discrete Fourier transform (DFT). 

Considering  xf  to be periodic, for simplicity of period 2 , and assuming that N 

measurements of  xf  are taken over the interval 20  x  at regularly spaced 

points of, 

,,,,, 110
2

 Nk
N

k
xk 


 (7.3) 

the discrete Fourier transform (DFT) of a given signal  Tnff 10  f , is then the 

frequency spectrum of the signal, and is represented by the vector  10  nff ˆˆf̂   

with components as in equation (7.4): 

 







1

0

10
N

k

kk

xni

kn Nnxffeff k ,,,,ˆ  . (7.4) 

In vector notation, fFf̂ N , where the NN   Fourier matrix  nkN eF  has the 

entries as the equation (7.5): 

1022  
Nknewwweee Ni

N

knNknixni

kn
k ,,,,,   (7.5) 

The components nf̂  of f̂ , give a resolution of the 2 -periodic function  xf  into 

simple complex harmonics. Only n’s that are much smaller than N/2, should be used 

to avoid aliasing. The fast Fourier transform (FFT) is a computational method for the 

DFT that needs only   NNO 2log  operations instead of  2NO , making it a 

practical tool for large N. 

 

7.6.3   Wiener Smoothing Filter 
 

The Wiener smoothing filter is an LMMSE (Linear Minimum Mean Square 

Error) estimator. To estimate a parameter φ based on the data vector x defined as 

equation (7.6), LMMSE is the best estimator in the sense that among all classes of 

linear estimators of the form of the equation (7.7), it minimises the Bayesian mean 

square error (MSE) defined in equation (7.8) and only relies on the correlation 

between random variables (Kay, 1993). 

      TNxxx 110  ,,,x   (7.6) 

 





1

0

N

n

n nxa̂  (7.7) 
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    2
EBmse  ˆˆ   (7.8) 

For the noise reduction of the velocity signals, the variable v which is the true 

velocity vector, should be estimated based on the noisy recorded signal x = v + n, 

where n is Doppler noise which is believed to be a Gaussian white noise (Nikora and 

Goring, 1998). 

 

7.6.3.1   Exploiting Correlations in Time 
 

Wiener smoothing filter finds coefficients wi,j to best estimate: 







1

0

N

j

jjii vwv ,
ˆ  (7.9) 

such that for each  10  Ni ,,  the Bayesian mean square error is minimised: 

    2
EBmse iii vvv ˆˆ   (7.10) 

In the vector form xWv̂ , where W  is an NN   matrix. Assuming Doppler noise 

n and the true velocity signal v are uncorrelated, solving for W  to minimize equation 

(7.10), reduces to: 

  1
 nnvvvv RRRW  (7.11) 

where vvR and nnR  denote autocorrelation matrices for true velocity and Doppler 

noise respectively (Kay, 1993). Equation (7.11) can be rewritten as follows: 

  1 xxnnxx RRRW  (7.12) 

 

7.6.3.1.1   Autocorrelation Matrices 

 

In the case that velocity signal v and the additive noise n are considered wide 

sense stationary signals, all the matrices would be Symmetric Toeplitz matrices. 

Hence, xxR  can be approximated using samples of recorded data as follows: 

        
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 (7.13) 

Assumption of Doppler noise as white Gaussian noise, imposes n to be wide 

sense stationary signal, and results nnR  a diagonal matrix with diagonal elements of 

noise variance 2

n . To approximate the noise variance, the DFT of the signal x was 

calculated. Based on that, the higher frequencies only contain white noise, as the 
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velocity signal is wrapped around lower frequencies, and using the fact that white 

noise is spread almost equally over the spectrum, an approximate 2

n  may be 

calculated. To compute the noise power for each point a high-pass filter was 

designed to reject the main signal and only let part of white noise go through. Figure 

(7.6) shows the frequency spectrum of a point, for which it is expected that for the 

frequencies more than 0.2 Hz the signal only contains additive white Gaussian noise. 

Therefore the power of the signal for frequencies more than 0.2 Hz is calculated and 

is extended for the whole frequency spectrum. 
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Figure (7.6) – Frequency spectrum for u-component of velocity data recorded at point (0507) at 100 

mm above bed for saline water condition with the tidal range of 100 mm 

 

7.6.3.1.2   Fourier Transform Interpretation  

 

In the smoothing problem in which the sequence vn is to be estimated based on 

       ,,,, 101 xxx   or  kx  for all k, corresponding to infinite impulse response 

non-causal filtering, the smoothing estimator takes form of the equation (7.14). 

  nn

k

k

k

knkn xwxknwxwv  








,
ˆ  (7.14) 

where * denotes convolution. The coefficients wn in equation (7.14) are solved as: 

       nnwkknw vvxxn

k

xx RRR 




 (7.15) 

Denoting the frequency response of the infinite Wiener smoother by H(f), the Fourier 

transform of equation (7.15) results as follows: 
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Hence, the Wiener smoother filter emphasises portions of the frequency spectrum of 

the data where SNR is high and attenuates those where it is low. To clarify this, 

Wiener smoothing frequency response is 0)( fH  for low local SNR, defined as 

     fPfPf nnvv , and 1)( fH for high local SNR. 

 

7.6.3.2   Velocity Filtered Results 
 

Wiener filter with a window size of 5 samples has been applied to u, v and w 

components of the noisy velocity vector collected in the model harbour at point 

(0503) and at 10 cm above bed for the tidal range of 100 mm and saline water 

condition. For the u-velocity the estimated 2

n  equals 0.0062, which corresponds to 

estimated SNR = 14.83 dB.  

The filter coefficients are calculated as follows: 

            061601410048040141000616021012 .,.,.,.,.,,,,h  hhhhh  (7.17) 

which are symmetric with respect to the central point and emphasise higher 

correlations as expected. The filtering then proceeds as follows: 

jij

ij

ij

i vhv 






2

2

ˆ  (7.18) 

The filtered data for the u, v and w components of velocity are plotted in figure (7.7). 

The spikes are more influenced than the noisy signal as was expected. 

 

7.6.3.3   Exploiting Correlations in Space 
 

The same notion can be used to take advantage of correlation of velocity 

samples located in different positions in the grid and/or along different depths.  

In this case the parameter to be estimated is, for example,  ipv ,1  based on 

collected noisy random signal       ipxipxipx n ,,,,,, 21  where  ip ,.  denote 

the position and time indices respectively. The symmetric matrix xxR  then becomes 

as follows: 
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Figure (7.7) – Noisy (blue) and filtered (red) velocity time series for point (0503) at 

layer 100 mm above bed for saline water condition with the tidal 

range of 100 mm 
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Again correlation matrix nnR  is diagonal.  

Accordingly, the best linear estimate       ipvipvipvv n ,,,,,,ˆ 21  based on 

noisy data       ipxipxipxx n ,,,,,, 21  for each and every time instance i is 

computed as follows: 

  xRRRv̂
1 xxnnxx  (7.20) 

LMMSE estimator relies on the correlation between random variables, and 

uncorrelated parameters cannot be linearly estimated. Therefore, to achieve a more 

effective noise reduction, the elements of vector x should be chosen such that they 

establish a strong correlation. The methodology can be expanded to two, three, and 

four dimensions to include the integrated one-, two- and three-dimensional spatial 

and temporal correlations. 

 

7.6.3.4   Interpolation 
 

Wiener filter also may be used to interpolate missing data points by computing 

the correlation coefficients between the existing and missing data, either to obtain a 

higher frequency for a quantity which has been recorded with a low frequency (e.g. 

velocity) or to estimate a variable in a different place in space (e.g. velocity at a 

different depth) where no measurements have been taken. 

In the following, the performance of a Wiener interpolation filter is examined. 

For a set of data points and for a window length (2w + 1), the correlation between all 

odd time indexed and even time indexed velocity points are calculated to obtain 

interpolation coefficients. Then assuming, for example, even time indexed data 

points are missing, they are estimated as follows: 

ikikk

wi

wi

k vhv 





 2222 ,
ˆ  (7.21) 

and vector h is calculated as follows: 

eooo RRh
1  (7.22) 

in which ooR  is the correlation matrix of odd time indexed velocity points and eoR  is 

the vector of correlation between odd and even indexed velocity points. Using this 
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strategy of interpolation, the sampling frequency for the point (0505) at layer 10 cm 

above bed was increased to 2 Hz from recorded data of 1 Hz. Signal to noise ratio, 

based on the definition given in equation (7.23), for the interpolated signal was 

calculated about 10.96 dB. This means that the interpolation error variance is about 

0.1 signal power. Figure (7.8) shows the interpolated signal. 

 
 e

ee

var

var
SNR

x

x̂x 
  (7.23) 

 

Figure (7.8) – Interpolated data (red) based on the recorded samples (blue) for point 

(0505) at a depth of 2 cm above bed for tidal range of 100 mm and 

saline water condition 

 

7.6.4   Salinity Time Series 
 

 The salinity recorded data were very noisy. However the signal magnitudes 

fluctuate around the mean value with almost uniform amplitude of fluctuations (Fig. 

7.9). A backward moving average strategy has been adapted for the signals of 

conductivity recorded with a sampling frequency of 5 Hz. Before the tidal water 

flushes into the harbour, it is expected that the salinity remains almost constant as no 

forcing influences the water inside the harbour, and only the slight local movements 

due to stirring the water may produce small motions which will not change the 

salinity pattern. Therefore the span for the moving average algorithm was chosen 

such that for each set of data the first part shows uniform behaviour. The result for 

point (0705) at layer 180 mm above bed, which exhibits the most salinity exchange, 

is plotted for the tidal range of 100 mm in figure (7.9). 
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Figure (7.9) – Moving average curve of the noisy salinity samples collected for point 

(0705) at 180 mm above bed for the tidal range of 100 mm 

 

7.7   SUMMARY 
 

Instantaneous values of velocity components in three directions, water 

elevations and conductivity were measured at pre-set depths and locations. The 

instrumentation and the calibration procedure have been described. Tests have been 

conducted for fresh and saline water conditions, various barrier heights, tidal ranges 

and mean water depths. The ADV data acquisition and control software was sued for 

the procedure of measuring the velocity components. For measuring the water 

surface elevation and conductivity, GENIE data acquisition and control software was 

adapted and used. 

For despiking and denoising the velocity data a linear correlation algorithm 

was established and a Wiener filter was designed and adapted for the temporal 

correlation of the signals, which successfully lowered the noise level and removed 

the spikes where the stationary assumption of the statistical characteristics of flow 

was valid. The filter can be extended to the spatial domain by establishing one-, two- 

or three-dimensional correlations. An interpolation method for producing the missing 

data has been provided which may be deployed for increasing the sampling 

frequency or producing data for the spatial domain. For conductivity a moving 

average strategy has been deployed. 



 

 

CHAPTER EIGHT 

 

 

PHYSICAL MODEL STUDIES 

LABORATORY TESTS RESULTS, 

COMPARISONS AND DISCUSSIONS 

 

 

 

"Experimenting with models seems to afford a ready means of investigating and 

determining beforehand the effects of any proposed estuary or harbour works; a 

means, after what I have seen, I should feel it madness to neglect before entering 

upon any costly undertaking." Osborne Reynolds (Langhaar, 1951) 

 

8.1   INTRODUCTION 
 

This chapter presents the laboratory results of the measurements taken in the 

model harbour. Test arrangements, signal processing and filtering of the recorded 

data have been presented in Chapter Seven. The presentation of the results, 

comparisons and discussions is divided into three parts: 

 Velocity measurements 

 Water elevation measurements 

 Salinity measurements 

The velocity measurements are presented for time series, horizontal profiles, 

horizontal flow patterns and comparison profiles for different barrier heights. The 

water elevation measurements are plotted for time series, and the salinity 

measurements are presented for time series and horizontal and vertical profiles. 
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8.2   VELOCITY MEASUREMENTS RESULTS 
 

Time series of some selected velocity measurements are presented. The 

horizontal profiles show variation of the dominant velocity components along the 

axes X and Y, and the axis of the harbour entrance (Fig. 7.3). Horizontal flow 

patterns for four layers demonstrate the general circulations inside the harbour. The 

horizontal profiles are also graphed for different barrier heights. 

 

8.2.1   Velocity Time Series 
 

 The velocity time series of u and v components are presented for 6 points 

inside the model harbour for the barrier height of 100 mm (BH = 100) and the tidal 

ranges of 100 mm (TR = 100) and 200 mm (TR = 200) for fresh water (FW) 

condition in figure (8.1). The schematic location of these points is shown in the 

figure description. For point P0202 the negative u velocities have the largest values 

at layer 1 cm (L1), near the bottom, and at the top layer (L9). The positive v velocity 

component exhibits large values at layer L1, and almost similar trend for the top 

layer with larger values. The w velocity component (not shown) has very small 

magnitudes for all layers indicating weak vertical circulations. Velocity time series 

for point P0208 show almost similar trend for all layers with very small w (not 

shown), and positive u and v velocity components forming a clockwise circulation in 

the harbour.  

Point P0802 is a point of relatively smaller velocity magnitudes with rather 

similar trends for all layers and nearly zero velocities for the ebb tide. This point also 

obeys the same clockwise flow circulation in the harbour. Almost same trend of the 

velocity time series can be seen for point P0808 for all layers with positive u and 

negative v velocity magnitudes and small vertical components, confirming the same 

clockwise circulation inside the harbour. These results are in agreement with the 

findings of Falconer (1980a) who reported the observation of one gyre in the 

experimental and numerical studies of the same harbour configuration. 

Points P0503 and P0507 located along Y axis at the left and the right of the 

centre of the harbour and at an equal distance from it exhibit larger values for u 

velocities and smaller values for v velocities with almost symmetrical values for both 

components that confirms the general clockwise circulation in the harbour. 
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Figure (8.1a) - Velocity time series for points P0202, P0503 and P0802, 

BH = 100, TR = 100 and TR = 200, FW, layers L1, L3 and 

L9 for u (red) and v (blue) components 
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Figure (8.1b) - Velocity time series for points P0208, P0507 and P0808, 

BH = 100, TR = 100 and TR = 200, FW, layers L1, L3 

and L9 for u (red) and v (blue) components 
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For points P0305 and P0705 (not shown) the flow patterns are the same as the 

general clockwise circulation pattern of the flow in the harbour.  For point P0908 

(not shown) the velocity values rise from the bottom towards the water surface where 

large noticeable v values are present. For point P0909 (not shown) located at the 

neighbouring point of the entrance, however, the measurements do not show large 

velocity values. This is thought to be due to the presence of the barrier which is 

closely located to this point and limits the water motion. 

Velocity time series for the tidal range of 200 mm (TR = 200) follow the same 

patterns as was discussed for the tidal range of 100 mm, but with larger velocity 

magnitudes. The only remarkable comment is for point P0909, for which, due to the 

stronger forcing, the v velocity component rises noticeably during the ebb tide. 

For the barrier height of 200 mm (BH = 200) the time series of u and v velocity 

components of point P0705 are illustrated for the fresh and saline water conditions 

and tidal ranges of 100 and 200 mm (TR = 100 and TR = 200) in figure (8.2). For 

fresh water condition (FW) and tidal range of 100 mm (TR = 100) the general 

circulation pattern of the harbour is present. The tidal range of 200 mm (TR = 200) 

shows same flow regime with larger magnitudes. The flushing in the harbour occurs 

after the water elevation in the basin rises to the top of the barrier which happens 

after the mid-flood tide, the reason for the flat part of the graphs for this tidal range. 

For the saline water condition the water motion is suppressed resulting in lower 

magnitudes for velocity components for lower layers. For the upper layers, however, 

the increase of velocity magnitudes is noticeable. 

For point P0507 (not shown) the same general circulation pattern is present for 

lower layers, and for the upper layers water flows towards the entrance. The velocity 

magnitudes for point P0905 (not shown) increase from the bottom towards the 

surface but for the saline water condition the increase of the surface layer velocities 

happens with quite less magnitudes. For point P0909 (not shown) a relatively large 

positive v velocity for the ebb tide exists which is expected. 

 

8.2.2   Velocity Horizontal Profiles 
 

The profiles of the velocity components have been graphed along the centreline 

axes of the harbour with the axes intersecting at the harbour centre, and the axis 

passing through the harbour entrance. The axes are shown in figure (7.3). 
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Figure (8.2) - Velocity time series for point P0705, BH = 200, TR = 100 

and TR = 200, FW and SW, and layers L2, L6, L10 and 

L18 for u (red) and v (blue) components 
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Figure (8.3) - Velocity horizontal profiles for X (v) and Y (u) axes, BH = 0, BH = 60 

and BH = 90, TR = 100 and layers L1 (solid), L5 (dash) and L9 (dash-

dot) at mid-flood tide (T/4) 

The horizontal profiles of the centreline axes X (v velocity) and Y (u velocity) 

are shown for the dominant velocity components for different layers of velocity 

measurements and for test cases with no barrier and barrier heights of 60 and 90 mm 

(BH = 0, BH = 60 and BH = 90) at mid-flood tide (T/4) in figure (8.3). The profiles 

show that the circulation near the wall on the opposite side to the entrance is stronger 

than the wall where the entrance is located, with the exception of Y axis for BH = 90. 

Also, for the barriers of the height of 60 and 90 mm (BH = 60 and BH = 90) the 

circulations show stronger intensities crossing the X axis at layer L5. For mid-ebb 

tide (not shown) circulations are weaker when compared to mid-flood tide. 

For the barrier height of 100 mm (BH = 100) the velocity horizontal profiles of 

centreline axes X (v velocity), Y (u velocity) and the axis of harbour entrance (v 

velocity) are presented for two tidal ranges of 100 and 200 mm (TR = 100 and TR = 

200) in figure (8.4) at time T/4 and for fresh water condition. The measurements for 

the barrier height of 200 mm (BH = 200) and tidal range of 100 mm (TR = 100) for 

both fresh and saline water conditions (FW and SW) have also been profiled along 

the axes X (v), Y (u) and the axis of harbour entrance (v) in figure (8.4) at time T/4. 

The horizontal profiles for the same test arrangements but with the tidal range of 200 

mm (TR = 200) are also graphed in figure (8.4) for mid-ebb tide (3T/4). 

In these profiles the same circulation pattern may be seen. The salinity 

suppresses the circulation intensity across the water depth with the exception of the 

top layer. For the barrier of 100 mm (BH = 100) the circulation is weaker at layer L5, 

BH90 BH60 

BH0 

A
x
is

Y
 

V
el

. 
(c

m
/s

) 
A

x
is

X
 

V
el

. 
(c

m
/s

) 

5 

2.5 

0 

-5 

-2.5 

-0.24 -0.48 0.48 0.24 0 

X/Y (m) 

5 

2.5 

0 

-5 

-2.5 

-0.24 -0.48 0.48 0.24 0 

X/Y (m) 

-0.24 -0.48 0.48 0.24 0 

Y (m) 

y 

x 



Physical Model Studies - Laboratory Tests Results, Comparisons and Discussions  

 

245 

  
  

  

  

  

  

  

   
 

Figure (8.4) - Velocity horizontal profiles for X (v), Y (u) and harbour entrance (v) 

axes. The barrier heights, tidal ranges and the corresponding times are 

specified for each graph. BH = 100: L1 (solid), L5 (dash), L9 (dash-

dot); BH = 200: L2 (solid), L10 (dash), L18 (dash-dot). The vertical 

(dash-double dot) line on third column shows the harbour edge. 

and obviously the tidal range of 200 mm (TR = 200) gives rise to velocity 

magnitudes. The ebb tide exhibits smaller velocity values and the points outside the 

harbour follow the general flow pattern in the basin. For the barrier height of 200 

mm (BH = 200), tidal range of 100 mm (TR = 100) and the fresh water condition, 

stronger circulation shows near the bed crossing the Y axis. Larger flushing is 

apparent at the top layer near the entrance which is expected. Again the salinity 
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suppresses the flow motion with the exception of the top layer where the velocity 

magnitudes increase with salinity. For the same barrier height (BH = 200), the tidal 

range of 200 mm and fresh water condition at the mid-flood tide the circulations are 

very weak (not shown), and stronger circulations are present at the mid-ebb tide. The 

negligible velocity values of the mid-flood tide are due to the water level in this case 

which only reaches the tip of the barrier at time T/4. For this case apart from slight 

circulation at the top layer with the presence of salinity, for the lower layers the 

saline water substantially suppresses water motion. 

 

8.2.3   Horizontal Velocity Flow Patterns 
 

 Velocity flow patterns are demonstrated to give a clearer picture of water 

circulations in the harbour in horizontal layers of the flow. Horizontal flow patterns 

have been graphed for layers at 1, 3, 5 and 9 cm (L1, L3, L5 and L9) above the bed 

for the barrier height of 100 mm (BH = 100) and both tidal ranges of 100 and 200 

mm (TR = 100 and TR = 200). For the barrier of 200 mm (BH = 200) and for both 

fresh and saline water conditions (FW and SW) and tidal ranges of 100 and 200 mm 

(TR = 100 and TR = 200) the horizontal flow patterns correspond to layers at 2, 6, 10 

and 18 cm (L2, L6, L10 and L18) above the bed. The graphs are demonstrated in 

figures (8.5a) and (8.5b) for mid-flood (T/4) and mid-ebb (3T/4) tides respectively. 

 The general circulation discussed in previous sections is clearly present in the 

horizontal flow patterns. The circulations are stronger in the mid-flood tide than the 

mid-ebb tide for all configurations except for one of the test arrangements which is 

addressed in next paragraphs. For the barrier height of 100 mm (BH = 100) and the 

tidal range of 100 mm (TR = 100) at layer L5 a sharp flow shows along the X axis in 

the middle of harbour, which changes its direction for the tidal range of 200 mm (TR 

= 200) initiating just inside the harbour near the entrance. For the barrier height of 

200 mm (BH = 200), the tidal range of 100 mm (TR = 100) and fresh water condition 

(FW) a bottom layer flow is present from the corner on the opposite side of the 

entrance towards the corner on the other end of the diagonal axis of the harbour. The 

salinity suppresses the velocity magnitudes with the exception of the top layer where 

the velocity values are increased. For the same barrier height and the tidal range of 

200 mm the saline water strengthens the circulation for the mid-flood tide but for the 

mid-ebb tide the fresh water exhibits stronger circulation than time T/4. Among all 

cases, this is the only situation that the circulation is stronger for the mid-ebb tide. 
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Figure (8.5a) - Velocity horizontal flow patterns for TR = 100 and TR = 200 for BH 

= 100, FW at layers L1, L3, L5 and L9, and for BH = 200, FW and 

SW at layers L2, L6, L10 and L18 at time T/4 
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Figure (8.5b) - Velocity horizontal flow patterns for TR = 100 and TR = 200 for BH 

= 100, FW at layers L1, L3, L5 and L9, and for BH = 200, FW and 

SW at layers L2, L6, L10 and L18 at time 3T/4 
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Figure (8.6) - Velocity horizontal profiles for TR = 100 and layers L1, L5 and L9 for 

axis X (v) and Y (u) at times T/4 and 3T/4, BH = 0 (solid), BH = 60 

(dash), BH = 90 (dash-dot) and BH = 100 (long dash)  

 

8.2.4   Comparison Horizontal Profiles for Different Barrier Heights 
 

 The horizontal profiles for layers 1, 5 and 9 cm (L1, L5 and L9) above bed for 

the tidal range of 100 mm (TR = 100) at times T/4 and 3T/4, and the cases of barrier 

heights of 60, 90 and 100 mm (BH = 60, BH = 90 and BH =100) have been 

demonstrated for axis X (v velocity) in figure (8.6). The same profiles for the cases 

of no barrier (BH = 0) and barrier heights of 60, 90 and 100 mm for axis Y (u 

velocity) are also presented in the figure (8.6). The profiles generally show that the 

velocity magnitudes are larger for the barrier height of 100 mm (BH = 100) which is 

due to the smaller area for the discharge of the water flushing into or from the basin. 

 

8.3   WATER ELEVATION MEASUREMENTS RESULTS 
 

 Tidal water surface varies smoothly over the tidal period and the records show 

no noise during the measurements. Times series of surface variations for point P0505  
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Figure (8.7) – Water elevation time series for point P0505, BH = 100 and BH = 200, 

TR = 100 and TR = 200, for fresh water condition 

are presented in figure (8.7). The graphs show the water elevation time series for the 

test arrangements of barrier 100 and 200 mm (BH = 100 and BH =200) with tidal 

ranges of 100 and 200 mm (TR = 100 and TR = 200), and for fresh water condition. 

 

8.4   SALINITY MEASUREMENTS RESULTS 
 

 For the salinity measured values in the harbour the time series of some selected 

experimental points and the horizontal and vertical profiles for the axes X, Y and the 

axis of harbour entrance are presented. 

 

8.4.1   Salinity Time Series 
 

 The salinity time series are presented for 4 points and all the layers that the 

conductivity has been measured, for two tidal ranges of 100 and 200 mm (TR = 100 

and TR = 200). The barrier height for both sets of measurements was equal to 200 

mm (BH = 200). The results are shown in figure (8.8). The vertical axis of the graphs 

which shows the salinity is in the reverse direction. The graphs show that for the 

points near the walls and especially the walls farther from the entrance, where the 

main circulation occurs, the change of the salinity is more than the central points. 

The change of the salinity during the tidal cycle essentially affects the top layer of 

180 mm above bed (L18) for the case of the tidal range of 100 mm (TR = 100). For 

the tidal range of 200 mm (TR = 200) the change of the salinity stretches to lower 

layers and again the points near the walls farther from the entrance experience more 

decrease of the salinity compared with the central points. The more decrease for the 

tidal cycle of 200 mm (TR = 200) is expected due to the more power of this tide. The 

constant value for the first part of the graphs is due to the time needed for the water 

to reach the tip of the barrier for the tidal cycle of 200 mm and also the time that the 

salinity probe needed to sense the change of the conductivity. 
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Figure (8.8) - Salinity time series for BH = 200, TR = 100 and TR 

= 200 at L2 (solid), L10 (dash), L14 (dash-dot) and 

L18 (long dash) 

 

8.4.2   Salinity Horizontal Profiles 
 

 Salinity horizontal profiles for the axes X, Y and the axis of harbour entrance 

for the layers of 2, 10, 14 and 18 cm above bed (L2, L10, L14 and L18) are presented 

in figure (8.9) for two tidal ranges of 100 and 200 mm (TR = 100 and TR = 200). 

The graph shows the profiles at 4 times, T/4 to T. For both axes X and Y the far end 

of the axes show more decrease of the top layer salinity than the end near to the 

entrance. For the tidal range of 100 mm (TR = 100) the decrease of salinity only 

happens for the top layer whilst for the tidal range of 200 mm (TR = 200) this 

stretches to lower layers. 

 

8.4.3   Salinity Vertical Profiles 
 

 Salinity vertical profiles have been presented for the same configuration of the 

salinity horizontal profiles in figure (8.10).  
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Figure (8.9) – Salinity profiles along axes X, Y and harbour entrance for BH = 200, 

TR = 100 and TR = 200, for layers L2 (solid), L10 (dash), L14 (dash-

dot) and L18 (long dash) 
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Figure (8.10) – Salinity vertical profiles along axes X, Y and harbour entrance for 

BH = 200, TR = 100 and TR = 200; top horizontal axes show the 

concentration values (g/l). 
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8.5   SUMMARY 
 

Time series of velocity components, water elevations and salinity 

concentrations are presented for various test arrangements. Horizontal profiles of the 

dominant velocity components and salinity along the centreline axes of the harbour, 

and the axis of harbour entrance are graphed. The vertical profiles of salinity are also 

illustrated along centreline axes of the harbour and the axis of the harbour entrance. 

The horizontal flow patterns demonstrate the circulations in the harbour. 

The time series of velocities show a clockwise circulation in the harbour. The 

w velocity component is very small for all layers indicating weak vertical 

circulations. Although the vertical velocity flow patterns show some kind of local 

vertical eddies but they do not present a clear structure of vertical circulation, which 

may be partly due to the lack of adequate points of recorded velocities in each cross 

section. However the velocity magnitudes are larger for barrier height of 100 mm in 

the flood-tide compared to the barrier height of 200 mm for the axis of harbour 

entrance.  

For the point near the entrance the measurements do not show large velocity 

values, which is due to the close boundaries limiting the water motion. Velocity time 

series for the larger tidal range exhibit larger velocity magnitudes. The barrier height 

of 200 mm exhibits lower velocity magnitudes. The horizontal profiles for mid-flood 

tide show stronger flow circulations compared to mid-ebb tide exhibiting low 

magnitudes for velocity component values. The comparison horizontal profiles for 

different barrier heights show that the velocity magnitudes are generally larger for 

the barrier height of 100 mm compared to cases with the barrier heights of 0, 60 and 

90 mm, which is due to the smaller area for the discharge of the water flushing into 

or from the basin. 

The tidal water surface varies smoothly over the tidal period and the records 

show no noise during the measurements. The times series of wave monitor probe 

show the water elevation variation as it is expected. 

Salinity suppresses the circulation intensity across the water depth with the 

exception of the top layer where the velocity magnitudes are increased with salinity. 

This results in less mixing in the vertical direction and stronger flushing on the 

surface. The graphs show that for the points near the walls and especially the farther 

walls to the entrance, where the main circulation occurs, the change of the salinity is 
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more than the central points. The change of the salinity during the tidal cycle 

essentially affects the top layer for the tidal range of 100 mm. For the tidal range of 

200 mm the change of the salinity also stretches to the lower layers. Salinity 

distributions also confirmed the influence of the circumnavigating flood tide jet, with 

the variations generally increasing radially outwards from the harbour centre 

indicating the occurrence of the maximum flushing around the harbour, and the 

highest salinity concentrations near the centre. 

 



 

 

CHAPTER NINE 

 

 

NUMERICAL MODELLING 

APPLICATION TO THE MODEL HARBOUR AND 

COMPARISONS WITH THE EXPERIMENTAL RESULTS 

 

 

 

"By a model is meant a mathematical construct which, with the addition of certain 

verbal interpretations, describes observed phenomena. The justification of such a 

mathematical construct is solely and precisely that it is expected to work." 

von Neumann (O'Connor and Robertson, 1999) 

 

9.1   INTRODUCTION 
 

This chapter is dedicated to the application of the numerical model to the 

model harbour and presentation of the results. The chapter comprises four parts: 

 Validation of the three-dimensional numerical model 

 A mesh convergence study for the three-dimensional applications 

 An investigation for studying the effect of distortion ratio on the results 

 A study for analysing the influence of mean water depth and barrier height 

and variation of the salinity concentration on the hydrodynamics and 

stratification in the harbour. This study also provides simulated results of 

the salinity stratification in more realistic conditions and compares the 

hydrodynamics inside the harbour for saline or fresh water conditions in the 

harbour under fresh or saline water flushing respectively. 
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9.2   THREE-DIMENSIONAL MODEL VALIDATION 
 

The validation process includes the calibration and the verification of the three-

dimensional numerical model. The model has been calibrated by the experimental 

data of the two cases of fresh and saline water conditions. For the verification, the 

simulated results for the fresh and saline water conditions of two other cases have 

been compared with the corresponding experimental data. 

It often happens that the mixing and flow of some areas within water bodies are 

separated from the adjacent areas by natural or manmade walls (e.g. break-waters in 

harbours). It is also most possible that in the numerical simulation of such water 

bodies and due to the computational time, the grid size is much larger than the 

thickness of such walls, barrages, barriers, etc. Therefore assuming the thickness of 

the wall equal to one grid size could cause serious inaccuracies, especially in the 

regions of discontinuity (e.g. in the entrance of a harbour), and provide unrealistic 

flow patterns. Using non-uniform grid near such boundaries -with the expense of 

reduction of the order of accuracy of scheme- is one solution. In this study to 

eliminate the effects of wide-crest overflow and to improve the accuracy of the 

predictions, for simulation of barriers, a zero-thickness wall with characteristics of a 

wall boundary is assumed to be placed at the entrance of the harbour. 

 

9.2.1   Model Calibration 
 

 The numerical model has been calibrated for the fresh water condition with the 

experimental results of the test with barrier height of 100 mm (BH = 100) and tidal 

range of 100 mm (TR = 100). For the calibration of the saline water condition the 

laboratory measured data of the test with barrier height of 200 mm (BH = 200) and 

tidal range of 200 mm (TR = 200) was used. The saline water has 80 g/l salt content 

with a relative density of 1.052 where the relative density of fresh water was taken 

equal to 0.998. The surface roughness parameter and the bounds for the k and ε 

values were adjusted so that the best results were obtained compared to the 

experimental data. This setting was then maintained for the verification of the 

numerical model for both fresh and saline water conditions. 

Although the bounds for k and ε values alter the turbulent eddy viscosity, but it 

was found that the more influential parameter in this study was the surface 

roughness, which was equal to ks = 0.02 m where the closest agreements with the 
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measured values were obtained. It should be mentioned, however, that the 

predictions were not largely dependent on the calibration parameters, which is 

mainly due to the simple geometry and bathymetry and the uniform roughness of the 

model harbour. 

 The tidal flushing into the harbour exhibits a phase difference compared with 

the experimental data. To overcome this, the phase difference of the peak of the 

water elevation inside the harbour was compensated for the numerical model and this 

time difference was applied to the time that the predicted values are compared with 

the experimental data for all results. 

 

9.2.2   Model Verification 
 

 For the verification of the numerical model, the simulated results for velocity, 

water elevation and salinity were compared with the experimental data. For both 

fresh and saline water conditions the comparisons were made for the case with the 

barrier height of 200 mm (BH = 200) and the tidal range of 100 mm (TR = 100). 

 

9.2.2.1   Velocity Components 
 

 The simulated velocity values have been compared against the time series, the 

velocity profiles along X and Y axes and the axis of harbour entrance, and the 

velocity flow patterns inside the harbour of the measured values of the velocity 

components. 

 

9.2.2.1.1   Velocity Time Series 

 

 Six points are chosen for time series comparisons of the velocity components. 

Four of these are the end points of the centreline axes of the harbour which are close 

to the walls and experience the strongest circulations. One is the central point of the 

harbour and the other one is the point located adjacent to the entrance just outside the 

harbour. The comparisons of the time series for the fresh and saline water conditions 

are presented in figure (9.1) for the dominant velocity for each point.  

 For the fresh water condition for the point (0501) the model slightly under-

predicts the absolute u-velocity component. It is understood that the model slightly 

under-predicts the velocity components for the zones where the circulation is strong 

and that the under-prediction is associated with the dominant velocity component.  



Numerical Modelling - Application to the Model Harbour and Comparisons with the Exp...  259 

 P0501  P0505  P0509 

L10 

F
W

-U
 

L2 

 

 

 

 

 

 
      

L10 

S
W

-U
 

L2 

 

 

 

 

 

 
 P0105  P0905  P0910 

L10 

F
W

-V
 

L2 

 

 

 

 

 

 
      

L10 

S
W

-V
 

L2 

 

 

 

 

 

 
 

Figure (9.1) - Comparison of simulated (red) and measured (grey) velocity time 

series for the barrier height of 200 mm (BH = 200), tidal range of 100 

mm (TR = 100) and fresh water condition (FW) for the dominant 

velocities of points P0501, P0505, P0509, P0105, P0905 and P0910 
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This under-prediction is due to the model calibration which has adjusted the model in 

favour of better predictions for the interior zones of the harbour. In other words the 

model calibration adjusted the model so that the absolute value of the dominant 

velocity component for the points located along the walls, which experience the 

strongest forcing due to the circulation, are under-predicted in favour of a better 

estimation for the interior points. The values of the experimental data show 

discrepancy from zero at time zero, which is thought might be due to the residual 

currents in the harbour from the previous experimental test. For the central point 

(0505) the simulated results do not show the variations present in the measured data. 

Again due to the location of the point (0509) the predicted absolute values of the u-

velocity show very little underestimation compared with the measured values. Same 

reason applies to point (0905) for the v-velocity component for which the absolute 

value of the predictions shows an underestimation compared with experimental 

results. Although the model calibration in favour of interior zones resulted in lower 

predicted absolute values for dominant velocities in strong circulations, the general 

flow patterns exhibit closer agreement with the flow patterns of the laboratory data. 

For the fresh water condition for point (0105) the u-velocity predictions are in 

good agreement with the measured values (not shown). It is thought that the 

oscillations in the laboratory data do not represent the real flow fluctuations and are 

mostly related to the data acquisition problems associated with the noisy samples. 

The filtering procedure has enhanced the data, but for the points where the stationary 

assumption of the statistical characteristics of the flow is not valid, the noise and the 

spikes are present. However the numerical model slightly under-predicts the absolute 

v values. Finally the point (0910), just outside the harbour and adjacent to the 

entrance, shows a generally good agreement with the time series of the measured 

velocity components. 

The saline water suppresses the velocity magnitudes in the lower layers of the 

water column and increases the circulation forcing at the top layer. For the saline 

water condition due to the suppression of the velocities for the lower layers and the 

increase of the velocity values for the top layer, the under-prediction present in the 

fresh water condition for the near wall points have changed to an over-prediction for 

lower layers and a better agreement of the results for the top layer. 

This over-prediction is present for the u-velocity component of the lower layers 

of point (0501). In the graphs of point (0505) the simulated values peak for the u-
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velocity component which is not present in the laboratory data. For point (0509) the 

over-prediction of the lower layers for the absolute u-velocity and for point (0905) 

the over-prediction of the absolute v-velocity for all layers are present. For the point 

(0105) the simulated v-velocity values are over-predicted for the lower layers 

compared with the experimental data. Due to the high oscillations of the 

experimental data for point (0910) it is difficult to conclude about the comparisons of 

this point but the general agreement is good. 

 

9.2.2.1.2   Velocity Profiles 

 

 The velocity profiles for fresh and saline water conditions with the barrier 

height of 200 mm (BH = 200) and tidal range of 100 mm (TR = 100) are graphed in 

figure (9.2). The profiles show the dominant velocity variations along the axes X, Y 

and the axis of harbour entrance. The dominant velocities are compared for two 

layers of 6 and 10 cm above bed at times T/4, T/2 and 3T/4.  

 The simulated velocity profiles of u-component for the Y axis show an under-

prediction compared with the measured values, but the general trends are similar. 

The v-velocity predicted values along the X axis show discrepancies with the 

laboratory measured values but the general trend of the experimental and numerical 

results is similar. However, at times T/2 and 3T/4 the experimental values show the 

same trend as the time T/4, but the simulated results do not show much circulation. 

In fact the under-prediction has resulted in small velocities with weak circulations. 

For the entrance axis the measured values are almost negative but this is not in 

agreement with the predicted values for the interior part of the harbour. The under-

prediction of the numerical model is also evident in the results.  

 The simulated saline water velocity profiles for u-component along the Y axis 

imply a circulation which is due to the over-prediction of the numerical model for the 

saline water condition. This circulation is not present for the experimental data. The 

model over-predicts the v-velocities. 

 

9.2.2.1.3   Velocity Flow Patterns 

 

To visualise the general circulations, the horizontal flow patterns of the 

simulated values and the experimental data are presented and compared. The flow 

patterns are shown in figure (9.3) for the fresh and saline water conditions with the 

barrier height of 200 mm (BH = 200) and the tidal range of 100 mm (TR = 100) for 
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three layers of 2 (L2), 10 (L10) and 18 (L18) cm above bed at mid-flood and mid-

ebb tides. The reference vector is shown on the top of the page.  

For the fresh condition the horizontal flow patterns show a generally good 

agreement with the flow patterns based on the measured values. The velocity 

magnitudes are generally under-predicted especially during the ebb tide. The results 

are in good agreement with the measured values for the time T/4. For the saline 

water condition the flow patterns are in general good agreement. 

 Axis X-V  Axis Y-U  Axis of Harbour Ent.-V 

 FW 

 
T/4 
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 X(m)  Y(m)  Y(m) 

 

Figure (9.2) - Predicted (solid) and measured (dash) velocity profiles for fresh (FW) 

and saline (SW) water conditions along the axes X, Y and harbour 

entrance for their dominant velocity components at layers L6 (red) and 

L10 (blue) at times T/4, T/2 and 3T/4. Vertical (dash) lines of third 

column show the edge of harbour. 
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Figure (9.3) - Simulated and measured flow patterns for fresh (FW) and saline (SW) water conditions, 

BH = 200, TR = 100, for layers L2, L10 and L18 at T/4 and 3T/4 
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9.2.2.2   Water Elevation 
 

 For the water elevation the simulated time series of points P0501, P0505 and 

P0509 are compared against measured values in figure (9.4). The simulated water 

elevation time series show good agreements with the measured data. 

 

 

 

 

 

Figure (9.4) – Time series of simulated (red) and measured (grey) values of water elevation 

 

9.2.2.3   Salinity 
 

 The time series of the simulated salinities for three points along the Y axis are 

compared with the laboratory measured values in figure (9.5) for two layers of 10 

(L10) and 18 (L18) cm above bed which experience most variations during the tidal 

excursions. The salinity profiles along the three axes X, Y and the axis of harbour 

entrance are graphed in figure (9.6). These profiles are shown at mid-flood and mid-

ebb tides at layers L10 and L18. 
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L18 
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Figure (9.5) – Simulated (red) and measured (grey) time series of salinity values for L10 and L18 
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Figure (9.6) - Predicted (solid) and measured (dash) salinity profiles along X, Y and entrance axes at 

T/4 and 3T/4; L10 (red) and L18 (blue). Vertical (dash) lines show the edge of harbour. 
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Inspecting the salinity time series shows that the initial salinity of the 

laboratory measured values is more than the value of 80 g/l planned for the 

experiments, which may be due to the extra amount of salt added to the water or due 

to malfunctioning of the conductivity probe. For the numerical simulations, however, 

the salinity concentration has been taken equal to 80 g/l. Apart from the difference in 

the initial salt concentration values, the predictions are in good agreement with the 

laboratory data for layer L10 for all points. For the layer L18, points (0501) and 

(0505) are over-predicted and the comparisons for point (0509) show good 

agreements. The salinity profiles also show good agreements between the simulated 

and measured values for layer L10, but for layer L18 the simulated values are over-

predicted. The numerical results exhibit almost constant values along the axes X and 

Y and do not show the local variations present in the experimental graphs. 

 

9.3   MESH CONVERGENCE STUDY 
 

 In order to optimise the accuracy and economy a mesh convergence study has 

been carried out for the three-dimensional applications. The saline water condition 

with the barrier height of 200 mm and tidal range of 100 mm is simulated. The study 

is organised in two steps. In the first step, keeping the grid dimension constant in the 

horizontal plane and equal to Δx = Δy = 3 cm, the number of layers in the z-direction 

has been taken equal to 10, 15, 20 and 25, and the simulations have been carried out 

for each number of the layers. In the second step, keeping the number of layers equal 

to the number derived in the first step, the grid size in the horizontal plane has been 

taken equal to 2, 3 and 4 cm for different sets of the simulations. The results of the 

simulations are then plotted against the measured values and the comparisons have 

been made. The strategy is to determine the set of the simulations with the coarsest 

possible grid, while remaining insensitive to grid resolution and exhibiting close 

predictions compared to the measured values. The comparisons have been made for 

the velocity and salinity profiles. The predictions for the alternative number of layers 

and grid size for water elevations are almost the same.  

 

9.3.1   Velocity Components 
 

 The velocity profiles are plotted for the u-velocity components along Y axis at 

mid-flood tide (T/4) in figure (9.7) for layers 6 (L6) and 10 (L10) cm above bed. It 
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can be seen that the numerical set-up of 25 layers shows divergence of the results. 

This analysis suggests that the choice of 20 layers for z-direction optimises accuracy 

and economy while providing the closest predictions to measured values. To analyse 

the effect of the horizontal grid dimensions, the inspection of velocity profiles (Fig. 

9.7.b) suggests grids of 3 or 4 cm. Owing to the point that the grid size of 4 cm 

exhibits oscillations for the last part of the tidal range during the ebb tide, the grid 

size of 3 cm is recommended for the horizontal mesh. 

 (a)  (b) 
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L6 

 

 

 

 Y(m)  Y(m) 

 

Figure (9.7) – Simulated profiles along axis Y for u-velocity component, (a) - variation of number of 

layers: n = 10 (orange), 15 (purple), 20 (green) and 25 (blue); (b) - variation of 

horizontal grid size: Δx = Δy = 4 (purple), 3 (green) and 2 (blue) cm for layers L6 and 

L10 at T/4. Measured values are in red. 

 

9.3.2   Salinity 
 

The salinity profiles along Y axis are plotted for layers L10 and L18 at mid-

flood tide (T/4) in figure (9.8). They also suggest the choice of 20 layers. Examining 

the predictions for the alternative horizontal grid size suggests a choice of 2 or 3 cm. 

It can be concluded that the choice of 20 layers in the z-direction and a grid 

size of 3 cm in the horizontal plane provides a stable solution with computational 

time considerations while having the closest results to the experimental data. 

 

9.4   DISTORTION STUDY 
 

A study has been carried out to investigate the effect of distortion ratio on the 

hydrodynamics and stratification in the harbour. The results may be used for better 

interpretation of the predictions and also to provide a better understanding of the 

effects for the laboratory model experiments. The original configuration of the model 
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harbour has been maintained and two distortion ratios of 10 and 20 have been 

studied. The numerical set-ups then include the tidal range of 100 mm, barrier height 

of 100 mm with a mean water depth of 150 mm for the distortion ratio of 10, and the 

tidal range of 200 mm, barrier height of 200 mm with a mean water depth of 300 mm 

for the distortion ratio of 20. For both tests the salinity concentration has been taken 

equal to 80 g/l. The numerical details for the number of layers in the z-direction and 

the grid size in the horizontal plane derived in the previous section have been applied 

and the results have been plotted for the velocity (Fig. 9.9) and salinity (Fig. 9.10) 

along Y axis at mid-flood (T/4) and mid-ebb (3T/4) tides. 

 (a)  (b) 
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Figure (9.8) - Simulated horizontal salinity profiles along Y axis, (a) – variation of number of layers: n 

= 10 (orange), 15 (purple), 20 (green) and 25 (blue); (b) – variation of horizontal grid 

size: Δx = Δy = 4 (purple), 3 (green) and 2 (blue) cm for layers L10 and L18 at T/4. 

Measured values are in red. 
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Figure (9.9) - Predicted values of u-velocity component for distortion ratios of 20 (red) and 10 (blue) 

at normalized elevations z
*
 and times T/4 (solid) and 3T/4 (dash) along Y axis 
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Figure (9.10) - Predicted values of salinity for distortion ratios of 20 (red) and 10 (blue) at normalized 

elevations z
*
 at times T/4 (solid) and 3T/4 (dash) along Y axis 
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The results are shown for the normalised depths of z
* 

equal to 0.3, 0.5 and 0.7, where 

the normalised depth z
*
 is defined as the ratio of the elevation of the point above bed 

to the barrier height (z/BH). 

 The velocity graphs do not show much difference for different tides, however, 

the velocities are larger for distortion ratio of 20 especially at mid-flood tide (T/4). 

No difference was detected for the water elevations, and the salinity graphs only 

show little difference for z
* 

equal to 0.7 where the higher distortion ratio results in 

lower change of salinity due to tidal excursions of fresh water flushing. 

 

9.5   ENGINEERING ANALYSES 
 

This section aims to analyse the effect of the mean water depth and the barrier 

height on the hydrodynamics of the harbour. Two different situations are considered; 

saline water inside the harbour and saline water flushing into the harbour. Although 

in some cases the harbour may be fed with the receiving water from an upstream 

river and therefore contain fresh water, but this situation does not remain so after the 

tidal excursions. The real situation most often is that the sea water flushes the saline 

water into the harbour and the fresh water flow from the upstream river is also fed. 

The latter has not been considered in the current study. The initial aim for the salinity 

measurements of the current research project was to investigate the stratification 

produced in the harbours with a barrage in the entrance and to study the 

hydrodynamics of such an impoundment to learn to what extent the stratification 

influences the hydrodynamics of the harbour. However a remaining question is to 

what extent the results would change if the real conditions were applied. For this 

analysis three cases are considered and for each case the simulations proceeded for 

different mean water depths and barrier heights. The three cases are as follows: 

 Harbour filled with saline water with a concentration of salt equal to 80 g/l 

and the tidal flushing of fresh water (case I: saline, flushed by fresh); 

 Harbour filled with fresh water and the saline water flushing into the 

harbour with a concentration of salt equal to 80 g/l (case II: fresh, flushed 

by saline); 

 Harbour filled with fresh water and the saline water flushing into the 

harbour with a concentration of salt equal to 35 g/l (case III: fresh, flushed 

by weakly saline). 

The summary of the simulations for each case are tabulated in Table (9.1).  
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Table (9.1) – Simulation sets for different mean water depths and barrier heights 

Mean Water Depth 

(mm) 

Barrier Height 

(mm) 

150 (LW) 100 (LB-LW) 150 (MB-LW) 190 (HB-LW) 

200 (MW) 150 (LB-MW) 200 (MB-MW) 240 (HB-MW) 

250 (HW) 200 (LB-HW) 250 (MB-HW) 290 (HB-HW) 

 

For each case the lowest barrier has a height equal to the low tide water elevation and 

is labelled as (LB: low barrier), the barrier with the height of mean water depth of 

each case is referred as (MB: medium barrier) and the barrier with a height 10 mm 

below the high tide level is labelled as (HB: high barrier). The second abbreviations 

in the labels of the barriers refer to the corresponding mean water depths (LW: low 

mean water, MW: medium mean water and HW: high mean water). For all 

simulations a tidal range of 100 mm has been applied. 

 To study the results, the graphs are produced for the dominant velocities and 

the salinities along three axes X, Y and the axis of harbour entrance. The graphs for 

each axis show the results at mid-flood (T/4) and mid-ebb (3T/4) tides for different 

mean water depths and barrier heights and for three layers as follows: 

 *

LL  (low layer) = LB/2, at the elevation of half of the lowest barrier height 

 *

ML (medium layer) = LB, at the elevation of the top of the lowest barrier 

 *

HL (high layer) = at the elevation of the mean water level 

 

9.5.1   Velocity Components 
 

 The graphs for axes X (v-velocity component) and Y (u-velocity component) 

and the axis of harbour entrance (v-velocity component) are presented in figures 

(9.11), (9.12) and (9.13) respectively. At mid-flood tide due to the lower level of 

water in the basin than the crest of the barrier with the height equal to mean water 

depth (MB) no circulation is present in the harbour for the case of medium barrier 

(MB). 

In the ebb tide, the velocities exhibit smaller values due to the opposite 

directions of the discharge from the harbour and the circulation present in the 

harbour. Inspection of the u-velocity component for X axis (not shown) shows that in 
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Figure (9.11) - Simulated v-components along X axis for cases (I, II, III), mean water 

depths (LW, MW, HW), barrier heights (LB: red and MB: blue), 

layers ( *

LL , *

ML , *

HL ) at times T/4 (solid) and 3T/4 (dash)  
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Figure (9.12) - Simulated u-components along Y axis for cases (I, II, III), mean water 

depths (LW, MW, HW), barrier heights (LB: red and MB: blue), 

layers ( *

LL , *

ML , *

HL ) at times T/4 (solid) and 3T/4 (dash)  
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Figure (9.13) - Simulated v-components along axis of harbour entrance for cases (I, 

II, III), mean water depths (LW, MW, HW), barrier heights (LB: red 

and MB: blue), layers ( *

LL , *

ML , *

HL ) at times T/4 (solid) and 3T/4 

(dash). Vertical (dash) lines show the edge of harbour. 
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general for cases (II) and (III) the reduction of the velocities with the increase of 

barrier height is more evident for larger mean water depths and this intensifies for the 

denser flushing water (case II). This does not equally apply to v velocities and the 

differences are small, showing that the changes are less effective for the dominant 

velocities, however the circulations experience variations. For the v velocities along 

X axis for case (I) and for all mean water depths, the velocity magnitudes are slightly 

more for the upper layers, which slightly increase with the increase of the barrier 

height. For case (II), however, for LW the flushing of denser saline water flows 

underneath and produces a circulation near the bed where the velocities exhibit 

slightly larger magnitudes for lower layers, but for MW and HW the velocity 

magnitudes do not present tangible differences for different layers. For case (III) the 

velocities are with slightly larger magnitudes for lower layers. For the taller barrier 

the velocities show very little increase. The velocities generally have the largest 

magnitudes for case (I) and the smallest for case (II) with the higher concentration of 

flushing saline water. With the increase of mean water depth the circulations weaken 

and the velocities show very little decrease for different cases and mean water 

depths. It is evident that for case (II) the circulation centre has shifted towards the 

entrance from the centre of the harbour for case (I). w velocities for axis X (not 

shown) for all cases and mean water depths are larger in lower layers in flood tide. 

They increase with the increase of mean water depth but do not exhibit tangible 

differences with the variation of the barrier height, but the vertical flow structure 

exhibits different patterns. 

The dominant velocity of axis Y (u-velocity), exhibits larger values for the top 

layers at the flood tide in case (I), where a slight increase of the velocity may be seen 

for the taller barrier in the ebb tide. For cases (II) and (III), however, the velocity of 

the lower layers is slightly larger, for which the difference increases with the increase 

of the mean water depth for case (II). The influence of the barrier height is such that 

the velocities are slightly larger for the taller barrier. The velocities experience a 

decrease with the increase of mean water depth for all cases, and generally the 

velocities of case (I) exhibit the largest values while those of case (II) are the 

smallest. For the v velocities of axis Y (not shown), generally, the velocities of case 

(II) are the largest and those of case (I) the smallest. The w velocities (not shown) are 

larger for lower layers and increase with the increase of mean water depth. The 

overall w velocities are the largest for case (III) and the smallest for case (I). 
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For the entrance axis, the u velocities (not shown) exhibit larger values for 

upper layers for case (I), but for cases (II) and (III) the middle layers show larger 

values. The v velocities of this axis for case (I) have larger values for upper layers, 

but for case (II) the larger values are present in lower layers for LW, while for MW 

and HW they are larger for upper layers. For case (III) there is not much difference 

for different layers for all mean water depths. The variation of mean water depth 

does not show a clear trend of the change for the u and v velocities. The v velocities 

are generally larger in case (I). The w velocities (not shown) are present in lower 

layers of water column and they are much stronger in cases (II) and (III) such that the 

increase of the salinity concentration of flushing tide strengthens the vertical 

velocities. 

 

9.5.2   Salinity 
 

 The salinity graphs with the same configuration as velocities are presented in 

figures (9.14), (9.15) and (9.16) for axes X, Y and the axis of harbour entrance 

respectively. The concentration axis is in the reverse direction to show the high 

salinities in lower levels where they are usually located in stable stratifications. 

 For axis X and case (I), *

LL  does not face any changes with tidal excursions. 

For *

ML only LB causes the salinity change which is limited to LW and MW and no 

change in salinity happens for HW. For *

HL  no changes happen for HB, but MB 

shows changes in the mid-ebb tide which reduces the salinity to values near zero for 

LW and HW but MW shows less reduction of the salinity, and LB exhibits values 

almost equal to zero. For case (II) and LW and for the barriers HB and MB the *

LL  

graphs show zero salinity for mid-flood tide, but salinity increases for LB. In mid-

ebb tide the salinity has its largest increase for LB and lesser increase for MB and a 

little for HB. For MW and HW the same trend applies but with less increase. *

ML  

graphs present the same trend with lesser increase and for *

HL  only LB shows a 

slight growth. Generally with the increase of water depth the increase of salinity 

lessens. For case (III) the same trend of graphs as case (II) are evident but with lower 

values due to the lower concentration of salinity. The axis Y and entrance show the 

same trend. The area outside the harbour is not considered in the present analysis. 
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Figure (9.14) - Simulated salinities along X axis for cases (I, II, III), mean water 

depths (LW, MW, HW), barrier heights (LB: red, MB: blue, HB: 

green), layers ( *

LL , *

ML , *

HL ) at times T/4 (solid) and 3T/4 (dash) 
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Figure (9.15) - Simulated salinities along Y axis for cases (I, II, III), mean water 

depths (LW, MW, HW), barrier heights (LB: red, MB: blue, HB: 

green), layers ( *

LL , *

ML , *

HL ) at times T/4 (solid) and 3T/4 (dash)  
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Figure (9.16) - Simulated salinities along axis of harbour entrance for cases (I, II, 

III), mean water depths (LW, MW, HW), barrier heights (LB: red, 

MB: blue, HB: green), layers ( *

LL , *

ML , *

HL ) at times T/4 (solid) 

and 3T/4 (dash). Vertical (dash) lines show the edge of harbour. 
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 In case (I) the fresh water circulation over the saline water impoundment, has 

little influence on lower layers and consequently the change of the salinity. The fresh 

water circulation, however, affects the upper layers and the salinity concentration 

lessens with the tidal excursions. In cases (II) and (III) a circulation initiates near the 

bed by the salinity intrusion from the flushing water resulting in the change of 

salinity in all layers, especially the lower layers, which amplifies with time. In 

general, with the increase of mean water depth and barrier height the change of 

salinity reduces. 

Due to the density difference of the water in the basin and the harbour a current 

forms near the entrance. In case (I), the saline water of harbour produces a gravity 

current towards the outside before the ebb tide pushes the water outside the harbour. 

Figure (9.16) shows that for axis entrance during the ebb tide, where the fresh water 

of basin meets the nearly fresh water of harbour flushing out for case (I), the salinity 

change in harbour is with little variation, but for cases (II) and (III) the incoming 

saline water flows underneath and pushes the fresh ambient water to upper layers and 

the ebb tide therefore exhibits low values of salinity concentration, which results in 

the more concentrated saline water in the harbour over time with repetitive tidal 

excursions. 

 

9.6   SUMMARY 
 

The three-dimensional numerical model has been calibrated and verified 

against the experimental data. To eliminate the effects of wide-crest overflow and to 

improve the accuracy of the predictions, for simulation of barriers, a zero-thickness 

wall is assumed to be placed at the entrance of the harbour. For calibrating the 

numerical model the surface roughness and the bounds for the k and ε values were 

adjusted so that the best results were obtained compared to the experimental data.  

The velocities and flow patterns are in good general agreement with the 

measured values. However, for the fresh water condition the model under-predicts 

the velocity components for the areas with strong circulation which is associated 

with the dominant velocity component. Although the calibration has resulted in 

prediction of lower absolute values for dominant components of the velocity in 

strong circulations, the general flow pattern for the velocities exhibits closer 

configuration with the laboratory data for the interior zones of the harbour. For the 

saline water condition due to the suppression of the velocities for the lower layers 
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and the increase of the velocity values for the top layer, the simulated results show an 

over-prediction in lower layers and a better agreement with the measured values for 

the top layer. The simulated water elevation time series show good agreements with 

the measured data. The salinity profiles also show good agreements between the 

simulated and measured values for lower layers but for the top layer the simulated 

values are over-predicted. 

The grid sensitivity study showed that the choice of 20 layers in the z-direction 

and a grid size of 3 cm in horizontal plane provide a stable solution with 

computational time considerations while having the closest results to the 

experimental data. The results of the distortion study demonstrated for the 

normalised depths of z
*
 showed little alteration for different distortion ratios. 

However, higher distortion ratio results in lower change of salinity due to tidal 

excursions of fresh water flushing. 

The effect of the mean water depth and the barrier height on the 

hydrodynamics of the harbour was investigated for two situations of saline water 

inside the harbour and saline water flushing into the harbour whereby three cases 

were considered. For the X axis, the changes are less effective for the dominant v 

velocity, and with the increase of mean water depth the circulations weaken and the 

velocities show very little decrease. For axis Y the dominant velocity u, exhibits 

larger values for taller barriers. The velocities experience a reduction with the 

increase of the mean water depth. Generally the velocities of case (I) exhibit the 

largest values while those of case (II) the smallest for the dominant velocity for both 

axes. The w velocities are larger for lower layers and grow with the increase of mean 

water depth. For cases (II) and (III) generally with the increase of water depth the 

increase of salinity over the tidal period lessens. For case (I) the fresh water 

circulation over the saline water impoundment has little influence on lower layers 

and affects the upper layers where the salinity concentration lessens by the tidal 

excursion. In cases (II) and (III) a circulation initiates near the bed by the salinity 

intrusion from the flushing water resulting in the change of salinity in all layers, 

especially the lower layers. In general, with the increase of mean water depth and 

barrier height the change of salinity reduces. For cases (II) and (III) the incoming 

saline water flows underneath and pushes the fresh ambient water to upper layers and 

the ebb tide, therefore, discharges less salinity resulting in higher salinity 

concentration in the harbour over time. 



 

 

CHAPTER TEN 

 

 

GENERAL CONCLUSIONS AND 

RECOMMENDATIONS FOR FURTHER RESEARCH 

 

 

 

"As far as the laws of mathematics refer to reality, they are not certain; 

and as far as they are certain, they do not refer to reality." 

Albert Einstein (J.R. Newman, The World of Mathematics, New York, 1956) 

(O'Connor and Robertson, 1999) 

 

10.1   SUMMARY 
 

The principal aim of this study was to achieve a better understanding of 

hydrodynamics of estuarine harbours, salt transport and stratification and their 

relation to harbour mixing. Despite the narrowness of estuaries compared to ocean 

geometry, the flow and mixing exhibit three-dimensional nature due to the complex 

bathymetry, inflow and outflow regime of the estuary, stochastic character, and 

stratification in such hydro-environments. To predict the flow field and the salinity 

distribution and profile in large water bodies, estuaries, harbours and barrages an 

arbitrary Lagrangian-Eulerian (ALE) three-dimensional hydrodynamic free-surface 

numerical model was developed, based on the conservative form of the time-

dependent Reynolds-averaged Navier-Stokes equations. The model with non-

hydrostatic pressure distribution is capable of simulating non-homogeneous variable-

density stratified flows and problems involving complex bathymetry. The model also 
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may be deployed for the rigid-lid condition or may be switched to a laterally-

averaged model. A structured non-orthogonal curvilinear staggered mesh for the 

computational domain has been employed. The discretisation of the flow and 

transport equations has been based on the finite volume method. A fractional-step 

(projection) method has been deployed for solving the set of the equations, by which 

the pressure gradient term was decoupled from the advection and diffusion. The 

fractional-step method combined with alternating direction implicit (ADI) method 

resulted in a locally one-dimensional (LOD) or fractional splitting approximation for 

the transport terms and two-dimensional solution to the Poisson equation. The 

solution of the species concentration equation was uncoupled from the solution of the 

momentum Poisson equation and was solved at each half-time-step prior to the 

solution of the Poisson equation. Accurate and computationally-efficient modelling 

of turbulent stratified flows is of great importance in both coastal and large-scale 

ocean circulation. The k-ε turbulence model still dominates a wide range of 

engineering applications due to its simplicity, fairly accurate results, and 

computational efficiency. For modelling turbulence, and to optimise accuracy and 

economy, the two-equation k-ε turbulence model with buoyancy terms has been 

included in the numerical model. The solution of the turbulence transport equations 

advanced at the beginning of each half-time-step and the computed eddy viscosities 

were used in the flow equations of the same half-time-step. The equations were 

discretised using a fifth-order-accurate upstream LOD scheme to obtain the face 

values for use in the advection terms. For the diffusive contribution of transport, the 

Crank-Nicolson method was deployed and for the pressure, the Poisson equation was 

solved using a central difference scheme which comprised a block tri-diagonal 

matrix. The block tri-diagonal matrix was solved by block forward and back 

substitution. The matrices were diagonally dominant and hence no pivoting was 

required, satisfying the boundedness requirement of the numerical scheme. The 

scheme is non-iterative and the momentum and Poisson equations were only solved 

once at each half-time-step. The θ scheme is used for the pressure in the domain and 

for the velocity on the free surface. For computing the derivatives and coefficients of 

unknown pressures an algorithm was introduced based on quantity and geometry 

matrices. The overall accuracy of the set of the equations is first order in time and 

second order in space.  
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A laboratory tidal basin was designed, set up and employed for instantaneous 

velocity, water surface elevation and salinity measurements of an idealised vertically 

distorted model harbour for fresh water and salinity stratified conditions with various 

barrier heights, tidal ranges and mean water depths. Constant amplitude and constant 

period sinusoidal model tides were reproduced in the tidal tank by means of a 

vertically oscillating weir. Aimed primarily at obtaining laboratory data to verify and 

enhance the predictive capability of the numerical model, the hydraulic model 

harbour was sized so that it also was considered, to some extent and with limitations, 

as a process physical model. For despiking and denoising the velocity data a linear 

correlation algorithm was established and a Wiener filter was designed and adapted 

for the temporal correlation of the signals, which successfully lowered the noise level 

and removed the spikes where the stationary assumption of the statistical 

characteristics of flow was valid. For the conductivity a moving average procedure 

was carried out as the data did not suffer from spikes and exhibited almost a constant 

band of noisy fluctuations. The water elevation data showed a reasonably clean 

signal and no filtering procedure was carried out. 

 

10.2   DISCUSSION ON THREE-DIMENSIONAL MODELLING OF 

ESTUARINE HARBOURS 
 

The measurements show a horizontal clockwise circulation in the harbour and 

weak vertical circulations. The water motion near the entrance is limited due to the 

closed boundaries. Velocities exhibit larger magnitudes for the larger tidal range, and 

the barrier height of 200 mm exhibits lower velocity magnitudes compared with the 

barrier height of 100 mm. The velocity profiles for mid-flood tide show stronger 

circulations compared to mid-ebb tide. The velocity magnitudes are generally larger 

for the barrier height of 100 mm compared to the barrier heights of 0, 60 and 90 mm, 

which is due to the smaller area for the discharge of the water flushing into or from 

the basin. Tidal water surface varies smoothly over the tidal period as it is expected. 

Salinity suppresses the circulation intensity across the water depth with the exception 

of the top layer where the velocity magnitudes are increased with salinity. This is 

caused by less mixing in vertical direction and stronger flushing on the surface. For 

the points around the harbour where the main circulation occurs, the change of the 

salinity is more than the central points. The change of the salinity essentially affects 
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the top layer for the tidal range of 100 mm, while for the tidal range of 200 mm 

stretches to the lower layers. 

The advection terms play a crucial role for the equations of motion, transport of 

salinity and the transport of turbulence model parameters. The key role of the 

advection in the evolution of stratification in such environmental regions and estuarine 

harbours and barrages emphasises the special treatment of this term in the hydraulic 

and numerical modelling. Therefore, six new explicit schemes were introduced for 

advection. All schemes make use of the upwind quantities, which ensures the 

fulfilment of the transportiveness requirement. Three of these process the advection 

by the locally-one-dimensional (LOD) method, and the other three handle the 

advection by a two-dimensional approach. A von Neumann stability analysis was 

carried out for the proposed scheme, showing stable solutions for Courant numbers 

below 1. For monotone behaviour of the solution, a limiter was used and its influence 

on the scheme was demonstrated. A small-amplitude standing wave sloshing in a 

confined container, a small amplitude progressive wave simulating a flap-type wave-

maker, and a solitary wave propagating in constant water depth have been simulated 

to evaluate the free surface predictions. The results show the capability of the model 

in simulating free surface flows and non-linear terms in Navier-Stokes equations. To 

optimise the accuracy and computational time a grid sensitivity study was carried out 

to obtain the criteria for mesh generation, for two- and three-dimensional problems. 

The three-dimensional numerical model was calibrated and verified against the 

experimental data. To eliminate the effects of wide-crest overflow and to improve the 

accuracy of the predictions, for simulation of barriers, a zero-thickness wall was 

assumed to be placed at the entrance of the harbour. For calibrating the numerical 

model the surface roughness parameter and the bounds for the k and ε values were 

adjusted so that the best results were obtained compared to the experimental data. 

The velocities and flow patterns are in generally good agreement with the measured 

values. For the fresh water condition, however, the model under-predicts the 

dominant velocities for the areas with strong circulation. For the saline water 

condition the simulated results show an over-prediction in lower layers and good 

agreements with the measured values for the top layer. The water elevations show 

very close predictions compared with the measured data. The salinity simulated 

profiles show good agreements with the measured values for lower layers and an 

over-prediction for the top layer. A study was carried out to portray the deficiencies 
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of measured values due to vertical distortion used in the laboratory models and to 

address some of the discrepancies of numerically simulated values due to this 

distortion, with the results indicating little alteration for different distortion ratios. 

However, higher distortion ratio results in lower change of salinity due to tidal 

excursions of fresh water flushing. 

The effect of the mean water depth and the barrier height on the 

hydrodynamics and stratification in the harbour was investigated for two situations of 

saline water inside the harbour and saline water flushing into the harbour. The 

analyses showed that the dominant velocities are increased with the increase of the 

barrier height. With the exception of the top layer of the axis of the harbour entrance, 

with the increase of mean water depth the circulations weaken and the dominant 

velocities show very little decrease. The w velocities are larger for lower layers and 

grow with the increase of mean water depth. The overall w velocities are larger for 

saline water flushing into the harbour than the saline water in the harbour and the 

increase of the salinity concentration of flushing tide strengthens the vertical 

velocities. Generally the dominant velocities of the harbour with saline water exhibit 

larger values than the harbour with saline water flushing into the harbour. When 

saline water flushes into the harbour, generally, with the increase of water depth the 

increase of salinity over the tidal period lessens. For a harbour with saline water the 

fresh water circulation over the saline water impoundment has little influence on 

lower layers and affects the upper layers where the salinity concentration lessens due 

to the tidal excursion. When saline water flushes into the harbour a circulation 

initiates near the bed by the salinity intrusion from the flushing water resulting in the 

change of salinity in all layers, especially the lower layers. In general, with the 

increase of mean water depth and barrier height the change of salinity reduces. For 

saline water flushing into the harbour the incoming saline water flows underneath 

and pushes the fresh ambient water to upper layers and the ebb tide, therefore, 

discharges less salinity resulting in higher salinity in the harbour over time.  

 

10.3   ANSWERS TO RESEARCH QUESTIONS 
 

The scope of the research was aimed to address the following questions: 

1. What are the dominant processes that determine the transport and distribution 

of salt in harbours? 
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2. What are the interactive mechanisms of hydrodynamics, stratification and 

mixing in harbours? 

3. How do the geometry and hydrodynamic forcing conditions influence the 

above mechanisms and the nature of stratification in harbours? 

4. How accurately is a three-dimensional numerical model able to predict the 

hydrodynamics governing the harbour mixing and stratification? 

5. What is the influence of stratification on flow and turbulence in harbours and 

barrages? 

The answers to the above questions are outlined in the following paragraphs. 

1. Advection plays the main role in the transport of salt and the evolution of 

stratification in harbours. This is affected by the tidal forcing, the barrier height 

and mean water depth, and the concentration of salinity. 

2. Salinity suppresses the circulation intensity across the water depth with the 

exception of the top layer where the velocity magnitudes are increased with 

salinity. This is caused by less mixing in vertical direction and stronger 

flushing on the surface. For the points around the harbour where the main 

circulation occurs, the change of the salinity is more than the central points.  

3. Velocities show larger magnitudes for larger tidal ranges. The dominant 

velocities are increased with the increase of the barrier height, but with the 

increase of mean water depth the circulations weaken and the dominant 

velocities decrease. The w velocities are larger for lower layers and grow with 

the increase of mean water depth. In general, with the increase of mean water 

depth and barrier height the change of salinity reduces. The change of the 

salinity stretches to lower layers with stronger tidal flushing. With a taller 

barrier the surface flushing intensifies, while the vertical circulation reduces. 

4. The numerical model satisfactorily simulates the flow patterns. The model 

under-predicts the dominant velocities for the areas with strong circulation. 

Salinity exhibits an over-prediction for the top layer and good results for the 

lower layers. The water elevations show very good predictions.  

5. Salinity suppresses the circulation intensity across the water depth resulting in 

less mixing in the vertical direction. Saline water flows underneath the ambient 

water and pushes the fresh water to upper layers resulting in higher salinity in 

the harbour over time.  
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10.4   CONCLUDING REMARKS 
 

 The concluding remarks are categorised in the following paragraphs. 

o Numerical modelling 

 The results show the capability of the numerical model in simulating free 

surface flows and non-linear terms in Navier-Stokes equations. 

 The simulated velocities and flow patterns of the model harbour are in good 

general agreement with the measured values. For the fresh water the model 

under-predicts the dominant velocity components and for the saline water the 

simulations show an over-prediction in lower layers and good agreements for 

the top layer. 

 The water elevations of the model harbour show very close predictions to the 

measured data. 

 The salinity simulated profiles show good agreements with the measured 

values in the model harbour for lower layers and an over-prediction for the top 

layer. 

 A distortion study for the model harbour indicated little alteration for different 

distortion ratios, however, higher distortion ratio results in lower change of 

salinity due to tidal excursions of fresh water flushing. 

An investigation on the effects of the variations of the mean water depth and 

barrier height on the hydrodynamics of the model harbour showed that: 

 The dominant velocities are increased with the increase of the barrier height.  

 With the increase of mean water depth the circulations inside the harbour 

weaken and the dominant velocities slightly decrease. 

 The w velocities are larger for lower layers and grow with the increase of mean 

water depth. 

o Stratification 

Physical and numerical modelling of the model harbour showed that: 

 Salinity suppresses the circulation intensity with the exception of the top layer 

where the velocity magnitudes are increased, caused by less mixing in vertical 

direction and stronger flushing on the surface. 

 For the points around the harbour where the main circulation occurs, the 

change of the salinity is more than the central points. 
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 Generally the dominant velocities along the axes of the harbour with saline 

water exhibit larger values than the harbour with saline water flushing into the 

harbour.  

 The fresh water circulation over the saline water impoundment has little 

influence on lower layers and affects the upper layers.  

 For saline water flushing into the harbour a circulation initiates near the bed 

resulting in the change of salinity in all layers, especially the lower layers.  

 In general, with the increase of mean water depth and barrier height the change 

of salinity reduces.  

 The incoming saline water flows underneath the ambient water resulting in 

higher salinity concentration in the harbour over time.  

 

10.5   RECOMMENDATIONS FOR FURTHER RESEARCH 
 

The recommendations for further research are categorised as follows: 

o Numerical Modelling 

 For stratified flows, a coordinate system with a dividing plane located 

immediately above the region of larger density gradients may be used to 

enhance the predictions of the interface location for stably stratified flows. 

o Physical Modelling 

 It is recommended that the vertical velocities across the depth of water column 

be measured in more locations to give a better picture of vertical circulations 

under variable conditions. 

o Comparisons with field data 

 Investigation of the field data from real estuaries, harbours and barrages is 

recommended to assess the results of the present numerical modelling with 

field data. 

 Due to the distortion, the mixing in the model would be too slow vertically and 

too fast transversely; therefore, the horizontal and vertical profiles of salinity 

distribution and consequently the structure of the stratification could differ 

from the real stratified estuaries and harbours, hence the numerical conclusions 

for real-scale problems are of great importance. 
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o Turbulent stratified flows 

 Understanding the profile of variations of Richardson number in the water 

bodies of interest of this research project may result in more accurate 

predictions of the flow field in the absence of strong circulations where the 

prediction of the flow pattern and local circulations are governed by small 

values. 

 It is recommended that a formulated relation between harbour mixing and 

stratification be more precisely investigated. 

o Signal processing 

 It is recommended that the validity of the proposed interpolation method for 

increasing the sampling frequency of the measured data as well as producing 

data for the spatial domain be examined. 

 The effectiveness and accuracy of the proposed interpolation method for 

smoothing the numerical simulation outputs to be assessed as a post-processing 

tool. 

 The correlation used for the filter for the temporal domain can be extended for 

the spatial domain. 

 For the regions where the stationary assumption of the statistical characteristics 

of flow is not valid, a block-adaptive Wiener filter may be utilised or a Kalman 

filter deployed to include the non-stationary random signals. 

o New features 

 The study of the effect of wave-current interaction on hydrodynamics and 

mixing in stratified coastal waters, and harbours is of great importance. 

 It is recommended to investigate the flushing rate and the water quality processes 

so that to obtain the geometrically and dynamically limitations for adequate 

circulation and flushing in harbours and barrage schemes, while satisfying to the 

extent possible the economic considerations. 
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